
Conceptual Modeling of Ontology-based Linguistic Resources with a Focus on
Semantic Relations

1
Francisco Alvarez,

2
Antonio Vaquero,

2
Fernando Sáenz

1
Universidad Autónoma de Sinaloa

Ángel Flores y Vicente Riva Palacios s/n, 80000, Culiacán, Sinaloa, México
2
Instituto de Tecnologías del Conocimiento

Facultad de Informática, C/Prof. José García Santesmases s/n, E-28040, Madrid, Spain

E-mail: fjalvare@fdi.ucm.es, vaquero@sip.ucm.es, fernan@sip.ucm.es

Abstract

Although ontologies and linguistic resources play a key role in applied AI and NLP, they have not been developed in a common and
systematic way. The lack of a systematic methodology for their development has lead to the production of resources that exhibit
common flaws between them, and that, at least when it come to ontologies, negatively impact their results and reusability. In this paper,
we introduce a software-engineering methodology for the construction of ontology-based linguistic resources, and present a sound
conceptual schema that takes into account several considerations for the construction of software tools that will allow the systematic
and controlled construction of ontology-based linguistic resources.

1. Introduction

Nowadays, one of the preferred ways of representing a
body of domain knowledge is by means of an ontology. In
fact, as Musen reports in (Musen,, 2004), ontologies have
become so popular that they have eclipsed almost
everything else in applied AI including NLP.
Consequently, we find ontologies pervasively used in
areas such as legal information systems, text mining and
information retrieval for bioinformatics and so on.

This new emphasis on ontologies is not surprising. It
reflects the important role they play in structuring our
collections of propositional knowledge to obtain a world
model, over which, applications can “reason” in order to
give the user a plausible answer to e.g. a query.

However, until now, ontologies have been developed
relying on different foundations, which according to
(Hovy, 2005), stem from philosophy, cognitive science,
linguistics and AI/computational linguistics, and where
computational foundations, under the form of a
methodology for ontology building have received little
attention.

Indeed, methodological discussion is necessary; if we
are to provide the general enterprise of ontology building
and relation creation, with rigor, systematicity and
verification methods that would turn this effort from a
subjective crafting enterprise into a science.

Without this, the user does not know how to choose
between various alternative semantic theories and
resources, and is forced to rely on unverifiable claims, the
ontology builders’ reputation and/or erudition, and
subjective preferences.

Although several methodologies (Gómez-Pérez,
Fernández-López, Corcho, 2004) have been proposed,
they do not offer a systematic way of constructing
ontologies, but rather focus on knowledge acquisition

tasks.
 In this paper, we present the first stage of a software

engineering based methodology for ontology construction,
that we have been developing through the years (Sáenz &
Vaquero, 2002; Sáenz & Vaquero, 2005), namely the
construction of a sound conceptual model which takes
into account several aspects that are commonly
overlooked in the development of ontologies.

The rest of the paper is organized as follows. In
Section 2, we explain why a common methodology for
construction is needed, why it must be software
engineering based, and state that the first step for ontology
building must be the construction of a sound conceptual
schema. In Section 3, we expound our first consideration
for the construction of the conceptual schema, by
justifying why an ontology-lexicon structure is
advantageous and necessary.

In Section 4, we give examples of some common
problems in linguistic resources and ontologies that must
be taken into account for the construction of the
conceptual schema. In Section 5, we introduce an
intermediate step to produce a conceptual dictionary prior
to structuring the ontology with (ontology-specific)
semantic relations. In Section 6, we explicate our solution
to the problems exposed in section 4.

In Section 7, show how, by considering a small set of
relations, bad modelling choices could have been
prevented. In section 8, we present our conceptual schema.
Finally, in Section 9, some conclusions and future work
are outlined.

2. Software Engineering Problem-Solving
for Ontology Construction

Until now the common trend in AI and NLP is to develop
representation languages, ontology editors, and concrete

879

(ontological) resources, in a rush to implement and have
results as soon as possible.

Nonetheless, better ways of building ontologies must
be sought that provide two things: a) a systematic way (i.e.
carried on using step-by-step procedures) of building
ontologies; and b) a way of ensuring some sort of quality
with respect to the intended goal(s) of the ontology by
taking into account domain specific aspect as well as
those of the problem(s) to solve.

We claim that in order to achieve this, ontology
construction must follow a software engineering
problem-solving approach, embodied, as we stated before,
in the form of a methodology.

Indeed, if we want to avoid ontologies being always
criticized as creative inventions of individuals (as
linguistic rules used to be), then we must provide a
general methodology that allows for their creation and
maintenance (Wilks 2002).

However, a software engineering problem-solving
methodology for ontology construction must not only
borrow the vocabulary of software engineering and adapt
it to carry on knowledge acquisition tasks (see the
description of the Methontology (Gómez-Pérez,
Fernández-López, Corcho, 2004) for an example of this).

It must conceive ontology construction as process of
elaboration, where the problem (e.g. building ontologies)
is first represented at a high level of abstraction, and as the
process progress, the statement of the problem moves
from a representation of the essence of the solution
toward implementation specific details, and finally to the
construction of the ontology itself.

Thus, from a software engineering point of view,
ontology construction requires a series of steps, in
decreasing abstraction order, that take developers from
essence to delivery, and that help them to develop the
resource correctly.

However, in order to apply software engineering to the
construction of ontology-based linguistic resources, it is
mandatory to conceive these resources as information
systems which are composed of a database and an
application layer core (the rationale of this decision is
explained in (Sáenz and Vaquero, 2005)) which allows the
user and applications to interact with the conceptual and
lexical data.

Otherwise, as stated in (Sáenz and Vaquero, 2005), the
software engineering methods would only be applied (as
it commonly happens) to the application layer (i.e.
normally represented under the form of user interfaces).

Furthermore, if want to have any hopes for a more or
less automated incorporation of different ontology-based
linguistic resources into a common information system,
perhaps distributed, we will require compatible software
architectures and sound data management from the
different databases to be integrated.

With this in mind we have developed a methodology
that has the following steps:

• Represent the conceptual level using the E-R

model.

• Apply the relational database design cycle in
order to obtain the logical and physical
models of the ontology-based lexical
resource.

• Use UMLi (Pinheiro & Paton, 2003) to
develop the interfaces for creation,
management and querying.

We will focus here in the design stage (the

construction of the conceptual schema of the resource by
using the E-R model), in order to develop a common and
sound database structure.

Conceptual modeling is an important milestone in
software engineering, information systems development
and database development. Developers need to know the
conceptual model in order to develop an information
system or database.

Unfortunately, the need for conceptual models in
software engineering, and information systems
development is often overlooked or simply disregarded
(Pressman, 1999; Olivé, 2007), and a common practice is
to begin by “coding the solution”, and as a result, interface,
architectural, and data design just happen.

In our research, we have found that with a few
countable exceptions (see (Vaquero, Alvarez and Sáenz,
2008) for a list and discussion) the same problem exists in
the development of ontologies and linguistic resources in
general, that is, there is no conceptual design (or
conceptual modeling) and no software engineering
approach in their development.

It can be argued that for ontology construction,
methodologies such as the Methontology (Gómez-Pérez,
Fernández-López and Corcho, 2004) offer a way to obtain
a conceptual model. However, what they present in reality
is a lightweight ontology, that later goes through a
formalization process.

This same idea is shared by (Welty and Guarino, 2001),
when they state that the accepted industrial meaning of
ontology makes it synonymous with conceptual model,
and that a conceptual model is an actual implementation
of an ontology.

Nonetheless, for us, a conceptual model has a whole
different meaning.

Following (Olivé, 2007) a conceptual model is a
commitment to viewing domains in a particular way (e.g.
objects, relationships and concepts). In our particular case,
we assume, as (Chen, 1976) does that the “real world”
consists (basically) of entities and relationships.

From this conceptual model (i.e. the E-R Model) we
will obtain a conceptual schema, which following (Batini,
Ceri and Navathe 1994, Connolly and Beg, 1999; Atzeni
et al., 1999), is the description of the structure of the
database at a high level of abstraction, without
considering any implementation details, such as DBMS,
application programs, programming languages or any
other physical considerations.

Given that in Software Engineering and database
development, conceptual schemas are the product of
certain considerations with regard to the information

880

requirements of an application; in the following 4 sections
we will make some considerations that will: a) determine
the structure of our conceptual schema; and b) solve
certain problematics common to most linguistic resources
and ontologies in general.

3. An Ontology-Lexicon Structure

Since we aim for the production of ontologies to be used
by NLP programs, we can advance here our first
consideration: the schema will represent an ontology with
a Mikrokosmos-like structure, that is, a single ontology
with a language-specific lexicon mapped to it (Nirenburg,
McShane and Beale, 2004).

On one hand, a lexicon is needed because for the
majority of problems, we need more or less profound
linguistic expertise to at least divide the problem into
manageable parts.

For example, as (Hajic and Hajicova, 2007) explain, in
machine translation today we need to lemmatize and
identify (at least) “phrases”–indeed, very linguistic
phenomena. For predicate extraction, we need to know at
least some aspects of the syntactic structure of the
sentence. And for word sense disambiguation, a lexicon
must contain, in the word entries, specific information to
help disambiguate a term (see (Nirenburg & Levin, 1992;
Nirenburg, Mcshane and Beale, 2004) for examples of
this).

On the other hand, and following (Mahesh &
Nirenburg, 1995) we need an ontology for several
reasons:

• To have a main repository for representing

selectional preferences between concepts. This
knowledge is invaluable for resolving
ambiguities by means of e.g. a constraint
satisfaction process.

• To enable inferences to be made from the input
text using knowledge contained in the concepts,
in order to resolve ambiguities, fill gaps in text
meaning, and support metonymy and metaphor
processing.

• To form a substrate upon which meanings in
any language are grounded and constructed in
the lexicon, by guaranteeing that every symbol
used in representing lexical semantics is defined
as a concept, is well-formed, and has known
relations to all other concepts.

It can be argued that this also can be done without

following an ontological semantics approach, e.g. using
the generative lexicon approach of (Pustejovski, 1991) or
the SIMPLE framework (Lenci et al., 2000).

However, as (Nirenburg, Raskin & Onyshkevych,
1995) point out, although these approaches avoid the
concept of ontology in their theoretical frameworks, they
introduce elements of metalinguistic apparatus that play
the same role as the ontology, or contain what would be
more efficiently recorded in a single sufficient ontology,
in order to make up for their sparsity of information in the

semantic substrate (McShane et al., 2004).
An issue that arises with an ontology-lexicon structure

is the separation between ontology and lexicon.
Nonetheless, we will not discuss it here as we are
interested merely in the structure and advantages of such
separation, and not in “a posteriori” knowledge
representation issues.

However, as useful and necessary as an ontology can
be, their construction must be done avoiding certain
pitfalls. In the next section we will present a list of these
issues that will undoubtedly shape our conceptual
schema.

4. Some Common Problems in Linguistic
Resources

Existing linguistic resources (ontology-based or not) are
plagued with flaws that severely limit their reuse and
negatively impact the quality of results. Thus, it is
fundamental to identify these flaws in order to avoid past
and present mistakes, and create a sound conceptual
schema that leads to a linguistic resource where some of
these errors can be avoided.

We have found that most of the problems of past and
present linguistic resources have to do with their
taxonomic structure.

For instance, once a hierarchy is obtained from a
Machine-Readable Dictionary (MRD), it is noticed that it
contains circular definitions yielding hierarchies
containing loops, which are not usable in knowledge
bases (KB), and ruptures in knowledge representation
(e.g., a utensil is a container) that lead to wrong inferences
(Ide and Veronis, 1993).

In WordNet, a widely used linguistic resource (and
considered by some as an ontology), the “is-a” and
“part-of” relations between synsets (WordNet’s
representation of concepts) are not used in a consistent
way.

For example, Burgun and Bondenreinder in (Burgun
and Bondenreider, 2001) report that according to the
taxonomic relations linking the hypernyms of “fever” in
WordNet 1.6, “fever” ends up being categorized as a
“psychological feature”.

Furthermore, as (Hirst, 2004) tell us, the is-a and
hypernim relations are used interchangeably, in spite that
although they are close in meaning, they are not the same.

In the biomedical domain, the UMLS (Unified
Medical Language System) has circularities in the
structure of its Metathesaurus (Bodenreider, 2001), and
relations like “Conceptually-Related-To” that cannot be
adequately interpreted (Montero, 2003).

In SNOMED-RT (a clinical terminology developed by
the College of American Pathologists), we find an
example of a mix of close-related relations that leads to an
improperly structured taxonomy (Ceusters, Smith and
Flanagan, 2003). The concept “testis” subsumes
(correctly) the concepts “left testis”, “right testis” and
“undescended testis”, but also “both testes”. We could
accept “both testes” as being part-of another concept (e.g.,
“Testes”) denoting the mereological sum of the left and

881

right testes, but hardly as being a “Testis”. .
Hence, besides producing resources with no

methodology, what we have been producing are resources
that have very general or imprecise relations that cannot
be adequately interpreted, resources whose relations are
subject to multiple interpretations, resources where the
semantics of the relations are not fine-grained enough as
to allow to differentiate between two relations that are
close in meaning but are not the same, and improperly
structured taxonomies.

Consequently, our conceptual schema must represent,
at an abstract level, the solution to this particular set of
problems, so as to allow us to implement a solution to
counter the subjectivity with which semantic relations in
these resources have been used, and to properly structure
an ontology.

In the next two sections, we will describe a series of
ideas that can help us solve these problems, and that will
determine the final structure of our conceptual schema.

5. From Corpus to a Conceptual Dictionary

The first step in building an ontology for an specific
application, is to find the set of relevant concepts
representing an unstructured version of a domain model.

Several strategies can be followed to do this. However,
it has been proved (Gómez-Gauchía, Díaz-Agudo,
González-Calero,2004; López Rodriguez,Tercedor
Sánchez and Faber Benítez, 2006) that one of the best
methods is to follow a middle-out strategy.

This strategy has as a goal, the compilation of domain
and problem-related documents to form a corpus that can
be used as a source of knowledge.

Once this is done, an statistical analysis can be
performed on them, as well as other document processing
techniques such as document parsing with XML
(Gómez-Gauchía, Díaz-Agudo, González-Calero,2004),
in order to obtain a set of relevant concepts. Once this is
done, the usual step is to immediately begin the
construction of the ontology or the lightweight one
mentioned before.

Nonetheless, for ontologies with the same structure as
ours (i.e. an ontology-lexicon structure), we propose an
intermediate step that will take developers, with the aid of
an special tool, not from corpus to the ontology, but from
corpus to a conceptual dictionary or primitive
lexical-conceptual structure (PLCS) devoid of any
ontology-specific relations (e.g. is-a, part-of, etc.).

The goal of is to capture and structure, through an
iterative process, all the informal semantics of a domain,
and to produce a representation as complete as possible of
it.

In this PLCS, each concept will have an intensional
definition given in natural language. Moreover, each
intensional definition will contain a collection of
user-stated keywords (i.e. they are part of the intensional
definition) that will help the experts (i.e., by means of the
authoring tool) to relate a concept to other concepts, and
terms.

Over these intensional definitions we impose two

conditions: a) they must be as concise as possible and b)
they must be formulated by experts. Figure 1 illustrates
the approach.

Figure 1: An Example of a PLCS

In Figure 1, the concept “Spain” has a definition with

three keywords (i.e., “Country”, “European union” and
“Schengen agreeement”). These keywords are used to
associate “Spain” to the “Country”, “European Union”
and “Schengen agreement” concepts. Here, it is important
to underline that the authoring tool will ensure the
completeness of the PLCS, i.e. if in an intensional
definition, the expert selects a keyword that does not exist,
then, such a keyword must be created and included as part
of the set of terms of the PLCS.

Furthermore, if the situation arises where a given term
is polysemous then, the tools must bring forward this fact,
and force the expert to make a choice between the
concepts that the term denotes.

Finally, once the set of concepts and terms has been
considered representative enough, developers can begin
the construction of the ontology, by using an specific set
of relations.

However, determining for one application which
relations are these and how to obtain them is a knowledge
acquisition task, and thus is out of the scope of these
paper.

Instead, since what we are aiming for is the
construction of a conceptual schema, we will focus next
on a series of ideas to provide relations with specific
semantics and prevent improper modeling choices in their
usage while structuring the ontology.

6. Controlling Subjectivity in the Usage of
Semantic Relations

Of the many difficulties in building a useful
knowledge-based system (KBS), control and verification
are one of the greatest challenges, and as we automate
even more and more tasks the need for them becomes
even more crucial. In fact, as (Hicks, 2003) tell us, the
importance of verification in KBS cannot be overstated,
specially if we want these systems to perform correctly in
the long term.

The mistakes shown in section 3 clearly point out, that

882

in terms of ontology construction, semantic relations must
be subject to control and verification, and that even
seemingly harmless mnemonics e.g. “is-a” must be
handled gingerly during the ontology construction
process in order to minimize the effect of incorrect
modelling choices and coherently structure an ontology.

Two approaches exist that try to deal with this problem
(Welty & Guarino, 20001; Bachimont, Isaac & Troncy,
2002). Nonetheless, for the reasons we adduce in (Alvarez,
Vaquero, Sáenz & Buenaga, 2007), these methods cannot
fully work or not work at all, as they leave the semantics
of the problem, the task and the application out of the
equation, focus on concepts, not relations, to structure an
ontology, and just take into account a handful of relations.

In spite of this, we share the idea that a set of
conditions must be established to test whether two
concepts can be linked by a given relation.

However, we differ in the way of enforcing such
control and verification. In our opinion, this must be
enforced through a set of properties defining the
semantics of relations, and for all the relations to be used
in the construction of the ontology, not just for a few basic
ones.

Furthermore, the semantics must be in part determined
by the domain, the problem and the task at hand (see
(Alvarez, Vaquero, Sáenz and Buenaga, 2007) for an
example of this), and not by an universal view of them.

Consequently, we divide these properties into
algebraic properties denoting those properties needed to
make valid syllogisms (e.g., transitivity, asymmetry,
reflexivity, etc.), and intrinsic properties (i.e., those
properties representing facts that are hard to formalize)
encompassing domain-dependent, problem-dependent
and task-dependent properties. Figure 2 illustrates this
idea.

Figure 2: Algebraic and Intrinsic Properties

In addition, over these two sets of properties we apply

two different criteria for they employment: a) algebraic
properties since they are domain independent are
invariable through all the graph; b) intrinsic properties on
the other hand will depend on the depth level of the graph
where the semantic relation is used.

With this idea, the experts must move from the PLCS
described in the previous section to an ontology with the
aid of an authoring tool, and relation by relation.

For instance, let us suppose that we are trying to
develop an ontology to support a legal information system

to “assess claims for immigration” in “Schengen
signatory countries”.

For example purposes, we will assume that only the
is-a relation is needed to model the problem domain with
the following properties: a) asymmetry, reflexivity and
transitivity as algebraic properties; b) has borders, has
constitution and has central government as
domain-dependent intrinsic properties; and c) signed
treaty of adhesion as task-dependent intrinsic property;
and d) signed Schengen agreement as problem-dependent
intrinsic property.

Based on these properties, the system could ask
meaningful questions to the ontology developer in order
to prevent inappropriate modelling choices

Hence, if a developer would want to link the concept
“Spain” to the concept “Schengen agreement” using the
“is-a” relation, the system would not allow such an
operation, if “Spain” would not comply with all the
algebraic properties and the intrinsic properties at that
specific depth level. Figure 3 depicts this idea.

The ideas we presented in this sections, along with the
ones from section 4 will form the basis for our conceptual
model. However, before presenting it, we will introduce a
group of ideas, that although will not alter the final
conceptual model, will help developers to better structure
an ontology.

Figure 3: Algebraic and Intrinsic Properties in Action

7. Some Basic Relations for Ontology
Structuring

Although we cannot determine in advance the full set of
relations for a given application, what we can do is
anticipate, the common relations for any application
whatsoever: “member-of” and ”is-a”.

The first relation that must be used is “member-of”, as
we always begin constructing a domain model by
identifying or selecting a set of objects of interest. Then
the “is-a” relation appears by discovering the common
properties to all the members belonging to a given
extension set. Figure 4 exemplifies this idea.

883

Figure 4: Using the “member-of” and “is-a” relations to
build a domain model

To prove the usefulness of the common relations we

mentioned above, let us remodel (without algebraic and
intrinsic properties as it is a trivial example) the “both
testes is-a testes” mistake” of (Ceusters, Smith and
Flanagan, 2003) represented in Figure 5.

Figure 5: The “both testes is-a testis” mistake

We first have that the “undescended testis”, “left

testis” and “right testis” concepts represent an extension
concept of which they are members, denoted by the plural
“testes”. Figure 6 illustrates this fact.

Figure 6: Structuring begins with the member-of relation

Then, the concept “testis” is created as a result of the

abstraction of the common properties of all the “testes”
and the “is-a” relation naturally appears. Figure 7 depicts
the process.

Figure 7: Using the “member-of” and “is-a” relations to
build a domain model

After that, it becomes clear that “both testes” is a

special subset of the extension set “testes”, and that the
next relation that naturally appears is “component-of”, as
shown in Figure 8.

Figure 8: Using the “component-of” relation to build a

domain model

The rationale behind Figures 6, 7 and 8 is that we must

exhaust the set-theoretic relations before moving to other
relations that are not set-theoretic like the “adjacent to”
that we described in (Alvarez, Vaquero, Sáenz & Buenaga,
2007).

It also implies: a) that a single relation (i.e., “is-a” or
subsumption) will always mislead us; b) that member-of
and “is-a” should always be contemplated; and c) that
tackling the complexity of domains must be done relation
by relation.

8. Conceptual Schema for a Monolingual
Ontology-based Linguistic Resource

The embodiment of the ideas presented in the previous
sections is represented by the E-R model of Figure 9. In
this model relations are treated as concepts via the
specialization-generalization construct. The entity set
“Relations” represents all the relations in the ontology.
The entity sets “AlgebraicProperties” and
“IntrinsicProperties” denote the group of algebraic and
intrinsic properties that a given relation can have
respectively.

Figure 9: Conceptual Model of a Monolingual
Ontology-based Linguistic Resource

The relationship set “BinaryRelation” is used to state

that a concept is related to another concept via a binary
semantic relation. Its cardinality is many to many because
a concept can be linked to many concepts, and a concept
can be related to other concepts through several relations.

The relationship sets “HasAP” and “HasIP” represent
the idea that a relation can have a set of algebraic

884

properties. Both sets are many to many because a given
relationship can have several algebraic or intrinsic
properties and the same algebraic or intrinsic property can
be present in different relations.

On the lexical-conceptual side, we have that the entity
set Terms represents all the terms composing the
linguistic resource, and each term is denoted by a name
represented by the attribute “TermName”. The entity set
Concepts denotes the concept to which a given term is
mapped and the attribute Definition characterizes the
intensional definition of a given concept.

The relationship set “Synset” represents a set of terms
mapped to a given concept. “Synset” has a many to many
cardinality in order to denote synonymy and polysemy: a
concept may be denoted by several terms and a term may
embody several concepts.

The relationship set “Represents” is used to state that
for a given set of synonyms, there is a term which is
representative of the concept denoted by such a set.
“Represents” has a one to one cardinality because we
assume that only one term from the set of synonyms can
be the representative one, and that it is unlikely that the
same term may be representative of a different set of
synonyms.

The relationship set “Keywords” asserts that a concept
can be related to another concept by means of a single
term (i.e., one of the keywords in the definition) and that
this single term denotes a concept. “Keywords” has a
many to many cardinality in its recursive side because a
concept can be related (i.e., through its keywords) to one
or more concepts, and is one to many between “Terms”
and “Concepts” because each of the many concepts is
denoted by a single given term.

9. Conclusions and Future Work

In this paper, we have presented part of a software
engineering approach for ontology development, where
“thinking precedes action”, in order to obtain a conceptual
schema, for an ontology-based linguistic resource, that
will be represented in a relational database.

The goal of the conceptual schema is not only to
represent the information requirements of a given
application in terms of lexical and conceptual knowledge,
as it is done in any of the linguistic resources presented in
(Vaquero, Alvarez & Sáenz, 2008), but also to provide:

• An structured and systematic approach to

represent and organize all the conceptual and
lexical items needed for an specific application

• The essentials for the implementation of
mechanisms for control and verification of
semantic relations in ontology construction.

Consequently, we have proposed a different ontology

development approach divided in 2 levels.
 In the first, we move from a corpus to a conceptual

dictionary or PLCS where the informal semantic of the
domain is represented and structured but devoid of
ontology-specific relations.

 In the second, the ontology is structured in a relation
by relation basis, beginning from a small group of set
theoretic relations, and by using the algebraic and
intrinsic properties to prevent the experts from making
inappropriate modeling choices.

These ideas must be included in the ontology
development tools, much as it is done in Intelligence
Augmentation Systems and Decision Support Systems
(Paraense,Gudwin & Gonçalves, 2007), in order to have a
computational system performing decision making, in
terms of the usage of relations, based on the cooperation
provided by an ongoing dialogue between a human user
and a computer system.

This cooperation results in the appropriate structuring
of the ontology, by means of a computational processing
power applied to specific points in the human thought
process which suffer from some sort of flaw or
inefficiency.

Nonetheless, relational database by themselves only
provide mechanism to express a handful of constraints:
mainly referential integrity and cardinality constraints.

Consequently, we are currently studying the use of
additional technology that will help us preserve the
structure and format of the resource without moving to
other file-related approaches (e.g., XML), and to counter
the lack of expressivity of relational databases.

The options we are considering are the use of DataLog
(García-Molina, Ullman & Widom, 2002), Answer Set
Programming (Lifschitz, 2002), and the Maude System
(Clavel et al., 2003).

10. References

Álvarez, F., Vaquero, A., Sáenz, F., & Buenaga, M. (2007).
Neglecting Semantic Relations: Consequences and
Proposals. In Proceedings of the IADIS International
Conference on Intelligent Systems and Agents (ISA
2007), part of the IADIS Multiconference on Computer
Science and Information Systems (MCCSIS 2007), pp.
99-108, IADIS Press.

Atzeni, P. C7eri, S., Paraboschi, S., & Torlone, R. (1999).
Database Systems: Concepts, Languages and
Architectures. McGraw-Hill International.

Bachimont, B., Isaac, A., Troncy, R. (2002). Semantic
Commitment for Designing Ontologies: A Proposal.
Lecture Notes in Computer Science 2473, pp. 114-119.

Batini, C., Ceri, S. & Navathe, S. (1994). Conceptual
Database Design: an Entity-Relationship Approach.
Addison-Wesley.

Bodenreider, O. (2001). Circular Hierarchical
Relationships in the UMLS: Etiology, Diagnosis,
Treatment, Complications and Prevention. In
Proceedings of the AMIA Symposium.

Burgun, A. and Bodenreider, O. (2001). Aspects of the
Taxonomic Relation in the Biomedical Domain. In
Proc. of the 2nd International Conference on Formal
Ontologies in Information Systems.

Ceusters, W., Smith. B., & Flanagan, J. (2003). Ontology
and Medical Terminology: Why Description Logics
Are Not Enough. In Proceedings of the Conference:
Towards an Electronic Patient Record (TEPR 2003).

885

Chen, P. (1976). The Entity-Relationship Model-Toward a
Unified View of Data. ACM Transactions on Database
Systems, Vol. 1, issue 1.

Clavel, M., Durán, F., Eker, S. Lincoln, P. Martí-Oliet, N.,
Meseguer, J. & Talcott, C. (2003). The Maude 2.0
System. In Proceedings of Rewriting Techniques and
Applications. Lecture Notes in Computer Science
2706, Springer-Verlag, pp. 76-87.

Connolly, T. & Beg, C. (1999). Database Systems: A
Practical Approach to Design, Implementation and
Management, 2nd Edition. Addison.Wesley.

García-Molina, H., Ullman, J. & Widom, J. (2002).
Database Systems: The Complete Book. Prentice Hall.

Gómez-Gauchía, H., Díaz-Agudo, B., González-Calero, P.
(2004). Towards a Pragmatic Methodology to Build
Lightweight Ontologies: a Case Study. In Proc. of the
IADIS International Conference on Applied
Computing, IADIS Press.

Gómez-Pérez, A., Fernández-López, M., & Corcho, O.
(2004). Ontological Engineering: with examples from
the areas of Knowledge Management, e-Commerce and
the Semantic Web. Springer-Verlag London.

Hajič, J. & Hajičová, E. (2007). Some of Our Best Friends
Are Statisticians. In Proceeding of the 10th
International Conference (TSD 2007). Lecture Notes in
Computer Science 4629 Springer-Verlag.

Hicks, R.C. (2003). Knowledge-Based Management
System-Tools for Creating Verified Intelligent Systems.
Knowledge Based Systems 16, pp. 165-171.

Hirst G. (2004). Ontology and the Lexicon. In Staab and
Studer (eds), Handbook on Ontologies,
Springer-Verlag, pp. 209-230.

Hovy, E. (2005). Methodologies for the Reliable
Construction of Ontological Knowledge. In
Proceedings of the 13th Annual Conference on
Conceptual Structure (ICCS 2005), Lecture Notes in
Artificial Intelligence, Vol. 3596, pp. 91-106.

Ide, N., and Veronis, J. (1993). Extracting Knowledge
Bases from Machine-Readable Dictionaries: Have we
wasted our time? In Proc. of the First International
Conference on Building and Sharing of Very
Large-Scale Knowledge Bases.

Lenci, A., Bel, N. Busa, F., Calzolari, N. Gola, E.
Monachini, M, Ogonowski, A, Peters, I. Peters, W,
Ruimy, N., Villegas, M, Zampolli, A. (2000). SIMPLE:
A General Framework for the Development of
Multilingual Lexicons. LREC 2000.

Lifschitz, V. (2002). Answer set programming and plan
generation. Artificial Intelligence, Vol. 138, pp. 39-54.

López, C., Tercerdor, M., Faber, P. (2006): Gestión
Terminologica Basada en Conocimiento y Generación
de Recursos de Información sobre el Cancer: el
Proyecto OncoTerm. RevistaeSalud 2(8).

Mahesh, K. & Nirenburg, S. (1995). A Situated Ontology
for Practical NLP . In Proceedings of the Workshop on
Basic Ontological Issues in Knowledge Sharing.
International Joint Conference on Artificial
Intelligence (IJCAI-95).

McShane, M., Zabludowski, M., Nirenburg, S. & Beale, S.
(2004). OntoSem and SIMPLE: Two multi-lingual
world views. In Proceedings of the ACL-2004

Workshop on Text Meaning and Interpretation.
Montero, S. (2003). Estructuración conceptual y
formalización terminográfica de frasemas en el
subdominio de la oncología. Estudios de Lingüística
Española (ELiEs), Vol. 19.

Musen, M. (2004). Ontologies-Necessary-Indeed
Essential-but Not Sufficient. In Brewster, C. and
O’Hara, K. Knowledge Representation with Ontologies:
The Present and Future. IEEE Intelligent Systems 19(1):
77-79.

Nirenburg, S. & Levin, L. (1992). Syntax-driven and
ontology-driven lexical semantics. In Pustejovsky J. &
Bergler, S. (Eds.), Lexical Semantics and Knowledge
Representation. Lecture Notes in Computer Science
Vol. 627, Springer Verlag, Berlin.

Nirenburg, S., V. Raskin & B. Onyshkevych (1995).-
Apologiae Ontologiae. In Proceedings of the
Conference on Theoretical and Methodological Issues
in Machine Translation (TMI-95).

Nirenburg, S., McShane, M. and Beale, S. (2004). The
Rationale for Building Resources Expressly for NLP. In
Proceedings of the 4th International Conference on
Language Resources and Evaluation (LREC04).

Olivé, A. (2007). Conceptual Modeling of Information
Systems. Springer-Verlag Berlin Heildelberg.

Pinheiro, P. & Paton, N. (2003). User Interface Modeling
in UMLi. IEEE Software, Vol.20 No. 4, IEEE
Computer Society, pp. 62-69.

Pressman, R. (1999). Software Engineering. In Merlin
Dorfman and Richard H. Thayer (Eds.) Software
Engineering. Wiley-IEEE Computer Society Press.

Pustejovsky, J. (1991). The Generative Lexicon.
Computational Linguistics 17:4.

Sáenz., F. & Vaquero, A. (2002). Towards a Development
Methodology for Managing Linguistic Knowledge
Bases. In Research and development in intelligent
systems XIX. Springer, Cambridge (United Kingdom).

Sáenz, F. & Vaquero, A. (2005). Knowledge
Representation Issues and Implementation of Lexical
Databases. Second International workshop on UNL,
other interlinguas and their applications,
CICLing-2005, Research on Computing Science, Vol.
12, pp. 430-442.

Vaquero, A., Alvarez, F. & Sáenz, F. (2008). Representing
Computational Dictionaries in Relational Databases. In
Gouws, R.H., U. Heid, W. Schweickard & H.E.
Wiegand (eds). 2009. Dictionaries. An international
encyclopedia of lexicography. Supplementary volume:
Recent developments with special focus on
computational lexicography: Chapter XVI: Models for
the Representation of Dictionaries: The Form Aspect.
Mouton de Gruyter Publishers.

Welty, C. & Guarino, N. (2001). Supporting ontological
analysis of taxonomic relationships. Data and
Knowledge Engineering vol. 39(1), Elsevier.

Wilks, Y. (2002). Ontotherapy: or How to Stop Worrying
about What There is. Invited presentation, Ontolex
2002, Workshop on Ontologies and Lexical Knowledge
Bases (OntoLex).

886

