Oracle9

Database Utilities

Release 1 (9.0.1)

June 2001
Part No. A90192-01

ORACLE

Oracle9i Database Utilities, Release 1 (9.0.1)
Part No. A90192-01
Copyright © 2001, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8i, Oracle9i, Oracle Store, SQL*Plus, Oracle7, and PL/SQL
are trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

Send US YOUr COMMENTS ...t XXVii
PIEIACE ...t XXiX
Y E o |1 o (o1 OSSPSRV UTUSURPTRSURUR XXX
OFJANTZATION ..ottt b et bbbtk ek bbb bbbt e bbb s bt sttt XXX
Related DOCUMENTALIONo.voviiiiiciee ettt XXXii
(70 01 7=] 011 o] o LS J USSR XXXiii
Documentation ACCESSIDIIITYccoiiiiiiiiee e XXXVi
Accessibility of Code Examples in DOCUMENtation............cccviviiieiesiesie e XXXVi
What's New in Database ULIHLIES? ..o XXXVii
Oracledi UtIlItieS NEW FEAUIEScccoiiiiiieiie et XXXVIi
Oracle8i ULIlitieS NEW FEATUIESc.cciiiieiieere ettt ettt b e bbbt e x|
Partl Export and Import
1 Export
What IS the EXPOIt ULHIITY? ..ottt s 1-2
BETOre USING EXPOIT ..ottt bbbttt 1-3
Running catexp.sql or Catalog.Sql.......cccooeiiiiiicece e 1-3
Ensuring SUfficient DiSK SPaCE........cooiiiiiice e 1-4
VErifying ACCESS PrIVIIEOEScoiiiiii ettt 1-4
T aNY 0] S o [=t o o i AR 1-5
CoMMANA-LING ENTFIES.....cuiitiiiiiiieieeee ettt ettt bbb e 1-5

INteractive EXPOIT PrOMIPTScooiiiiiiiiiiie ettt 1-5

o = 0 0 1=] o] a1 oSO SRPRT 1-6
INVOKING EXPOIt AS SYSDBAottt ettt sttt e s e ne s e enennesrennens 1-7
EXPOIT IMIOOES ...tttk b e bbb bbb e e b e s et et e bt et e e be bt b e b e 1-8
Table-Level and Partition-Level EXPOITcccoiiiiiiiiniiceee s 1-12
QI L] LoR A= I o Yo o 1-12
Partition-Level EXPOIT........oo e 1-12
Getting ONIINE HEIP ..o 1-12
g 0T = 1= V0 1= = SRS 1-13
BUFRFER ...ttt bbbttt bbbt bbbt n b 1-15
Example: Calculating BUTfer SIZ&........ccooiiiiiiiiiieecc e 1-15
COMPRESS ...ttt E et 1-16
CONSISTENT ..ttt bbbttt bbb bbbt 1-16
CONSTRAINTS ettt b et e bbbt b ke b et e bbb b bt nn et 1-18
DIRECT ettt 1-18
FEEDBACK ...ttt bbbt bbbttt 1-18
FILE ...ttt bbbk R b b e b bRt bbb Rt E bbbt b b 1-19
FILESIZE ...ttt n e 1-19
FLASHBACK _SCN ...ttt bbbttt bbbttt 1-20
FLASHBACK _TIHME ...ttt bbbttt 1-21
FULL e r e 1-21
GRAINT S bbbt e bt e bbb bbbttt b bt b bbbttt 1-21
HELP ...ttt bbb bbb £ bR e bbbttt bbb s 1-21
INDEXESottt Rt 1-21
LOG ettt E bR bR R R b e bRt b bbb 1-21
OWVINERttt bbbtk b bt e ke b et et b ekt eb bbbt nn b 1-22
PARFILE.......co ettt n e 1-22
QUERY bbbt e bR bRt e bR e bbbt 1-22
RESTIICTIONS ...ttt ettt b et st sb et et e et es e e s e eneeneetenreanen 1-23
RECORDLENGTH ..ottt 1-24
RESUIMABLE ...ttt bbbttt bbbt bbbt b s 1-24
RESUMABLE_INAME ...ttt bbbttt bbbttt 1-24
RESUMABLE_TIMEOUT ..ottt 1-25
ROWVS L.ttt b b e bbbt bbbt b bbbt bbbt 1-25

TABLES ... 1-26

Table Name RESTFICHIONS.ccoiiiiie et st sne 1-27
TABLESPAGCES ..ottt 1-28
TRANSPORT_TABLESPACE ..ottt 1-29
TRIGGERS ...ttt bbbkt E bbb bbb bbbt bbbt n b 1-29
TTS_FULL_CHECK ..ottt 1-29
USERID (USErNAmMEe/PasSWOIA).......coueririeieiieieieieieie sttt st sr e e 1-29
WOLSIZE ...ttt bbbt bbb bbbt b bt e b 1-30
Parameter INTEraCtioNS ..o s 1-30

EXAMPIE EXPOIT SESSTONS.......couiiiiiiiiiiiit ittt b bbb b bbb et b e bbbt e 1-30
Example Export Session in Full Database Mode............ccocoiiiniininineceees 1-31
Example Export Session in USEr MOAEcccveveieiciiesc et 1-34
Example Export Sessions in Table MOde ... 1-35

Example 1: DBA Exporting Tables for TWO USEIS........cccccvieiiiiieiieneseeeseee 1-36

Example 2: User Exports Tables That He OWNS ..o 1-36

Example 3: Using Pattern Matching to Export Various Tables...........ccccccooiiinnnn 1-37
Example Export Session Using Partition-Level EXPOrt..........cccoiiiiiniiniinsincien 1-38

Example 1: Exporting a Table Without Specifying a Partitioncccccceovveveevinnnnn 1-38

Example 2: Exporting a Table with a Specified Partitioncccocooviinniinenn 1-39

Example 3: Exporting @ Composite Partition ... 1-40

Using the Interactive MEethod............coovii i s 1-41
RESTFICTIONS ...ttt bbbttt 1-45
Warning, Error, and Completion MESSAQESccceriiriiiniiineieese e 1-45
0T 1 -SSP 1-45
WAINING IMESSAGES. ... eeiueeveiieeitesiee it etie st et ettt e sttt e s e et e s e e s tesseesteasaesteasbesteesbeaseenseeasenseeneenreanes 1-46
Nonrecoverable Error IMESSAgESccciuiiiiiiiieiieiese ettt sne e 1-46
(00 001 o] (=] Ao gV [=1S7T= To =TSRSS 1-46

Exit Codes for INSpection and DiISPIaYccccoiiiieiiiiicie e e 1-46

Conventional Path Export Versus Direct Path EXPOrt ..o 1-47

INVOKING @ DIreCt Path EXPOIT......ccccoiiiiiie et sne e 1-49
Security Considerations for Direct Path EXPOITSc.cooiiiiinineieneee e 1-49
Performance Issues for Direct Path EXPOIScocoiieiriineineicsiesee s 1-50

NEetWOrk CONSIAEIATIONSccvivirciiirree s 1-50
Transporting Export Files Across a NEtWOrK ... 1-50
Exporting and Importing With Oracle Net ... 1-50

vi

Character Set and Globalization Support Considerationsc.ccoceoererereieieieneeceeee 1-51

Character SEt CONVEISIONcuiiiiiiiiirie sttt ettt sttt st se ettt es e sesneebeneas 1-51
Effect of Character Set Sorting Order 0N CONVEISIONS........ccccvvviirerererieeseeseeeeesese s 1-51
Multibyte Character Sets and EXport and IMPOrt..........c.ccooiiiiiinineneieneeeeeeeeese s 1-52
INstance AFINITY @N EXPOIT.. ..ot ene e 1-52
Considerations When Exporting Database ObjJectS.........cccvvviiiivivniin i 1-53
EXPOITING SEQUENCES ..ottt sttt s b bbbt sttt se et e et b b e 1-53
Exporting LONG and LOB DatatyPeS......cccccereerieirieinieinieiesiesese sttt 1-53
Exporting Foreign FUNCLiON LIDFari€s........cccooviviiiiiie s 1-53
Exporting Offline Bitmapped TableSPACEScccviiiiiiiiiii e 1-54
EXPOrting DireCtOry ABSES ..ottt 1-54
Exporting BFILE Columns and AttribULES..........ccccvcviiiece i 1-54
EXEEINAl TADIES ... ettt 1-54
Exporting Object TYpe DefinitioNS.........cccoiiiiiiiiece e 1-54
EXPOrting Nested Tables........ccciiiiieiecce e re e 1-55
Exporting Advanced Queue (AQ) TADIEScoiiriiiiiie s 1-55
EXPOITING SYNONYIMS ..ottt sttt ettt bbbt bbb 1-55
Support for Fine-Grained AcCesS CONLIOL.........ccceverieicieeie s 1-56
Transportable TaDIESPACEScc.oiiiiiii e 1-56
Exporting from a Read-Only Database............cocoiiiiiiriiniieieesee e 1-57
Using Export and Import to Partition a Database Migrationcc.ccccvcvvvievevccccciesn e, 1-57
Advantages of Partitioning a Migration............c.cccveiiiiiii i 1-57
Disadvantages of Partitioning @ Migration............ccccoceoiiriiniineneese e 1-58
How to Use Export and Import to Partition a Database Migrationccccoceeveiiivinnnnne 1-58
Using Different Versions OFf EXPOIt ... 1-58
Using a Previous Version Of EXPOIt.........cociiiiieneiese et 1-58
Using a Higher Version of EXPOIt ..o 1-59
Creating Oracle Release 8.0 Export Files from an Oracle9i Database.............cccccooiiininnn 1-59
Import
What IS the IMPOrt ULHIILY? ...t 2-2
Table Objects: Order Of IMPOIT ...t s 2-3
(2 T] o] =T U L] 1 Vo TN 1 o] o o AP 2-4
Running catexp.sgl or catalog.SQl........coiiiiiii e 2-5
VeErifying ACCESS PriVIIEOES ..ottt 2-5

Importing Objects iNto Your OWN SCREMA..........cccciiiiiiiiine e 2-5

IMPOITING GrANTS ..ottt bbbt 2-7
Importing Objects into Other SCheMAS ... 2-7
IMPOrting SYStEM ODJECESoiuiiiiieieee e 2-7
IMporting iNto EXiStiNg TabIeS........ccoiiiii e 2-8
Manually Creating Tables Before Importing Dataccocvvvivievinieievcreeeeeee e 2-8
Disabling Referential CONSIraiNTSccocivieiiiicicese e 2-9
Manually Ordering the IMPOIT.........ccoiiiiiii s 2-9
Effect of Schema and Database Triggers on Import Operationscccocevvevveienivscvsescesesnnens 2-9
INVOKING IMPOIT. ...t bbb bbbttt b bbb e 2-10
CoMMANA-LING ENTFIES.....uiiiiiieiie ettt sttt s e neenesresresne s 2-10
INteractive IMPOIT PrOmMPTS.o ere e nne s 2-11
ParAMELEE FIlES ... bbb ettt ettt be et e 2-11
INVOKING IMPOFT AS SYSDBA ..ottt 2-12

g a] o 1o 1Y/ (o o 1= 2-13
Getting ONIINE HEIP ... e ettt sbe 2-14
IMPOIT PAFAIMETETS ...ttt sr s 2-14
BUFFER ...ttt bttt b et bbbkttt et 2-18
CHARSET L.ttt ettt bbb bbb sttt ettt ettt et et 2-18
COMMIT <ttt s bttt e b et e b e b s et e ne st e st st e s s e be s e be b e te s te et 2-19
COMPILE ... otttk bbb bbbttt ettt ettt 2-19
CONSTRAINTS L.ttt bbb bbb e et e e be e e be s ebe st neneene 2-20
DATAFILES ... oottt a1ttt et e bt e sb et e sb et e s b e s e ebe e et e e ebe e abe e 2-20
DESTROY ...ttt ettt b et b et b et b e ekt ekt ekt bbbt bt e bttt eb e be e 2-20
FEEDBACK ..o ettt ettt etttk ettt bbb s et s bbbttt ettt nennenen 2-20
FILE oottt b bR bR bRt Rt et R bt R et R et Rt ne et et et nennenen 2-21
FILESIZE ...ttt bbb bbbttt 2-21
FROMUSER ..ottt sttt ettt bbb st s bbbttt b et s et s e naenen 2-22
FULL ottt etttk ettt ettt s et s et s bRt bt Rt et et bt n et nen 2-22
GRAINTS bbb bbb bbb b bbbt s e bRt bt n bbbttt e 2-22
HELP et b bbbttt E et E et R e bt e b et e et e abe e 2-23
IGINOREottt ettt st et b et e b e s e e b e e st et bt b et e Rttt Ee ettt e e 2-23
INIDEXES ...ttt et b bbbtttk et s e et e e bbbt b et e b 2-24
INDEXFILEottt b et bttt ettt ettt et se ettt nn e 2-24
LOG oottt LR bbb et bt te e R et et e b Re et Re e b et e ebe e e be e ebe e ere e 2-25

Vii

PARFILE ..o s 2-25

RECORDLENGTH ..ottt bbbttt 2-25
RESUMABLE ..ottt n e 2-26
RESUMABLE_INAME ..ottt bbbt 2-26
RESUMABLE_TIMEOUT ..ottt bbbt 2-26
ROWVS ettt R Rt n e 2-26
SHOWV ...ttt e bbb bbb b bttt b et ettt 2-27
SKIP_UNUSABLE_INDEXEScocoitiiitiieitiririeiee sttt sttt 2-27
STATISTICS ..ottt E et R ettt r ettt 2-27
TABLES ...ttt bbbttt 2-28
Table Name RESTFICHIONScoiiiiieee e e 2-29
TABLESPAGCES ...ttt 2-31
TOID_NOVALIDATE ..ottt bbbt 2-31
TOUSER ..ottt bbb £ bbbkt e bkttt b et bbbt 2-32
TRANSPORT_TABLESPACE ..ottt 2-32
TTS_OWNERS ...ttt bbbttt bbbttt 2-32
USERID (USErname/PassWOTA)c.cereireirieenieesiee ettt e 2-33
VOLSIZE ... 2-33
EXAmMPIE TMPOIT SESSTONSuiiiiiiiitiiiitise ettt bbb ettt et ebe e 2-34
Example Import of Selected Tables for a SPecific USEr..........ccooverreinennineeneeee e 2-34
Example Import of Tables Exported by Another USer...........ccocvvveie e 2-35
Example Import of Tables from One User to ANOther ..., 2-36
Example Import Session Using Partition-Level IMPOrt..........c.cooooiiiienninsieneienee e 2-37
Example 1: A Partition-LeVvel IMPOrt........cccooooieiiicicce s 2-37
Example 2: A Partition-Level Import of a Composite Partitioned Table 2-38
Example 3: Repartitioning a Table on a Different Column ..o 2-39
Example Import of Using Pattern Matching to Import Various Tablesc.ccccvevnnne. 2-42
Parameter File MEethod ... 2-42
Command-Line MethOdcooiiiiiieeee e 2-42
IMPOIT IMBSSAJES ... ettt e ste e e sr e beeseesteeneesseeaesreeseesneesrenrenns 2-42
Using the INteractive MethOd............coo oo 2-43
Warning, Error, and Completion MESSAQESccuriiriiriiiniiinieiniesee s 2-45
0T I 1 - TSP 2-45
WANING IMESSAQEScueeviiteeiieiee st see e te st e st e s te et e s te et e s seesbesaeestesseesbeeseesteesaestaensesteensenreenes 2-45
NONrecoVerable Error IMESSA0ES.couciiiiriiirieisieisi ettt 2-45

viii

COMPIELION IMESSAGES ...ttt sttt bbb b b bbbt se e e bt ebesbesbesbens 2-46

Exit Codes for Inspection and DiSPIaYc.ccoiiiiiiiiiieii e 2-46
Error Handling DUring an IMPOIT ...t 2-46
ROW EFTOIS ...ttt bbbt b e bt ebe e nn e eae b e e e 2-47
Failed INtegrity CONSTIAINTSccoiiiiiiiiiciee e 2-47

INVAIA DALA......coiiieiiieicie bbbt se bbbt b et e b 2-47

Errors Importing Database ODJECTS.........coi e 2-47
ODjJECt AITEAAY EXISTS.....c.eiiieiiieiieteiieie ettt 2-48
RTS0[0 1= 0T PSSP 2-48
RESOUICE EFTOIS ... ittt ettt b e e b e sbe e nbe e nenreens 2-48
Domain INAeX MEtadata...........ccorueriiiieieieeee et 2-48
Table-Level and Partition-Level IMPOrt ... 2-49
Guidelines for Using Table-Level IMPOrt ... 2-49
Guidelines for Using Partition-Level IMPOrt ... 2-49
Migrating Data Across Partitions and Tables...........cccccviiiiii s 2-50
Controlling Index Creation and MalNtENANCEcccveieiieeieiiie e 2-51
Delaying INAeX CrEatiON...........ccoiiriirieirieiriee ettt en e ene e 2-51
Index Creation and Maintenance CONLIOIS........ooovveiiieiiiiiiee e 2-52
Example of Postponing Index Mainte@nanCe...........cccooirereneneienieiceeeeeeeese e 2-52
Reducing Database Fragmentation ..o 2-53
NEtWOIrK CONSIAEIALIONSc.eiviiiiiiiiieieie ettt et s nnne 2-53
Transporting Export Files Across a NetWOrK ... 2-53
Exporting and Importing With Oracle Netccoooiiiiiii s 2-53
Character Set and Globalization Support Considerations..........ccccocvvvieievercieisieeseseiens 2-54
Character SEt CONVEISIONccuiiiiiiiiieie ettt bbbt e ettt ebesbesbesne s 2-54
USEE DATAeeieeiie ettt ettt btttk e b e bt s b e bt it e be e e ebe e eenbe e benbeen 2-54

Data Definition Language (DDL)........cocciiieieieiesese s e e 2-54

Import and Single-Byte CharaCter SETS..........coi i 2-55
Import and Multibyte Character SEtS ... e 2-55
Considerations When Importing Database ODbjJectS.........ccccvoviviiiiiiiisiese e 2-55
IMPOrting ODJECt IAENTITIEIS. ..o e 2-55
Importing Existing Object Tables and Tables That Contain Object TYpPesc.cccceenen. 2-57
IMPOrting NEStEA TaDIESc..cvii et sneene 2-57
IMPOItiNG REF DALAoviiiiiiiiii st ettt sb b sne 2-58
Importing BFILE Columns and Directory AlIESES.........cccoviiieiiieiiennereenee e 2-58

Importing Foreign FUNCLION LIDraries ... 2-59

Importing Stored Procedures, Functions, and Packages ... 2-59
IMPOIrtiNG JAVA ODJECES.cuiiiiiiii et e s ere e e 2-59
Importing EXternal TabIES ... e 2-60
Importing Advanced Queue (AQ) TabIeS ... 2-60
IMPOrting LONG COIUMINSccoiiieierise ettt st s e e e e eneerenne e 2-60
IMPOITING VIBWUS ... bbb bbb bbb ettt be b b e 2-60
Importing Partitioned Tables ... 2-61
Support for Fine-Grained AcCeSS CONLIOL..........coeverieiciceie e 2-61
Materialized Views and SNAPSNOTS ..o e 2-62
SNAPSNOT LOG ..ttt b et bbbt e et r bbbt b et n e 2-62

R3] = 015 o) £ 2-63
IMPOrting @ SNAPSNOT.....c..iiiiiie e 2-63
Importing a Snapshot into a Different Schema...........cccoeoiiiie 2-63
Transportable TabIESPACESccciveiiici et e e renre e 2-64
Y0l o To [e L= 10 1 [= =T TP PPRR 2-64
The OPTIMAL PAramEtercc.oiuiiiiieieieeeee ettt sttt st 2-65
Storage Parameters for OID Indexes and LOB ColUMNS........ccccceveveiereneeeeiesnse e 2-65
Overriding Storage ParametersScoeiveieiieiieiece sttt st 2-65

The EXport COMPRESS Parameter..........ccociiiiiniieiieesiee e 2-65
REAA-ONIY TaDIESPACES ... cciiiiiieiieie ettt e e renneaneerennes 2-66
Dropping @ TADIESPACE.c.ccieiieieii ettt bbb et be st beene 2-66
Reorganizing TabIESPACES ..ot 2-66
g a] oo T gTo S €= L S 1 [P 2-67
Using Export and Import to Partition a Database Migrationcccooviiiiiniiciniine, 2-68
Advantages of Partitioning a Migration.............cccoeoiiiiiiiiee e 2-68
Disadvantages of Partitioning @ Migration.............cccccovvviiiiiininin s 2-68
How to Use Export and Import to Partition a Database Migrationccccoceeeiinicnnne 2-69
Using Export Files from a Previous Oracle Release ... 2-69
Using Oracle Version 7 EXPOIT FIlES ..o 2-69
Check Constraints on DATE COIUMNSccoiiiiiiinseseeee s 2-69

Using Oracle Version 6 EXPOrt Files ... 2-70
USEE PrIVIIEQES ..ottt sttt sttt na e e eneerennennens 2-70

CHAR COIUMNS ..ot 2-70

Status of INtegrity CONSTIAINTScoiiiiiiiieiree et 2-70

Length of Default Column ValUES..........ccocveiieiiiicccece e 2-70
Using Oracle Version 5 EXPOrt Files ..o 2-71
The CHARSET PArametercooviiriiieiineeeerires s 2-71
Part Il SQL*Loader

3 SQL*Loader Concepts

SQLFLOAUETN FRALUIESoecveiiviitecie ittt ettt ettt ettt ebe et ebe e e s be e e e sbeesbesbeesbesbeesbesbsebesabenbeensenbeenns 3-1
1@) I 0T To =T g @o] o1 fo] I = USSR 3-3
INput Data and DAtafilescccoiiiiii e 3-4
FiXed RECOIA FOIMAL......couiiiiiiiiiiie bbbttt 3-4
Variable RECOINM FOIMAL...........coiiiiiiiiiie ettt ae e 3-5
Stream RECOI FOIMALcciiiiiicc ettt e e ab et e e e s aeetesaeesteareas 3-6
(0T Tor= I = (=T] o S 3-8
DALA FIEIAS ... bbb bbb bbbttt b et r e e 3-8
LOBFILEs and Secondary Data FileS (SDFS)........cccociiiiiiiiiiiiiieise st 3-9
Data Conversion and Datatype SpecifiCation ..o 3-10
Discarded and RejJected RECOIUSccciviiiiiiie ettt ne s 3-10
THE BAU FIlE ..ottt e et et e e ae e s be et e s beeeesbaeseestaebesraens 3-10

1@] il I 0T To (= gl (= =] £ P 3-10

(O - To] (=3 =] =T ol £ PSTSPR 3-10

THE DISCAN FIlE ...ttt be e s be e eeste e saesteeaesraens 3-11
Log File and Logging INFOrmMationcccccueeiciiinecc s 3-11
Conventional Path Loads, Direct Path Loads, and External Table Loads...........cccccceevnenene 3-11
Conventional Path LOAAScccooiiiiiiiiecc ettt re e 3-12
DiIFeCt PAth LOAASc.coveieiieiiticie ettt st sbe b 3-12
Parallel DIreCt Path.........coooiie e 3-12
EXternal Table LOAAS.........cccoiiieiiee ettt ettt sbe e re s 3-13
Loading Objects, Collections, and LOBS ..o 3-13
SUPPOItEd ODJECT TYPES ..ttt bbbttt b st sbesre s 3-13
COTUMIN=0DJECTS ... bbbttt 3-13

011,V 0] o] 1= od £ 3-14
SUPPOIted COHECTION TYPES .. ittt bbb bbbttt be st sbesre s 3-14
NESTEA TADIES ... et be st e e ar e s beenbesneenns 3-14
VARRAYS .ottt b bbbt bbbt bbb R bbbt n bt e e 3-14

Xi

Xii

SUPPOITEA LOB TYPESiiiiieiiietieiteie sttt st sttt sttt sttt b bbb b bbb bt se e b e e neebe e 3-14
Partitioned ODjJECT SUPPOIToiiiiiiieiiiei ettt 3-15
Application Development: Direct Path Load APl ..o 3-15

SQL*Loader Command-Line Reference

FaNY o] 1T o[RS M 10T To L= S 4-1
Specifying Parameters in the CoNtrol File............ccooiiiiiiiii e 4-3
CommMAaNd-LiNe ParameEters... ..ottt besbeseesne 4-3
BAD (DA FIIE) ...ttt bbbttt r e b e nre e 4-3
BINDSIZE (MAXIMUIM SIZE) ...uiivieiiiiieie ittt ste st steesee e e e et s ta e ta e vesssebesnsentesneesaesneesneanees 4-3
COLUMNARRAYROWIS.......oetieitiieiitet ettt sttt st es st sbe s ssa s ebe s sesaesessesessenes 4-4
LO(@ Nl 1= (@ T I (oo T 4 o] I 1 =) TS 4-4
[Ny AN (o F= =1 |) TR SRS 4-4
DIRECT (data Path)c.coeieiieiieisteiie bbb 4-5
(DY IS @7 A I 11 =15 F= T) IS 4-5
DISCARDMAX (INTEOEK) ...eeiteieeiieeite ettt ettt ettt este et s e e ae e s be st e teas e teenbesteeneesneentesneenteanes 4-5
ERRORS (r10rS t0 QlIOW)oiiiiiiiiieiiiee ettt 4-5
EXTERNAL_TABLE ..ottt bbbttt st sb bbb eb e sbe e 4-6
o [G T Lo (o 3 (o= o [T o] o) ISR 4-7
LOAD (reCords t0 10A)ciiieiiieiiieiiieieie ettt 4-7
@ T (Lo I 1) S 4-7
MULTITHREADING ..ottt sttt ettt sttt 4-8
PARALLEL (parallel 10ad) ...t 4-8
PARFILE (PArameter fil€) ..o ittt 4-8
READSIZE (read DUTFEr SIZE)cviiiieiiciee ettt ettt st 4-9
RESUMABLE ..ottt sttt sb a2ttt a et e s e be st et e st et e sb et e sbesesbeseabeseareneas 4-9
RESUMABLE_INAME ..ottt ettt sttt 4-10
RESUMABLE_TIMEOUT ...ttt ettt st s 4-10
ROWS (FOWS PEIF COMMTMIT)....cviiiitiieteiiete ettt sttt 4-10
SILENT (feedback MOAE)........cviiieiiiiie s ne e 4-11
SKIP (FeCOrdS t0 SKIP) .. cueeuieieiiieiiiiie st bbb 4-12
SKIP_INDEX_MAINTENANCE ..ottt st ss e sasne s ssene s 4-12
SKIP_UNUSABLE_INDEXEScoceitiitiiiieieste sttt sttt sre e sbe e sbe s sesne s 4-12
STREAMSIZE ...ttt sttt ettt sttt et st e st et e st e s e et e e ebe e e be e ebe e ete e 4-13
USERID (USErname/PassSWOTA)c.cereireirieienieesiee ettt e 4-13

Exit Codes for INSpection and DiISPIAY ... e 4-14

SQL*Loader Control File Reference

CONLIOL FIIE CONTENTS ... bbbttt ebe bbb e 5-2
Comments iN the CONTIOI FIle........coooiii s 5-4
Specifying Command-Line Parameters in the Control Filecccccooovvveieicccciecr e, 5-4
OPTIONS CHAUSE ..ottt sttt sttt sttt sttt st st b e b ettt ettt ne et e e 5-4
Specifying Filenames and ODJeCt NAMES ..o e 5-5
Filenames That Conflict with SQL and SQL*Loader Reserved Wordscccccvvveinennnnns 5-5
SPECITYING SQL STFINGS ...veviiiitiiteie e bbbttt ettt bbb e 5-5
Operating System CONSIAEIALIONSccoiiiiiiieieeree e 5-6
Specifying a Complete Path........cccooviiiiicccccs e 5-6
Backslash ESCape CharaCter ..ot 5-6
NONPOITADIE STIINGS ..ottt 5-6
Escaping the BaCKSIAShcccooiiicicccs e 5-7

Escape Character Is Sometimes DisallowWed............coiiiiininiiiicceceesee e 5-7
SPECITYING DALATIIES ...t 5-7
EXampPles Of INFILE SYNTAXciviiiiiiriieiericteie st s nesnesnesnennens 5-9
Specifying Multiple DAtafiles ... 5-9
Identifying Data in the Control File with BEGINDATA ... 5-10
Specifying Datafile Format and BUffering.........ccccooeveiiiiicc e 5-11
SPeCifying the Bad File...........o e 5-11
Examples of Specifying a Bad File NamMe...........ccccooiiiiiniiice s 5-13
How Bad Files Are Handled with LOBFILES and SDFS..........cccoceoiniiniiniiiieineese e 5-13
Criteria for REJECIEA RECOIUSocviiiiie ettt re e sre s 5-13
SPecifying the DiSCard FIle.........ccoiiiiiiiii s 5-14
Specifying the Discard File in the Control File...........cccoiviiiiiiiie e 5-14
Specifying the Discard File from the Command Line.........c.ccocooiiniiiiiniicieceienee 5-15
Examples of Specifying a Discard File Name...........ccoeoiiiniiniieeeeees 5-15
Criteria for DISCarded RECOITSccuiiiiiirieiieires e 5-15
How Discard Files Are Handled with LOBFILES and SDFS.........cccocooiiiniieiecieecee 5-16
Limiting the Number of Discarded RECOIAScooiiriiiiiiniirieiee e 5-16
Handling Different Character ENCOding SChEMES..........cccocvvviieievineie e 5-16
Multibyte (Asian) CharaCter SELScciiiiiiiiice e 5-17
UNICOAE CRATACTEE SEES......ocviiiiiiiiie ettt et sttt sneete st e 5-17

Xiii

Database CRaraCter SELS........cuiiiiiiiicii ettt e et b e e e s a e e s sabe s s sbaessbeeeas 5-18

Datafile CharaCter SETSco ittt ne e sresne s 5-18
INPUL Character CONVEISION.......ccviiieriiese ettt st er e neeneerenreans 5-19
CHARACTERSET PAraMEeLENcceeiiiiiieiiieiesiie ettt e 5-19
Control File CharaCter STooi it 5-21
Character-Length SEMAaNTICScccoviiiieiciccse e 5-22
Continuing an INTErruPted LOAMc.ooviviiiiieiiieeee et 5-24
Status of Tables and Indexes After an Interrupted Load............ccovviiiiiiniineincnnciees 5-24
Using the Log File to Determing Load StatUS..........cccovviereinrinneninene e 5-24
Continuing Single-Table LOAASccceeiieiiice e 5-24
Continuing Multiple-Table Conventional LOadsScccoeireinciineiinieieeseeseeee e 5-24
Continuing Multiple-Table DireCt LOAAScccevvevierieiceceic e 5-25
Combining SKIP and CONTINUE_LOADcccociiriiiiisesesee e 5-25
Assembling Logical Records from Physical ReCOrds............cocuiiiiiiiniiniiieieeeiens 5-26
Using CONCATENATE to Assemble Logical Recordscccccvovvivrieieneneienieeeesiese e 5-26
Using CONTINUEIF to Assemble Logical RECOIdSccevuviiiiieiiiice e 5-26
Loading Logical Records into TaBDIEScoiiiiiiiiiicicic s 5-30
SPECITYING TaDIE NGIMESc.vceiciicice e et neerenns 5-30
INTO TABLE ClAUSE ..ottt ettt 5-30
Table-Specific Loading Method...........cccoiiiiiiiii s 5-31
Loading Data into EmMpty TabIes.........ccccvviieiiiccsc e 5-31
Loading Data into NONempty TabIescccooiiiiiiiiiiie e 5-31
Table-Specific OPTIONS PArameter ...t 5-33
Loading Records Based on @ CONAILIONcoveveieiiieiicnsese e enens 5-33
Using the WHEN Clause with LOBFILES and SDFs........c.cccccceviiieiiicscecce e, 5-34
Specifying Default Data Delimiters. ..o 5-34

L] (o SR o 1= oSS 5-34
TEIMINATION_SPPBC. .. ettt bbb et b bbb 5-34
ENCIOSUIE_SPEC ..ttt ettt bbb bbbt bbbt n bbb 5-35
Handling Short Records with MiSSING Data...........cccooviviiiiiienenie e 5-35
TRAILING NULLCOLS CIAUSEcccviiiiiiiiiniieiseise e 5-36

INAEX OPTIONS ...ttt bbbt bt b e bbb bt sb bt eb bt b st eb et e bt ebe e b e 5-36
SORTED INDEXES CIAUSEc.eiiiiiriiiiiieiisieisie ettt ettt s sr et s sbe e sbe e be e ene s 5-37
SINGLEROW OPLION ..ottt sttt sttt sttt st sbe e ebe e ebe e s seese e 5-37
Benefits of Using Multiple INTO TABLE ClaUSEScccciiriiriineinieesesie e 5-37

Xiv

Extracting Multiple LOgQical RECOIAScccouiiiiiiiiiiiii e 5-38

Relative Positioning Based on Delimiters. ... 5-38
Distinguishing Different Input Record FOrmMatS............coovvvivvivrienieninnesenereseeeeeee e 5-39
Relative Positioning Based on the POSITION Parameterc.cccccovvveveiieeiesieeinnnens 5-39
Distinguishing Different Input Row ODbject SUDTYPEScccciiiiiciiniinciesese i 5-40
Loading Data into MuUltiple TabIeS ... 5-42
10 [0 0 0T U Y TR TOPRRTRTR 5-42
Bind Arrays and Conventional Path LOAdScccccciiiiiiiiiiiiiieneeesee e 5-42
Size Requirements fOr BiNA AFTAYS.......ccooieieiiiee st e e s sesae e e enesressesnens 5-43
Performance Implications of BiNd AITaYS ... 5-43
Specifying Number of Rows Versus Size of Bind Array ... 5-43
Calculations to Determing Bind Array SIZ€.......cccccoiiviieiiisieiinisie et e e 5-44
Determining the Size of the Length Indicator............cccccovvvevi i 5-45
Calculating the Size of Field BUFFErS.........cccoeiiiiiiiiee e 5-46
Minimizing Memory Requirements for BiNd ArTaysS..........ccoovivrievienienenenerieseeseeeseseseenees 5-47
Calculating Bind Array Size for Multiple INTO TABLE Clausesccoccoeiviiiiininenncne 5-48

Field List Reference

FIEIA LIST CONTENTS. ..ottt bbb e b et s et b e bbbt b st st sbennes 6-1
Specifying the Position of a Data Field............ccoooiiii e 6-3
Using POSITION with Data Containing Tabs...........ccooviviiiniiiinie s 6-4
Using POSITION with Multiple Table Loads ... 6-4
Examples of USING POSITIONcoiiiiiiieiieinieie e 6-5
Specifying Columns and FIelAS.........ccoc v 6-5
SPECITYING FIller FIBIAS.......oiiiee e 6-6
Specifying the Datatype of @ Data FIeld............cccooeiiiiniiiiiiieeee e 6-7
(@] Bl IaT: To [gl I T = 1Y/ 0 =T ST 6-7
NONPOITADIE DAtALYPES.cueiuiitirieite ittt bbb ettt ettt sbe b b 6-8
INTEGER(N) ettt bbbt bbbttt 6-8
SIMALLINT L.ttt r e nn s 6-9
L O AT -ttt b h bR R e bbb bbbt 6-9
DOUBLE ...t bbbt b bbb bbbt 6-10

BY TEINT ottt 6-10
ZONED ...ttt bbbttt 6-10
DECTMALL ...ttt bbbkttt b bt bbbt bbbt bbb 6-11

XV

XVi

VARGCHAR ... ettt ettt ettt et et e b ne b 6-13
VARRAW ..ottt e b et bbbt ekt ekt ettt et e b e 6-14

LONG VARRAW ..ottt sttt sttt ettt ettt sttt renans 6-14
POrtable DAtAtYPES. ...c.eiviiiiteieiteiite ettt bttt bbbttt 6-14
CHAR bbbttt bbbttt bttt 6-15
Datetime and INterval DAtatyPesccocooireiiiieieiiiee e 6-15
GRAPHIC ..o bbbt b bbbt eb bbb 6-18
GRAPHIC EXTERNALL ...ttt ettt 6-18
NUMEFIC EXTERNALL ..ottt sttt sttt st et 6-19

RAWV Lottt e b et b e bbbttt E et et b e bR a R et e et e te et e ere e 6-20
VARCHARRC ...ttt b ettt ettt ettt r et bbb 6-20
VARRAWC ...ttt bbbt ettt ettt s et et e be st beneere b nennne 6-21
Conflicting Native Datatype Field LENGtNSocooiiiiiiieeees 6-21

Field Lengths for Length-Value DatatyPes.......cccovveivivierisinneseneseseeseiesesseeeseseanens 6-22
DAtatyPE CONVEISIONSccuiiiiitiiteite sttt ettt ettt sttt e b e bbb e b e b e e e b es e e e eseebeebesbesbeas 6-22
Datatype Conversions for Datetime and Interval Datatypes..........ccccoeerernieneeneieneennens 6-23
SPECITYING DEIIMITEIS ...cuvciieiccee et r e e erenns 6-23
TERMINATED FIEIAS ..ot 6-24
ENCLOSED FIelas.....c.coiiiiiiiieieie ettt 6-24
Delimiter Marks in the Data..........ccccoceveiieiiieiieee e 6-26
Maximum Length of Delimited Dataccccevveieiieicccce e 6-26
Loading Trailing Blanks with DelIMIters.........c.cccviiiiiiiiiienecee e 6-27
Conflicting Field Lengths for Character DatatyPes.......c.cccovvivvieiienienierienenese e 6-27
Predetermined Size FIeldsS. ... 6-27
Delimited FIEIAS.c.eoeee ettt 6-28

DAt FIeld IMASKSocueiiieiieice ettt e 6-28
Specifying Field CONAITIONS ...t 6-28
Comparing Fields t0 BLANKS ... 6-30
Comparing Fields 10 LIteralS........cccciiiiiiiieiircsee et 6-31
Using the WHEN, NULLIF, and DEFAULTIF ClauSEScccevviiiiviiiece e 6-31
Loading Data Across Different PIatfOrms...........cccoiiiiiiiininee s 6-35
123V A (=T @ o [T o o o PSSP 6-36
SPECITYING BYTE OFUEY ...t bbb et eb e 6-37
Using Byte Order Marks (BOIMS)cooiiieireinieenieesiee ettt 6-38

Suppressing Checks fOr BOMS ..o e 6-40

Loading Al-BIaNK FIEIASccoiiiiiiie e 6-41
TriMMING WHhITESPACEccve ettt e et ene e e eneeneereanesreneen 6-41
Datatypes for Which Whitespace Can Be Trimmed..........c.ccocvonininiiinineieeeseseeee 6-43
Field Length Specifications for Datatypes for Which Whitespace Can Be Trimmed....... 6-44
Predetermined Size FIelds........cccoiiiiiiiiii e 6-44
Delimited FIEIAS. ..o e 6-44
Relative POsitioning Of FIElASccooiiiiiiiiccc s 6-45

No Start Position Specified for a Field ... 6-45
Previous Field Terminated by a Delimitercccoov e 6-45
Previous Field Has Both Enclosure and Termination Delimitersccccocvvvienene. 6-46
Leading WHITESPACEcvcveeie ettt sttt e e e e enaereaneerenen 6-46
Previous Field Terminated by WhIteSPACe.........ccoceiiiiiiiiiiicecce e 6-46
Optional ENCIOSUIE DEIIMITEIScooiiiiieiieese e e 6-47
Trailing WHITESPACE.eieiieiie ettt e e e eneerenneanenrennn 6-48
ENCIOSEA FIEIAS. ... e ettt b e b 6-48
Preserving WHRITESPACEcoi ettt 6-48
PRESERVE BLANKS OPLION ..ottt 6-48
Terminated DY WHITESPACEc..ooiiiiiiiee e 6-49
Applying SQL Operators t0 FIEIAS...........coo e 6-49
] (=T (=T (oT T o 1= Lo LSS 6-51
Common Uses of SQL Operators in Field Specificationsccocoveieiiniiciniiiciicnee 6-52
Combinations Of SQL OPEIALOIScuieuiriiirieirieisiesie ettt 6-52
Using SQL Strings With @ Date MaskKcccoeieiiiieiiinse e 6-52
Interpreting Formatted FIelds. ... 6-53
Using SQL*Loader to Generate Data for INPUL ...t 6-53
Loading Data WIthOUL FIlESccccviiiiiiiie e 6-54
Setting a Column to @ CONStANT VAlUEccveiiiicicce e 6-54
CONSTANT PAlAmMETETciiuiiieieeie ettt bttt ettt sbesbeeste e e seesreens 6-54

Setting a Column to an EXPression ValUe..........c.ccoiviiiininninise e 6-55
EXPRESSION PAramELENoiiiiiiieiiieeie ettt 6-55

Setting a Column to the Datafile Record NUMDEr ..o 6-55
RECNUM PAFAMETEToviiiiiiieieieiieee ettt sn b nne e 6-55

Setting a Column to the CUITeNt DAtcccvcviiieiiiice s 6-55
SYSDATE PAramMETEEcui ittt sttt b ettt e b e sbe et s e st s beesbesbeesbesieen 6-55

XVii

Setting a Column to a Unique Sequence NUMDEF ... 6-56

SEQUENCE PAraIMETercouiiiiiieiie ettt st bbbt sae e 6-56
Generating Sequence Numbers for Multiple Tables ..o, 6-57
Example: Generating Sequence NUMDETS ...t 6-57

7 Loading Objects, LOBs, and Collections

[IoT:To [1o o @Xe] [U] 0] oI @] o] [=1o1 £SO USPR 7-1
Loading Column Objects in Stream Record FOrMAL..........c.cocvreiiieiineineneiseseee e 7-2
Loading Column Objects in Variable Record FOrmatccccoevvvneneienciciecese e 7-3
Loading Nested Column ODJECTSccviiiiiiicciccce e 7-4
Loading Column Objects with a Derived SUDLYPE ..o 7-4
Specifying NUll Values for ODJECS ... e 7-6

Specifying Attribute NUIIS ... e 7-6
SPeCifYing ATOMIC NUIIS ... e 7-7

(0T To T aTo I @ oY T=Tox A - o] [7-8
Loading Object Tables With @ SUDLYPE ... 7-10

LoAdiNg REF COIUIMNS ..ottt bbbt 7-11

Real REF COIUMNS ...ttt et ebe e 7-11
Primary Key REF COIUMNSccooiiiiice sttt 7-12

LOAAING LOBS ...ttt bbb bbbt bbbt 7-13

Loading LOB Data from a Primary Datafile............cccoovriiiiiciinc e 7-13
LOB Data in Predetermined Size Fields..........ccooiiiiiiiiiiee e 7-14
LOB Data in Delimited FIeldS. ..o 7-14
LOB Data in Length-Value Pair FieldS ..o 7-16

Loading LOB Data from an External LOBFILE (BFILE)ccccceviiiviiiiiieie e 7-17

Loading LOB Data from LOBFILESccccoiiiiiiieiieeeee e 7-18
Dynamic Versus Static LOBFILE SpecifiCationsc..ccoovvvvviviinviineninsenicneneeeee e 7-19
Examples of Loading LOB Data from LOBFILEScccccociiiiniinineeeeeceees 7-19
Considerations When Loading LOBS from LOBFILESccccoceiiiiniinincinenes 7-23

Loading Collections (Nested Tables and VARRAYS) ..o eesesesnens 7-24
Restrictions in Nested Tables and VARRAYS ... 7-25
Secondary DatafileS (SDFS)coociiciriiiiieiieiesieeie ettt 7-26

Dynamic Versus Static SDF SPecCifiCatioNScccoveivieiiiiicrsise e 7-28

Loading a Parent Table Separately from Its Child Table ..., 7-28
Memory Issues When Loading VARRAY COlUMNS ...t 7-29

Xviii

SQL*Loader Log File Reference

Header INTOMMAtiON............ooi ettt e e b e e ab e s beeresreesreaneas 8-1
GlODAI INFOIMALION ©..eiiiiic bbbttt sttt 8-2
Table INTOIMATION ... bbbttt bbb sbe b b e 8-2
Column INFOrMALION ..o ettt e e s re et s aeesresreas 8-3
POSITION <. e bbbttt 8-3

=T T | 1 o SRS 8-4

B L] [T 0 T (= RS URPRRRPPRO 8-4

DT L7 LY o L= OSSR 8-4
Datafile INTOIrMAtION ...ttt sb b e 8-4
Table Load INTOrmMationc.cov oottt sre e s be e s reeaesreens 8-5
S U LR U Y] U] Aot 8-5
Oracle Statistics That Are LOQUEdccv it 8-6
Information About Single-Partition LOAdSccoeiriiriiniinecseseee s 8-6
Statistics for Loading a Table.......cccviiiiiicec e 8-7
Additional Summary Statistics for Direct Path Loads and Multithreading............c...c.......... 8-7
Log File Created When EXTERNAL_TABLE=GENERATE_ONLYcccccooeivniivneinnerineriienns 8-7

Conventional and Direct Path Loads

Data Loading METNOAS ..ot 9-1
Conventional Path LOAGcoeiiiiiii bbbt 9-2
Conventional Path Load of a Single Partitionccccocooi i 9-2
When to Use a Conventional Path LOad ... e 9-3
DIFeCt PAth LOAU......ccociiieciiiieiiee bbb bttt ettt b bbb 9-4
Direct Path Load of a Partitioned or Subpartitioned Table.........ccccocoiniiiiiiiiii 9-6
Direct Path Load of a Single Partition or SUbpartitionccccocveininiininieccs 9-6
Advantages of @ DireCt Path LOadccccoveviiiiiiiie et 9-6
Restrictions on Using Direct Path LOAdS...........cccceiiiiiiiiiie s 9-7
Restrictions on a Direct Path Load of a Single Partitionccccccvineineincinenee 9-8
When to Use a DIreCt Path LOAAccoveiiiiiiiiiseeeesee s 9-8
INTEGIILY CONSLIAINTS ...ooiiciicc et e e s b et esae et e aaeenresneeneesreas 9-8
Field Defaults on the DIreCt Pathcccoooiiiiiiiii e 9-9
(0T To [T o To I T a1 (o) V78 10])Y/ 2 1S 9-9
USING DIreCt Path LOAM..........coieiiiicc ettt et ettt e e nae e nneanes 9-9
Setting Up for DireCt Path LOAASccooviiiiiiiiiieeeee et 9-9

Xix

XX

Specifying a DireCt Path LOAd.........cccooiiiiiiiiieeee e 9-9

BUIIAING INOEXES ...ttt bbb 9-10
IMProving PerforManCe..........coeiuiieieiie st re e e s 9-10

INdex Storage REQUITEIMENTSocuiiiiiieiieie ettt 9-10
Temporary Segment Storage REQUITEMENTScooiiviiriririeineese e 9-10
INdexes Left in UNUSADIE SEALE...........ccoiiiieieeee s 9-11
Using Data Saves to Protect Against Data LOSScccceviiieiieieiicie e 9-12
USING the ROWS PAramMELerc.oovciiiiiiieiiieesie ettt 9-12

Data Save Versus COMMIL........ccoviriiirinee sttt ettt s 9-13

Data Recovery During Direct Path LOads...........cccoecuiiiiiiiicce e 9-13
Media Recovery and Direct Path LOAdS.........cccoceovriiiiiiiieiieseccee e 9-13
Instance Recovery and Direct Path LOadsccocvvvviviviivinn e 9-14
Loading LONG Data Fields..........cco it et 9-14
Loading Data AS PIECED.........cccccci ittt e 9-14
Optimizing Performance of Direct Path LOads...........ccccvivviviiinnii v 9-15
Preallocating Storage for Faster LOadingccccccovveiiiiiiiiiesccc s 9-16
Presorting Data for Faster INAEXING ... 9-16
SORTED INDEXES CIAUSE........cvitiiiiictiiieie ettt 9-16
UNSOMEA DALA ...ttt bbb bbbttt ebe bbb 9-17
MUltiple-Column INAEXEScoiviiiiiiiieit et 9-17
Choosing the BeSt SOt OFTENccueiviieeeeiceese s ere e 9-17
INFrEQUENT DALA SAVES ..ottt bbb bbb ettt 9-18
Minimizing Use Of the REAO LOQ.......coiiiiiiiiiiiriee e 9-18
Disabling ArCRIVINGcvciiic et 9-18
Specifying UNRECOVERABLE ..o 9-19

Setting the NOLOG AIIDULE ..o 9-19
Specifying the Number of Column Array Rows and Size of Stream Buffers................... 9-19
Optimizing Direct Path Loads on Multiple-CPU SyStEMS.........ccccoviiininiiiiicseeeceeee 9-20
AVOIdINg INAEX MAINTENANCEccviiiiiiitiiiit bbbt 9-21
Direct Loads, Integrity Constraints, and TriggersSccociverrieiiesesesieseseseseeeee s sesesesnens 9-22
INTEGIILY CONSLIAINTS ..ocvviiieiicece ettt e st e s e re s e sre e e e sreeneas 9-22
ENabled CONSEIAINTScoiiiiiiie et sttt ne st ene 9-22
Disabled CONSLIAINTS ..ot s 9-22
ReENADIE CONSIIAINTS.coiiiiiie ittt ene s 9-23
Database INSEIT TGRS ...ttt bbbt bbbt 9-24

10

Replacing Insert Triggers with Integrity Constraintsc.ccocoveveiiiiiinineccscnee 9-24

When Automatic Constraints Cannot Be USEd..........ccocoviiienineieneeeeeeeesese e 9-24

g =T o U= 1 o] o 1SS 9-25

USING 8N UPAALE TIIGOET ..ttt ettt ettt b et 9-25
Duplicating the Effects of Exception CONditioNs..........ccccoviiiiriinnincineeseeens 9-25

USING @ StOred ProCRAUIE.......cveecceeice s 9-26
Permanently Disabled Triggers and CoONStraints...........cccccovviieiiiieii s 9-27
Increasing Performance with Concurrent Conventional Path Loads..........ccccocoeeiiiinneae 9-27
Parallel Data Loading MOGEIS..........ccoiiiiiiiie et 9-27
Concurrent Conventional Path LOAAS ..o 9-28
Intersegment Concurrency with Direct Path..........c.cccooeiiiiiiiiinie 9-28
Intrasegment Concurrency wWith Direct Path..........ccccooveviiiiiiii e 9-28
Restrictions on Parallel Direct Path LOAdS..........cocooieiiiiiiiiiie e 9-29
Initiating Multiple SQL*Loader SESSIONS.........ccuiiireirieise e 9-29
Parameters for Parallel Direct Path LOAdS ... 9-30
Specifying TEMPOrary SEQMENTScc.coiiiiiiieieere ettt 9-30
Enabling Constraints After a Parallel Direct Path Load ... 9-31
PRIMARY KEY and UNIQUE KEY CONSIraintS........c.cccovvevviiieiiiieieereecre et 9-32
General Performance Improvement HINES ... 9-32

SQL*Loader Case Studies

THE CASE STUAIES ...ttt bbb bbb bbb e et et e st e e e ntebeebe bbb 10-2
CASE STUAY FIIES ... bbbttt bbbt 10-3
Tables Used in the Case STUAIES ...t 10-4
Contents Of TaDIE BMIP ..o 10-4
CoNtents Of TaDIE AEPT....c.oiiiiiiii bbb 10-4
Checking the ResUItSs OF @ LOAd..........ccccviiiiieiice e 10-4
RETEreNCES AN NOLESot bbbttt be bt 10-5
Case Study 1: Loading Variable-Length Dataccoccciriiriiiniiiniiiriseseeeeeee s 10-5
Control File fOr Case StUAY L......cccooiieieieieeeseee s e ne e e snens 10-5
RUNNING CASE STUAY L......oooiiiicicicr ettt sttt et e rs et e neeste e e sreanees 10-6
LOg File FOr Case STUAY L......ccooiiiiiieiiiicierieiiee ettt ene e 10-7
Case Study 2: Loading Fixed-Format FIieldscccoovoiiiiiiiiiiiiin e 10-8
Control File fOr Case StUAY 2.......ccooiiiii ettt ere s 10-8
Datafile fOr Case STUAY 2.........ciiiiiiiieirieie ettt ene e 10-9

XXi

XXii

RUNNING CASE STUAY 2ottt ettt e te et e s e e stesraesresnaestenraen 10-9

LOg File FOr Case STUAY 2.....c.ocuiiiiiiiieiciee et 10-10
Case Study 3: Loading a Delimited, Free-Format Filecccccoovvvvinivicnnce e 10-11
Control File fOr Case StUAY 3 ..ot 10-11
RUNNING CASE STUAY 3. bbb 10-13
Log File Or Case STUAY 3......ccccviiiiiiree ettt ne e 10-13
Case Study 4: Loading Combined Physical RECOrdSs...........cccccevieiiiiieiiiiecice e 10-14
Control File FOr Case STUAY 4 ..o 10-15
Datafile fOr Case STUAY 4 ..o 10-16
REJECLEA RECOIUS ... ittt et et e ae e be e e stesneesreeneens 10-16
RUNNING CASE STUAY 4 ...ttt bbbt 10-16
Log File Or Case STUAY 4.......cccooiiiiirie ettt ne e 10-17
Bad File fOr Case STUAY 4 ..ottt ae e 10-18
Case Study 5: Loading Data into Multiple Tables.........c.ccccoiiiiiiininneee e 10-18
Control File fOr Case STUAY 5cvii ittt e e s 10-19
Datafile for Case STUAY 5 ..ot 10-20
RUNNING CASE STUAY 5.t 10-20
Log File Or Case STUAY 5.....ccoccviiiiiirie ettt 10-21
Loaded Tables fOor Case StUAY 5cooeiiiiiicece e 10-23
Case Study 6: Loading Data Using the Direct Path Load Methodccccoocevieiiiiinnne, 10-24
Control File fOr Case STUAY Bccccvcviiiiiire et s ne e s 10-25
Datafile fOr Case STUAY Bcccuc it ae e 10-25
RUNNING CASE STUAY B ...t 10-26
LOg File Or Case STUAY B.......ccceveiiiirieie et ne e 10-26
Case Study 7: Extracting Data from a Formatted RepOrt..........ccociiviiiiinene e 10-28
Creating @ BEFORE INSERT THIQOETciiiiiiieiiieiseise et 10-28
Control File fOr Case STUAY 7ccvcov ittt st ne e eneas 10-29
Datafile fOr Case STUAY 7 ..o ettt ae e 10-31
RUNNING CASE STUAY 7 ...ttt bbbt bbbt 10-31
LOg File FOr Case STUAY 7....ocvciiiie ittt ne e 10-32
Case Study 8: Loading Partitioned Tables...........c.cccveviiiiii i 10-34
Control File fOr Case STUAY 8 ..o 10-34
TADIE CrEALION ... bbb et ettt 10-35
Datafile for Case STUAY 8 ...t 10-35
RUNNING CaSE STUAY 8.t bbbt 10-36

Log File FOr Case STUAY 8.........ooi ittt e ne e 10-37

Case Study 9: Loading LOBFILES (CLOBS)cccciiiiiiiieiiriete ettt ssese e 10-38
Control File fOr Case StUAY 9......cccoiiiiieieeeee e 10-39
Datafiles FOr Case StUAY 9ooiiiiice et ne s 10-40
RUNNING CASE STUAY 9.ttt et 10-41
Log File TOr Case STUAY ..ottt e ne e nne s 10-42

Case Study 10: Loading REF Fields and VARRAYS ...t 10-43
Control File for Case STUAY 10coiiiiiiiirieiiesie s 10-43
RUNNING CaSe STUAY 10......cciiiiiiiieie ettt en e neeneerenns 10-45
Log File FOr Case STUAY 10........ccccoiiiiiieiiee ettt sttt eene s 10-45

Case Study 11: Loading Data in the Unicode Character Set...........ccoovoeviiiieneieiciecee 10-47
Control File fOor Case StUAY 11......ccccveieieiceieeeeeese e 10-48
Data File for Case STUAY L1 ..ottt et e ne e 10-49
RUNNING CaSE STUAY L1.....oiiiiiiiiieiiieeeitee ettt b et nrebe e 10-49
Log File FOr Case STUAY L11.......ccciiiiiiiiie ittt sttt s ena e e enens 10-50
Loaded Tables for Case StUAY 11 ...t 10-52

Part lll External Tables

11

12

External Tables Concepts
THE ACCESS DIFIVEN ...ttt et et e st e e ab e st e e e e sbeesaestee s teataesteeneesteeneenneenes 11-1
External Table RESIIICLIONSccuiiiiiicicce ettt e sbe e r e s be e re s taestesreeas 11-3
Location of Datafiles and OQULPUL FIlES.........cccoveiiiciii e 11-3
Using External Tables to Load Dataccccovieieiiiiic sttt 11-4
Parallel Access to EXternal TabIEs........c.coi it 11-5
Performance Hints When Using External Tables ..o 11-6
External Tables Access Parameters
record_format_info ClAUSE..........cccv i e 12-2
FIXED IENQLN ..ottt bbbt ettt e st r s s 12-3
VARIABLE SIZE....c.oiiiiitie ittt sttt st b ettt et ettt sttt ettt nr e 12-4
DELIMITED BY ...tiitiiiteieisisietee sttt sttt sttt sse s s e s s sesensssesesenenensas 12-4
CHARACTERSET ..ottt sttt sttt e b bbbt et s bt se e b s rene s 12-5
DATA IS..ENDIAN ...ttt sttt st bbbt b te s b e s e sbe e sbe e abeseate e 12-6

XXili

XXV

STRING SIZES ARE IN ...coooiiii s 12-6

LOAD WHEN ...ttt bbbt bbbttt bbbt 12-6
BADFILE | NOBADFILEooiiiiiiieere e 12-7
DISCARDFILE | NODISCARDFILEccciitiiitetiniiiceessie ettt 12-7
LOG FILE | NOLOGFILE ..ottt 12-7
3] L 0 TSP TP 12-8
LY 1o ST T 12-8
CONAITION_SPPEC..... vttt ettt bbbt bt btk e bt bbb bt e b e bt bt bt e b e en e ene e 12-8
[directory object name:] fIlleNAMEccoiiiiece e 12-9
(o7] oo 1 1o o EPR SO TT S T S TT S TPSTT S TTS PSP PRSP 12-10
FaNge STart | FANGE ENA ..o e 12-10
field_defiNitioNS CIAUSEcooiicec et neenenns 12-11
Lo [=] 110 0 TS o 1= oSO PR UTPSPOORPRPRN 12-12
EFIIMNI_SIDC ..ttt bbbt b et b ekt b bbb bbb bRt b et bt b et b e b e 12-15
MISSING FIELD VALUES ARE NULLccooiiiiiieeeeeee s 12-16
FIEIA_TIST ...ttt 12-17
POS_SPEC CHAUSE ...ttt ettt bbb 12-18
SEAMT OFFSEBL oo nres 12-19

LT OO ST TSSO T SO TSP PO PR PTPPTRPTPTPPPRIO 12-19
(1T =0 01T o | USRS 12-19

=] o SO S PP 12-19

1= g o | 1. PSSP 12-19
AAtAtYPE_SPEC CIAUSEeiiitiieteiete ettt ettt 12-20
[UNSIGNED] INTEGER [EXTERNAL] [(IEN)] ..civriieireirieeerreerneee e 12-21
DECIMAL [EXTERNAL] and ZONED [EXTERNAL]cccoviiiiieinreeenreeeeins 12-22
ORACLE_DATE .ottt bbbt bbbttt ettt 12-22
ORACLE_NUMBER........ciiiiiiiini s 12-22
DOUBLE [EXTERNALLL ...ttt 12-22
FLOAT [EXTERNALL ...eiititttiiri ettt sttt 12-23
RAW e 12-23
CHAR L b bbb bbbt 12-23
VARCHAR aNd VARRAW ..ottt bbb 12-24
VARCHARC and VARRAWC ..ottt 12-25
AAtETOIMNAL_SPEC. ... ettt bbb bbbt eae 12-26
TNIT_SPEC CHAUSE..... ...t bbbttt 12-27

Part IV DBVERIFY

13 DBVERIFY: Offline Database Verification Utility

Using DBVERIFY to Validate Disk Blocks of a Single Datafile...........ccocoveiniiininncnns 13-2
Y11= G 13-2
PAAMELEIS ...ttt b et b et b bt h e b ae e n e e re s 13-2
CommaNd-Line INTErfaCe........ccoooiie e e e bbbt 13-3
Sample DBVERIFY OULPULocviiiiee ettt e e snaenasresnesnens 13-3

Using DBVERIFY to Validate @ SEgMENTt.........ccccoiiiiieii et 13-4
SYNTAX 1.ttt nre s 13-5
PAFAIMELETS ...ttt b kbbbt bRt R bt r et et et e b e b bt r e e 13-5
CommMmAaNd-LiNe INTEITACE.coiiii i 13-5

PartV Appendixes
A SQL*Loader Syntax Diagrams

B DB2/DXT User Notes

Using the DB2 RESUME OPLIONoviiiiiiiiiiieinee ettt sbe s sne s B-1
INclusions for CoMPAtIDITITYccoiiiiiii e B-2
LOG STALEIMEBNT ...ttt bbbt bt e bbb et e e st e bt b e b nenre s B-2
WORKDDN SEAEEMENT ...ttt nn e nn e B-2
SORTDEVT and SORTNUM Statementsccceieiieiiniiesesese e B-2
(DY IS @7 A] o 1= 1 or: U o] o S B-3
L= E] 1 [4 T] o OSSOSO USSP PR PR PURTP B-3
[O] g1 AN BT == 1 1= o | PSP USN B-3
PART STATEIMENT ...t bbb e ettt b b besnenne b nnen B-3
10] I ST @] o)1 o] o SOOI B-4
DBCS GraphiC STIINGS .. .cveveviietirieiiieeir ettt bbbttt B-4
SQL*Loader Syntax with DB2-Compatible Statements.........c..ccocvovievineieiciccece e, B-4
Index

XXV

XXVi

Send Us Your Comments

Oracle9 j Database Utilities, Release 1 (9.0.1)
Part No. A90192-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

« Did you find any errors?

« Is the information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

« Electronic mail: nedc-doc_us@oracle.com
« FAX:603-897-3825 Attn: Oracle9i Database Utilities Documentation
« Postal service:

Oracle Corporation

Oracle9i Database Utilities Documentation

One Oracle Drive

Nashua, NH 03062-2804

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXVil

XXViii

Preface

This document describes how to use the Oracle9i database utilities for data transfer,
data maintenance, and database administration.

This preface contains these topics:
« Audience

« Organization

« Related Documentation

« Conventions

« Documentation Accessibility

« Accessibility of Code Examples in Documentation

XXiX

Audience

This document is for database administrators (DBAS), application programmers,
security administrators, system operators, and other Oracle users who perform the
following tasks:

« Archive data, back up an Oracle database, or move data between Oracle
databases using the Export/Import utilities

« Load data into Oracle tables from operating system files using SQL*Loader

« Create and maintain user-defined character sets using Oracle’s globalization
technology support

To use this manual, you need a working knowledge of SQL and Oracle
fundamentals, information that is contained in Oracle9i Database Concepts. In
addition, SQL*Loader requires that you know how to use the file management
facilities of your operating system.

Organization

This document contains:
Part I: Export/Import

Chapter 1, "Export”

This chapter describes how to use Export to write data from an Oracle database into
transportable files. It discusses export guidelines, export modes, interactive and
command-line methods, parameter specifications, and Export object support. It also
provides example Export sessions.

Chapter 2, "Import"

This chapter describes how to use Import to read data from Export files into an
Oracle database. It discusses import guidelines, interactive and command-line
methods, parameter specifications, and Import object support. It also provides
several examples of Import sessions.

XXX

Part Il: SQL*Loader

Chapter 3, "SQL*Loader Concepts"

This chapter introduces SQL*Loader and describes its features. It also introduces
data loading concepts (including object support). It discusses input to SQL*Loader,
database preparation, and output from SQL*Loader.

Chapter 4, "SQL*Loader Command-Line Reference"

This chapter describes the command-line syntax used by SQL*Loader. It discusses
command-line arguments, suppressing SQL*Loader messages, sizing the bind array;,
and more.

Chapter 5, "SQL*Loader Control File Reference"

This chapter describes the control file syntax you use to configure SQL*Loader and
to describe to SQL*Loader how to map your data to Oracle format. It provides
detailed syntax diagrams and information about specifying datafiles, tables and
columns, the location of data, the type and format of data to be loaded, and more.

Chapter 6, "Field List Reference"

This chapter describes the field list section of a SQL*Loader control file. The field list
provides information about fields being loaded, such as position, datatype,
conditions, and delimiters.

Chapter 7, "Loading Objects, LOBs, and Collections"

This chapter describes how to load column objects in various formats. It also
discusses how to load object tables, REFcolumns, LOBs, and collections.

Chapter 8, "SQL*Loader Log File Reference"
This chapter describes the information contained in SQL*Loader log file output.

Chapter 9, "Conventional and Direct Path Loads"

This chapter describes the differences between a conventional path load and a direct
path load. A direct path load is a high performance option that significantly reduces
the time required to load large quantities of data.

Chapter 10, "SQL*Loader Case Studies"

This chapter presents case studies that illustrate some of the features of
SQL*Loader. It demonstrates the loading of variable-length data, fixed-format

XXXi

records, a free-format file, multiple physical records as one logical record, multiple
tables, direct path loads, and loading objects, collections, and REFcolumns.

Part Ill: External Tables

Chapter 11, "External Tables Concepts"
This chapter describes basic concepts about external tables.

Chapter 12, "External Tables Access Parameters"

This chapter describes the access parameters used to interface with the external
tables API.

Part IV: DBVERIFY

Chapter 13, "DBVERIFY: Offline Database Verification Utility"

This chapter describes how to use the offline database verification utility,
DBVERIFY.

Part V. Appendixes

Appendix A, "SQL*Loader Syntax Diagrams"
This appendix provides diagrams of the SQL*Loader syntax.

Appendix B, "DB2/DXT User Notes"

This appendix describes differences between the data definition language syntax of
SQL*Loader and DB2 Load Utility control files. It discusses SQL*Loader extensions
to the DB2 Load Utility, the DB2 RESUME option, options included for
compatibility, and SQL*Loader restrictions.

Related Documentation

For more information, see the following Oracle resources.
The Oracle9i documentation set, especially:

« Oracle9i Database Concepts

« Oracle9i SQL Reference

= Oracle9i Database Administrator’s Guide

XXX

Conventions

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install the Oracle database server. Refer to
Oracle9i Sample Schemas for information on how these schemas were created and
how you can use them.

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http:/Amww.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http:/technet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http/fechnet.oracle.com/docs/index.htm

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

= Conventions in Text

« Conventions in Code Examples
Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Xxxiii

Convention

Meaning

Example

Bold

Italics

UPPERCASE
monospace
(fixed-width
font)

lowercase
monospace
(fixed-width
font)

lowercase
monospace
(fixed-width
font) italic

Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

Italic typeface indicates book titles or
emphasis.

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase monospace italic font
represents placeholders or variables.

When you specify this clause, you create an
index-organized table.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKURommand.

Query the TABLE_NAMEolumn in the USER_
TABLESdata dictionary view.

Use the DBMS_STATSENERATE_STATS
procedure.

Enter sqlplus to open SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepULtil class implements these
methods.

You can specify the parallel_clause

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

XXXIV

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE;,

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[1 Brackets enclose one or more optional DECIMAL (digits [, precision)
items. Do not enter the brackets.

{} Braces enclose two or more items, one of {ENABLE | DISABLE}

Other notation

Italics

UPPERCASE

which is required. Do not enter the braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

CREATE TABLE ... AS subquery ;

SELECT col1 , coln FROM

employees;

col2 , ...,

acctbal NUMBER(11,2);

acct CONSTANT NUMBER(4) := 3;

CONNECT SYSTEMystem_password
DB_NAME = database_name

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

XXXV

Convention

Meaning Example

lowercase

Lowercase typeface indicates SELECT last_name, employee_id FROM
programmatic elements that you supply. employees;

For example, lowercase indicates names salolus hr/hr
of tables, columns, or files. aip
Note: Some programmatic elements use a CREATE USER mjones IDENTIFIED BY ty3MU9;
mixture of UPPERCASE and lowercase.

Enter these elements as shown.

Sample commands, statements, and code examples provided in this manual are
specific to the UNIX operating system unless otherwise noted. For information on
how to implement the commands and examples on other operating systems, see
your Oracle operating system-specific documentation.

Documentation Accessibility

Oracle's goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http/Amww.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

XXXVI

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

What's New in Database Utilities?

This section describes new features of the Oracle9i database utilities and provides
pointers to additional information. To help those who are migrating to the current
release, this section also describes features that were introduced in Oracle8i.

The information is divided into the following sections:
« Oracle9i Utilities New Features

=« Oracle8i Utilities New Features

Oracle9/ Utilities New Features

The following sections describe new and enhanced features that were introduced in
Oracle9i for the Export, Import, SQL*Loader, and DBVERIFY utilities.

Export and Import Utilities

The following is a list of new and enhanced features for the Export and Import

utilities:

« Enhanced export/import functions for precalculated optimizer statistics. For
more information, see:

— STATISTICS on page 1-25 for information about use of this parameter with
the Export utility

— STATISTICS on page 2-27 for information about use of this parameter with
the Import utility

— Importing Statistics on page 2-67

« Addition of new parameters, RESUMABLERESUMABLE_NAMEESUMABLE _
TIMEOUT, FLASHBACK_SCNand FLASHBACK_TIME.For more information,

XXXVii

XXXViii

see the descriptions of these parameters beginning in Export Parameters on
page 1-13 and in Import Parameters on page 2-14.

Export mode can be used to dump out all tables in a tablespace. See
TABLESPACES on page 1-28.

Pattern matching of table names during export. See TABLES on page 1-26.

Reduced character set translations on Import. See Character Set Conversion on
page 2-54.

SQL*Loader Utility
The following is a list of new and enhanced features for SQL*Loader:

SQL*Loader enhancements that allow for correctly loading integer and
zoned/packed decimal datatypes across platforms. SQL*Loader can now do the
following:

— Load binary integer data created on a platform whose byte ordering is
different than that of the target platform

— Load binary floating-point data created on a platform whose byte ordering
is different than that of the target platform (if the floating-point format used
by source and target systems is the same)

— Specify the size, in bytes, of a binary integer and load it regardless of the
target platform’s native integer size

— Specify that integer values are to be treated as signed or unsigned
guantities

— Accept EBCDIC-based zoned or packed decimal data encoded in IBM
format

For more information on these enhancements, see the following:

« INTEGER(n) on page 6-8

« DECIMAL on page 6-11

« ZONED on page 6-10

« Loading Data Across Different Platforms on page 6-35
Support for loading XMLcolumns. See Loading LOBs on page 7-13.

Support for loading object tables with a subtype. See Loading Object Tables
with a Subtype on page 7-10.

Support for loading column objects with a derived subtype. See Loading
Column Objects with a Derived Subtype on page 7-4.

SQL*Loader support for Unicode. This support includes the following:
— Use of the UTF16 character set in the SQL*Loader datafile
— Support of character-length semantics in the SQL*Loader control file

— Use of SQL*Loader to load data into columns of datatype NCHAR
NVARCHARZNd NCLOBwhen the national character set is AL16UTF16

— Specifying byte order (big endian or little endian) for SQL*Loader datafile

See Also:
« Handling Different Character Encoding Schemes on page 5-16
« SQL*Loader Datatypes on page 6-7
» Byte Ordering on page 6-36
SQL*Loader extensions for support of datetime and interval datatypes as

specified in the ANSI SQL 92 standards document. This support includes the
ability to:

— Load datetime and interval datatypes for both conventional and direct path
modes of SQL*Loader

— Perform datetime and interval datatype conversions between SQL*Loader
client and database server

— Load datetime and interval datatypes using the direct path API
For more information, see Datetime and Interval Datatypes on page 6-15.

New functionality that allows users to specify the UNSIGNEDparameter for the
binary integers, SMALLINT and INTEGER(n) . For more information, see
SMALLINT on page 6-9 and INTEGER(n) on page 6-8.

New functionality that allows a length specification to be applied to the
INTEGERparameter; for example, INTEGER(n) . See INTEGER(n) on page 6-8.

New multithreaded loading functionality for direct path loads that, when
possible, converts column arrays to stream buffers and performs stream buffer

XXXIX

loading in parallel. For more information, see Optimizing Direct Path Loads on
Multiple-CPU Systems on page 9-20.

« New COLUMNARRAYROpéBameter that lets you specify a value for the
number of column array rows in direct path loads. And a new STREAMSIZE
parameter that lets you specify the size of direct path stream buffers. For more
information, see Specifying the Number of Column Array Rows and Size of
Stream Buffers on page 9-19.

« Addition of RESUMABLERESUMABLE_NANM&hd RESUMABLE_TIMEOUT
parameters to enable and disable resumable space allocation. See
Command-Line Parameters on page 4-3.

External Tables Feature

The Oracle9i external tables feature is a complement to existing SQL*Loader
functionality. It allows you to access data in external sources as if it were in a table
in the database.

See Chapter 11, "External Tables Concepts" and Chapter 12, "External Tables Access
Parameters".

DBVERIFY Utility

The DBVERIFY utility now has an additional command-line interface that allows
you to specify a table segment or index segment for verification. It checks to make
sure that a row chain pointer is within the segment being verified. See Using
DBVERIFY to Validate a Segment on page 13-4.

Oracle8 1 Utilities New Features

xl

The Oracle8i new features described in this section comprise the overall effort to
optimize data transfer, maintenance, and administration. The features described in
this section were added for releases 8.1.5, 8.1.6, and 8.1.7.

Export Utility
The following are new or enhanced Export features:

Export of subpartitions. See Table-Level and Partition-Level Export on
page 1-12.

The ability to specify multiple dump files for an export command. See the
parameters FILE on page 1-19 and FILESIZE on page 1-19.

The ability to specify a query for the SELECTstatements that Export uses to
unload tables. See QUERY on page 1-22.

The maximum number of bytes in an export file on each volume of tape has
been increased. See VOLSIZE on page 1-30.

The ability to export tables containing LOBs and objects, even if direct path is
specified on the command line. See Invoking a Direct Path Export on page 1-49.

The ability to export and import precalculated optimizer statistics instead of
recalculating the statistics at import time. (This feature is only applicable to
certain exports and tables.) See STATISTICS on page 1-25.

Developers of domain indexes can export application-specific metadata
associated with an index using the new ODClIndexGetMetadata method on the
ODClIndex interface. See the Oracle9i Data Cartridge Developer’s Guide for more
information.

Export of transportable tablespace metadata. See TRANSPORT_TABLESPACE
on page 1-29.

Import Utility
The following are new or enhanced Import features:

Import of subpartitions. See Table-Level and Partition-Level Import on
page 2-49.

The ability to specify multiple dump files for an Import command. See the
parameters FILE on page 2-21 and FILESIZE on page 2-21.

The Import parameter TOID_NOVALIDATE, which allows you to cause Import
to omit validation of object types (used typically when the types were created
by a cartridge installation). See TOID_NOVALIDATE on page 2-31.

xli

xlii

The maximum number of bytes in an export file on each volume of tape has
been increased. See VOLSIZE on page 2-33.

Support for fine-grained access control. See Considerations When Importing
Database Objects on page 2-55.

The ability to export and import precalculated optimizer statistics instead of
recomputing the statistics at import time. (This feature is only applicable to
certain exports and tables.) See STATISTICS on page 2-27.

Import of transportable tablespace metadata. See TRANSPORT_TABLESPACE
on page 2-32.

SQL*Loader Utility
The following are new or enhanced SQL*Loader features:

There is now a PRESERVBparameter for use with CONTINUEIF THIS and
CONTINUEIF NEXT.

If the PRESERVBparameter is not used, the continuation field is removed from
all physical records when the logical record is assembled. That is, data values
are allowed to span the records with no extra characters (continuation
characters) in the middle.

If the PRESERVEparameter is used, the continuation field is kept in all
physical records when the logical record is assembled.

See Using CONTINUEIF to Assemble Logical Records on page 5-26.

DATEfields that contain only whitespace are loaded as NULL fields and,
therefore, no longer cause an error. See Datetime and Interval Datatypes on
page 6-15.

As of release 8.1.5, the behavior of certain DDL clauses and restrictions has been
changed to provide object support. Be sure to read Chapter 7, "Loading Obijects,
LOBs, and Collections" for a complete description of how this now works.
Additionally, you should be sure to read the information in the following
sections:

— Specifying Filler Fields on page 6-6
— Using the WHEN, NULLIF, and DEFAULTIF Clauses on page 6-31
— Applying SQL Operators to Fields on page 6-49

Part |

Export and Import

The chapters in this section describe the Oracle Export and Import utilities:
Chapter 1, "Export”

This chapter describes how to use Export to write data from an Oracle database into
transportable files. It discusses export guidelines, export modes, interactive and
command-line methods, parameter specifications, and Export object support. It also
provides example Export sessions.

Chapter 2, "Import"

This chapter describes how to use Import to read data from Export files into an
Oracle database. It discusses import guidelines, interactive and command-line
methods, parameter specifications, and Import object support. It also provides
several examples of Import sessions.

1

Export

This chapter describes how to use the Export utility to write data from an Oracle
database into an operating system file in binary format. This file is stored outside
the database, and it can be read into another Oracle database using the Import
utility (described in Chapter 2).

This chapter discusses the following topics:

« What Is the Export Utility?

« Before Using Export

« Invoking Export

« Export Modes

« Getting Online Help

« Export Parameters

« Example Export Sessions

« Using the Interactive Method

« Warning, Error, and Completion Messages

« Exit Codes for Inspection and Display

« Conventional Path Export Versus Direct Path Export
« Invoking a Direct Path Export

« Network Considerations

« Character Set and Globalization Support Considerations
« Instance Affinity and Export

« Considerations When Exporting Database Objects

Export 1-1

What Is the Export Utility?

« Transportable Tablespaces

« Exporting from a Read-Only Database

« Using Export and Import to Partition a Database Migration
« Using Different Versions of Export

« Creating Oracle Release 8.0 Export Files from an Oracle9i Database

What Is the Export Utility?

The Export utility provides a simple way for you to transfer data objects between
Oracle databases, even if they reside on platforms with different hardware and
software configurations.

When you run Export against an Oracle database, objects (such as tables) are
extracted, followed by their related objects (such as indexes, comments, and grants),
if any. The extracted data is written to an Export file, as illustrated in Figure 1-1.

Figure 1-1 Exporting a Database

Database Export file

[Table 1| |Table3| |Tables| Table 1

v v v Index 1
| Index 1 | | Table 4| | Index 5 |

v v v ————

Table 3

|Table 2 | | Index 4 | | Table 6 | —

v v v

Index 4

Index 5

3 3 3
@ o @
=5 =3 =5
@ (] @
(o] (6] N

An Export file is an Oracle binary-format dump file that is typically located on disk
or tape. The dump files can be transferred using FTP or physically transported (in

1-2 Oracle9/ Database Utilities

Before Using Export

the case of tape) to a different site. The files can then be used with the Import utility
to transfer data between databases that are on systems not connected through a
network. The files can also be used as backups in addition to normal backup
procedures.

Export dump files can only be read by the Oracle Import utility. The version of the
Import utility cannot be earlier than the version of the Export utility used to create
the dump file.

You can also display the contents of an export file without actually performing an
import. To do this, use the Import SHOVparameter. See SHOW on page 2-27 for
more information.

To read load data from ASCII fixed-format or delimited files, use the SQL*Loader
utility.

See Also:

« Chapter 2 for information about the Import utility

« Part Il of this manual for information about the SQL*Loader
utility

» Oracle9i Replication for information on how to use the Export
and Import utilities to facilitate certain aspects of Oracle
Advanced Replication, such as offline instantiation

Before Using Export

Before you begin using Export, be sure you take care of the following items
(described in detail in the following sections):

« Runthe catexp.sql or catalog.sql script
« Ensure there is sufficient disk or tape storage to write the export file

« \Verify that you have the required access privileges

Running catexp.sql or catalog.sql

To use Export, you must run the script catexp.sql or catalog.sq|l (which runs
catexp.sql) after the database has been created.

Export 1-3

Before Using Export

Note: The actual names of the script files depend on your
operating system. The script filenames and the method for running
them are described in your Oracle operating system-specific
documentation.

catexp.sql or catalog.sql needs to be run only once on a database. You do
not need to run it again before you perform the export. The script performs the
following tasks to prepare the database for Export:

« Creates the necessary export views
« Assigns all necessary privileges to the EXP_FULL_DATABASKole
= Assigns EXP_FULL_DATABASEHo the DBArole

« Records the version of catexp.sql that has been installed

Ensuring Sufficient Disk Space

Before you run Export, ensure that there is sufficient disk or tape storage space to
write the export file. If there is not enough space, Export terminates with a
write-failure error.

You can use table sizes to estimate the maximum space needed. You can find table
sizes in the USER_SEGMENT8ew of the Oracle data dictionary. The following
guery displays disk usage for all tables:

SELECT SUM(BYTES) FROM USER_SEGMENTS WHERE SEGMENT_TYPE=TABLE

The result of the query does not include disk space used for data stored in LOB
(large object) or VARRAYtolumns or in partitioned tables.

See Also: Oracle9i Database Reference for more information about
dictionary views

Verifying Access Privileges

To use Export, you must have the CREATE SESSIONprivilege on an Oracle
database. To export tables owned by another user, you must have the EXP_FULL _
DATABASHole enabled. This role is granted to all DBAs.

If you do not have the system privileges contained in the EXP_FULL_DATABASE
role, you cannot export objects contained in another user’s schema. For example,

1-4 Oracle9/ Database Utilities

Invoking Export

you cannot export a table in another user’s schema, even if you created a synonym
for it.

The following schema names are reserved and will not be processed by Export:

« ORDSYS

« MDSYS

« CTXSYS

« ORDPLUGINS
« LBACSYS

Invoking Export

You can invoke Export and specify parameters by using any of the following
methods:

. Command-line entries
. Interactive Export prompts
. Parameter files

Before you use one of these methods to invoke Export, be sure to read the
descriptions of the available parameters. See Export Parameters on page 1-13.

Command-Line Entries

You can specify all valid parameters and their values from the command line using
the following syntax:

exp usemamefpassword PARAMETERwalue

or

exp usemamepassword PARAMETER=(aluel,value2,....valuen)

The number of parameters cannot exceed the maximum length of a command line
on the system.

Interactive Export Prompts

If you prefer to let Export prompt you for the value of each parameter, you can use
the following syntax to start Export in interactive mode:

Export 1-5

Invoking Export

exp usemame | password

Export will display commonly used parameters with a request for you to enter a
value. This method exists for backward compatibility and is not recommended
because it provides less functionality than the other methods. See Using the
Interactive Method on page 1-41.

Parameter Files

You can specify all valid parameters and their values in a parameter file. Storing the
parameters in a file allows them to be easily modified or reused, and is the
recommended method for invoking Export. If you use different parameters for
different databases, you can have multiple parameter files.

Create the parameter file using any flat file text editor. The command-line option
PARFILE=filename tells Export to read the parameters from the specified file
rather than from the command line. For example:

exp PARFILE= filename
exp usemamefpassword PARFILE= filename

The first example does not specify the username | password on the command line
to illustrate that you can specify them in the parameter file, although, for security
reasons, this is not recommended.

The syntax for parameter file specifications is one of the following:

PARAMETERzle
PARAMETER=le)
PARAMETERS@lel , vaue2 , ..)

The following example shows a partial parameter file listing:

FULL=y
FILE=dba.imp
GRANTS=y
INDEXES=y
CONSISTENT=y

1-6 Oracle9i Database Utilities

Invoking Export

Note: The maximum size of the parameter file may be limited by
the operating system. The name of the parameter file is subject to
the file-naming conventions of the operating system. See your
Oracle operating system-specific documentation for more
information.

You can add comments to the parameter file by preceding them with the pound (#)
sign. Export ignores all characters to the right of the pound (#) sign.

You can specify a parameter file at the same time that you are entering parameters
on the command line. In fact, you can specify the same parameter in both places.
The position of the PARFILE parameter and other parameters on the command line
determines which parameters take precedence. For example, assume the parameter
file params.dat contains the parameter INDEXES=y and Export is invoked with
the following line:

exp usemamefpassword PARFILE=params.dat INDEXES=n
In this case, because INDEXES=noccurs after PARFILE=params.dat , INDEXES=n
overrides the value of the INDEXES parameter in the parameter file.

See Also:

« Export Parameters on page 1-13 for descriptions of the Export
parameters

« Exporting and Importing with Oracle Net on page 1-50 for
information on how to specify an export from a remote
database

Invoking Export As SYSDBA

SYSDBAis used internally and has specialized functions; its behavior is not the
same as for generalized users. Therefore, you should not typically need to invoke
Export as SYSDBA, except in the following situations:

« At the request of Oracle technical support

« When using transportable tablespaces (see Transportable Tablespaces on
page 1-56)

To invoke Export as SYSDBA, use the following syntax, adding any desired
parameters or parameter filenames:

Export 1-7

Export Modes

exp\ usemamejpassword AS SYSDBAY

or, optionally:
exp\ usemamejpassword@instance AS SYSDBAY

If either the username or password is omitted, Export will prompt you for it.

This example shows the entire connect string enclosed in quotation marks and
backslashes. This is because the string, AS SYSDBA, contains a blank, a situation
for which most operating systems require that the entire connect string be placed in
guotation marks or marked as a literal by some method. Some operating systems
also require that quotation marks on the command line be preceded by an escape
character. In this example, backslashes are used as the escape character. If the
backslashes were not present, the command-line parser that Export uses would not
understand the quotation marks and would remove them before calling Export.

See your operating system-specific Oracle documentation for more information
about special and reserved characters on your system.

If you prefer to use the Export interactive mode, see Using the Interactive Method
on page 1-41 for more information.

Export Modes
The Export utility provides four modes of export:
« Full

« User (Owner)
« Table
« Tablespace

All users can export in table mode and user mode. Users with the EXP_FULL_
DATABASHole (privileged users) can export in all modes. Table 1-1 shows the
objects that are exported and imported in each mode.

To specify one of these modes, use the appropriate parameter (FULL, OWNER,
TABLES, or TABLESPACEYPwhen you invoke Export. See Export Parameters on
page 1-13 for information on the syntax for each of these parameters.

You can use conventional path Export or direct path Export to export in any of the
first three modes. The differences between conventional path Export and direct path
Export are described in Conventional Path Export Versus Direct Path Export on
page 1-47.

1-8 Oracle9i Database Utilities

Export Modes

See Also:

« Oracle9i Database Administrator’s Guide

« Oracle9i Database Concepts for an introduction to the

transportable tablespaces feature

Table 1-1 Objects Exported and Imported in Each Mode

Full

Database Tablespace

Table Mode User Mode Mode Mode

Analyze cluster No Yes Yes No
Analyze Yes Yes Yes Yes
tables/statistics
Application contexts No No Yes No
Auditing information | Yes Yes Yes No
B-tree, bitmap, domain | yes! Yes! Yes Yes
functional indexes
Cluster definitions No Yes Yes Yes
Column and table Yes Yes Yes Yes
comments
Database links No Yes Yes No
Default roles No No Yes No
Dimensions No Yes Yes No
Directory aliases No No Yes No
External tables Yes Yes Yes No
(without data)
Foreign function No Yes Yes No
libraries
Indexes owned by Yes Yes Yes Yes
users other than table (Privileged
owner users only)
Index types No Yes Yes No
Java resources and No Yes Yes No
classes

Export 1-9

Export Modes

Table 1-1 (Cont.) Objects Exported and Imported in Each Mode

Full
Database Tablespace

Table Mode User Mode Mode Mode
Job queues No Yes Yes No
Nested table data Yes Yes Yes Yes
Object grants Yes (Only for | Yes Yes Yes

tables and

indexes)
Object type definitions | Yes Yes Yes Yes
used by table
Object types No Yes Yes No
Operators No Yes Yes No
Password history No No Yes No
Postinstance actions No No Yes No
and objects
Postschema procedural | No Yes Yes No
actions and objects
Posttable actions Yes Yes Yes Yes
Posttable procedural Yes Yes Yes Yes
actions and objects
Preschema procedural | No Yes Yes No
objects and actions
Pretable actions Yes Yes Yes Yes
Pretable procedural Yes Yes Yes Yes
actions
Private synonyms No Yes Yes No
Procedural objects No Yes Yes No
Profiles No No Yes No
Public synonyms No No Yes No
Referential integrity Yes Yes Yes No
constraints
Refresh groups No Yes Yes No
Resource costs No No Yes No

1-10 Oracle9i Database Utilities

Export Modes

Table 1-1 (Cont.) Objects Exported and Imported in Each Mode

Full
Database Tablespace

Table Mode User Mode Mode Mode
Role grants No No Yes No
Roles No No Yes No
Rollback segment No No Yes No
definitions
Security policies for Yes Yes Yes Yes
table
Sequence numbers No Yes Yes No
Snapshot logs No Yes Yes No
Snapshots and No Yes Yes No
materialized views
System privilege grants | No No Yes No
Table constraints Yes Yes Yes Yes
(primary, unique,
check)
Table data Yes Yes Yes No
Table definitions Yes Yes Yes Yes
Tablespace definitions | No No Yes No
Tablespace quotas No No Yes No
Triggers Yes Yes? Yes Yes
Triggers owned by Yes No No No
other users (Privileged

users only)
User definitions No No Yes No
User proxies No No Yes No
User views No Yes Yes No
User-stored No Yes Yes No
procedures, packages,
and functions

Export 1-11

Getting Online Help

1 Nonprivileged users can export and import only indexes they own on tables they own. They cannot
export indexes they own that are on tables owned by other users, nor can they export indexes owned
by other users on their own tables. Privileged users can export and import indexes on the specified
users’ tables, even if the indexes are owned by other users. Indexes owned by the specified user on
other users’ tables are not included, unless those other users are included in the list of users to
export.

Nonprivileged and privileged users can export and import all triggers owned by the user, even if
they are on tables owned by other users.

Table-Level and Partition-Level Export

You can export tables, partitions, and subpartitions in the following ways:
« Table-level Export; exports all data from the specified tables

« Partition-level Export: exports only data from the specified source partitions or
subpartitions

In all modes, partitioned data is exported in a format such that partitions or
subpartitions can be imported selectively.

Table-Level Export

In table-level Export, you can export an entire table (partitioned or nonpartitioned)
along with its indexes and other table-dependent objects. If the table is partitioned,
all of its partitions and subpartitions are also exported. This applies to both direct
path Export and conventional path Export. You can perform a table-level export in
any Export mode.

Partition-Level Export

In partition-level Export, you can export one or more specified partitions or
subpartitions of a table. You can only perform a partition-level export in Table
mode.

For information on how to specify table-level and partition-level Exports, see
TABLES on page 1-26.

Getting Online Help

Export provides online help. Enter exp help=y on the command line to invoke it.

1-12 Oracle9/ Database Utilities

Export Parameters

Export Parameters

The following diagrams show the syntax for the parameters that you can specify in

the parameter file or on the command line. Following the diagrams are descriptions
of each parameter.

Export_start

@ connect_string SYSDBA
~
usernameWpassword)

ExpModes

exp

ExpModes

R O]

M

f_)| TRANSPORT_TABLESPACE F@»E

Export 1-13

Export Parameters

ExpOpts

A4

I
N

A ExpFileOpts) N

==
o=

H FLASHBACK_SCN F@{SCanumbeOi

(B0 }{(O-(meam)

RESUMABLE

H RESUMABLE_NAME |—>®—><resumable_string>—
\| RESUMABLE_TIMEOUT P@{integer}—/

A4

1-14 Oracle9i Database Utilities

Export Parameters

BUFFER

ExpFileOpts

@
H FILE F@—)Cﬁlenamtoi
H FILESIZE P@-)Cnumber_of_bytes}
H LoG F@—)Cﬁlename)i
\] RECORDLENGTH P@a(integer)—/

Default: operating system-dependent. See your Oracle operating system-specific
documentation to determine the default value for this parameter.

Specifies the size, in bytes, of the buffer used to fetch rows. As a result, this
parameter determines the maximum number of rows in an array fetched by Export.
Use the following formula to calculate the buffer size:

buffer_size =rows_in_array * maximum_row_size

If you specify zero, the Export utility fetches only one row at a time.

Tables with columns of type LONGLOB BFILE , REF ROWIDLOGICAL ROWIDor
DATEare fetched one row at a time.

Note: The BUFFERparameter applies only to conventional path
Export. It has no effect on a direct path Export.

Example: Calculating Buffer Size
This section shows an example of how to calculate buffer size.

The following table is created:
CRAETE TABLE sample (name varchar(30), weight number);
The maximum size of the name column is 30, plus 2 bytes for the indicator. The

maximum size of the weight column is 22 (the size of the internal representation
for Oracle numbers), plus 2 bytes for the indicator.

Export 1-15

Export Parameters

COMPRESS

CONSISTENT

Therefore, the maximum row size is 56 (30+2+22+2).

To perform array operations for 100 rows, a buffer size of 5600 should be specified.

Default: y
Specifies how Export and Import manage the initial extent for table data.

The default, COMPRESS=ycauses Export to flag table data for consolidation into
one initial extent upon Import. If extent sizes are large (for example, because of the
PCTINCREASHEarameter), the allocated space will be larger than the space
required to hold the data.

If you specify COMPRESS=nExport uses the current storage parameters, including
the values of initial extent size and next extent size. The values of the parameters
may be the values specified in the CREATE TABLEor ALTER TABLE statements or
the values modified by the database system. For example, the NEXTextent size
value may be modified if the table grows and if the PCTINCREASEparameter is
nonzero.

Note: Although the actual consolidation is performed upon
import, you can specify the COMPRESBarameter only when you
export, not when you import. The Export utility, not the Import
utility, generates the data definitions, including the storage
parameter definitions. Therefore, if you specify COMPRESS=when
you export, you can import the data in consolidated form only.

Note: LOB data is not compressed. For LOB data, values of initial
extent size and next extent size at the time of export are used.

Default: y

Specifies whether or not Export uses the SET TRANSACTION READ ONLY
statement to ensure that the data seen by Export is consistent to a single point in
time and does not change during the execution of the exp command. You should
specify CONSISTENT=ywhen you anticipate that other applications will be
updating the target data after an export has started.

1-16 Oracle9i Database Utilities

Export Parameters

If you specify CONSISTENT=neach table is usually exported in a single
transaction. However, if a table contains nested tables, the outer table and each
inner table are exported as separate transactions. If a table is partitioned, each
partition is exported as a separate transaction.

Therefore, if nested tables and partitioned tables are being updated by other
applications, the data that is exported could be inconsistent. To minimize this
possibility, export those tables at a time when updates are not being done.

The following chart shows a sequence of events by two users: userl exports
partitions in a table and user2 updates data in that table.

Time

Sequence userl user2

1 Begins export of TAB:P1

2 Updates TAB:P2
Updates TAB:P1
Commits transaction

3 Ends export of TAB:P1

4 Exports TAB:P2

If the export uses CONSISTENT=y, none of the updates by user2 are written to the
export file.

If the export uses CONSISTENT=n, the updates to TAB:P1 are not written to the
export file. However, the updates to TAB:P2 are written to the export file because
the update transaction is committed before the export of TAB:P2 begins. As a result,
the user2 transaction is only partially recorded in the export file, making it
inconsistent.

If you use CONSISTENT=yand the volume of updates is large, the rollback segment
usage will be large. In addition, the export of each table will be slower because the
rollback segment must be scanned for uncommitted transactions.

Keep in mind the following points about using CONSISTENT=y:

« CONSISTENT=yis unsupported for exports that are performed when you are
connected as user SYSor you are using AS SYSDBA, or both.

« Export of certain metadata may require the use of the SYSschema within
recursive SQL. In such situations, the use of CONSISTENT=ywill be ignored.

Export 1-17

Export Parameters

CONSTRAINTS
Default: y

DIRECT

FEEDBACK

Oracle Corporation recommends that you avoid making metadata changes
during an export process in which CONSISTENT=yis selected.

To minimize the time and space required for such exports, you should export
tables that need to remain consistent separately from those that do not.

For example, export the empand dept tables together in a consistent export,
and then export the remainder of the database in a second pass.

A "snapshot too old" error occurs when rollback space is used up, and space
taken up by committed transactions is reused for new transactions. Reusing
space in the rollback segment allows database integrity to be preserved with
minimum space requirements, but it imposes a limit on the amount of time that
a read-consistent image can be preserved.

If a committed transaction has been overwritten and the information is needed
for a read-consistent view of the database, a "snapshot too old" error results.

To avoid this error, you should minimize the time taken by a read-consistent
export. (Do this by restricting the number of objects exported and, if possible,
by reducing the database transaction rate.) Also, make the rollback segment as
large as possible.

Specifies whether or not the Export utility exports table constraints.

Default: n
Specifies whether you use direct path or conventional path Export.

Specifying DIRECT=y causes Export to extract data by reading the data directly,
bypassing the SQL command-processing layer (evaluating buffer). This method can
be much faster than a conventional path Export.

For information about direct path Exports, including security and performance
considerations, see Invoking a Direct Path Export on page 1-49.

Default: 0 (zero)

1-18 Oracle9i Database Utilities

Export Parameters

FILE

FILESIZE

Specifies that Export should display a progress meter in the form of a period for n
number of rows exported. For example, if you specify FEEDBACK=10, Export
displays a period each time 10 rows are exported. The FEEDBACK/alue applies to
all tables being exported; it cannot be set on a per-table basis.

Default; expdat.dmp

Specifies the names of the export files. The default extension is .dmp, but you can
specify any extension. Because Export supports multiple export files (see the
parameter FILESIZE on page 1-19), you can specify multiple filenames to be used.

When Export reaches the value you have specified for the maximum FILESIZE,
Export stops writing to the current file, opens another export file with the next
name specified by the FILE parameter, and continues until complete or the
maximum value of FILESIZE is again reached. If you do not specify sufficient
export filenames to complete the export, Export will prompt you to provide
additional filenames.

Default: Data is written to one file until the maximum size, as specified in Table 1-2,
is reached.

Export supports writing to multiple export files, and Import can read from multiple
export files. If you specify a value (byte limit) for the FILESIZE parameter, Export
will write only the number of bytes you specify to each dump file.

When the amount of data Export must write exceeds the maximum value you
specified for FILESIZE, it will get the name of the next export file from the FILE
parameter (see FILE on page 1-19 for more information) or, if it has used all the
names specified in the FILE parameter, it will prompt you to provide a new export
filename. If you do not specify a value for FILESIZE (note that a value of 0 is
equivalent to not specifying FILESIZE), then Export will write to only one file,
regardless of the number of files specified in the FILE parameter.

Note: If the space requirements of your export file exceed the
available disk space, Export will abort, and you will have to repeat
the Export after making sufficient disk space available.

Export 1-19

Export Parameters

The FILESIZE parameter has a maximum value equal to the maximum value that
can be stored in 64 bits.

Table 1-2 shows that the maximum size for dump files depends on the operating
system you are using and on the version of the Oracle database server that you are
using.

Table 1-2 Maximum Slze for Dump Files

Operating System Version of Oracle Server Maximum Size
Any Priorto 8.1.5 2 gigabytes
32-bit 8.1.5 2 gigabytes
64-bit 8.1.5 and later Unlimited
32-bit with 32-bit files Any 2 gigabytes
32-bit with 64-bit files 8.1.6 and later Unlimited

Note: The maximum value that can be stored in a file is
dependent on your operating system. You should verify this
maximum value in your operating system-specific documentation
before specifying FILESIZE . You should also ensure that the file
size you specify for Export is supported on the system on which
Import will run.

The FILESIZE value can also be specified as a number followed by KB (number of
kilobytes). For example, FILESIZE=2KB is the same as FILESIZE=2048.

Similarly, MB specifies megabytes (1024 * 1024) and GB specifies gigabytes
(1024**3). B remains the shorthand for bytes; the number is not multiplied to obtain
the final file size (FILESIZE=2048B is the same as FILESIZE=2048).

FLASHBACK_SCN

Default: none

Specifies the system change number (SCN) that Export will use to enable flashback.
The export operation is performed with data consistent as of this specified SCN.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information about using flashback

1-20 Oracle9i Database Utilities

Export Parameters

FLASHBACK_TIME

FULL

GRANTS

HELP

INDEXES

LOG

Default: none

Specifies a time. Export finds the SCN that most closely matches the specified time.
This SCN is used to enable flashback. The export operation is performed with data
consistent as of this SCN.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information about using flashback

Default: n

Indicates that the Export is a full database mode Export (that is, it exports the entire
database). Specify FULL=y to export in full database mode. You need to have the
EXP_FULL_DATABASEKole to export in this mode.

Default: y

Specifies whether or not the Export utility exports object grants. The object grants
that are exported depend on whether you use full database mode or user mode. In
full database mode, all grants on a table are exported. In user mode, only those
granted by the owner of the table are exported. System privilege grants are always
exported.

Default: n

Displays a description of the Export parameters.

Default: y

Specifies whether or not the Export utility exports indexes.

Default: none

Export 1-21

Export Parameters

OWNER

PARFILE

QUERY

Specifies a filename to receive informational and error messages. For example:
exp SYSTEM/ password LOG=exportlog

If you specify this parameter, messages are logged in the log file and displayed to
the terminal display.

Default: none

Indicates that the Export is a user-mode Export and lists the users whose objects
will be exported. If the user initiating the export is the DBA, multiple users may be
listed.

Default: none

Specifies a filename for a file that contains a list of Export parameters. For more
information on using a parameter file, see Invoking Export on page 1-5.

Default: none

This parameter allows you to select a subset of rows from a set of tables when doing
a table mode export. The value of the query parameter is a string that contains a
WHEREIlause for a SQL SELECTstatement that will be applied to all tables (or table
partitions) listed in the TABLE parameter.

For example, if user scott wants to export only those employees whose job title is
salesman and whose salary is less than 1600, he could do the following (this
example is UNIX-based):

exp scottftiger TABLES=emp QUERY=\"WHERE job=\SALESMAN\ and sal\<1600\"

1-22 Oracle9/ Database Utilities

Export Parameters

Note: Because the value of the QUERYparameter contains blanks,
most operating systems require that the entire strings WHERE
job=\'salesman\' and sal\<1600 be placed in double
guotation marks or marked as a literal by some method. Operating
system reserved characters also need to be preceded by an escape
character. See your operating system-specific documentation for
information about special and reserved characters on your system.

When executing this query, Export builds a SQL SELECTstatement similar to the
following:

SELECT * FROM emp WHERE job="salesman’ and sal <1600;
The QUERYs applied to all tables (or table partitions) listed in the TABLE

parameter. For example, the following statement will unload rows in both empand
bonus that match the query:

exp scottftiger TABLES=emp,bonus QUERY=\"WHERE job=\'salesman\ and sal\<1600\"

Again, the SQL statements that Export executes are similar to the following:
SELECT * FROM emp WHERE job="salesman’ and sal <1600;

SELECT * FROM bonus WHERE job="salesman’ and sal <1600;

If a table is missing the columns specified in the QUERtlause, an error message
will be produced, and no rows will be exported for the offending table.

Restrictions
« The parameter QUERtannot be specified for full, user, or tablespace mode
exports.

« The parameter QUERYMust be applicable to all specified tables.
« The parameter QUERYtannot be specified in a direct path export (DIRECT=y)
« The parameter QUERYtannot be specified for tables with inner nested tables.

=« You cannot determine from the contents of the export file whether the data is
the result of a QUERexport.

Export 1-23

Export Parameters

RECORDLENGTH

RESUMABLE

Default: operating system-dependent

Specifies the length, in bytes, of the file record. The RECORDLENGTp&rameter is
necessary when you must transfer the export file to another operating system that
uses a different default value.

If you do not define this parameter, it defaults to your platform-dependent value for
buffer size. For more information about the buffer size default value, see your
operating system-specific documentation.

You can set RECORDLENGTH any value equal to or greater than your system’s
buffer size. (The highest value is 64 KB.) Changing the RECORDLENG Tp&rameter
affects only the size of data that accumulates before writing to the disk. It does not
affect the operating system file block size.

Note: You can use this parameter to specify the size of the Export
170 buffer.

See your Oracle operating system-specific documentation to determine the proper
value or to create a file with a different record size.

Default: n

The RESUMABLIparameter is used to enable and disable resumable space
allocation. Because this parameter is disabled by default, you must set
RESUMABLE=yn order to use its associated parameters, RESUMABLE_NAMad
RESUMABLE_TIMEOUT

See Also:
« Oracle9i Database Concepts

« Oracle9i Database Administrator’s Guide for more information
about resumable space allocation

RESUMABLE_NAME

Default; 'User USERNAME (USERID), Session SESSIONID, Instance
INSTANCEID’

1-24 Oracle9/ Database Utilities

Export Parameters

The value for this parameter identifies the statement that is resumable. This value is
a user-defined text string that is inserted in either the USER_RESUMABLd DBA _
RESUMABLRiew to help you identify a specific resumable statement that has been
suspended.

This parameter is ignored unless the RESUMABLIparameter is set to y to enable
resumable space allocation.

RESUMABLE_TIMEOUT

ROWS

STATISTICS

Default; 7200 seconds (2 hours)

The value of the parameter specifies the time period during which an error must be
fixed. If the error is not fixed within the timeout period, execution of the statement
is aborted.

This parameter is ignored unless the RESUMABLIparameter is set to y to enable
resumable space allocation.

Default: y

Specifies whether or not the rows of table data are exported.

Default: ESTIMATE

Specifies the type of database optimizer statistics to generate when the exported
data is imported. Options are ESTIMATE, COMPUTE and NONE. See the Import
parameter STATISTICS on page 2-27 and Importing Statistics on page 2-67.

In some cases, Export will place the precalculated statistics in the export file as well
as the ANALYZEstatements to regenerate the statistics.

However, the precalculated optimizer statistics will not be used at export time if a
table has columns with system-generated names.

The precalculated optimizer statistics are flagged as questionable at export time if:
« There are row errors while exporting

« The client character set or NCHARharacter set does not match the server
character set or NCHARharacter set

« A QUERYtlause is specified

Export 1-25

Export Parameters

« Only certain partitions or subpartitions are exported

Note: Specifying ROWS=mloes not preclude saving the
precalculated statistics in the Export file. This allows you to tune
plan generation for queries in a nonproduction database using
statistics from a production database.

See Also: Oracle9i Database Concepts

TABLES

Default: none

Specifies that the Export is a table-mode Export and lists the table names and
partition and subpartition names to export. You can specify the following when you
specify the name of the table:

« schemaname specifies the name of the user’s schema from which to export the
table or partition. The schema names ORDSYS, MDSYS, CTXSYSand
ORDPLUGINSre reserved by Export.

« tablename specifies the name of the table or tables to be exported. Table-level
export lets you export entire partitioned or nonpartitioned tables. If a table in
the list is partitioned and you do not specify a partition name, all its partitions
and subpartitions are exported.

The table name can contain any number of "%’ pattern matching characters,
which can each match zero or more characters in the table name against the
table objects in the database. All the tables in the relevant schema that match
the specified pattern are selected for export, as if the respective table names
were explicitly specified in the parameter.

= partition_name indicates that the export is a partition-level Export.
Partition-level Export lets you export one or more specified partitions or
subpartitions within a table.

The syntax you use to specify the preceding is in the form:

schemaname. tablename : partiion_name
schemaname. tablename : subpartiion_name

If you use tablename : partition_name , the specified table must be partitioned,
and partition_name must be the name of one of its partitions or subpartitions. If

1-26 Oracle9i Database Utilities

Export Parameters

the specified table is not partitioned, the partition_name is ignored and the
entire table is exported.

See Example Export Session Using Partition-Level Export on page 1-38 for several
examples of partition-level exports.

Note: Some operating systems, such as UNIX, require that you
use escape characters before special characters, such as a
parenthesis, so that the character is not treated as a special
character. On UNIX, use a backslash (\) as the escape character, as
shown in the following example:

TABLES=\(emp,dept)

Table Name Restrictions
The following restrictions apply to table names:

« By default, table names in a database are stored as uppercase. If you have a
table name in mixed-case or lowercase, and you want to preserve
case-sensitivity for the table name, you must enclose the name in quotation
marks. The name must exactly match the table name stored in the database.

Some operating systems require that quotation marks on the command line be
preceded by an escape character. The following are examples of how
case-sensitivity can be preserved in the different Export modes.

— In command-line mode:
TABLES=\'"Emp\"”

— Ininteractive mode:
Table(T) to be exported: "Emp"

— In parameter file mode:

TABLES="Emp"

« Table names specified on the command line cannot include a pound (#) sign,
unless the table name is enclosed in quotation marks. Similarly, in the
parameter file, if a table name includes a pound (#) sign, the Export utility
interprets the rest of the line as a comment, unless the table name is enclosed in
guotation marks.

Export 1-27

Export Parameters

For example, if the parameter file contains the following line, Export interprets
everything on the line after emp#as a comment and does not export the tables
dept and mydata:

TABLES=(emp#, dept, mydata)

However, given the following line, the Export utility exports all three tables
because emp#is enclosed in quotation marks:

TABLES=("emp#", dept, mydata)

Note: Some operating systems require single quotation marks
rather than double quotation marks, or the reverse; see your Oracle
operating system-specific documentation. Different operating
systems also have other restrictions on table naming.

For example, the UNIX C shell attaches a special meaning to a
dollar sign ($) or pound sign (#) (or certain other special
characters). You must use escape characters to get such characters
in the name past the shell and into Export.

For a TABLESparameter that specifies multiple
schema.tablename:(sub)partition_name arguments, Export attempts to
purge duplicates before processing the list of objects.

TABLESPACES

Default: none

The TABLESPACE$arameter specifies that all tables in the tablespace be exported
to the Export dump file. This includes all tables contained in the list of tablespaces
and all tables that have a partition located in the list of tablespaces. Indexes are
exported with their tables, regardless of where the index is stored.

You must have the EXP_FULL_DATABASEKole to use TABLESPACESo export all
tables in the tablespace.

When TABLESPACESs used in conjunction with TRANSPORT_TABLESPACE=y,
you can specify a limited list of tablespaces to be exported from the database to the
export file.

1-28 Oracle9i Database Utilities

Export Parameters

TRANSPORT_TABLESPACE

TRIGGERS

Default: n
When specified as y, this parameter enables the export of transportable tablespace
metadata.

See Also:

« Transportable Tablespaces on page 1-56

» Oracle9i Database Administrator’s Guide

« Oracle9i Database Concepts

Default: y

Specifies whether or not the Export utility exports triggers.

TTS_FULL_CHECK

Default: FALSE

When TTS_FULL_CHECKHKs set to TRUE, Export verifies that a recovery set (set of
tablespaces to be recovered) has no dependencies (specifically, IN pointers) on
objects outside the recovery set, and vice versa.

USERID (username/password)

Default: none

Specifies the username | password (and optional connect string) of the user
performing the export. If you omit the password, Export will prompt you for it.

USERIDcan also be:
usemame/jpassword AS SYSDBA

or
usemame/password@instance AS SYSDBA

If you connect as user SYS, you must also specify AS SYSDBAIn the connect
string. Your operating system may require you to treat AS SYSDBAas a special

Export 1-29

Example Export Sessions

string, in which case the entire string would be enclosed in quotation marks. See
Invoking Export As SYSDBA on page 1-7 for more information.

See Also:
« Oracle9i Heterogeneous Connectivity Administrator’s Guide

« Theuser’s guide for your Oracle Net protocol for information
about specifying the @connect_string for Oracle Net

VOLSIZE
Specifies the maximum number of bytes in an export file on each volume of tape.

The VOLSIZE parameter has a maximum value equal to the maximum value that
can be stored in 64 bits. See your operating system-specific documentation for more
information.

The VOLSIZE value can be specified as number followed by KB (number of
kilobytes). For example, VOLSIZE=2KB is the same as VOLSIZE=2048. Similarly,
MB specifies megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). B
remains the shorthand for bytes; the number is not multiplied to get the final file
size (VOLSIZE=2048B is the same as VOLSIZE=2048) .

Parameter Interactions

Certain parameters can conflict with each other. For example, because specifying
TABLEScan conflict with an OWNERpecification, the following command causes
Export to terminate with an error:

exp SYSTEM/password OWNER=jones TABLES=scottemp

Similarly, OWNERNd TABLESconflict with FULL=y.

Example Export Sessions
This section provides examples of the following types of Export sessions:
« Example Export Session in Full Database Mode
« Example Export Session in User Mode
« Example Export Sessions in Table Mode

« Example Export Session Using Partition-Level Export

1-30 Oracle9i Database Utilities

Example Export Sessions

In each example, you are shown how to use both the command-line method and the
parameter file method.

Example Export Session in Full Database Mode

Only users with the DBArole or the EXP_FULL_DATABASEole can export in full
database mode. In this example, an entire database is exported to the file dba.dmp
with all GRANT&nd all data.

Parameter File Method
>exp SYSTEM/ password PARFILE=params.dat

The params.dat file contains the following information:

FILE= dba.dmp
GRANTSy
FULL=y
ROWSz

Command-Line Method

>exp SYSTEM/ password FULL=y FILE=dba.dmp GRANTS=y ROWS=y

Export Messages
Export: Release 9.0.1.0.0 - Production on Mon Mar 19 19:01:59 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oraclei Enterprise Edition Release 9.0.1.0.0 - Production

With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export done in WESDEC character set and AL16UTF16 NCHAR character set

About to export the entire database ...

. exporting tablespace definitions

. exporting profiles

. exporting user definitions

. exporting roles

. exporting resource costs

. exporting rollback segment definiions
. exporting database links

Export 1-31

Example Export Sessions

. exporting sequence numbers

. exporting directory aliases

. exporting context namespaces

. exporting foreign function library names

. exporting object type definitions

. exporting system procedural objects and actions

. exporting pre-schema procedural objects and actions

. exporting cluster definiions

. about to export SYSTEM's tables via Conventional Path ...

.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table
.. exporting table

1-32 Oracle9i Database Utilities

AQ$ INTERNET _AGENTS
AQS$ INTERNET AGENT_PRIVS
DEF$ AQCALL
DEF$ AQERROR
DEF$ CALLDEST
DEF$ DEFAULTDEST
DEF$_DESTINATION
DEF$ ERROR
DEF$ LOB Orows exported
DEF$ ORIGIN Orows exported
DEF$ PROPAGATOR 0 rows exported
DEF$ PUSHED_TRANSACTIONS O rows exported
DEF$ TEMP$LOB 0 rows exported
LOGMNR_ATTRCOLS$ 0 rows exported
LOGMNR_ATTRIBUTE$ Orows exported
LOGMNR_CCOL$ 0 rows exported
LOGMNR_CDEF$ 0 rows exported
LOGMNR_COL$ Orows exported
LOGMNR_COLTYPE$ Orows exported
LOGMNR_DICTIONARY$ 0 rows exported
LOGMNR_DICTSTATE$ Orows exported
LOGMNR_HEADER1$ 0 rows exported
LOGMNR_HEADER2$ 0 rows exported
LOGMNR_ICOL$ Orowsexported
LOGMNR_IND$ Orows exported
LOGMNR _LOB$ Orows exported
LOGMNR LOG$ Orows exported
LOGMNR OBJ$ Orows exported
LOGMNR_PROCESSED LOG$ 0 rows exported
LOGMNR_SESSION$ Orows exported
LOGMNR_SPILL$ Orows exported
LOGMNR _TAB$ Orows exported
LOGMNR_TABCOMPART$ Orows exported
LOGMNR_TABPART$ 0 rows exported
LOGMNR_TABSUBPART$ 0 rows exported
LOGMNR TS$ Orows exported

0 rows exported
0 rows exported
0 rows exported
0 rows exported
0 rows exported
0 rows exported
0 rows exported
0 rows exported

Example Export Sessions

. . exporting table LOGMNR_TYPE$ O rows exported
. . exporting table LOGMNR _UID$ Orowsexported
.. exporting table LOGMNR_USER$ Orows exported

..exportingtable LOGSTDBY$APPLY_MILESTONE 0 rows exported
..exportingtable LOGSTDBY$APPLY_PROGRESS

.. exporting partition PO 0 rows exported

. . exporting table LOGSTDBY$EVENTS Orows exported
..exportingtable LOGSTDBY$EVENT_OPTIONS 0 rows exported
.. exporting table LOGSTDBY$PARAMETERS 0 rows exported

.. exporting table LOGSTDBY$PLSQL Orows exported
.. exporting table LOGSTDBY$SCN 0Orows exported
. . exporting table LOGSTDBY$SKIP 0rows exported

..exportingtable LOGSTDBY$SKIP_TRANSACTION 0 rows exported
..exportingtable SQLPLUS_PRODUCT_PROFILE 0 rows exported
. about to export OUTLN's tables via Conventional Path ...

.. exporting table OL$ Orowsexported
. . exporting table OL$HINTS Orows exported
. . exporting table OL$NODES Orows exported

. about to export DBSNMP's tables via Conventional Path ...
. about to export SCOTT's tables via Conventional Path ...

.. exporting table BONUS 0 rows exported

.. exporting table DEPT 4 rows exported

.. exporting table EMP 14 rows exported

.. exporting table SALGRADE 5rows exported

. about to export ADAMS's tables via Conventional Path ...
. about to export JONES's tables via Conventional Path ...
. about to export CLARK's tables via Conventional Path ...
. about to export BLAKE's tables via Conventional Path ...
.. exporting table DEPT 8rowsexported
.. exporting table MANAGER 4 rows exported
. exporting synonyms

. exporting views

. exporting referential integrity constraints

. exporting stored procedures

. exporting operators

. exporting indextypes

. exporting bitmap, functional and extensible indexes

. exporting posttables actions

. exporting triggers

. exporting materialized views

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children

. exporting dimensions

. exporting post-schema procedural objects and actions

Export 1-33

Example Export Sessions

.exporting user history table

. exporting default and system auditing options

. exporting statistics

Export terminated successfully without wamings.

Example Export Session in User Mode

User mode exports can be used to back up one or more database users. For
example, a DBA may want to back up the tables of deleted users for a period of
time. User mode is also appropriate for users who want to back up their own data
or who want to move objects from one owner to another. In this example, user
scott is exporting his own tables.

Parameter File Method
> exp scottftiger PARFILE=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
OWNER-=scott
GRANTS=y
ROWS=y
COMPRESS=y

Command-Line Method

> exp scottftiger FILE=scott.dmp OWNER=scott GRANTS=y ROWS=y COMPRESS=y

Export Messages
Export: Release 9.0.1.0.0 - Production on Mon Mar 19 19:02:54 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oraclei Enterprise Edition Release 9.0.1.0.0 - Production

With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export done in WESDEC character set and AL16UTF16 NCHAR character set
. exporting pre-schema procedural objects and actions

. exporting foreign function library names for user SCOTT

. exporting object type definitions for user SCOTT

About to export SCOTT's objects ...

1-34 Oracle9i Database Utilities

Example Export Sessions

. exporting database links

. exporting sequence numbers

. exporting cluster definiions

. about to export SCOTT's tables via Conventional Path ...

.. exporting table BONUS 0 rows exported
.. exporting table DEPT 4 rows exported
.. exporting table EMP 14 rows exported
.. exporting table SALGRADE 5 rows exported
. exporting synonyms

. exporting views

. exporting stored procedures

. exporting operators

. exporting referential integrity constraints

. exporting triggers

. exporting indextypes

. exporting bitmap, functional and extensible indexes

. exporting posttables actions

. exporting materialized views

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children

. exporting dimensions

. exporting post-schema procedural objects and actions

. exporting statistics

Export terminated successfully without warmings.

Example Export Sessions in Table Mode
In table mode, you can export table data or the table definitions. (If no rows are

exported, the CREATE TABLEtatement is placed in the export file, with grants and
indexes, if they are specified.)

A user with the EXP_FULL_DATABASEole can use table mode to export tables
from any user’s schema by specifying TABLES=schemaname.tablename.

If schemaname is not specified, Export defaults to the previous schemaname from
which an object was exported. If there is not a previous object, Export defaults to
the exporter’s schema. In the following example, Export defaults to the SYSTEM
schema for table a and to scott for table c:

>exp SYSTEM/ password TABLES=(g, scottb, c, mary.d)

A user with the EXP_FULL_DATABASEole can also export dependent objects that
are owned by other users. A nonprivileged user can export only dependent objects
for the specified tables that the user owns.

Export 1-35

Example Export Sessions

Exports in table mode do not include cluster definitions. As a result, the data is
exported as unclustered tables. Thus, you can use table mode to uncluster tables.

Example 1: DBA Exporting Tables for Two Users
In this example, a DBA exports specified tables for two users.

Parameter File Method
>exp SYSTEM/ password PARFILE=params.dat

The params.dat file contains the following information:
FILE=expdat.dmp

TABLES=(scott.emp,blake.dept)

GRANTS=y

INDEXES=y

Command-Line Method

>exp SYSTEM/ password FILE=expdat.dmp TABLES=(scott.emp,blake.dept) GRANTS=y-
INDEXES=y

Export Messages

Export: Release 9.0.1.0.0 - Production on Mon Mar 19 19:04:48 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oraclei Enterprise Edition Release 9.0.1.0.0 - Production

With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export done in WESDEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...

Current user changed to SCOTT
.. exporting table EMP 14 rows exported
Current user changed to BLAKE
.. exporting table DEPT 8 rows exported

Export terminated successfully without wamings.

Example 2: User Exports Tables That He Owns
In this example, user blake exports selected tables that he owns.

1-36 Oracle9i Database Utilities

Example Export Sessions

Parameter File Method
> exp blake/paper PARFILE=params.dat

The params.dat file contains the following information:

FILE=blake.dmp
TABLES=(dept,manager)
ROWS=y
COMPRESS=y

Command-Line Method

> exp blake/paper FILE=blake.dmp TABLES=(dept, manager) ROWS=y COMPRESS=y

Export Messages
Export: Release 9.0.1.0.0 - Production on Mon Mar 19 19:05:32 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production

With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export done in WESDEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...

.. exporting table DEPT 8rowsexported

.. exporting table MANAGER 4 rows exported
Export terminated successfully without warmings.

Example 3: Using Pattern Matching to Export Various Tables

In this example, pattern matching is used to export various tables for users scott
and blake .

Parameter File Method
>exp SYSTEM/ password PARFILE=params.dat

The params.dat file contains the following information:

FILE=misc.dmp
TABLES=(scott.%PY%,blake %,5cott %S%)

Export

1-37

Example Export Sessions

Command-Line Method
>exp SYSTEM/ password FILE=misc.dmp TABLES=(scott.%P%,blake.%,scott.%S%)

Export Messages

Export: Release 9.0.1.0.0 - Production on Fri Mar 30 14:36:42 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oracle8i Enterprise Edition Release 8.2.0.0.0 - Production
With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export done in WESDEC character set and WESDEC NCHAR character set

About to export specified tables via Conventional Path ...

Current user changed to SCOTT

.. exporting table DEPT 4 rows exported

.. exporting table EMP 14 rows exported
Current user changed to BLAKE

.. exporting table DEPT 8rowsexported

.. exporting table MANAGER 4 rows exported
Current user changed to SCOTT

.. exporting table BONUS 0 rows exported

.. exporting table SALGRADE 5 rows exported

Export terminated successfully without wamings.

Example Export Session Using Partition-Level Export

In partition-level export, you can specify the partitions and subpartitions of a table
that you want to export.

Example 1: Exporting a Table Without Specifying a Partition
Assume empis a table that is partitioned on employee name. There are two

partitions, mand z. As this example shows, if you export the table without
specifying a partition, all of the partitions are exported.
Parameter File Method

> exp scotttiger PARFILE=params.dat

The params.dat file contains the following:

1-38 Oracle9i Database Utilities

Example Export Sessions

TABLES=(emp)
ROWS=y

Command-Line Method

> exp scotttiger TABLES=emp rows=y

Export Messages

Export: Release 9.0.1.0.0 - Production on Mon Mar 19 19:06:59 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production

With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export done in WESDEC character setand AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...

.. exporting table EMP
.. exporting partiion M 8 rows exported
.. exporting partition z 6 rows exported

Export terminated successfully without wamings.

Example 2: Exporting a Table with a Specified Partition

Assume empis a table that is partitioned on employee name. There are two
partitions, mand z. As this example shows, if you export the table and specify a
partition, only the specified partition is exported.

Parameter File Method
> exp scotttiger PARFILE=params.dat

The params.dat file contains the following:

TABLES=(emp:m)
ROWS=y

Command-Line Method

> exp scotttiger TABLES=emp:m rows=y

Export 1-39

Example Export Sessions

Export Messages
Export: Release 9.0.1.0.0 - Production on Mon Mar 19 19:09:55 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oraclei Enterprise Edition Release 9.0.1.0.0 - Production

With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export done in WESDEC character setand AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...
.. exporting table EMP

.. exporting partition M 8 rows exported
Export terminated successfully without wamings.

Example 3: Exporting a Composite Partition

Assume empis a partitioned table with two partitions, mand z. Table empis
partitioned using the composite method. Partition mhas subpartitions sp1l and
sp2, and partition z has subpartitions sp3 and sp4. As the example shows, if you
export the composite partition m, all its subpartitions (sp1 and sp2) will be
exported. If you export the table and specify a subpartition (sp4), only the specified
subpartition is exported.

Parameter File Method

> exp scotttiger PARFILE=params.dat

The params.dat file contains the following:

TABLES=(emp:m,emp:sp4)
ROWS=y

Command-Line Method
> exp scotiftiger TABLES=(emp:m, emp:sp4) ROWS=y

Export Messages
Export: Release 9.0.1.0.0 - Production on Mon Mar 19 19:10:45 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

1-40 Oracle9i Database Utilities

Using the Interactive Method

Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production

With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export done in WEBDEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...

.. exporting table EMP
.. exporting composite partition M
.. exporting subpartition SP1 1 rows exported
.. exporting subpartition SP2 3 rows exported
.. exporting composite partition Z

. . exporting subpartition SP4 1 rows exported

Export terminated successfully without wamings.

Using the Interactive Method

Starting Export from the command line with no parameters initiates the interactive
method. The command-line interactive method does not provide prompts for all
Export functionality and is provided only for backward compatibility. If you want
to use an interactive interface to the Export utility, it is recommended that you use
the Oracle Enterprise Manager (OEM) Export Wizard.

If you do not specify a username /password combination on the command line,
the Export utility prompts you for this information.

When you invoke Export interactively, the response given by Export depends on
what you enter at the command line. The following table shows the possibilities:

You enter... Export’s Response

exp Starts an Export session
username /password @nstance

as sysdba

exp usemame | password @nstance
exp usemame | password as sysdba
exp usemame | password

exp usemame @nstance assysdba
exp usemame @nstance

exp usemame

exp usemame as sysdba

Starts an Export session
Starts an Export session
Starts an Export session
Prompts for password
Prompts for password
Prompts for password

Prompts for password

Export 1-41

Using the Interactive Method

You enter... Export’s Response

exp/as sysdba No prompt for password, operating system
authentication is used

exp/ No prompt for password, operating system
authentication is used

exp/@ instance assysdba No prompt for password, operating system
authentication is used

exp/@ instance No prompt for password, operating system
authentication is used

In Export interactive mode, you are not prompted to specify whether you want to
connect as SYSDBAor @nstance . You must specify AS SYSDBAand/or
@nstance with the username.

Additionally, if you omit the password and allow Export to prompt you for it, you
cannot specify the @nstance string as well. You can specify @nstance only
with username.

Before you invoke Export using AS SYSDBAbe sure to read Invoking Export As
SYSDBA on page 1-7 for information about correct command-line syntax.

After Export is invoked, it displays the following prompts. You may not see all
prompts in a given Export session because some prompts depend on your
responses to other prompts. Some prompts show a default answer. If the default is
acceptable, press Enter.

Export: Release 9.0.1.0.0 - Production on Mon Mar 19 19:12:23 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production

With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Enter array fetch buffer size: 4096 >

Export file: expdat.dmp >

(DE(ntire database), (2)U(sers), or (3)T(ables): (2QU >

Export grants (yes/no): yes >

Export table data (yes/no): yes >

Compress extents (yes/no): yes >

Export done in WESDEC character set and AL16UTF16 NCHAR character set

About to export the entire database ...

1-42 Oracle9/ Database Utilities

Using the Interactive Method

. exporting tablespace definitions

.exporting profiles

. exporting user definitions

. exporting roles

. exporting resource costs

. exporting rollback segment definiions

. exporting database links

. exporting sequence numbers

. exporting directory aliases

. exporting context namespaces

. exporting foreign function library names

. exporting object type definitions

. exporting system procedural objects and actions

. exporting pre-schema procedural objects and actions

. exporting cluster definiions

. about to export SYSTEM's tables via Conventional Path ...

.. exporting table AQ$ _INTERNET_AGENTS 0 rows exported
..exportingtable AQ$_INTERNET_AGENT_PRIVS 0 rows exported

. . exporting table DEF$ AQCALL Orows exported

. . exporting table DEF$ AQERROR Orows exported

.. exporting table DEF$ CALLDEST Orows exported

.. exporting table DEF$ DEFAULTDEST Orows exported
.. exporting table DEF$_DESTINATION 0 rows exported

.. exporting table DEF$ ERROR 0 rows exported

. . exporting table DEF$ LOB Orows exported

. . exporting table DEF$ ORIGIN Orows exported

.. exporting table DEF$_PROPAGATOR 0 rows exported
..exportingtable DEF$_PUSHED_TRANSACTIONS 0 rows exported
.. exporting table DEF$ TEMP$LOB Orows exported

. . exporting table LOGMNR_ATTRCOL$ Orows exported

. . exporting table LOGMNR_ATTRIBUTE$ Orows exported
. . exporting table LOGMNR_CCOL$ Orows exported

.. exporting table LOGMNR_CDEF$ Orows exported

.. exporting table LOGMNR_COL$ Orows exported

.. exporting table LOGMNR_COLTYPE$ O rows exported

.. exporting table LOGMNR_DICTIONARY$ O rows exported
. . exporting table LOGMNR_DICTSTATE$ Orows exported

. . exporting table LOGMNR_HEADER1$ Orows exported
.. exporting table LOGMNR_HEADER2$ 0 rows exported
.. exporting table LOGMNR_ICOL$ Orowsexported

.. exporting table LOGMNR_IND$ Orows exported

.. exporting table LOGMNR_LOB$ 0Orows exported

. . exporting table LOGMNR_LOG$ Orows exported

. . exporting table LOGMNR_OBJ$ Orowsexported

.. exporting table LOGMNR_PROCESSED_LOG$ Orows exported

Export 1-43

Using the Interactive Method

. . exporting table LOGMNR_SESSION$ Orows exported

. . exporting table LOGMNR_SPILL$ Orows exported

. . exporting table LOGMNR_TAB$ Orows exported

.. exporting table LOGMNR_TABCOMPART$ Orows exported
.. exporting table LOGMNR_TABPART$ Orows exported

. . exporting table LOGMNR_TABSUBPART$ 0 rows exported
. . exporting table LOGMNR_TS$ Orows exported

. . exporting table LOGMNR_TYPE$ Orows exported

. . exporting table LOGMNR _UID$ Orowsexported

.. exporting table LOGMNR_USER$ Orows exported

..exportingtable LOGSTDBY$APPLY_MILESTONE 0 rows exported
..exportingtable LOGSTDBY$APPLY_PROGRESS

.. exporting partition PO 0 rows exported

. . exporting table LOGSTDBY$EVENTS Orows exported
..expotingtable LOGSTDBY$EVENT_OPTIONS O rows exported
.. exporting table LOGSTDBY$PARAMETERS 0 rows exported

.. exporting table LOGSTDBY$PLSQL Orows exported
.. exporting table LOGSTDBY$SCN 0 rows exported
. . exporting table LOGSTDBY$SKIP 0rows exported

..exportingtable LOGSTDBY$SKIP_TRANSACTION 0 rows exported
..exportingtable SQLPLUS PRODUCT_PROFILE 0 rows exported
. about to export OUTLN's tables via Conventional Path ...

. . exporting table OL$ Orowsexported
.. exporting table OL$HINTS Orows exported
. . exporting table OL$NODES Orows exported

. about to export DBSNMP's tables via Conventional Path ...
. about to export SCOTT's tables via Conventional Path ...

.. exporting table BONUS 0 rows exported

.. exporting table DEPT 4rowsexported

.. exporting table EMP 14 rows exported

.. exporting table SALGRADE 5 rows exported

. about to export ADAMS's tables via Conventional Path ...

. about to export JONES's tables via Conventional Path ...

. about to export CLARK's tables via Conventional Path ...

. about to export BLAKE's tables via Conventional Path ...

.. exporting table DEPT 8rowsexported
.. exporting table MANAGER 4 rows exported
. exporﬂ:ng synonyms

. exporting views

. exporting referential integrity constraints

. exporting stored procedures

. exporting operators

. exporting indextypes

. exporting bitmap, functional and extensible indexes

. exporting posttables actions

1-44 Oracle9/ Database Utilities

Warning, Error, and Completion Messages

Restrictions

. exporting triggers

. exporting materialized views

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children

. exporting dimensions

. exporting post-schema procedural objects and actions
. exporting user history table

. exporting default and system auditing options

. exporting statistics

Export terminated successfully without wamings.

Keep in mind the following points when you use the interactive method:

« Inuser mode, Export prompts for all usernames to be included in the export
before exporting any data. To indicate the end of the user list and begin the
current Export session, press Enter.

« Intable mode, if you do not specify a schema prefix, Export defaults to the
exporter’s schema or the schema containing the last table exported in the
current session.

For example, if beth is a privileged user exporting in table mode, Export
assumes that all tables are in the beth schema until another schema is
specified. Only a privileged user (someone with the EXP_FULL_DATABASE
role) can export tables in another user’s schema.

« If you specify a null table list to the prompt "Table to be exported,” the Export
utility exits.

Warning, Error, and Completion Messages

Log File

This section describes the different types of messages issued by Export and how to
save them in a log file.

You can capture all Export messages in a log file, either by using the LOGparameter
(see LOG on page 1-21) or, for those systems that permit it, by redirecting Export’s
output to a file. The Export utility writes a log of detailed information about
successful unloads and any errors that may occur. Refer to the operating
system-specific Oracle documentation for information on redirecting output.

Export 1-45

Exit Codes for Inspection and Display

Warning Messages

Export does not terminate after recoverable errors. For example, if an error occurs
while exporting a table, Export displays (or logs) an error message, skips to the next
table, and continues processing. These recoverable errors are known as warnings.

Export also issues a warning whenever it encounters an invalid object.

For example, if a nonexistent table is specified as part of a table-mode export, the
Export utility exports all other tables. Then it issues a warning and terminates
successfully.

Nonrecoverable Error Messages

Some errors are nonrecoverable and terminate the Export session. These errors
typically occur because of an internal problem or because a resource, such as
memory, is not available or has been exhausted. For example, if the catexp.sql
script is not executed, Export issues the following nonrecoverable error message:

EXP-00024: Export views not installed, please notify your DBA

Completion Messages
When an export completes without errors, Export displays the following message:
Export terminated successfully without warnings
If one or more recoverable errors occurs but Export is able to continue to
completion, Export displays the following message:
Export terminated successfully with wamings
If a nonrecoverable error occurs, Export terminates immediately and displays the
following message:
Export terminated unsuccessfully

See Also: Oracle9i Database Error Messages and your operating
system-specific documentation

Exit Codes for Inspection and Display

Export provides the results of an export operation immediately upon completion.
Depending on the platform, Export may report the outcome in a process exit code
as well as recording the results in the log file. This enables you to check the outcome

1-46 Oracle9i Database Utilities

Conventional Path Export Versus Direct Path Export

from the command line or script. The following results return the indicated exit

codes:

Result Exit Code
Export terminated successfully without warnings EX_SUCC
Export terminated successfully with warnings EX_OKWARN
Export terminated unsuccessfully EX_FAIL

For UNIX, the exit codes are as follows:

EX_SUCC 0
EX_OKWARNO
EX FAL 1

Conventional Path Export Versus Direct Path Export
Export provides two methods for exporting table data:
« Conventional path Export
« Direct path Export

Conventional path Export uses the SQL SELECT statement to extract data from
tables. Data is read from disk into a buffer cache, and rows are transferred to the
evaluating buffer. The data, after passing expression evaluation, is transferred to the
Export client, which then writes the data into the export file.

Direct path Export is much faster than conventional path Export because data is
read from disk into the buffer cache and rows are transferred directly to the Export
client. The evaluating buffer is bypassed. The data is already in the format that
Export expects, thus avoiding unnecessary data conversion. The data is transferred
to the Export client, which then writes the data into the export file.

Figure 1-2 on page 1-48 illustrates how data extraction differs between conventional
path Export and direct path Export.

Export 1-47

Conventional Path Export Versus Direct Path Export

Figure 1-2 Database Reads on Conventional Path and Direct Path

Conventional Path

Generate SQL

Direct Path

Generate SQL

Dump File Commands Dump File Commands
1 1
| 4 |
Export Export
Oracle Server v Oracle Server v
Evaluating SQL Command Evaluating SQL Command
Buffer Processing Buffer Processing
* v v
|
Private Private
Buffer Buffer
or Buffer Cache or - Buffer Cache
Buffer Management Buffer Management
Cache Cache
X v X v
Read Read
Database Database
Blocks Blocks
v v
Database | Database |

1-48 Oracle9i Database Utilities

Invoking a Direct Path Export

Invoking a Direct Path Export

To invoke a direct path Export, you must use either the command-line method or a
parameter file. You cannot invoke a direct path Export using the interactive method.

To use direct path Export, specify the DIRECT=y parameter on the command line or
in the parameter file. The default is DIRECT=n, which extracts the table data using
the conventional path.

Additionally, be aware that the Export parameter BUFFERapplies only to
conventional path Exports. For direct path Export, use the RECORDLENGTH
parameter to specify the size of the buffer that Export uses for writing to the export
file.

In versions of Export prior to 8.1.5, you could not use direct path Export for tables
containing objects and LOBs. If you tried to, their rows were not exported. This
behavior has changed. Rows in tables that contain objects and LOBs will now be
exported using conventional path, even if direct path was specified. Import will
correctly handle these conventional path tables within direct path dump files.

Security Considerations for Direct Path Exports

Virtual Private Database (VPD) and Oracle Label Security are not enforced during
direct path Exports.

The following users are exempt from Virtual Private Database and Oracle Label
Security enforcement regardless of the export mode, application, or utility used to
extract data from the database:

« The database user SYS

« Database users granted the Oracle9i EXEMPT ACCESS POLIQXfivilege, either
directly or through a database role

This means that any user who is granted the EXEMPT ACCESS POLIQxfivilege is
completely exempt from enforcement of VPD and Oracle Label Security. This is a
powerful privilege and should be carefully managed. This privilege does not affect
the enforcement of traditional object privileges such as SELECT INSERT, UPDATE
and DELETE These privileges are enforced even if a user has been granted the
EXEMPT ACCESS POLIQXfivilege.

See Also:
« Support for Fine-Grained Access Control on page 1-56

« Oracle9i Application Developer’s Guide - Fundamentals

Export 1-49

Network Considerations

Performance Issues for Direct Path Exports

You may be able to improve performance by increasing the value of the
RECORDLENGTparameter when you invoke a direct path Export. Your exact
performance gain depends upon the following factors:

« DB_BLOCK_SIZE
« The types of columns in your table

=« Your I/0 layout (The drive receiving the export file should be separate from the
disk drive where the database files reside.)

The following values are generally recommended for RECORDLENGTH:
« Multiples of the file system 1/0 block size
= Multiples of DB_BLOCK_SIZE

Network Considerations

This section describes factors to take into account when you use Export and Import
across a network.

Transporting Export Files Across a Network

Because the export file is in binary format, use a protocol that supports binary
transfers to prevent corruption of the file when you transfer it across a network. For
example, use FTP or a similar file transfer protocol to transmit the file in binary
mode. Transmitting export files in character mode causes errors when the file is
imported.

Exporting and Importing with Oracle Net

With Oracle Net, you can perform exports and imports over a network. For
example, if you run Export locally, you can write data from a remote Oracle
database into a local export file. If you run Import locally, you can read data into a
remote Oracle database.

To use Import with Oracle Net, include the connection qualifier string @connect
string when entering the username | password in the exp or imp command. For
the exact syntax of this clause, see the user’s guide for your Oracle Net protocol.

1-50 Oracle9i Database Utilities

Character Set and Globalization Support Considerations

See Also:
. Oracle Net Services Administrator’s Guide

« Oracle9i Heterogeneous Connectivity Administrator’s Guide

Character Set and Globalization Support Considerations

This section describes the behavior of Export and Import with respect to
globalization support.

Character Set Conversion

The Export utility always exports user data, including Unicode data, in the
character sets of the Export server. The character sets are specified at database
creation.

The Import utility automatically converts the data to the character sets of the Import
server.

Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when you
import an 8-bit character set export file. This occurs if the client system has a native
7-bit character set or if the NLS_LANGoperating system environment variable is set
to a 7-bit character set. Most often, you notice that accented characters lose their
accent mark.

Both Export and Import provide descriptions of any required character set
conversion before exporting or importing the data.

Note: Data definition language (DDL), such as a CREATE TABLE
command, is exported in the client character set.

Effect of Character Set Sorting Order on Conversions

If the export character set has a different sorting order than the import character set,
then tables that are partitioned on character columns may yield unpredictable
results. For example, consider the following table definition, which is produced on a
database having an ASCII character set:

create table partlist

(
part varchar2(10),

parno number(2)

Export 1-51

Instance Affinity and Export

)
pz’miﬁon by range (part)
partition part_low values less than (Z)
tablespaceths 1,
partition part_mid values less than (Z)
tablespace ths_2,
partition part_high values less than (MAXVALUE)
tablespaceths 3
)

This partitioning scheme makes sense because z comes after Z in ASCII character
sets.

When this table is imported into a database based upon an EBCDIC character set,
all of the rows in the part_mid partition will migrate to the part_low partition
because z comes before Z in EBCDIC character sets. To obtain the desired results,
the owner of partlist must repartition the table following the import.

See Also: Oracle9i Globalization Support Guide

Multibyte Character Sets and Export and Import

An export file that is produced with a multibyte character set (for example, Chinese
or Japanese) must be imported on a system that has the same character set or where
the ratio of the width of the widest character in the import character set to the width
of the smallest character in the export character set is 1. If the ratio is not 1, Import
cannot translate the character data to the import character set.

Caution: When the character set width differs between the export
client and the export server, truncation of data can occur if
conversion causes expansion of data. If truncation occurs, Export
displays a warning message.

Instance Affinity and Export

You can use instance affinity to associate jobs with instances in databases you plan
to import/export. Be aware that there may be some compatibility issues if you are
using a combination of releases 8.0, 8.1, and 9i.

1-52 Oracle9i Database Utilities

Considerations When Exporting Database Objects

See Also:
« Oracle9i Database Administrator’s Guide
« Oracle9i Database Reference

« Oracle9i Database Migration

Considerations When Exporting Database Objects

The following sections describe points you should consider when you export
particular database objects.

Exporting Sequences

If transactions continue to access sequence numbers during an export, sequence
numbers can be skipped. The best way to ensure that sequence numbers are not
skipped is to ensure that the sequences are not accessed during the export.

Sequence numbers can be skipped only when cached sequence numbers are in use.
When a cache of sequence numbers has been allocated, they are available for use in
the current database. The exported value is the next sequence number (after the
cached values). Sequence numbers that are cached, but unused, are lost when the
sequence is imported.

Exporting LONG and LOB Datatypes

On export, LONGdatatypes are fetched in sections. However, enough memory must
be available to hold all of the contents of each row, including the LONGdata.

LONGcolumns can be up to 2 gigabytes in length.

All data in a LOBcolumn does not need to be held in memory at the same time.
LOB data is loaded and unloaded in sections.

Exporting Foreign Function Libraries

The contents of foreign function libraries are not included in the export file. Instead,
only the library specification (name, location) is included in full database and user
mode export. You must move the library’s executables and update the library
specification if the database is moved to a new location.

Export 1-53

Considerations When Exporting Database Objects

Exporting Offline Bitmapped Tablespaces

If the data you are exporting contains offline bitmapped tablespaces, Export will not
be able to export the complete tablespace definition and will display an error
message. You can still import the data; however, you must first create the offline
bitmapped tablespaces before importing to prevent DDL commands that may
reference the missing tablespaces from failing.

Exporting Directory Aliases

Directory alias definitions are included only in a full database mode Export. To
move a database to a new location, the database administrator must update the
directory aliases to point to the new location.

Directory aliases are not included in user or table mode Export. Therefore, you must
ensure that the directory alias has been created on the target system before the
directory alias is used.

Exporting BFILE Columns and Attributes

The export file does not hold the contents of external files referenced by BFILE
columns or attributes. Instead, only the names and directory aliases for files are
copied on Export and restored on Import. If you move the database to a location
where the old directories cannot be used to access the included files, the database
administrator (DBA) must move the directories containing the specified files to a
new location where they can be accessed.

External Tables

The contents of external tables are not included in the export file. Instead, only the
table specification (name, location) is included in full database and user mode
export. You must manually move the external data and update the table
specification if the database is moved to a new location.

Exporting Object Type Definitions

In all Export modes, the Export utility includes information about object type
definitions used by the tables being exported. The information, including object
name, object identifier, and object geometry, is needed to verify that the object type
on the target system is consistent with the object instances contained in the export
file. This ensures that the object types needed by a table are created with the same
object identifier at import time.

1-54 Oracle9i Database Utilities

Considerations When Exporting Database Objects

Note, however, that in table, user, and tablespace mode, the export file does not
include a full object type definition needed by a table if the user running Export
does not have execute access to the object type. In this case, only enough
information is written to verify that the type exists, with the same object identifier
and the same geometry, on the import target system.

The user must ensure that the proper type definitions exist on the target system,
either by working with the DBA to create them, or by importing them from full
database or user mode exports performed by the DBA.

It is important to perform a full database mode export regularly to preserve all
object type definitions. Alternatively, if object type definitions from different
schemas are used, the DBA should perform a user mode export of the appropriate
set of users. For example, if tablel belonging to user scott contains a column on
blake ’stypetypel, the DBA should perform a user mode export of both blake
and scott to preserve the type definitions needed by the table.

Exporting Nested Tables

Inner nested table data is exported whenever the outer containing table is exported.
Although inner nested tables can be named, they cannot be exported individually.

Exporting Advanced Queue (AQ) Tables

Queues are implemented on tables. The export and import of queues constitutes the
export and import of the underlying queue tables and related dictionary tables. You
can export and import queues only at queue table granularity.

When you export a queue table, both the table definition information and queue
data are exported. Because the queue table data is exported as well as the table
definition, the user is responsible for maintaining application-level data integrity
when queue table data is imported.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing

Exporting Synonyms
You should be cautious when exporting compiled objects that reference a name

used as a synonym and as another object. Exporting and importing these objects
will force a recompilation that could result in changes to the object definitions.

The following example helps to illustrate this problem:

Export 1-55

Transportable Tablespaces

CREATE PUBLIC SYNONYM emp FOR scott.emp;

CONNECT blakefpaper;
CREATE TRIGGERt emp BEFORE INSERT ON emp BEGIN NULL; END;,
CREATE VIEW emp AS SELECT * FROM dual;

If the database in the preceding example were exported, the reference to empin the
trigger would refer to blake ’s view rather than to scott ’s table. This would cause
an error when Import tried to reestablish thet_emp trigger.

Support for Fine-Grained Access Control

You can export tables with fine-grained access control policies enabled. When doing
so, consider the following:

« The user who imports from an export file containing such tables must have the
appropriate privileges (specifically, the EXECUTHBorivilege on the DBMS_RLS
package so that the tables’ security policies can be reinstated). If a user without
the correct privileges attempts to export a table with fine-grained access policies
enabled, only those rows that the exporter is privileged to read will be
exported.

« If fine-grained access control is enabled on a SELECTstatement, then
conventional path Export may not export the entire table because fine-grained
access may rewrite the query.

« Only user SYS, or a user with the EXPORT_FULL_DATABASIKble enabled or
who has been granted EXEMPT ACCESS POLICYcan perform direct path
Exports on tables having fine-grained access control.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information about fine-grained access control

Transportable Tablespaces

The transportable tablespace feature enables you to move a set of tablespaces from
one Oracle database to another.

To move or copy a set of tablespaces, you must make the tablespaces read-only;,
copy the datafiles of these tablespaces, and use Export/Import to move the
database information (metadata) stored in the data dictionary. Both the datafiles
and the metadata export file must be copied to the target database. The transport of
these files can be done using any facility for copying binary files, such as the
operating system copying facility, binary-mode FTP, or publishing on CD-ROM:s.

1-56 Oracle9i Database Utilities

Using Export and Import to Partition a Database Migration

After copying the datafiles and exporting the metadata, you can optionally put the
tablespaces in read/write mode.

Export provides the following parameters to enable export of transportable
tablespace metadata.

« TABLESPACES
« TRANSPORT_TABLESPACE
See TABLESPACES on page 1-28 and TRANSPORT_TABLESPACE on page 1-29 for
more information.
See Also:

« Oracle9i Database Administrator’s Guide for details about
managing transportable tablespaces

« Oracle9i Database Concepts for an introduction to the
transportable tablespaces feature

Exporting from a Read-Only Database

To extract metadata from a source database, Export uses queries that contain
ordering clauses (sort operations). For these queries to succeed, the user performing
the export must be able to allocate on-disk sort segments. For these sort segments to
be allocated in a read-only database, the user’s temporary tablespace should be set
to point at a temporary, locally managed tablespace.

See Also: Oracle9i Data Guard Concepts and Administration for
more information on setting up this environment

Using Export and Import to Partition a Database Migration

When you use the Export and Import utilities to migrate a large database, it may be
more efficient to partition the migration into multiple export and import jobs. If you
decide to partition the migration, be aware of the following advantages and
disadvantages.

Advantages of Partitioning a Migration
Partitioning a migration has the following advantages:

« Time required for the migration may be reduced because many of the subjobs
can be run in parallel.

Export 1-57

Using Different Versions of Export

« The import can start as soon as the first export subjob completes, rather than
waiting for the entire export to complete.

Disadvantages of Partitioning a Migration
Partitioning a migration has the following disadvantages:
« The export and import processes become more complex.

« Support of cross-schema references for certain types of objects may be
compromised. For example, if a schema contains a table with a foreign key
constraint against a table in a different schema, you may not have the required
parent records when you import the table into the dependent schema.

How to Use Export and Import to Partition a Database Migration
To perform a database migration in a partitioned manner, take the following steps:
1. For all top-level metadata in the database, issue the following commands:

a. exp dba/password FILE=full FULL=y CONSTRAINTS=n
TRIGGERS=n ROWS=n INDEXES=n

b. imp dba/password FILE=full FULL=y
2. For each scheman in the database, issue the following commands:
a. exp dba/password OWNER=schema n FILE=schema n

b. imp dba/password FILE=scheman FROMUSER=schema n
TOUSER=schema IGNORE=y

All exports can be done in parallel. When the import of full .dmpcompletes, all
remaining imports can also be done in parallel.

Using Different Versions of Export

This section describes the general behavior and restrictions of running an Export
version that is different from Oracle9i.

Using a Previous Version of Export

In general, you can use the Export utility from any Oracle8 release to export from an
Oracle9i server and create an Oracle8 export file. See Creating Oracle Release 8.0
Export Files from an Oracle9i Database on page 1-59.

1-58 Oracle9i Database Utilities

Creating Oracle Release 8.0 Export Files from an Oracle9i Database

Oracle Version 6 (or earlier) Export cannot be used against an Oracle9i database.

Whenever a lower version Export utility runs with a higher version of the Oracle
database server, categories of database objects that did not exist in the lower version
are excluded from the export.

Note: Export files generated by Oracle9i Export, either direct path
or conventional path, are incompatible with earlier releases of
Import and can be imported only with Oracle9i Import.

When backward compatibility is an issue, use the earlier release or
version of the Export utility against the Oracle9i database.

Using a Higher Version of Export

Attempting to use a higher version of Export with an earlier Oracle database server
often produces the following error:

EXP-37: Database export views not compatible with Export utility
EXP-0: Export terminated unsuccessfully

The error occurs because views that the higher version of Export expects are not
present. To avoid this problem, use a version of the Export utility that is equal to or
earlier than the Oracle database server.

Creating Oracle Release 8.0 Export Files from an Oracle9 i Database

You do not need to take any special steps to create an Oracle release 8.0 export file
from an Oracle9i database. However, the following features are not supported when
you use Export release 8.0 on an Oracle9i database:

« Export does not export rows from tables containing objects and LOBs when you
have specified a direct path load (DIRECT=y).

« Export does not export dimensions.
« Functional and domain indexes are not exported.

« Secondary objects (tables, indexes, sequences, and so on, created in support of a
domain index) are not exported.

« Views, procedures, functions, packages, type bodies, and types containing
references to new Oracle9i features may not compile.

Export 1-59

Creating Oracle Release 8.0 Export Files from an Oracle9i Database

« Objects whose DDL is implemented as a stored procedure rather than SQL are
not exported.

« Triggers whose action is a CALL statement are not exported.

« Tables containing logical ROWIDcolumns, primary key refs, or user-defined OID
columns will not be exported.

« Temporary tables are not exported.

« Index-organized tables (I0Ts) revert to an uncompressed state.

« Partitioned 10Ts lose their partitioning information.

« Index types and operators are not exported.

« Bitmapped, temporary, and UNDO tablespaces are not exported.
« Javasources, classes, and resources are not exported.

« Varying-width CLOB, collection enhancements, and LOB-storage clauses for
VARRAYtolumns or nested table enhancements are not exported.

« Fine-grained access control policies are not preserved.

« External tables are not exported.

1-60 Oracle9i Database Utilities

2

Import

This chapter describes how to use the Import utility to read an export file into an
Oracle database. Import only reads files created by the Export utility. For
information on how to export a database, see Chapter 1. To load data from other
operating system files, see the discussion of SQL*Loader in Part Il of this manual.

This chapter discusses the following topics:

What Is the Import Utility?

Before Using Import

Importing into Existing Tables

Effect of Schema and Database Triggers on Import Operations
Invoking Import

Import Modes

Getting Online Help

Import Parameters

Example Import Sessions

Using the Interactive Method

Warning, Error, and Completion Messages
Exit Codes for Inspection and Display

Error Handling During an Import
Table-Level and Partition-Level Import
Controlling Index Creation and Maintenance

Reducing Database Fragmentation

Import 2-1

What Is the Import Utility?

« Network Considerations

« Character Set and Globalization Support Considerations

« Considerations When Importing Database Objects

« Materialized Views and Snapshots

« Transportable Tablespaces

« Storage Parameters

« Dropping a Tablespace

« Reorganizing Tablespaces

« Importing Statistics

« Using Export and Import to Partition a Database Migration

« Using Export Files from a Previous Oracle Release

What Is the Import Utility?

The Import utility reads the object definitions and table data from an Export dump
file. It inserts the data objects into an Oracle database.

Figure 2-1 illustrates the process of importing from an Export dump file.

2-2 Oracle9i Database Utilities

What Is the Import Utility?

Figure 2—-1 Importing an Export File

Export file Database

Table 1 | Table 1 | | Table 3 | |Tab|e 5 |

Table 2

Table 3
)

Table 4

Index 4
— |Tab|e2| |nex | |Table6|

Table 6

| Index l| |Table4 | |Index 5 |

Index 1

Index 4

Index 5

Export dump files can only be read by the Oracle Import utility. The version of the
Import utility cannot be earlier than the version of the Export utility used to create
the dump file.

Import can read export files created by Export release 5.1.22 and higher.
To read load data from ASCII fixed-format or delimited files, use the SQL*Loader
utility.
See Also:
« Chapter 1 for information about the Export utility
« Part Il of this manual for information about the SQL*Loader
utility

Table Objects: Order of Import

Table objects are imported as they are read from the export file. The export file
contains objects in the following order:

1. Type definitions
2. Table definitions

Import 2-3

Before Using Import

Table data

3

4. Table indexes
5. Integrity constraints, views, procedures, and triggers
6

Bitmap, functional, and domain indexes

First, new tables are created. Then, data is imported and indexes are built. Then
triggers are imported, integrity constraints are enabled on the new tables, and any
bitmap, functional, and/or domain indexes are built. This sequence prevents data
from being rejected due to the order in which tables are imported. This sequence
also prevents redundant triggers from firing twice on the same data (once when it is
originally inserted and again during the import).

For example, if the emptable has a referential integrity constraint on the dept table
and the emptable is imported first, all emprows that reference departments that
have not yet been imported into dept would be rejected if the constraints were
enabled.

When data is imported into existing tables, however, the order of import can still
produce referential integrity failures. In the situation just given, if the emptable
already existed and referential integrity constraints were in force, many rows could
be rejected.

A similar situation occurs when a referential integrity constraint on a table
references itself. For example, if scott ’s manager in the emptable is drake, and
drake ’s row has not yet been loaded, scott ’s row will fail, even though it would
be valid at the end of the import.

Note: For the reasons mentioned previously, it is a good idea to
disable referential constraints when importing into an existing
table. You can then reenable the constraints after the import is
completed.

Before Using Import

Before you begin using Import, be sure you take care of the following items:
« Runthe catexp.sql or catalog.sql script
« \Verify that you have the required access privileges

Additionally, before you begin using Import, you should read the following
sections:

2-4 Oracle9i Database Utilities

Before Using Import

« Importing into Existing Tables

« Effect of Schema and Database Triggers on Import Operations

Running catexp.sgl or catalog.sql

To use Import, you must run either the script catexp.sql or catalog.sql
(which runs catexp.sql) after the database has been created or migrated to
Oracle9i.

Note: The actual names of the script files depend on your
operating system. The script filenames and the method for running
them are described in your Oracle operating system-specific
documentation.

The catexp.sql or catalog.sql script needs to be run only once on a
database. You do not need to run either script again before performing future
import operations. Both scripts perform the following tasks to prepare the database
for Import:

» Assign all necessary privileges to the IMP_FULL_DATABASHole.
« Assign IMP_FULL_DATABASHEo the DBArole.

« Create required views of the data dictionary.

Verifying Access Privileges
This section describes the privileges you need to use the Import utility and to
import objects into your own and others’ schemas.

To use Import, you need the privilege CREATE SESSIONto log on to the Oracle
database server. This privilege belongs to the CONNECTole established during
database creation.

You can do an import even if you did not create the export file. However, if the
export file was created by someone other than you, you can import that file only if
you have the IMP_FULL_DATABASHEole.

Importing Objects into Your Own Schema

Table 2-1 lists the privileges required to import objects into your own schema. All of
these privileges initially belong to the RESOURCHEle.

Import 2-5

Before Using Import

Table 2-1 Privileges Required to Import Objects into Your Own Schema

Object Privileges Privilege Type
Clusters CREATE CLUSTER System
And: | Tablespace quota, or
UNLIMITED TABLESPACE System
Database links CREATE DATABASE LINK System
And: | CREATE SESSIONon remote System
database
Triggers on tables CREATE TRIGGER System
Triggers on schemas CREATE ANY TRIGGER System
Indexes CREATE INDEX System
And: | Tablespace quota, or
UNLIMITED TABLESPACE System
Integrity constraints ALTER TABLE Object
Libraries CREATE ANY LIBRARY System
Packages CREATE PROCEDURE System
Private synonyms CREATE SYNONYM System
Sequences CREATE SEQUENCE System
Snapshots CREATE SNAPSHOT System
Stored functions CREATE PROCEDURE System
Stored procedures CREATE PROCEDURE System
Table data INSERT TABLE Object
Table definitions CREATE TABLE System
(Including And: | Tablespace quota, or System
comments and audit UNLIMITED TABLESPACE
options)
Views CREATE VIEW System
And: | SELECTon the base table, or Object
SELECT ANY TABLE System
Object types CREATE TYPE System

2-6 Oracle9/ Database Utilities

Before Using Import

Object Privileges Privilege Type
Foreign function CREATE LIBRARY System
libraries

Dimensions CREATE DIMENSION System
Operators CREATE OPERATOR System
Indextypes CREATE INDEXTYPE System

Importing Grants

To import the privileges that a user has granted to others, the user initiating the
import must either own the objects or have object privileges with the WITH GRANT
OPTION Table 2-2 shows the required conditions for the authorizations to be valid
on the target system.

Table 2-2 Privileges Required to Import Grants

Grant Conditions

Object privileges The object must exist in the user’s schema, or
the user must have the object privileges with the WITH GRANT
OPTIONor,

the user must have the IMP_FULL_DATABASEole enabled.

System privileges User must have the SYSTEMrivilege as well as the WITH
ADMIN OPTION.

Importing Objects into Other Schemas

To import objects into another user’s schema, you must have the IMP_FULL _
DATABASHole enabled.

Importing System Objects

To import system objects from a full database export file, the role IMP_FULL _
DATABASHNuUst be enabled. The parameter FULL specifies that these system objects
are included in the import when the export file is a full export:

« Profiles
« Public database links
« Public synonyms

« Roles

Import 2-7

Importing into Existing Tables

Rollback segment definitions
Resource costs

Foreign function libraries
Context objects

System procedural objects
System audit options
System privileges
Tablespace definitions
Tablespace quotas

User definitions

Directory aliases

System event triggers

Importing into Existing Tables

This section describes factors to take into account when you import data into

existing tables.

Manually Creating Tables Before Importing Data

When you choose to create tables manually before importing data into them from
an export file, you should use either the same table definition previously used or a
compatible format. For example, although you can increase the width of columns
and change their order, you cannot do the following:

Add NOT NULLcolumns

Change the datatype of a column to an incompatible datatype (LONGto

NUMBER for example)

Change the definition of object types used in a table
Change DEFAULTcolumn values

2-8 Oracle9/ Database Utilities

Effect of Schema and Database Triggers on Import Operations

Disabling Referential Constraints

In the normal import order, referential constraints are imported only after all tables
are imported. This sequence prevents errors that could occur if a referential
integrity constraint existed for data that has not yet been imported.

These errors can still occur when data is loaded into existing tables. For example, if
table emphas a referential integrity constraint on the mgr column that verifies that
the manager number exists in emp, a perfectly legitimate employee row might fail
the referential integrity constraint if the manager’s row has not yet been imported.

When such an error occurs, Import generates an error message, bypasses the failed
row, and continues importing other rows in the table. You can disable constraints
manually to avoid this.

Referential constraints between tables can also cause problems. For example, if the
emptable appears before the dept table in the export file, but a referential check
exists from the emptable into the dept table, some of the rows from the emptable
may not be imported due to a referential constraint violation.

To prevent errors like these, you should disable referential integrity constraints
when importing data into existing tables.

Manually Ordering the Import

When the constraints are reenabled after importing, the entire table is checked,
which may take a long time for a large table. If the time required for that check is
too long, it may be beneficial to order the import manually.

To do so, perform several imports from an export file instead of one. First, import
tables that are the targets of referential checks. Then, import the tables that reference
them. This option works if tables do not reference each other in a circular fashion,
and if a table does not reference itself.

Effect of Schema and Database Triggers on Import Operations

Triggers that are defined to trigger on DDL events for a specific schema or on
DDL-related events for the database are system triggers. These triggers can have
detrimental effects on certain Import operations. For example, they can prevent
successful re-creation of database objects, such as tables. This causes errors to be
returned that give no indication that a trigger caused the problem.

Import 2-9

Invoking Import

Database administrators and anyone creating system triggers should verify that
such triggers do not prevent users from performing database operations for which
they are authorized. To test a system trigger, take the following steps:

Define the trigger.
Create some database objects.
Export the objects in table or user mode.

1
2
3
4. Delete the objects.
5. Import the objects.
6

Verify that the objects have been successfully re-created.

Invoking Import

You can invoke Import and specify parameters by using any of the following
methods:

« Command-line entries
« Interactive Import prompts
« Parameter files

Before you use one of these methods to invoke Import, be sure to read the
descriptions of the available parameters. See Import Parameters on page 2-14.

Command-Line Entries

You can specify all valid parameters and their values from the command line using
the following syntax:

imp usemamefpassword PARAMETERwalue

or
imp usemame/password PARAMETER=(aluel , value2 .., valuen)

The number of parameters cannot exceed the maximum length of a command line
on the system.

2-10 Oracle9i Database Utilities

Invoking Import

Interactive Import Prompts

If you prefer to let Import prompt you for the value of each parameter, you can use
the following syntax to start Import in interactive mode:

imp usemame/password

Import will display each parameter with a request for you to enter a value. This
method exists for backward compatibility and is not recommended because it
provides less functionality than the other methods. See Using the Interactive
Method on page 2-43 for more information.

Parameter Files

You can specify all valid parameters and their values in a parameter file. Storing the
parameters in a file allows them to be easily modified or reused, and is the
recommended method for invoking Import. If you use different parameters for
different databases, you can have multiple parameter files.

Create the parameter file using any flat file text editor. The command-line option
PARFILE=filename tells Import to read the parameters from the specified file
rather than from the command line. For example:

imp PARFILE= filename
imp usemamefpassword PARFILE= filename

The first example does not specify the username | password on the command line
to illustrate that you can specify them in the parameter file, although, for security
reasons, this is not recommended.

The syntax for parameter file specifications is one of the following:

PARAMETERzle
PARAMETER=le)
PARAMETERS@lel , vaue? , ..)

The following example shows a partial parameter file listing:

FULL=y
FILE=dbay
INDEXES=y
CONSISTENT=y

Import 2-11

Invoking Import

Note: The maximum size of the parameter file may be limited by
the operating system. The name of the parameter file is subject to
the file-naming conventions of the operating system. See your
Oracle operating system-specific documentation for more
information.

You can add comments to the parameter file by preceding them with the pound (#)
sign. Import ignores all characters to the right of the pound (#) sign.

You can specify a parameter file at the same time that you are entering parameters
on the command line. In fact, you can specify the same parameter in both places.
The position of the PARFILE parameter and other parameters on the command line
determines which parameters take precedence. For example, assume the parameter
file params.dat contains the parameter INDEXES=y and Import is invoked with
the following line:

imp usemame/password PARFILE=params.dat INDEXES=n
In this case, because INDEXES=noccurs after PARFILE=params.dat , INDEXES=n
overrides the value of the INDEXES parameter in the parameter file.

See Also:

« Import Parameters on page 2-14 for descriptions of the Import
parameters

« Exporting and Importing with Oracle Net on page 2-53 for
information on how to specify an import from a remote
database

Invoking Import As SYSDBA

SYSDBAis used internally and has specialized functions; its behavior is not the
same as for generalized users. Therefore, you should not typically need to invoke
Import as SYSDBA, except in the following situations:

« At the request of Oracle technical support
« When importing a transportable tablespace set

To invoke Import as SYSDBA, use the following syntax, adding any desired
parameters or parameter filenames:

imp\' usemame/password AS SYSDBAV

2-12 Oracle9i Database Utilities

Import Modes

or, optionally:
imp\' usemamejpassword@instance AS SYSDBAY

If either the username or password is omitted, Import will prompt you for it.

This example shows the entire connect string enclosed in quotation marks and
backslashes. This is because the string, AS SYSDBA, contains a blank, a situation
for which most operating systems require that the entire connect string be placed in
guotation marks or marked as a literal by some method. Some operating systems
also require that quotation marks on the command line be preceded by an escape
character. In this example, backslashes are used as the escape character. If the
backslashes were not present, the command-line parser that Export uses would not
understand the quotation marks and would remove them before calling Export.

See your operating system-specific Oracle documentation for more information
about special and reserved characters on your system.

If you prefer to use the Import interactive mode, see Using the Interactive Method
on page 2-43.

Import Modes

The Import utility provides four modes of import.

« Full—Only users with the IMP_FULL_DATABASEle can import in this mode,
which imports a full database export dump file. Use the FULL parameter to
specify this mode.

« Tablespace— allows a privileged user to move a set of tablespaces from one
Oracle database to another. Use the TRANSPORT_TABLESPAQErameter to
specify this mode.

« User (Owner)—allows you to import all objects that belong to you (such as
tables, grants, indexes, and procedures). A privileged user importing in user
mode can import all objects in the schemas of a specified set of users. Use the
FROMUSERarameter to specify this mode.

« Table—allows you to import specific tables and partitions. A privileged user
can qualify the tables by specifying the schema that contains them. Use the
TABLESparameter to specify this mode.

All users can import in table mode and user mode. Users with the
IMP_FULL_DATABASEHEole (privileged users) can import in all modes.

Import 2-13

Getting Online Help

A user with the IMP_FULL_DATABASEole must specify one of these modes.
Otherwise, an error results. If a user without the IMP_FULL_DATABASEHEole fails to
specify one of these modes, a user-level import is performed.

The objects that are imported depend on the Import mode you choose and the
mode that was used during the export.

See Also:

« Import Parameters on page 2-14 for information on the syntax
for each of these parameters

« Table 1-1 on page 1-9 for a list of the objects that are exported
in the various Export modes

Getting Online Help

Import provides online help. Enter imp HELP=y on the command line to invoke it.

Import Parameters

The following diagrams show the syntax for the parameters that you can specify in

the parameter file or on the command line. Following the diagrams are descriptions
of each parameter.

Import_start

Y

username}@{password) ImpModes ImpOpts

2-14 Oracle9i Database Utilities

Import Parameters

ImpModes

[—>| TOUSER P@»Cusernameh
ﬂ ImpUserOpts ImpTableOpts

FROMUSER

ED
subpartition

©

TABLESPACES

Import 2-15

Import Parameters

ImMpTTSFiles

O
D)

2-16 Oracle9i Database Utilities

Import Parameters

ImpOpts

Q

A ImpFileOpts)

[com 1

O
e integer

[0RE ()

(X
N

[
TOID_NOVALIDATE e (typename

H RESUMABLE_NAME P@{resumable_string)

RESUMABLE_TIMEOUT e integer

el

Import 2-17

Import Parameters

ImpFileOpts

A PARFILE b(=)(filename)———
H FILE b(=)p(flename }————
H FILESIZE F@—)Cnumber_of_bytes}
—{ vosize P@»{number_of_bytes)—e
H 106 b(=)(flename }————
- RECORDLENGTH F@a(integer)—
N INDEXFILE (=)((flename }——

The following sections describe parameter functionality and default values.

BUFFER
Default: operating system-dependent

The integer specified for BUFFERIs the size, in bytes, of the buffer through which
data rows are transferred.

BUFFERdetermines the number of rows in the array inserted by Import. The
following formula gives an approximation of the buffer size that inserts a given
array of rows:

buffer_size =rows_in_array * maximum_row_size

For tables containing LONG, LOB, BFILE, REF, ROWID, UROWID, or DATE
columns, rows are inserted individually. The size of the buffer must be large enough
to contain the entire row, except for LOBand LONCcolumns. If the buffer cannot
hold the longest row in a table, Import attempts to allocate a larger buffer.

Note: See your Oracle operating system-specific documentation
to determine the default value for this parameter.

CHARSET

This parameter applies to Oracle Version 5 and 6 export files only. Use of this
parameter is not recommended. It is provided only for compatibility with previous

2-18 Oracle9i Database Utilities

Import Parameters

COMMIT

COMPILE

versions. Eventually, it will no longer be supported. See The CHARSET Parameter
on page 2-71 if you still need to use this parameter.

Default: n

Specifies whether Import should commit after each array insert. By default, Import
commits only after loading each table, and Import performs a rollback when an
error occurs, before continuing with the next object.

If a table has nested table columns or attributes, the contents of the nested tables are
imported as separate tables. Therefore, the contents of the nested tables are always
committed in a transaction distinct from the transaction used to commit the outer
table.

If COMMIT=nand a table is partitioned, each partition and subpartition in the
Export file is imported in a separate transaction.

Specifying COMMIT=yprevents rollback segments from growing inordinately large
and improves the performance of large imports. Specifying COMMIT=yis advisable
if the table has a uniqueness constraint. If the import is restarted, any rows that
have already been imported are rejected with a recoverable error.

If a table does not have a uniqueness constraint, Import could produce duplicate
rows when you reimport the data.

For tables containing LONG, LOB, BFILE, REF, ROWID, UROWID, or DATE
columns, array inserts are not done. If COMMIT=yImport commits these tables after
each row.

Default: y

Specifies whether or not Import should compile packages, procedures, and
functions as they are created.

If COMPILE=N, these units are compiled on their first use. For example, packages
that are used to build domain indexes are compiled when the domain indexes are
created.

See Also: Importing Stored Procedures, Functions, and Packages
on page 2-59

Import 2-19

Import Parameters

CONSTRAINTS

DATAFILES

DESTROY

FEEDBACK

Default: y

Specifies whether or not table constraints are to be imported. The default is to
import constraints. If you do not want constraints to be imported, you must set the
parameter value to n.

Note that primary key constraints for index-organized tables (IOTs) and object
tables are always imported.

Default: none

When TRANSPORT_TABLESPAGS&specified as y, use this parameter to list the
datafiles to be transported into the database.

See TRANSPORT_TABLESPACE on page 2-32 for more information.

Default: n

Specifies whether or not the existing datafiles making up the database should be
reused. That is, specifying DESTROY=yauses Import to include the REUSEoption
in the datafile clause of the CREATE TABLESPACHKtatement, which causes Import
to reuse the original database’s datafiles after deleting their contents.

Note that the export file contains the datafile names used in each tablespace. If you
specify DESTROY=yand attempt to create a second database on the same system
(for testing or other purposes), the Import utility will overwrite the first database’s
datafiles when it creates the tablespace. In this situation you should use the default,
DESTROY=n,so that an error occurs if the datafiles already exist when the
tablespace is created. Also, when you need to import into the original database, you
will need to specify IGNORE=yto add to the existing datafiles without replacing
them.

Caution: If datafiles are stored on a raw device, DESTROY=mloes
not prevent files from being overwritten.

Default: O (zero)

2-20 Oracle9i Database Utilities

Import Parameters

FILE

FILESIZE

Specifies that Import should display a progress meter in the form of a period for n
number of rows imported. For example, if you specify FEEDBACK=10, Import
displays a period each time 10 rows have been imported. The FEEDBACHK/alue
applies to all tables being imported; it cannot be set on a per-table basis.

Default; expdat .dmp

Specifies the names of the export files to import. The default extension is .dmp.
Because Export supports multiple export files (see the following description of the
FILESIZE parameter), you may need to specify multiple filenames to be imported.

You need not be the user who exported the export files; however, you must have
read access to the files. If you were not the exporter of the export files, you must
also have the IMP_FULL_DATABASHole granted to you.

Default: operating-system dependent

Export supports writing to multiple export files, and Import can read from multiple
export files. If, on export, you specify a value (byte limit) for the Export FILESIZE
parameter, Export will write only the number of bytes you specify to each dump
file. On import, you must use the Import parameter FILESIZE to tell Import the
maximum dump file size you specified on export.

Note: The maximum value that can be stored in a file is operating
system-dependent. You should verify this maximum value in your
operating system-specific documentation before specifying
FILESIZE.

The FILESIZE value can be specified as a humber followed by KB (number of
kilobytes). For example, FILESIZE=2KB is the same as FILESIZE=2048.

Similarly, MB specifies megabytes (1024 * 1024) and GB specifies gigabytes
(1024**3). B remains the shorthand for bytes; the number is not multiplied to obtain
the final file size (FILESIZE=2048B is the same as FILESIZE=2048).

For information on the maximum size of dump files, see FILESIZE on page 1-19.

Import 2-21

Import Parameters

FROMUSER

FULL

GRANTS

Default: none

A comma-separated list of schemas to import. This parameter is relevant only to
users with the IMP_FULL_DATABASKEole. The parameter enables you to import a
subset of schemas from an export file containing multiple schemas (for example, a
full export dump file or a multischema, user-mode export dump file).

You will typically use FROMUSER conjunction with the Import parameter
TOUSERwhich you use to specify a list of usernames whose schemas will be targets
for import (see TOUSER on page 2-32). However, if you omit specifying TOUSER
Import will:

« Import objects into the FROMUSERchema if the export file is a full dump or a
multischema, user-mode export dump file

« Create objects in the importer’s schema (regardless of the presence of or
absence of the FROMUSERchema on import) if the export file is a
single-schema, user-mode export dump file created by an unprivileged user

Note: Specifying FROMUSER=SY STERuUses only schema objects
belonging to user SYSTEMo be imported; it does not cause system
objects to be imported.

Default: n

Specifies whether to import the entire export file.

Default: y
Specifies whether to import object grants.

By default, the Import utility imports any object grants that were exported. If the
export was a user-mode Export, the export file contains only first-level object grants
(those granted by the owner).

If the export was a full database mode Export, the export file contains all object
grants, including lower-level grants (those granted by users given a privilege with
the WITH GRANT OPTION. If you specify GRANTS=n,the Import utility does not
import object grants. (Note that system grants are imported even if GRANTS=n)

2-22 Oracle9i Database Utilities

Import Parameters

HELP

IGNORE

Note: Export does not export grants on data dictionary views for
security reasons that affect Import. If such grants were exported,
access privileges would be changed and the importer would not be
aware of this.

Default: n

Displays a description of the Import parameters.

Default: n

Specifies how object creation errors should be handled. If you specify IGNORE=y
Import overlooks object creation errors when it attempts to create database objects,
and continues without reporting the errors. Even if IGNORE=y Import will not
replace an existing object; instead, it will skip the object.

If you accept the default, IGNORE=n Import logs and/or displays the object
creation error before continuing.

For tables, IGNORE=ycauses rows to be imported into existing tables. No message
is given. If a table already exists, IGNORE=ncauses an error to be reported, and the
table is skipped with no rows inserted. Also, objects dependent on tables, such as
indexes, grants, and constraints, will not be created if a table already exists and
IGNORE=n

Note that only object creation errors are ignored; other errors, such as operating
system, database, and SQL errors, are not ignored and may cause processing to stop.

In situations where multiple refreshes from a single export file are done with
IGNORE-=y certain objects can be created multiple times (although they will have
unique system-defined names). You can prevent this for certain objects (for
example, constraints) by doing an import with CONSTRAINTS=nlf you do a full
import with the CONSTRAINTS=nno constraints for any tables are imported.

To import data into tables that already exist—to use new storage parameters, or
because you have already created the table in a cluster—specify IGNORE=y The
Import utility imports the rows of data into the existing table.

Import 2-23

Import Parameters

INDEXES

INDEXFILE

Caution: When you import into existing tables, if no column in
the table is uniquely indexed, rows could be duplicated.

Default: y

Specifies whether or not to import indexes. System-generated indexes such as LOB
indexes, OID indexes, or unique constraint indexes are re-created by Import
regardless of the setting of this parameter.

You can postpone all user-generated index creation until after Import completes, by
specifying INDEXES=n.

If indexes for the target table already exist at the time of the import, Import
performs index maintenance when data is inserted into the table.

Default: none
Specifies a file to receive index-creation statements.

When this parameter is specified, index-creation statements for the requested mode
are extracted and written to the specified file, rather than used to create indexes in
the database. No database objects are imported.

If the Import parameter CONSTRAINTSs set to y, Import also writes table
constraints to the index file.

The file can then be edited (for example, to change storage parameters) and used as
a SQL script to create the indexes.

To make it easier to identify the indexes defined in the file, the export file’s CREATE
TABLE statements and CREATE CLUSTERatements are included as comments.

Perform the following steps to use this feature:

1. Import using the INDEXFILE parameter to create a file of index-creation
statements.

2. Edit the file, making certain to add a valid password to the connect strings.
3. Rerun Import, specifying INDEXES=n.

(This step imports the database objects while preventing Import from using the
index definitions stored in the export file.)

2-24 Oracle9i Database Utilities

Import Parameters

4. Execute the file of index-creation statements as a SQL script to create the index.

The INDEXFILE parameter can be used only with the FULL=y, FROMUSER
TOUSERor TABLESparameters.

LOG
Default: none
Specifies a file to receive informational and error messages. If you specify a log file,
the Import utility writes all information to the log in addition to the terminal
display.
PARFILE
Default: none
Specifies a filename for a file that contains a list of Import parameters. For more
information on using a parameter file, see Invoking Import on page 2-10.
RECORDLENGTH

Default: operating system dependent

Specifies the length, in bytes, of the file record. The RECORDLENGTp&rameter is
necessary when you must transfer the export file to another operating system that
uses a different default value.

If you do not define this parameter, it defaults to your platform-dependent value for
BUFSIZ. For more information about the BUFSIZ default value, see your operating
system-specific documentation.

You can set RECORDLENGTH any value equal to or greater than your system’s
BUFSIZ. (The highest value is 64 KB.) Changing the RECORDLENG Tpdrameter
affects only the size of data that accumulates before writing to the database. It does
not affect the operating system file block size.

You can also use this parameter to specify the size of the Import I/0 buffer.

Note: See your Oracle operating system-specific documentation to
determine the proper value or to create a file with a different record
size.

Import 2-25

Import Parameters

RESUMABLE

Default: n

The RESUMABLIparameter is used to enable and disable resumable space
allocation. Because this parameter is disabled by default, you must set
RESUMABLE=yn order to use its associated parameters, RESUMABLE_NAM#ad
RESUMABLE_TIMEOUT

See Also:

« Oracle9i Database Concepts

« Oracle9i Database Administrator’s Guide for more information
about resumable space allocation

RESUMABLE_NAME

Default: 'User USERNAME (USERID), Session SESSIONID, Instance
INSTANCEID’

The value for this parameter identifies the statement that is resumable. This value is
a user-defined text string that is inserted in either the USER_RESUMABLd& DBA _
RESUMABLRiew to help you identify a specific resumable statement that has been
suspended.

This parameter is ignored unless the RESUMABLIparameter is set to y to enable
resumable space allocation.

RESUMABLE_TIMEOUT

ROWS

Default: 7200 seconds (2 hours)

The value of the parameter specifies the time period during which an error must be
fixed. If the error is not fixed within the timeout period, execution of the statement
is aborted.

This parameter is ignored unless the RESUMABLIparameter is set to y to enable
resumable space allocation.

Default: y

Specifies whether or not to import the rows of table data.

2-26 Oracle9i Database Utilities

Import Parameters

SHOW

Default: n

When SHOW-=y,the contents of the export file are listed to the display and not
imported. The SQL statements contained in the export are displayed in the order in
which Import will execute them.

The SHOVWparameter can be used only with the FULL=y, FROMUSER OUSERor
TABLESparameter.

SKIP_UNUSABLE_INDEXES

STATISTICS

Default: n

Specifies whether or not Import skips building indexes that were set to the Index
Unusable state (by either system or user). Refer to the ALTER SESSION statement
in the Oracle9i SQL Reference for details. Other indexes (not previously set Index
Unusable) continue to be updated as rows are inserted.

This parameter allows you to postpone index maintenance on selected index
partitions until after row data has been inserted. You then have the responsibility to
rebuild the affected index partitions after the Import.

You can use the INDEXFILE parameter in conjunction with INDEXES=nto provide
the SQL scripts for re-creating the index. Without this parameter, row insertions that
attempt to update unusable indexes will fail.

Default: ALWAYS

Specifies what is done with the database optimizer statistics at import time.
The options are:

« ALWAYS

Always import database optimizer statistics regardless of whether or not they
are questionable.

« NONE
Do not import or recalculate the database optimizer statistics.
« SAFE

Import 2-27

Import Parameters

TABLES

Import database optimizer statistics only if they are not questionable. If they are
guestionable, recalculate the optimizer statistics.

RECALCULATE
Do not import the database optimizer statistics. Instead, recalculate them on
import.

See Also:

« Oracle9i Database Concepts for more information about the
optimizer and the statistics it uses

« STATISTICS on page 1-25
« Importing Statistics on page 2-67

Default: none

Specifies that the Import is a table-mode import and lists the table names and
partition and subpartition names to import. Table-mode import lets you import
entire partitioned or nonpartitioned tables. The TABLESparameter restricts the
import to the specified tables and their associated objects, as listed in Table 1-1 on
page 1-9. You can specify the following values for the TABLESparameter:

tablename specifies the name of the table or tables to be imported. If a table in
the list is partitioned and you do not specify a partition name, all its partitions
and subpartitions are imported. To import all the exported tables, specify an
asterisk (*) as the only table name parameter.

tablename can contain any number of "%’ pattern matching characters, which
can each match zero or more characters in the table names in the export file. All
the tables whose names match all the specified patterns of a specific table name
in the list are selected for import. A table name in the list that consists of all
pattern matching characters and no partition name results in all exported tables
being imported.

partition_name and subpartition_name let you restrict the import to one
or more specified partitions or subpartitions within a partitioned table.

The syntax you use to specify the preceding is in the form:

tablename;parttion_name

tablename:subpartiion_name

2-28 Oracle9i Database Utilities

Import Parameters

If you use tablename partition_name , the specified table must be partitioned,
and partition_name must be the name of one of its partitions or subpartitions. If
the specified table is not partitioned, the partition_name is ignored and the
entire table is imported.

The number of tables that can be specified at the same time is dependent on
command-line limits.

As the export file is processed, each table name in the export file is compared
against each table name in the list, in the order in which the table names were
specified in the parameter. To avoid ambiguity and excessive processing time,
specific table names should appear at the beginning of the list, and more general
table names (those with patterns) should appear at the end of the list.

Although you can qualify table names with schema names (as in scott .emp) when
exporting, you cannot do so when importing. In the following example, the TABLES
parameter is specified incorrectly:

imp SYSTEM/ password TABLES=(jones.accts, scott.emp,scott.dept)

The valid specification to import these tables is as follows:
imp SYSTEM/ password FROMUSER-=jones TABLES=(accts)
imp SYSTEM/ password FROMUSER=scott TABLES=(emp,dept)

For a more detailed example, see Example Import of Using Pattern Matching to
Import Various Tables on page 2-42.

Note: Some operating systems, such as UNIX, require that you
use escape characters before special characters, such as a
parenthesis, so that the character is not treated as a special
character. On UNIX, use a backslash (\) as the escape character, as
shown in the following example:

TABLES=\EMP,DEPT))

Table Name Restrictions

The following restrictions apply to table names:

« By default, table names in a database are stored as uppercase. If you have a
table name in mixed-case or lowercase, and you want to preserve

case-sensitivity for the table name, you must enclose the name in quotation
marks. The name must exactly match the table name stored in the database.

Import 2-29

Import Parameters

Some operating systems require that quotation marks on the command line be
preceded by an escape character. The following are examples of how
case-sensitivity can be preserved in the different Import modes.

— In command-line mode:
tables=\"Emp\"”

— Ininteractive mode:
Table(T) to be exported: "Exp"”

— In parameter file mode:
tables="Emp"

« Table names specified on the command line cannot include a pound (#) sign,
unless the table name is enclosed in quotation marks. Similarly, in the
parameter file, if a table name includes a pound (#) sign, the Import utility
interprets the rest of the line as a comment, unless the table name is enclosed in
guotation marks.

For example, if the parameter file contains the following line, Import interprets
everything on the line after emp#as a comment and does not import the tables
dept and mydata:

TABLES=(emp#, dept, mydata)

However, given the following line, the import utility exports all three tables
because emp#is enclosed in quotation marks:

TABLES=("emp#", dept, mydata)

Note: Some operating systems require single quotation marks
rather than double quotation marks, or the reverse; see your
operating system-specific documentation. Different operating
systems also have other restrictions on table naming.

For example, the UNIX C shell attaches a special meaning to a
dollar sign ($) or pound sign (#) (or certain other special
characters). You must use escape characters to get such characters
in the name past the shell and into Import.

2-30 Oracle9i Database Utilities

Import Parameters

TABLESPACES

Default: none

When TRANSPORT_TABLESPAG&specified as y, use this parameter to provide a
list of tablespaces to be transported into the database.

See TRANSPORT_TABLESPACE on page 2-32 for more information.

TOID_NOVALIDATE

Default: none

When you import a table that references a type, but a type of that name already
exists in the database, Import attempts to verify that the preexisting type is, in fact,
the type used by the table (rather than a different type that just happens to have the
same name).

To do this, Import compares the type's unique identifier (TOID) with the identifier
stored in the export file. Import will not import the table rows if the TOIDs do not
match.

In some situations, you may not want this validation to occur on specified types (for
example, if the types were created by a cartridge installation). You can use the
TOID_NOVALIDATEparameter to specify types to exclude from TOID comparison.

The syntax is as follows:
TOID_NOVALIDATE=([schemaname.Jiypename|, ..)

For example:

imp scattftiger TABLE=foo TOID_NOVALIDATE=bar
imp scottftiger TABLE=foo TOID_NOVALIDATE=(fred.type0,sally.type2,type3)

If you do not specify a schema name for the type, it defaults to the schema of the
importing user. For example, in the first preceding example, the type bar defaults
to scott.bar.

The output of a typical import with excluded types would contain entries similar to
the following:

-]

.importing IMP3's objects into IMP3

.. skipping TOID validation on type IMP2.TOIDTYPO
..importing table "TOIDTAB3"

]

Import 2-31

Import Parameters

TOUSER

Caution: When you inhibit validation of the type identifier, it is
your responsibility to ensure that the attribute list of the imported
type matches the attribute list of the existing type. If these attribute
lists do not match, results are unpredictable.

Default: none

Specifies a list of usernames whose schemas will be targets for Import. The
IMP_FULL_DATABASHEole is required to use this parameter. To import to a
different schema than the one that originally contained the object, specify TOUSER.
For example:

imp SYSTEM/ password FROMUSER=scott TOUSER=joe TABLES=emp
If multiple schemas are specified, the schema names are paired. The following

example imports scott’ s objects into joe ’s schema, and fred ’s objects into ted’ s
schema:

imp SYSTEM/ password FROMUSER=scott,fred TOUSER=joe ted
If the FROMUSERst is longer than the TOUSERIst, the remaining schemas will be
imported into either the FROMUSERhema, or into the importer’s schema, based on

normal defaulting rules. You can use the following syntax to ensure that any extra
objects go into the TOUSERchema:

imp SYSTEM/ password FROMUSER=scott,adams TOUSER=tedted

Note that user Ted is listed twice.

TRANSPORT_TABLESPACE

TTS_OWNERS

Default: n

When specified as y, instructs Import to import transportable tablespace metadata
from an export file.

Default: none

2-32 Oracle9i Database Utilities

Import Parameters

When TRANSPORT_TABLESPAGESspecified as y, use this parameter to list the
users who own the data in the transportable tablespace set.

See TRANSPORT_TABLESPACE on page 2-32.

USERID (username/password)

VOLSIZE

Default: none

Specifies the username | password (and optional connect string) of the user
performing the import.

USERIDcan also be:
usemame/password AS SYSDBA

or
usemame/password @nstance

or
usemamejpassword @nstance AS SYSDBA
If you connect as user SYS, you must also specify AS SYSDBAIn the connect
string. Your operating system may require you to treat AS SYSDBAas a special
string, in which case the entire string would be enclosed in quotation marks. See
Invoking Import As SYSDBA on page 2-12 for more information.

See Also:

« Oracle9i Heterogeneous Connectivity Administrator’s Guide

« Theuser’s guide for your Oracle Net protocol for information
about specifying the @connect_string for Oracle Net

Specifies the maximum number of bytes in an export file on each volume of tape.

The VOLSIZE parameter has a maximum value equal to the maximum value that
can be stored in 64 bits. See your operating system-specific documentation for more
information.

The VOLSIZE value can be specified as number followed by KB (number of
kilobytes). For example, VOLSIZE=2KB is the same as VOLSIZE=2048. Similarly,
MB specifies megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). The

Import 2-33

Example Import Sessions

shorthand for bytes remains B; the number is not multiplied to get the final file size
(VOLSIZE=2048B is the same as VOLSIZE=2048).

Example Import Sessions

This section gives some examples of import sessions that show you how to use the
parameter file and command-line methods. The examples illustrate four scenarios:

« Example Import of Selected Tables for a Specific User
« Example Import of Tables Exported by Another User
« Example Import of Tables from One User to Another
« Example Import Session Using Partition-Level Import

« Example Import of Using Pattern Matching to Import Various Tables

Example Import of Selected Tables for a Specific User
In this example, using a full database export file, an administrator imports the dept

and emptables into the scott schema.
Parameter File Method
>imp SYSTEM/ password PARFILE=params.dat

The params .dat file contains the following information:

FILE=dba.dmp
SHOW=n
IGNORE=n
GRANTS=y
FROMUSER=scott
TABLES=(dept.emp)

Command-Line Method

>imp SYSTEM/ password FILE=dba.dmp FROMUSER=scott TABLES=(dept,emp)

Import Messages
Import: Release 9.0.1.0.0 - Production on Mon Mar 19 19:05:00 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

2-34 Oracle9i Database Utilities

Example Import Sessions

Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production
With the Partitioning option
JServer Release 9.0.1.0.0 - Production

Export file created by EXPORT:V09.01.00 via conventional path

import done in WESDEC character set and AL16UTF16 NCHAR character set
.importing SCOTT's objects into SCOTT

..importing table "DEPT" 4 rows imported

..importing table "EMP" 14 rowsimported

Import terminated successfully without wamings.

Example Import of Tables Exported by Another User

This example illustrates importing the unit and manager tables from a file
exported by blake into the scott schema.

Parameter File Method
>imp SYSTEM/ password PARFILE=params.dat

The params .dat file contains the following information:

FILE=blake.dmp
SHOW=n

IGNORE=n
GRANTS=y

ROWS=y
FROMUSER=blake
TOUSER=scott
TABLES=(unit,;manager)

Command-Line Method

>imp SYSTEM/ password FROMUSER=hlake TOUSER=scott FILE=blake.dmp -
TABLES=(unit,manager)

Import Messages
Import: Release 9.0.1.0.0 - Production on Mon Mar 19 19:06:02 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oraclei Enterprise Edition Release 9.0.1.0.0 - Production

Import 2-35

Example Import Sessions

With the Partitioning option
JServer Release 9.0.1.0.0 - Production

Export file created by EXPORT:V09.01.00 via conventional path

Waming: the objects were exported by BLAKE, not by you

import done in WESDEC character set and AL16UTF16 NCHAR character set
..importing table "UNIT" 4 rowsimported

..importing table "MANAGER" 4 rows imported
Import terminated successfully without wamings.

Example Import of Tables from One User to Another

In this example, a DBA imports all tables belonging to scott into user blake’ s
account.

Parameter File Method
>imp SYSTEM/ password PARFILE=params.dat

The params .dat file contains the following information:

FILE=scott.dmp
FROMUSER=scott
TOUSER=blake
TABLES=(*)
Command-Line Method

>imp SYSTEM/ password FILE=scottdmp FROMUSER=scott TOUSER=blake TABLES=(*)
Import Messages

Import: Release 9.0.1.0.0 - Production on Mon Mar 19 19:07:04 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oraclei Enterprise Edition Release 9.0.1.0.0 - Production

With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export file created by EXPORT:V09.01.00 via conventional path

2-36 Oracle9i Database Utilities

Example Import Sessions

Waming: the objects were exported by SCOTT, not by you

import done in WESDEC character set and AL16UTF16 NCHAR character set
.importing SCOTT's objects into BLAKE

..importing table "BONUS" Orowsimported
..importing table "DEPT" 4 rows imported
..importing table "EMP" 14 rowsimported
..importing table "SALGRADE" 5 rows imported

Import terminated successfully without wamings.

Example Import Session Using Partition-Level Import

This section describes an import of a table with multiple partitions, a table with
partitions and subpartitions, and repartitioning a table on different columns.

Example 1: A Partition-Level Import
In this example, empis a partitioned table with three partitions: p1, p2, and p3.

A table-level export file was created using the following command:

> exp scotttiger TABLES=emp FILE=exmpexp.dat ROWS=y

Import Messages

Import: Release 9.0.1.0.0 - Production on Mon Mar 19 19:08:03 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production

With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export done in WESDEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...

.. exporting table EMP

.. exporting partition P1 7 rows exported
.. exporting partition P2 12rowsexported
.. exporting partition P3 3 rows exported

Export terminated successfully without wamings.

In a partition-level import you can specify the specific partitions of an exported
table that you want to import. In this example, these are p1 and p3 of table emp:

Import 2-37

Example Import Sessions

> imp scotttiger TABLES=(emp:pl,emp:p3) FILE=exmpexp.dat ROWS=y

Import Messages
Import: Release 9.0.1.0.0 - Production on Mon Mar 19 19:09:00 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production
With the Partitioning option
JServer Release 9.0.1.0.0 - Production

Export file created by EXPORT:V09.01.00 via conventional path

import done in WESDEC character set and AL16UTF16 NCHAR character set
.importing SCOTT's objects into SCOTT

..importing partition "EMP""P1" 7 rows imported

.. importing partition "EMP"'P3" 3rowsimported

Import terminated successfully without wamings.

Example 2: A Partition-Level Import of a Composite Partitioned Table

This example demonstrates that the partitions and subpartitions of a composite
partitioned table are imported. empis a partitioned table with two composite
partitions: p1 and p2. P1 has three subpartitions: p1_spl, p1_sp2, andpl_
sp3. P2 has two subpartitions: p2_spl and p2_sp2.

A table-level export file was created using the following command:
> exp scotttiger TABLES=emp FILE=exmpexp.dat ROWS=y

Import Messages
Import: Release 9.0.1.0.0 - Production on Mon Mar 19 19:10:02 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oraclei Enterprise Edition Release 9.0.1.0.0 - Production

With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export done in WESDEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...

.. exporting table EMP
.. exporting composite partition P1

2-38 Oracle9i Database Utilities

Example Import Sessions

.. exporting subpartition P1 SP1 2 rows exported
.. exporting subpartition P1 SP2 10 rows exported
.. exporting subpartition P1 SP3 7 rows exported
.. exporting composite partition P2

.. exporting subpartition P2 _SP1 4 rows exported
. . exporting subpartition P2_SP2 2 rows exported

Export terminated successfully without warmings.

The following import command results in the importing of subpartition p1l_sp2
and pl_sp3 of composite partition pl in table empand all subpartitions of
composite partition p2 in table emp.

> imp scottfiger TABLES=(emp:pl_sp2,emp:pl sp3,empp2) FILE=exmpexp.dat ROWS=y

Import Messages
Import: Release 9.0.1.0.0 - Production on Mon Mar 19 19:11:07 2001

(c) Copyright 2001 Oracle Corporation. All rights reserved.
Connected to: Oraclei Enterprise Edition Release 9.0.1.0.0 - Production
With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export file created by EXPORT:V09.01.00 via conventional path
import done in WESDEC character set and AL16UTF16 NCHAR character set

.importing SCOTT's ohjects into SCOTT

.. importing subpartition "EMP""P1_SP2" 10rowsimported
.. importing subpartition "EMP""P1_SP3" 7 rows imported
.. importing subpartition "EMP""P2_SP1" 4 rows imported
..importing subpartition "EMP""P2_SP2" 2 rows imported

Import terminated successfully without wamings.

Example 3: Repartitioning a Table on a Different Column

This example assumes the emptable has two partitions based on the empno column.
This example repartitions the emptable on the deptno column.

Perform the following steps to repartition a table on a different column;
1. Export the table to save the data.
2. Drop the table from the database.

3. Create the table again with the new partitions.

Import 2-39

Example Import Sessions

4. Import the table data.

The following example illustrates how to perform these steps.
> exp scotttiger TABLES=emp FILE=empexp.dat

Export: Release 9.0.1.0.0 - Production on Mon Mar 19 19:12:09 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production

With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export done in WESDEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...

.. exporting table EMP
.. exporting partition EMP_LOW 4 rows exported
.. exporting partition EMP_HIGH 10 rows exported
Export terminated successfully without wamings.
SQL> connect scottftiger
Connected.
SQL> drop table emp cascade constraints,
Statement processed.
SQL> create table emp
2> (

3> empno number(4) not null,
4> ename varchar2(10),
5> job varchar2(9),
6> mgr number(4),
7> hiredate date,
8> sal number(7,2),
9> comm number(7,2),
10> deptno number(2)
11>)
12> partition by range (deptno)
13> (
14> partition dept_low values less than (15)
15> tablespacetbs 1,
16> partition dept_mid values less than (25)
17> tablespacetbs 2,
18> partition dept_high values less than (35)
19> tablespaceths 3
20>);
Statement processed.

2-40 Oracle9i Database Utilities

Example Import Sessions

SQL> exit

>imp scotiftiger tables=emp fle=empexp.dat ignore=y

Import: Release 9.0.1.0.0 - Production on Mon Mar 19 19:13:01 2001
() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oraclei Enterprise Edition Release 9.0.1.0.0 - Production
With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export file created by EXPORT:V09.01.00 via conventional path
import done in WESDEC character set and AL16UTF16 NCHAR character set

.importing SCOTT's ohjects into SCOTT
.. importing partition "EMP""EMP_LOW" 4 rows imported
.. importing partition "EMP""EMP_HIGH" 10 rows imported

Import terminated successfully without wamings.

The following SELECTstatements show that the data is partitioned on the deptno
column:

SQL> connect scottftiger

Connected.

SQL> select empno, deptno from emp partition (dept_low);
EMPNO DEPTNO

7782 10
7839 10
7934 10
3 rows selected.

SQL> select empno, deptno from emp partition (dept_mid);
EMPNO DEPTNO

7369 20
7566 20
7788 20
7876 20
7902 20
5 rows selected.

SQL> select empno, deptno from emp partition (dept_high);
EMPNO DEPTNO

7499 30

Import 2-41

Example Import Sessions

7521
7654
7698
7844
7900
6 rows selected.
SQL> exit;

88888

Example Import of Using Pattern Matching to Import Various Tables
In this example, pattern matching is used to import various tables for user scott

Parameter File Method
imp SYSTEM/ password PARFILE=params.dat

The params .dat file contains the following information:

FILE=scott.dmp
IGNORE=N
GRANTS=y
ROWS=y
FROMUSER=scott
TABLES=(%6d%,0%s)

Command-Line Method
imp SYSTEM/ password FROMUSER=scott FILE=scott.dmp TABLES=(%0d%,b%s)

Import Messages

Import: Release 9.0.1.0.0 - Production on Mon Mar 19 19:14:05 2001

(c) Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oraclei Enterprise Edition Release 9.0.1.0.0 - Production
With the Partitioning option
JServer Release 9.0.1.0.0 - Production

Export file created by EXPORT:V09.01.00 via conventional path

import done in US7ASCII character set and AL16UTF16 NCHAR character set
import server uses JA16SJIS character set (possible charset conversion)
.importing SCOTT's objects into SCOTT

..importing table "BONUS" 0 rows imported

2-42 Oracle9i Database Utilities

Using the Interactive Method

..importing table "DEPT" 4 rows imported
..importing table "SALGRADE" 5 rows imported
Import terminated successfully without wamings.

Using the Interactive Method

Starting Import from the command line with no parameters initiates the interactive
method. The interactive method does not provide prompts for all Import
functionality. The interactive method is provided only for backward compatibility.

If you do not specify a username /password combination on the command line,
the Import utility prompts you for this information.

When you invoke Import interactively, the response given by Import depends on
what you enter at the command line. The following table shows the possibilities:

You enter... Import’s Response

imp Starts an Import session
username | password @nstance

as sysdba

imp usemame | password @nstance Starts an Import session
imp usemame | password as sysdba Starts an Import session
imp usemame | password Starts an Import session

imp usemame @nstance as sysdba Prompts for password

imp usemame @nstance Prompts for password
imp usemame Prompts for password
imp usemame as sysdba Prompts for password
imp/as sysdba No prompt for password, operating-system

authentication is used

imp/ No prompt for password, operating-system
authentication is used

imp/ @instance as sysdba No prompt for password, operating-system
authentication is used

imp/ @instance No prompt for password, operating-system
authentication is used

Import 2-43

Using the Interactive Method

In Import interactive mode, you are not prompted to specify whether you want to
connect as SYSDBAor @nstance . You must specify AS SYSDBAand/or
@nstance with the username.

Additionally, if you omit the password and allow Import to prompt you for it, you
cannot specify the @nstance string as well. You can specify @nstance only
with username .

Before you invoke Import using AS SYSDBAbe sure to read Invoking Import As
SYSDBA on page 2-12 for information about correct command-line syntax.

After Import is invoked, it displays the following prompts. You may not see all
prompts in a given Import session because some prompts depend on your
responses to other prompts. Some prompts show a default answer. If the default is
acceptable, press Enter.

Import: Release 9.0.1.0.0 - Production on Mon Apr 2 12:55:22 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production
With the Partitioning option
JServer Release 9.0.1.0.0 - Production

Import file: expdat.dmp >
Enter insert buffer size (minimum is 8192) 30720>
Export file created by EXPORT:V09.01.00 via conventional path

Waming: the objects were exported by BLAKE, not by you

import done in WESDEC character set and AL16UTF16 NCHAR character set
List contents of import file only (yes/no): no >

Ignore create error due to object existence (yes/no): no >

Import grants (yes/no): yes >

Import table data (yes/ho): yes >

Import entire export file (yes/no): no >

.importing BLAKE's objects into SYSTEM

..importing table "DEPT" 4 rows imported

..importing table "MANAGER" 3 rows imported

Import terminated successfully without wamings.

If you specify No at the Import entire export file(yes/no): prompt,
Import prompts you for a schema name and the table names you want to import for
that schema, as follows:

2-44 Oracle9i Database Utilities

Warning, Error, and Completion Messages

Enter table(T) or partition(T:P) names. Null list means all tables for user

Entering a null table list causes all tables in the schema to be imported. You can
specify only one schema at a time when you use the interactive method.

Warning, Error, and Completion Messages

This section describes the different types of messages issued by Import and how to
save them in a log file.

Log File
You can capture all Import messages in a log file, either by using the LOGparameter
or, for those systems that permit it, by redirecting Import’s output to a file. The
Import utility writes a log of detailed information about successful loads and any
errors that may occur.

See Also:
« LOG on page 2-25

= Your operating system-specific documentation for information
on redirecting output

Warning Messages

Import does not terminate after recoverable errors. For example, if an error occurs
while importing a table, Import displays (or logs) an error message, skips to the
next table, and continues processing. These recoverable errors are known as
warnings.

Import also issues a warning whenever it encounters an invalid object.

For example, if a nonexistent table is specified as part of a table-mode import, the
Import utility imports all other tables. Then it issues a warning and terminates
successfully.

Nonrecoverable Error Messages

Some errors are nonrecoverable and terminate the Import session. These errors
typically occur because of an internal problem or because a resource, such as
memory, is not available or has been exhausted.

Import 2-45

Exit Codes for Inspection and Display

Completion Messages
When an import completes without errors, Import displays the following message:
Import terminated successfully without wamings
If one or more recoverable errors occurs but Import is able to continue to
completion, Import displays the following message:
Import terminated successfully with wamings
If a nonrecoverable error occurs, Import terminates immediately and displays the
following message:
Import terminated unsuccessfully

See Also: Oracle9i Database Error Messages and your operating
system-specific documentation

Exit Codes for Inspection and Display

Import provides the results of an import operation immediately upon completion.
Depending on the platform, Import may report the outcome in a process exit code
as well as recording the results in the log file. This enables you to check the outcome
from the command line or script. The following results return the indicated exit

codes:

Result Exit Code
Import terminated successfully without warnings EX_SUCC
Import terminated successfully with warnings EX_OKWARN
Import terminated unsuccessfully EX_FAIL

For UNIX, the exit codes are as follows:

EX_SUCC 0
EX_OKWARN 0
EX_FALL 1

Error Handling During an Import

This section describes errors that can occur when you import database objects.

2-46 Oracle9i Database Utilities

Error Handling During an Import

Row Errors

If a row is rejected due to an integrity constraint violation or invalid data, Import
displays a warning message but continues processing the rest of the table. Some
errors, such as "tablespace full,” apply to all subsequent rows in the table. These
errors cause Import to stop processing the current table and skip to the next table.

A "tablespace full” error can suspend the import if the RESUMABLE=yparameter is
specified.

Failed Integrity Constraints

A row error is generated if a row violates one of the integrity constraints in force on
your system, including:

« NOT NULLconstraints

« Unigueness constraints

« Primary key (not null and unique) constraints
« Referential integrity constraints

« Check constraints

See Also:
« Oracle9i Application Developer’s Guide - Fundamentals

« Oracle9i Database Concepts

Invalid Data

Row errors can also occur when the column definition for a table in a database is
different from the column definition in the export file. The error is caused by data
that is too long to fit into a new table’s columns, by invalid data types, or by any
other INSERT error.

Errors Importing Database Objects

Errors can occur for many reasons when you import database objects, as described
in this section. When these errors occur, import of the current database object is
discontinued. Import then attempts to continue with the next database object in the
export file.

Import 2-47

Error Handling During an Import

Object Already Exists

If a database object to be imported already exists in the database, an object creation
error occurs. What happens next depends on the setting of the IGNOREparameter.

If IGNORE=n(the default), the error is reported, and Import continues with the next
database object. The current database object is not replaced. For tables, this behavior
means that rows contained in the export file are not imported.

If IGNORE=y object creation errors are not reported. The database object is not
replaced. If the object is a table, rows are imported into it. Note that only object
creation errors are ignored; all other errors (such as operating system, database, and
SQL errors) are reported and processing may stop.

Caution: Specifying IGNORE=ycan cause duplicate rows to be
entered into a table unless one or more columns of the table are
specified with the UNIQUEintegrity constraint. This could occur, for
example, if Import were run twice.

Sequences

If sequence numbers need to be reset to the value in an export file as part of an
import, you should drop sequences. If a sequence is not dropped before the import,
it is not set to the value captured in the export file, because Import does not drop
and re-create a sequence that already exists. If the sequence already exists, the
export file’s CREATE SEQUENCS#&atement fails and the sequence is not imported.

Resource Errors

Resource limitations can cause objects to be skipped. When you are importing
tables, for example, resource errors can occur as a result of internal problems, or
when a resource such as memory has been exhausted.

If a resource error occurs while you are importing a row, Import stops processing
the current table and skips to the next table. If you have specified COMMIT=y,
Import commits the partial import of the current table. If not, a rollback of the
current table occurs before Import continues. See the description of COMMIT on
page 2-19.

Domain Index Metadata

Domain indexes can have associated application-specific metadata that is imported
using anonymous PL/SQL blocks. These PL/SQL blocks are executed at import
time prior to the CREATE INDEXtatement. If a PL/SQL block causes an error, the

2-48 Oracle9j Database Utilities

Table-Level and Partition-Level Import

associated index is not created because the metadata is considered an integral part
of the index.

Table-Level and Partition-Level Import
You can import tables, partitions, and subpartitions in the following ways:
« Table-level Import: imports all data from the specified tables in an Export file.

« Partition-level Import: imports only data from the specified source partitions or
subpartitions.

You must set the parameter IGNORE=ywhen loading data into an existing table. See
IGNORE on page 2-23 for more information.

Guidelines for Using Table-Level Import

For each specified table, table-level Import imports all rows of the table. With
table-level Import:

« All tables exported using any Export mode (except TRANSPORT _
TABLESPACEJcan be imported.

« Users can import the entire (partitioned or nonpartitioned) table, partitions, or
subpartitions from a table-level export file into a (partitioned or nonpartitioned)
target table with the same name.

If the table does not exist, and if the exported table was partitioned, table-level
Import creates a partitioned table. If the table creation is successful, table-level
Import reads all source data from the export file into the target table. After Import,
the target table contains the partition definitions of all partitions and subpartitions
associated with the source table in the Export file. This operation ensures that the
physical and logical attributes (including partition bounds) of the source partitions
are maintained on Import.

Guidelines for Using Partition-Level Import

Partition-level Import can only be specified in table mode. It lets you selectively
load data from specified partitions or subpartitions in an export file. Keep the
following guidelines in mind when using partition-level import.

« Import always stores the rows according to the partitioning scheme of the target
table.

Import 2-49

Table-Level and Partition-Level Import

« Partition-level Import inserts only the row data from the specified source
partitions or subpartitions.

« If the target table is partitioned, partition-level Import rejects any rows that fall
above the highest partition of the target table.

« Partition-level Import cannot import a nonpartitioned exported table. However,
a partitioned table can be imported from a nonpartitioned exported table using
table-level Import.

« Partition-level Import is legal only if the source table (that is, the table called
tablename at export time) was partitioned and exists in the Export file.

« If the partition or subpartition name is not a valid partition in the export file,
Import generates a warning.

« The partition or subpartition name in the parameter refers to only the partition
or subpartition in the Export file, which may not contain all of the data of the
table on the export source system.

« If ROWS=ydefault), and the table does not exist in the Import target system, the
table is created and all rows from the source partition or subpartition are
inserted into the partition or subpartition of the target table.

« If ROWS=ydefault) and IGNORE=y but the table already existed before Import,
all rows for the specified partition or subpartition in the table are inserted into
the table. The rows are stored according to the existing partitioning scheme of
the target table.

« If ROWS=nimport does not insert data into the target table and continues to
process other objects associated with the specified table and partition or
subpartition in the file.

« If the target table is nonpartitioned, the partitions and subpartitions are
imported into the entire table. Import requires IGNORE=yto import one or
more partitions or subpartitions from the Export file into a nonpartitioned table
on the import target system.

Migrating Data Across Partitions and Tables

If you specify a partition name for a composite partition, all subpartitions within
the composite partition are used as the source.

In the following example, the partition specified by the partition-name is a
composite partition. All of its subpartitions will be imported:

imp SYSTEM/ password FILE=expdatdmp FROMUSER=scott TABLES=b:py

2-50 Oracle9/ Database Utilities

Controlling Index Creation and Maintenance

The following example causes row data of partitions qc and qd of table scott.e to
be imported into the table scott.e

imp scottftiger FILE=expdat.dmp TABLES=(e:qc, e:qd) IGNORE=y

If table e does not exist in the Import target database, it is created and data is
inserted into the same partitions. If table e existed on the target system before
Import, the row data is inserted into the partitions whose range allows insertion.
The row data can end up in partitions of names other than gc and qd.

Note: With partition-level Import to an existing table, you must set
up the target partitions or subpartitions properly and use
IGNORE-=y.

Controlling Index Creation and Maintenance

This section describes the behavior of Import with respect to index creation and
maintenance.

Delaying Index Creation

Import provides you with the capability of delaying index creation and
maintenance services until after completion of the import and insertion of exported
data. Performing index creation, re-creation, or maintenance after Import completes
is generally faster than updating the indexes for each row inserted by Import.

Index creation can be time consuming, and therefore can be done more efficiently
after the import of all other objects has completed. You can postpone creation of
indexes until after the Import completes by specifying INDEXES=n. (INDEXES=y is
the default.) You can then store the missing index definitions in a SQL script by
running Import while using the INDEXFILE parameter. The index-creation
statements that would otherwise be issued by Import are instead stored in the
specified file.

After the import is complete, you must create the indexes, typically by using the
contents of the file (specified with INDEXFILE) as a SQL script after specifying
passwords for the connect statements.

Import 2-51

Controlling Index Creation and Maintenance

Index Creation and Maintenance Controls

If SKIP_UNUSABLE_INDEXES=ythe Import utility postpones maintenance on all
indexes that were set to Index Unusable before Import. Other indexes (not
previously set Index Unusable) continue to be updated as rows are inserted. This
approach saves on index updates during import of existing tables.

Delayed index maintenance may cause a violation of an existing unique integrity
constraint supported by the index. The existence of a unique integrity constraint on
a table does not prevent existence of duplicate keys in a table that was imported
with INDEXES=n. The supporting index will be in an UNUSABLEtate until the
duplicates are removed and the index is rebuilt.

Example of Postponing Index Maintenance

For example, assume that partitioned table t with partitions p1 and p2 exists on the
Import target system. Assume that local indexes p1_ind on partition p1 and p2_
ind on partition p2 exist also. Assume that partition p1 contains a much larger
amount of data in the existing table t , compared with the amount of data to be
inserted by the Export file (expdat .dmp). Assume that the reverse is true for p2.

Consequently, performing index updates for p1_ind during table data insertion
time is more efficient than at partition index rebuild time. The opposite is true for
p2_ind .

Users can postpone local index maintenance for p2_ind during Import by using
the following steps:

1. Issue the following SQL statement before Import:
ALTER TABLE t MODIFY PARTITION p2 UNUSABLE LOCAL INDEXES,

2. Issue the following Import command:
imp scottfiger FILE=expdat.dmp TABLES = (tp1, tp2) IGNORE=y SKIP_UNUSABLE INDEXES=y
This example executes the ALTER SESSION SET SKIP_UNUSABLE_INDEXES=y
statement before performing the import.
3. Issue the following SQL statement after Import:
ALTER TABLE t MODIFY PARTITION p2 REBUILD UNUSABLE LOCAL INDEXES;
In this example, local index p1_ind on p1 will be updated when table data is

inserted into partition p1 during Import. Local index p2_ind on p2 will be
updated at index rebuild time, after Import.

2-52 Oracle9i Database Utilities

Network Considerations

Reducing Database Fragmentation

A database with many noncontiguous, small blocks of free space is said to be
fragmented. A fragmented database should be reorganized to make space available
in contiguous, larger blocks. You can reduce fragmentation by performing a full
database export and import as follows:

1. Do a full database export (FULL=y) to back up the entire database.
2. Shut down the Oracle database server after all users are logged off.

3. Delete the database. See your Oracle operating system-specific documentation
for information on how to delete a database.

4. Re-create the database using the CREATE DATABASEtatement.
5. Do afull database import (FULL=y) to restore the entire database.

See Also: Oracle9i Database Administrator’s Guide for more
information about creating databases

Network Considerations

This section describes factors to take into account when using Export and Import
across a hetwork.

Transporting Export Files Across a Network

Because the export file is in binary format, use a protocol that supports binary
transfers to prevent corruption of the file when you transfer it across a network. For
example, use FTP or a similar file transfer protocol to transmit the file in binary
mode. Transmitting export files in character mode causes errors when the file is
imported.

Exporting and Importing with Oracle Net

With Oracle Net, you can perform exports and imports over a network. For
example, if you run Export locally, you can write data from a remote Oracle
database into a local export file. If you run Import locally, you can read data into a
remote Oracle database.

To use Import with Oracle Net, include the connection qualifier string @onnect_
string when entering the username | password in the exp or imp command. For
the exact syntax of this clause, see the user’s guide for your Oracle Net protocol.

Import 2-53

Character Set and Globalization Support Considerations

See Also:
. Oracle Net Services Administrator’s Guide

« Oracle9i Heterogeneous Connectivity Administrator’s Guide

Character Set and Globalization Support Considerations

This section describes the character set conversions that can take place during
export and import operations.

Character Set Conversion

The following sections describe character conversion as it applies to user data and
DDL.

User Data

Data of datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOBnd NCLOBare
written to the export file directly in the character sets of the source database. If the
character sets of the source database are different than the character sets of the
import database, a single conversion is performed.

Data Definition Language (DDL)

Up to three character set conversions may be required for DDL during an
export/import operation:

1. Export writes export files using the character set specified in the NLS_LANG
environment variable for the user session. A character set conversion is
performed if the value of NLS_LANGCdiffers from the database character set.

2. Ifthe export file’s character set is different than the Import user session
character set, then Import converts the character set to its user session character
set. Import can only perform this conversion for single-byte character sets. This
means that for multibyte character sets, the import file’s character set must be
identical to the export file’s character set.

3. Afinal character set conversion may be performed if the target database’s
character set is different from Import’s user session character set.

To minimize data loss due to character set conversions, ensure that the export
database, the export user session, the import user session, and the import database
all use the same character set.

2-54 Oracle9i Database Utilities

Considerations When Importing Database Objects

Import and Single-Byte Character Sets

Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when you
import an 8-bit character set export file. This occurs if the system on which the
import occurs has a native 7-bit character set, or the NLS_LANGoperating system
environment variable is set to a 7-bit character set. Most often, this is apparent when
accented characters lose the accent mark.

To avoid this unwanted conversion, you can set the NLS_LANGoperating system
environment variable to be that of the export file character set.

When importing an Oracle Version 5 or 6 export file with a character set different
from that of the native operating system or the setting for NLS_LANG, you must set
the CHARSETmport parameter to specify the character set of the export file.

See Character Set Conversion on page 1-51.

Import and Multibyte Character Sets

For multibyte character sets, the import file's character set must be identical to the
Export file’s character set. This is because Import can only perform character set
conversion for single-byte character sets.

During the conversion, any characters in the export file that have no equivalent in
the target character set are replaced with a default character. (The default character
is defined by the target character set.) To guarantee 100% conversion, the target
character set must be a superset (or equivalent) of the source character set.

See Also: Oracle9i Globalization Support Guide

Considerations When Importing Database Objects

The following sections describe points you should consider when you import
particular database objects.

Importing Object Identifiers

The Oracle database server assigns object identifiers to uniquely identify object
types, object tables, and rows in object tables. These object identifiers are preserved
by Import.

When you import a table that references a type, but a type of that name already
exists in the database, Import attempts to verify that the preexisting type is, in fact,

Import 2-55

Considerations When Importing Database Objects

the type used by the table (rather than a different type that just happens to have the
same name).

To do this, Import compares the types’s unique identifier (TOID) with the identifier
stored in the export file. If those match, Import then compares the type’s unique
hashcode with that stored in the export file. Import will not import table rows if the
TOIDs or hashcodes do not match.

In some situations, you may not want this validation to occur on specified types (for
example, if the types were created by a cartridge installation). You can use the
parameter TOID_NOVALIDATEto specify types to exclude from the TOID and
hashcode comparison. See TOID_NOVALIDATE on page 2-31 for more information.

Caution: Be very careful about using TOID_NOVALIDATE,
because type validation provides an important capability that helps
avoid data corruption. Be sure you are confident of your
knowledge of type validation and how it works before attempting
to perform an import operation with this feature disabled.

Import uses the following criteria to decide how to handle object types, object
tables, and rows in object tables:

« For object types, if IGNORE-y, the object type already exists, and the object
identifiers, hashcodes, and type descriptors match, no error is reported. If the
object identifiers or hashcodes do not match and the parameter TOID_
NOVALIDATEhas not been set to ignore the object type, an error is reported and
any tables using the object type are not imported.

« For object types, if IGNORE=N and the object type already exists, an error is
reported. If the object identifiers, hashcodes, or type descriptors do not match
and the parameter TOID_NOVALIDATEhas not been set to ignore the object
type, any tables using the object type are not imported.

« For object tables, if IGNORE-y, the table already exists, and the object
identifiers, hashcodes, and type descriptors match, no error is reported. Rows
are imported into the object table. Import of rows may fail if rows with the same
object identifier already exist in the object table. If the object identifiers,
hashcodes, or type descriptors do not match, and the parameter TOID_
NOVALIDATEhas not been set to ignore the object type, an error is reported and
the table is not imported.

« For object tables, if IGNORE=n and the table already exists, an error is reported
and the table is not imported.

2-56 Oracle9/ Database Utilities

Considerations When Importing Database Objects

Because Import preserves object identifiers of object types and object tables,
consider the following when you import objects from one schema into another
schema using the FROMUSERnd TOUSERparameters:

« If the FROMUSEBDject types and object tables already exist on the target
system, errors occur because the object identifiers of the TOUSERbject types
and object tables are already in use. The FROMUSEBbject types and object
tables must be dropped from the system before the import is started.

« If an object table was created using the OID AS option to assign it the same
object identifier as another table, both tables cannot be imported. You can
import one of the tables, but the second table receives an error because the
object identifier is already in use.

Importing Existing Object Tables and Tables That Contain Object Types

Users frequently create tables before importing data to reorganize tablespace usage
or to change a table’s storage parameters. The tables must be created with the same
definitions as were previously used or a compatible format (except for storage
parameters). For object tables and tables that contain columns of object types,
format compatibilities are more restrictive.

For object tables and for tables containing columns of objects, each object the table
references has its name, structure, and version information written out to the Export
file. Export also includes object type information from different schemas, as needed.

Import verifies the existence of each object type required by a table prior to
importing the table data. This verification consists of a check of the object type’s
name followed by a comparison of the object type’s structure and version from the
import system with that found in the Export file.

If an object type name is found on the import system, but the structure or version
do not match that from the Export file, an error message is generated and the table
data is not imported.

The Import parameter TOID_NOVALIDATEcan be used to disable the verification of
the object type’s structure and version for specific objects.

Importing Nested Tables

Inner nested tables are exported separately from the outer table. Therefore,
situations may arise where data in an inner nested table might not be properly
imported:

Import 2-57

Considerations When Importing Database Objects

« Suppose a table with an inner nested table is exported and then imported
without dropping the table or removing rows from the table. If the IGNORE=y
parameter is used, there will be a constraint violation when inserting each row
in the outer table. However, data in the inner nested table may be successfully
imported, resulting in duplicate rows in the inner table.

« If nonrecoverable errors occur inserting data in outer tables, the rest of the data
in the outer table is skipped, but the corresponding inner table rows are not
skipped. This may result in inner table rows not being referenced by any row in
the outer table.

« Ifaninsertto an inner table fails after a recoverable error, its outer table row
will already have been inserted in the outer table and data will continue to be
inserted in it and any other inner tables of the containing table. This
circumstance results in a partial logical row.

« If nonrecoverable errors occur inserting data in an inner table, Import skips the
rest of that inner table’s data but does not skip the outer table or other nested
tables.

You should always carefully examine the log file for errors in outer tables and inner
tables. To be consistent, table data may need to be modified or deleted.

Because inner nested tables are imported separately from the outer table, attempts
to access data from them while importing may produce unexpected results. For
example, if an outer row is accessed before its inner rows are imported, an
incomplete row may be returned to the user.

Importing REF Data

REFcolumns and attributes may contain a hidden ROWIDthat points to the
referenced type instance. Import does not automatically recompute these ROWIB
for the target database. You should execute the following statement to reset the
ROWIB to their proper values:

ANALYZE TABLE [schema.fiable VALIDATE REF UPDATE

See Also: Oracle9i SQL Reference for more information about the
ANALYZE TABLEstatement

Importing BFILE Columns and Directory Aliases

Export and Import do not copy data referenced by BFILE columns and attributes
from the source database to the target database. Export and Import only propagate
the names of the files and the directory aliases referenced by the BFILE columns. It

2-58 Oracle9/ Database Utilities

Considerations When Importing Database Objects

is the responsibility of the DBA or user to move the actual files referenced through
BFILE columns and attributes.

When you import table data that contains BFILE columns, the BFILE locator is
imported with the directory alias and filename that was present at export time.
Import does not verify that the directory alias or file exists. If the directory alias or
file does not exist, an error occurs when the user accesses the BFILE data.

For directory aliases, if the operating system directory syntax used in the export
system is not valid on the import system, no error is reported at import time.
Subsequent access to the file data receives an error.

It is the responsibility of the DBA or user to ensure the directory alias is valid on the
import system.

Importing Foreign Function Libraries

Import does not verify that the location referenced by the foreign function library is
correct. If the formats for directory and filenames used in the library's specification
on the export file are invalid on the import system, no error is reported at import
time. Subsequent usage of the callout functions will receive an error.

It is the responsibility of the DBA or user to manually move the library and ensure
the library's specification is valid on the import system.

Importing Stored Procedures, Functions, and Packages

The behavior of Import when a local stored procedure, function, or package is
imported depends upon whether the COMPILEparameter is set toy or to n.

When a local stored procedure, function, or package is imported and COMPILE=y
the procedure, function, or package is recompiled upon import and retains its
original time-stamp specification. If the compilation is successful, it can be accessed
by remote procedures without error.

If COMPILE=n the procedure, function, or package is still imported, but the original
time stamp is lost. The compilation takes place the next time the procedure,
function, or package is used.

See Also: COMPILE on page 2-19
Importing Java Objects

When a Java source or class is imported, it retains its original resolver (the list of
schemas used to resolve Java full names). If the object is imported into a different

Import 2-59

Considerations When Importing Database Objects

schema, that resolver may no longer be valid. For example, the default resolver for a
Java object in scott ’s schema is ((* scott) (* public)). If the object is
imported into blake ’s schema, it may be necessary to alter the object so that the
resolver references blake ’s schema.

Importing External Tables

Import does not verify that the location referenced by the external table is correct. If
the formats for directory and filenames used in the table's specification on the
export file are invalid on the import system, no error is reported at import time.
Subsequent usage of the callout functions will receive an error.

It is the responsibility of the DBA or user to manually move the table and ensure the
table's specification is valid on the import system.

Importing Advanced Queue (AQ) Tables

Importing a queue table also imports any underlying queues and the related
dictionary information. A queue can be imported only at the granularity level of the
gueue table. When a queue table is imported, export pretable and posttable action
procedures maintain the queue dictionary.

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing

Importing LONG Columns

LONGCcolumns can be up to 2 gigabytes in length. In importing and exporting, the
LONGcolumns must fit into memory with the rest of each row’s data. The memory
used to store LONGcolumns, however, does not need to be contiguous, because
LONCdata is loaded in sections.

Import can be used to convert LONGcolumns to CLOBcolumns. To do this, first
create a table specifying the new CLOBcolumn. When Import is run, the LONCdata
is converted to CLOBformat. The same technique can be used to convert LONG RAW
columns to BLOBcolumns.

Importing Views
Views are exported in dependency order. In some cases, Export must determine the

ordering, rather than obtaining the order from the server database. In doing so,
Export may not always be able to duplicate the correct ordering, resulting in

2-60 Oracle9/ Database Utilities

Considerations When Importing Database Objects

compilation warnings when a view is imported, and the failure to import column
comments on such views.

In particular, if viewa uses the stored procedure procb , and procb uses the view
viewc , Export cannot determine the proper ordering of viewa and viewc . If
viewa is exported before viewc and procb already exists on the import system,
viewa receives compilation warnings at import time.

Grants on views are imported even if a view has compilation errors. A view could
have compilation errors if an object it depends on, such as a table, procedure, or
another view, does not exist when the view is created. If a base table does not exist,
the server cannot validate that the grantor has the proper privileges on the base
table with the GRANT OPTIONAccess violations could occur when the view is used
if the grantor does not have the proper privileges after the missing tables are
created.

Importing views that contain references to tables in other schemas requires that the
importer have SELECT ANY TABLPrivilege. If the importer has not been granted
this privilege, the views will be imported in an uncompiled state. Note that
granting the privilege to a role is insufficient. For the view to be compiled, the
privilege must be granted directly to the importer.

Importing Partitioned Tables

Import attempts to create a partitioned table with the same partition or subpartition
names as the exported partitioned table, including names of the form SYS_Pnnn. If
a table with the same name already exists, Import processing depends on the value

of the IGNOREparameter.

Unless SKIP_UNUSABLE_INDEXESY, inserting the exported data into the target
table fails if Import cannot update a nonpartitioned index or index partition that is
marked Indexes Unusable or is otherwise not suitable.

Support for Fine-Grained Access Control

You can export tables with fine-grained access control policies enabled. When doing
so, keep the following considerations in mind:

To restore the fine-grained access control policies, the user who imports from an
export file containing such tables must have the following privileges:

« EXECUTHprivilege on the DBMS_RLS$ackage so that the tables’ security
policies can be reinstated.

« EXPORT_FULL_DATABASHIe enabled or EXEMPT ACCESS POLIG)fanted

Import 2-61

Materialized Views and Snapshots

If a user without the correct privileges attempts to import from an export file that
contains tables with fine-grained access control policies, a warning message will be
issued. Therefore, it is advisable for security reasons that the exporter/importer of
such tables be the DBA.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information about fine-grained access control

Materialized Views and Snapshots

Snapshot Log

Note: In certain situations, particularly those involving data
warehousing, snapshots may be referred to as materialized views.
This section retains the term snapshot.

The three interrelated objects in a snapshot system are the master table, optional
snapshot log, and the snapshot itself. The tables (master table, snapshot log table
definition, and snapshot tables) can be exported independently of one another.
Snapshot logs can be exported only if you export the associated master table. You
can export snapshots using full database or user-mode Export; you cannot use
table-mode Export.

This section discusses how fast refreshes are affected when these objects are
imported.

See Also: Oracle9i Replication for Import-specific information
about migration and compatibility and for more information about
snapshots and snapshot logs

The snapshot log in a dump file is imported if the master table already exists for the
database to which you are importing and it has a snapshot log.

When a ROWIDsnapshot log is exported, ROWID stored in the snapshot log have no
meaning upon import. As a result, each ROWIDsnapshot’s first attempt to do a fast
refresh fails, generating an error indicating that a complete refresh is required.

To avoid the refresh error, do a complete refresh after importing a ROWIDsnapshot
log. After you have done a complete refresh, subsequent fast refreshes will work
properly. In contrast, when a primary key snapshot log is exported, the keys’ values

2-62 Oracle9i Database Utilities

Materialized Views and Snapshots

Snapshots

do retain their meaning upon Import. Therefore, primary key snapshots can do a
fast refresh after the import.

See Also: Oracle9i Replication for information about primary key
snapshots

A snapshot that has been restored from an export file has reverted to a previous
state. On import, the time of the last refresh is imported as part of the snapshot table
definition. The function that calculates the next refresh time is also imported.

Each refresh leaves a signature. A fast refresh uses the log entries that date from the
time of that signature to bring the snapshot up to date. When the fast refresh is
complete, the signature is deleted and a new signature is created. Any log entries
that are not needed to refresh other snapshots are also deleted (all log entries with
times before the earliest remaining signature).

Importing a Snapshot

When you restore a snapshot from an export file, you may encounter a problem
under certain circumstances.

Assume that a snapshot is refreshed at time A, exported at time B, and refreshed
again at time C. Then, because of corruption or other problems, the snapshot needs
to be restored by dropping the snapshot and importing it again. The newly
imported version has the last refresh time recorded as time A. However, log entries
needed for a fast refresh may no longer exist. If the log entries do exist (because
they are needed for another snapshot that has yet to be refreshed), they are used,
and the fast refresh completes successfully. Otherwise, the fast refresh fails,
generating an error that says a complete refresh is required.

Importing a Snapshot into a Different Schema

Snapshots, snapshot logs, and related items are exported with the schema name
explicitly given in the DDL statements; therefore, snapshots and their related items
cannot be imported into a different schema.

If you attempt to use FROMUSERNd TOUSERo import snapshot data, an error will
be written to the Import log file and the items will not be imported.

Import 2-63

Transportable Tablespaces

Transportable Tablespaces

Transportable tablespaces let you move a set of tablespaces from one Oracle
database to another.

To do this, you must make the tablespaces read-only, copy the datafiles of these
tablespaces, and use Export/Import to move the database information (metadata)
stored in the data dictionary. Both the datafiles and the metadata export file must be
copied to the target database. The transport of these files can be done using any
facility for copying flat, binary files, such as the operating system copying facility,
binary-mode FTP, or publishing on CD-ROMs.

After copying the datafiles and importing the metadata, you can optionally put the
tablespaces in read/write mode.

See Transportable Tablespaces on page 1-56 for information on creating an Export
file containing transportable tablespace metadata.

Import provides the following parameters to enable import of transportable
tablespaces metadata.

« TRANSPORT_TABLESPACE

« TABLESPACES

« DATAFILES

. TTS_OWNERS

See TRANSPORT_TABLESPACE on page 2-32, TABLESPACES on page 2-31,

DATAFILES on page 2-20, and TTS_OWNERS on page 2-32 for more information.
See Also:

« Oracle9i Database Administrator’s Guide for details about how to
move or copy tablespaces to another database

« Oracle9i Database Concepts for an introduction to the
transportable tablespaces feature

Storage Parameters
By default, a table is imported into its original tablespace.

If the tablespace no longer exists, or the user does not have sufficient quota in the
tablespace, the system uses the default tablespace for that user, unless the table:

« Is partitioned

2-64 Oracle9i Database Utilities

Storage Parameters

« Isatype table
« Contains LOB, VARRAY, or OPAQUHEype columns
« Hasan index-organized table (I0T) overflow segment

If the user does not have sufficient quota in the default tablespace, the user’s tables
are not imported. See Reorganizing Tablespaces on page 2-66 to see how you can
use this to your advantage.

The OPTIMAL Parameter

The storage parameter OPTIMALfor rollback segments is not preserved during
export and import.

Storage Parameters for OID Indexes and LOB Columns

Tables are exported with their current storage parameters. For object tables, the
OIDINDEX is created with its current storage parameters and name, if given. For
tables that contain LOB VARRAYor OPAQUEype columns, LOB VARRAYor
OPAQUEype data is created with their current storage parameters.

If you alter the storage parameters of existing tables prior to export, the tables are
exported using those altered storage parameters. Note, however, that storage
parameters for LOB data cannot be altered prior to export (for example, chunk size
for a LOBcolumn, whether a LOBcolumn is CACHEor NOCACHEaNd so forth).

Note that LOB data might not reside in the same tablespace as the containing table.
The tablespace for that data must be read/write at the time of import or the table
will not be imported.

If LOB data resides in a tablespace that does not exist at the time of import or the
user does not have the necessary quota in that tablespace, the table will not be
imported. Because there can be multiple tablespace clauses, including one for the
table, Import cannot determine which tablespace clause caused the error.

Overriding Storage Parameters

Before using the Import utility to import data, you may want to create large tables
with different storage parameters. If so, you must specify IGNORE=yon the
command line or in the parameter file.

The Export COMPRESS Parameter

By default at export time, storage parameters are adjusted to consolidate all data
into its initial extent. To preserve the original size of an initial extent, you must

Import 2-65

Dropping a Tablespace

specify at export time that extents are not to be consolidated (by setting
COMPRESS9nSee COMPRESS on page 1-16.

Read-Only Tablespaces

Read-only tablespaces can be exported. On import, if the tablespace does not
already exist in the target database, the tablespace is created as a read/write
tablespace. If you want read-only functionality, you must manually make the
tablespace read-only after the import.

If the tablespace already exists in the target database and is read-only, you must
make it read/write before the import.

Dropping a Tablespace

You can drop a tablespace by redefining the objects to use different tablespaces
before the import. You can then issue the imp command and specify IGNORE=y.

In many cases, you can drop a tablespace by doing a full database export, then
creating a zero-block tablespace with the same name (before logging off) as the
tablespace you want to drop. During import, with IGNORE=y, the relevant CREATE
TABLESPACHEtatement will fail and prevent the creation of the unwanted
tablespace.

All objects from that tablespace will be imported into their owner’s default
tablespace with the exception of partitioned tables, type tables, and tables that
contain LOBor VARRAYtolumns or index-only tables with overflow segments.
Import cannot determine which tablespace caused the error. Instead, you must first
create a table and then import the table again, specifying IGNORE=y.

Objects are not imported into the default tablespace if the tablespace does not exist
or you do not have the necessary quotas for your default tablespace.

Reorganizing Tablespaces

If a user’s quota allows it, the user’s tables are imported into the same tablespace
from which they were exported. However, if the tablespace no longer exists or the
user does not have the necessary quota, the system uses the default tablespace for
that user as long as the table is unpartitioned, contains no LOBor VARRAYolumns,
is not a type table, and is not an index-only table with an overflow segment. This
scenario can be used to move a user’s tables from one tablespace to another.

2-66 Oracle9/ Database Utilities

Importing Statistics

For example, you need to move joe ’s tables from tablespace A to tablespace B after
a full database export. Follow these steps:

1. Ifjoe hasthe UNLIMITED TABLESPACHorivilege, revoke it. Set joe ’s quota on
tablespace Ato zero. Also revoke all roles that might have such privileges or
quotas.

Role revokes do not cascade. Therefore, users who were granted other roles by
joe will be unaffected.

Export joe ’s tables.
Drop joe ’s tables from tablespace A.

Give joe a quota on tablespace B and make it the default tablespace for joe .

o > w D

Import joe ’s tables. (By default, Import puts joe ’s tables into
tablespace B.)

Importing Statistics

If statistics are requested at export time and analyzer statistics are available for a
table, Export will place the ANALYZEstatement to recalculate the statistics for the
table into the dump file. In most circumstances, Export will also write the
precalculated optimizer statistics for tables, indexes, and columns to the dump file.
See the description of the Export parameter STATISTICS on page 1-25 and the
Import parameter STATISTICS on page 2-27.

Because of the time it takes to perform an ANALYZEstatement, it is usually
preferable for Import to use the precalculated optimizer statistics for a table (and its
indexes and columns) rather than executing the ANALYZEstatement saved by
Export. By default, Import will always use the precalculated statistics that are found
in the export dump file.

The Export utility flags certain precalculated statistics as questionable. See the
Export parameter, STATISTICS on page 1-25 for more information. In certain
situations, the importer might want to import only unquestionable statistics, and
may not want to import precalculated statistics in the following situations:

« Character set translations between the dump file and the import client and the
import database could potentially change collating sequences that are implicit
in the precalculated statistics.

« Row errors occurred while importing the table.

Import 2-67

Using Export and Import to Partition a Database Migration

« A partition level import is performed (column statistics will no longer be
accurate).

Note: Specifying ROWS=nvill not prevent the use of precalculated
statistics. This feature allows plan generation for queries to be
tuned in a nonproduction database using statistics from a
production database. In these cases, the importer should specify
STATISTICS=SAFE.

In certain situations, the importer might want to always use ANALYZEstatements
rather than precalculated statistics. For example, the statistics gathered from a
fragmented database may not be relevant when the data is imported in a
compressed form. In these cases, the importer should specify
STATISTICS=RECALCULATRo force the recalculation of statistics.

If you do not want any statistics to be established by Import, you should specify
STATISTICS=NONE.

Using Export and Import to Partition a Database Migration

When you use the Export and Import utilities to migrate a large database, it may be
more efficient to partition the migration into multiple export and import jobs. If you
decide to partition the migration, be aware of the following advantages and
disadvantages.

Advantages of Partitioning a Migration
Partitioning a migration has the following advantages:

« Time required for the migration may be reduced because many of the subjobs
can be run in parallel.

« The import can start as soon as the first export subjob completes, rather than
waiting for the entire export to complete.

Disadvantages of Partitioning a Migration
Partitioning a migration has the following disadvantages:

« The export and import processes become more complex.

2-68 Oracle9i Database Utilities

Using Export Files from a Previous Oracle Release

« Support of cross-schema references for certain types of objects may be
compromised. For example, if a schema contains a table with a foreign key
constraint against a table in a different schema, you may not have all required
parent records when you import the table into the dependent schema.

How to Use Export and Import to Partition a Database Migration
To perform a database migration in a partitioned manner, take the following steps:

1. For all top-level metadata in the database, issue the following commands:

a. exp dba/password FILE=full FULL=y CONSTRAINTS=n
TRIGGERS=n ROWS=n INDEXES=n

b. imp dba/password FILE=full FULL=y
2. For each scheman in the database, issue the following commands:
a. exp dba/password OWNER=schema n FILE=schema n

b. imp dba/password FILE=schema n FROMUSER=schema
TOUSER=schema IGNORE=y

All exports can be done in parallel. When the import of full,dmp completes, all
remaining imports can also be done in parallel.

Using Export Files from a Previous Oracle Release

The following sections describe considerations when you import data from earlier
versions of the Oracle database server into an Oracle9i server.

Using Oracle Version 7 Export Files

This section describes guidelines and restrictions that apply when you import data
from an Oracle version 7 database into an Oracle9i server.

See Also: Oracle9i Database Migration

Check Constraints on DATE Columns

In Oracle9i, check constraints on DATEcolumns must use the TO_DATEfunction to
specify the format of the date. Because this function was not required in versions
prior to Oracle8i, data imported from an earlier Oracle database might not have
used the TO_DATEunction. In such cases, the constraints are imported into the
Oracle9i database, but they are flagged in the dictionary as invalid.

Import 2-69

Using Export Files from a Previous Oracle Release

The catalog views DBA_CONSTRAINTS, USER_CONSTRAINT&nd ALL_
CONSTRAINTSan be used to identify such constraints. Import issues a warning
message if invalid date constraints are in the database.

Using Oracle Version 6 Export Files

This section describes guidelines and restrictions that apply when you import data
from an Oracle Version 6 database into an Oracle9i server.

User Privileges

When user definitions are imported into an Oracle database, they are created with
the CREATE USERtatement. So, when importing from export files created by
previous versions of Export, users are not granted CREATE SESSIONrivileges
automatically.

CHAR columns

Oracle Version 6 CHARcolumns are automatically converted into the Oracle
VARCHARZ2iatatype.

Status of Integrity Constraints

NOT NULL constraints are imported as ENABLED. All other constraints are
imported as DISABLED.

Length of Default Column Values

A table with a default column value that is longer than the maximum size of that
column generates the following error on import to Oracle9i:

ORA-1401: inserted value too large for column

Oracle Version 6 did not check the columns in a CREATE TABLEstatement to be
sure they were long enough to hold their default values so these tables could be
imported into a Version 6 database. The Oracle9i server does make this check,
however. As a result, column defaults that could be imported into a Version 6
database may not import into Oracle9i.

If the default is a value returned by a function, the column must be large enough to
hold the maximum value that can be returned by that function. Otherwise, the
CREATE TABLEstatement recorded in the export file produces an error on import.

2-70 Oracle9i Database Utilities

Using Export Files from a Previous Oracle Release

Note: The maximum value of the USERfunction increased in
Oracle7, so columns with a default of USERmay not be long
enough. To determine the maximum size that the USERfunction
returns, execute the following SQL statement:

DESCRIBE user_sys privs

The length shown for the USERNAMEDIumn is the maximum
length returned by the USERfunction.

See Also: Oracle9i Database Migration

Using Oracle Version 5 Export Files

Oracle9i Import reads Export dump files created by Oracle release 5.1.22 and higher.
Keep in mind the following:

« CHARcolumns are automatically converted to VARCHAR2
« NOT NULLconstraints are imported as ENABLED

« Import automatically creates an index on any clusters to be imported.

The CHARSET Parameter

Default: none

This parameter applies to Oracle Version 5 and 6 export files only. Use of this
parameter is not recommended. It is provided only for compatibility with previous
versions. Eventually, it will no longer be supported.

Oracle Version 5 and 6 export files do not contain the database character set
identifier. However, a version 5 or 6 export file does indicate whether the user
session character set was ASCII or EBCDIC.

Use this parameter to indicate the actual character set used at export time. The
Import utility will verify whether the specified character set is ASCII or EBCDIC
based on the character set in the export file.

If you do not specify a value for the CHARSEparameter and the export file is
ASCII, Import will verify that the user session character set is ASCII. Or, if the
export file is EBCDIC, Import will verify that the user session character set is
EBCDIC.

Import 2-71

Using Export Files from a Previous Oracle Release

If you are using a version of Oracle greater than version 5 or 6, the character set is
specified within the export file, and conversion to the current database’s character
set is automatic. Specification of this parameter serves only as a check to ensure that
the export file’s character set matches the expected value. If not, an error results.

2-72 Oracle9i Database Utilities

Part |

SQL*Loader

The chapters in this section describe the SQL*Loader utility:
Chapter 3, "SQL*Loader Concepts"

This chapter introduces SQL*Loader and describes its features. It also introduces
data loading concepts (including object support). It discusses input to SQL*Loader,
database preparation, and output from SQL*Loader.

Chapter 4, "SQL*Loader Command-Line Reference"

This chapter describes the command-line syntax used by SQL*Loader. It discusses
command-line arguments, suppressing SQL*Loader messages, sizing the bind array;,
and more.

Chapter 5, "SQL*Loader Control File Reference"

This chapter describes the control file syntax you use to configure SQL*Loader and
to describe to SQL*Loader how to map your data to Oracle format. It provides
detailed syntax diagrams and information about specifying datafiles, tables and
columns, the location of data, the type and format of data to be loaded, and more.

Chapter 6, "Field List Reference"

This chapter describes the field list section of a SQL*Loader control file. The field list
provides information about fields being loaded, such as position, datatype,
conditions, and delimiters.

Chapter 7, "Loading Objects, LOBs, and Collections"

This chapter describes how to load objects in various formats, as well as loading
object tables and REFcolumns. This chapter also discusses loading LOBs, and
columns.

Chapter 8, "SQL*Loader Log File Reference"

This chapter describes the information contained in SQL*Loader log file output.
Chapter 9, "Conventional and Direct Path Loads"

This chapter describes the differences between a conventional path load and a direct
path load. A direct path load is a high performance option that significantly reduces
the time required to load large quantities of data.

Chapter 10, "SQL*Loader Case Studies"

This chapter presents case studies that illustrate some of the features of
SQL*Loader. It demonstrates the loading of variable-length data, fixed-format
records, a free-format file, multiple physical records as one logical record, multiple
tables, direct path loads, and loading objects, collections, and REFcolumns.

3

SQL*Loader Concepts

This chapter explains the basic concepts of loading data into an Oracle database
with SQL*Loader. This chapter covers the following topics:

« SQL*Loader Features

« SQL*Loader Control File

« Input Data and Datafiles

« LOBFILEs and Secondary Data Files (SDFs)

« Data Conversion and Datatype Specification

« Discarded and Rejected Records

« Log File and Logging Information

« Conventional Path Loads, Direct Path Loads, and External Table Loads
« Loading Objects, Collections, and LOBs

« Partitioned Object Support

« Application Development: Direct Path Load API

SQL*Loader Features

SQL*Loader loads data from external files into tables of an Oracle database. It has a
powerful data parsing engine that puts little limitation on the format of the data in
the datafile. You can use SQL*Loader to do the following:

« Load data from multiple datafiles during the same load session.
« Load data into multiple tables during the same load session.

« Specify the character set of the data.

SQL*Loader Concepts 3-1

SQL*Loader Features

« Selectively load data (you can load records based on the records’ values).
« Manipulate the data before loading it, using SQL functions.

« Generate unique sequential key values in specified columns.

« Use the operating system’s file system to access the datafiles.

« Load data from disk, tape, or named pipe.

« Generate sophisticated error reports, which greatly aids troubleshooting.
« Load arbitrarily complex object-relational data.

« Use secondary datafiles for loading LOBs and collections.

« Use either conventional or direct path loading. While conventional path loading
is very flexible, direct path loading provides superior loading performance. See
Chapter 9.

« Use a DB2 Load Utility control file as a SQL*Loader control file with few or no
changes involved. See Appendix B.

A typical SQL*Loader session takes as input a control file, which controls the
behavior of SQL*Loader, and one or more datafiles. The output of SQL*Loader is an
Oracle database (where the data is loaded), a log file, a bad file, and potentially, a
discard file. An example of the flow of a SQL*Loader session is shown in Figure 3-1.

3-2 Oracle9/ Database Utilities

SQL*Loader Control File

Figure 3-1 SQL*Loader Overview

—
Loader
Input
Datafiles i C?:?|té0|
—
Lo * Bad
File SQL*Loader =6
—
Discard
Database > Files ||

SQL*Loader Control File

The control file is a text file written in a language that SQL*Loader understands.
The control file tells SQL*Loader where to find the data, how to parse and interpret
the data, where to insert the data, and more.

Although not precisely defined, a control file can be said to have three sections.
The first section contains session-wide information, for example:

« Global options such as bindsize, rows, records to skip, and so on

« INFILE clauses to specify where the input data is located

«» Datato be loaded

The second section consists of one or more INTO TABLE blocks. Each of these
blocks contains information about the table into which the data is to be loaded, such
as the table name and the columns of the table.

The third section is optional and, if present, contains input data.

SQL*Loader Concepts 3-3

Input Data and Datafiles

Some control file syntax considerations to keep in mind are:
« The syntax is free-format (statements can extend over multiple lines).

« Itis case insensitive; however, strings enclosed in single or double quotation
marks are taken literally, including case.

« Incontrol file syntax, comments extend from the two hyphens (--) that mark the
beginning of the comment to the end of the line. The optional third section of
the control file is interpreted as data rather than as control file syntax;
consequently, comments in this section are not supported.

« The CONSTANkeyword has special meaning to SQL*Loader and is therefore
reserved. To avoid potential conflicts, Oracle Corporation recommends that you
do not use the word CONSTAN&s a name for any tables or columns.

See Also: Chapter 5 for details about control file syntax and
semantics

Input Data and Datafiles

SQL*Loader reads data from one or more files (or operating system equivalents of
files) specified in the control file. From SQL*Loader’s perspective, the data in the
datafile is organized as records. A particular datafile can be in fixed record format,
variable record format, or stream record format. The record format can be specified
in the control file with the INFILE parameter. If no record format is specified, the
default is stream record format.

Note: If data is specified inside the control file (that is, INFILE *
was specified in the control file), then the data is interpreted in the
stream record format with the default record terminator.

Fixed Record Format

A file is in fixed record format when all records in a datafile are the same byte
length. Although this format is the least flexible, it results in better performance
than variable or stream format. Fixed format is also simple to specify. For example:

INFILE datafle name — "fix n'

This example specifies that SQL*Loader should interpret the particular datafile as
being in fixed record format where every record is n bytes long.

3-4 Oracle9/ Database Utilities

Input Data and Datafiles

Example 3-1 shows a control file that specifies a datafile that should be interpreted
in the fixed record format. The datafile in the example contains five physical
records. Assuming that a period (.) indicates a space, the first physical record is
[001,...cd,.] which is exactly eleven bytes (assuming a single-byte character set). The
second record is [0002,fghi,\n] followed by the newline character (which is the
eleventh byte), and so on. Note that newline characters are not required with the
fixed record format.

Note that the length is always interpreted in bytes, even if character-length
semantics are in effect for the file. This is necessary because the file could contain a
mix of fields, some of which are processed with character-length semantics and
others which are processed with byte-length semantics. See Character-Length
Semantics on page 5-22.

Example 3-1 Loading Data in Fixed Record Format

load data

infile 'example.dat’ "fix 11"

into table example

fields terminated by ', optionally enclosed by ™
(col1, col2)

example.dat:

001, cd, 0002,fghi,
00003,Imn,
1,"pars",
0005,umwix,

Variable Record Format

A file is in variable record format when the length of each record in a character field
is included at the beginning of each record in the datafile. This format provides
some added flexibility over the fixed record format and a performance advantage
over the stream record format. For example, you can specify a datafile that is to be
interpreted as being in variable record format as follows:

INFILE" qatafle name "'var n
In this example, n specifies the number of bytes in the record length field. If n is not

specified, SQL*Loader assumes a length of 5 bytes. Specifying n larger than 40 will
result in an error.

Example 3-2 shows a control file specification that tells SQL*Loader to look for data
in the datafile example .dat and to expect variable record format where the record

SQL*Loader Concepts 3-5

Input Data and Datafiles

length fields are 3 bytes long. The example.dat datafile consists of three physical
records. The first is specified to be 009 (that is, 9) bytes long, the second is 010 bytes
long (that is, 10, including a 1-byte newline), and the third is 012 bytes long (also
including a 1-byte newline). Note that newline characters are not required with the
variable record format. This example also assumes a single-byte character set for the
datafile.

Note that the lengths are always interpreted in bytes, even if character-length
semantics are in effect for the file. This is necessary because the file could contain a
mix of fields, some processed with character-length semantics and others processed
with byte-length semantics. See Character-Length Semantics on page 5-22.

Example 3-2 Loading Data in Variable Record Format

load data

infile ‘'example.dat’ "var 3"

into table example

fields terminated by ',’ optionally enclosed by ™
(col1 char(5),

col2 char(7))

example.dat:
009hello,cd,010world,im,
012my,nameis,

Stream Record Format

A file is in stream record format when the records are not specified by size; instead
SQL*Loader forms records by scanning for the record terminator. Stream record
format is the most flexible format, but there can be a negative effect on performance.
The specification of a datafile to be interpreted as being in stream record format
looks similar to the following:

INFILE datafle name ['strterminator_sting"]

The terminator_string is specified as either’ char_string ' or X’hex_

string ' where:

« ' char_string ' isastring of characters enclosed in single or double quotation
marks

« Xhex_string ' isabyte string in hexadecimal format

3-6 Oracle9/ Database Utilities

Input Data and Datafiles

When the terminator_string contains special (nonprintable) characters, it
should be specified as a X’hex_string ' . However, some nonprintable characters
can be specified as (' char_string ") by using a backslash. For example:

\n linefeed

\t horizontal tab
\f formfeed

\v vertical tab

\r carriage return

If the character set specified with the NLS_LANGparameter for your session is
different from the character set of the datafile, character strings are converted to the
character set of the datafile.

Hexadecimal strings are assumed to be in the character set of the datafile, so no
conversion is performed.

If no terminator_string is specified, it defaults to the newline (end-of-line)
character (line feed in UNIX-based platforms, carriage return followed by a line
feed on Microsoft platforms, and so on). The newline character is converted to the
character set of the datafile.

Example 3-3 illustrates loading data in stream record format where the terminator
string is specified using a character string, '\n’ . The use of the backslash
character allows the character string to specify the nonprintable linefeed character.

Example 3-3 Loading Data in Stream Record Format

load data

infile ‘example.dat’ "str’\n™

into table example

fields terminated by ', optionally enclosed by ™
(col1 char(5),

col2 char(7))

example.dat:
helloworld,|
james,bond,|

SQL*Loader Concepts 3-7

Input Data and Datafiles

Logical Records

SQL*Loader organizes the input data into physical records, according to the
specified record format. By default a physical record is a logical record, but for
added flexibility, SQL*Loader can be instructed to combine a number of physical
records into a logical record.

SQL*Loader can be instructed to follow one of the following two logical record
forming strategies:

« Combine a fixed number of physical records to form each logical record

« Combine physical records into logical records while a certain condition is true

See Also:

« Assembling Logical Records from Physical Records on
page 5-26

« Case Study 4: Loading Combined Physical Records on
page 10-14 for an example of how to use continuation fields to
form one logical record from multiple physical records

Data Fields

Once a logical record is formed, field setting on the logical record is done. Field
setting is a process in which SQL*Loader uses control-file field specifications to
determine which parts of logical record data correspond to which control-file fields.
It is possible for two or more field specifications to claim the same data. Also, it is
possible for a logical record to contain data that is not claimed by any control-file
field specification.

Most control-file field specifications claim a particular part of the logical record.
This mapping takes the following forms:

« The byte position of the data field’s beginning, end, or both, can be specified.
This specification form is not the most flexible, but it enjoys high field setting
performance.

« The strings delimiting (enclosing and/or terminating) a particular data field can
be specified. A delimited data field is assumed to start where the last data field
ended, unless the byte position of the start of the data field is specified.

« The byte offset and/or the length of the data field can be specified. This way
each field starts a specified number of bytes from where the last one ended and
continues for a specified length.

3-8 Oracle9/ Database Utilities

LOBFILEs and Secondary Data Files (SDFs)

« Length-value datatypes can be used. In this case, the first n number of bytes of
the data field contain information about how long the rest of the data field is.

See Also:
« SQL*Loader Datatypes on page 6-7
« Specifying Delimiters on page 6-23

LOBFILEs and Secondary Data Files (SDFs)

LOB data can be lengthy enough that it makes sense to load it from a LOBFILE. In
LOBFILEs, LOB data instances are still considered to be in fields (predetermined
size, delimited, length-value), but these fields are not organized into records (the
concept of a record does not exist within LOBFILES). Therefore, the processing
overhead of dealing with records is avoided. This type of organization of data is
ideal for LOB loading.

For example, you might use LOBFILEs to load employee names, employee IDs, and
employee resumes. You could read the employee names and IDs from the main
datafiles and you could read the resumes, which can be quite lengthy, from
LOBFILEs.

You might also use LOBFILEs to facilitate the loading of XML data. You can use XML
columns to hold data that models structured and semistructured data. Such data
can be quite lengthy.

Secondary datafiles (SDFs) are similar in concept to primary datafiles. Like primary
datafiles, SDFs are a collection of records, and each record is made up of fields. The
SDFs are specified on a per control-file-field basis. Only a collection_fld_spec

can name an SDF as its data source.

SDFs are specified using the SDFparameter. The SDFparameter can be followed by
either the file specification string, or a FILLER field that is mapped to a data field
containing one or more file specification strings.

See Also:
« Loading LOB Data from LOBFILEs on page 7-18
« Secondary Datafiles (SDFs) on page 7-26

SQL*Loader Concepts 3-9

Data Conversion and Datatype Specification

Data Conversion and Datatype Specification

During a conventional path load, data fields in the datafile are converted into
columns in the database (direct path loads are conceptually similar, but the
implementation is different). There are two conversion steps:

1. SQL*Loader uses the field specifications in the control file to interpret the
format of the datafile, parse the input data, and populate the bind arrays that
correspond to a SQL INSERT statement using that data.

2. The Oracle database server accepts the data and executes the INSERT statement
to store the data in the database.

The Oracle database server uses the datatype of the column to convert the data into
its final, stored form. Keep in mind the distinction between a field in a datafile and a
column in the database. Remember also that the field datatypes defined in a
SQL*Loader control file are not the same as the column datatypes.

Discarded and Rejected Records

The Bad File

Records read from the input file might not be inserted into the database. Such
records are placed in either a bad file or a discard file.

The bad file contains records that were rejected, either by SQL*Loader or by the
Oracle database server. Some of the possible reasons for rejection are discussed in
the next sections.

SQL*Loader Rejects

Records are rejected by SQL*Loader when the input format is invalid. For example,
if the second enclosure delimiter is missing, or if a delimited field exceeds its
maximum length, SQL*Loader rejects the record. Rejected records are placed in the
bad file.

Oracle Rejects

After a record is accepted for processing by SQL*Loader, a row is sent to the Oracle
database server for insertion. If Oracle determines that the row is valid, then the
row is inserted into the database. If not, the record is rejected, and SQL*Loader puts
it in the bad file. The row may be rejected, for example, because a key is not unique,
because a required field is null, or because the field contains invalid data for the
Oracle datatype.

3-10 Oracle9i Database Utilities

Conventional Path Loads, Direct Path Loads, and External Table Loads

See Also:
« Specifying the Bad File on page 5-11

« Case Study 4: Loading Combined Physical Records on
page 10-14 for an example use of a bad file

The Discard File

As SQL*Loader executes, it may create a file called the discard file. This file is
created only when it is needed, and only if you have specified that a discard file
should be enabled. The discard file contains records that were filtered out of the
load because they did not match any record-selection criteria specified in the control
file.

The discard file therefore contains records that were not inserted into any table in
the database. You can specify the maximum number of such records that the discard
file can accept. Data written to any database table is not written to the discard file.

See Also:

« Case Study 4: Loading Combined Physical Records on
page 10-14

« Specifying the Discard File on page 5-14

Log File and Logging Information

When SQL*Loader begins execution, it creates a log file. If it cannot create a log file,
execution terminates. The log file contains a detailed summary of the load,
including a description of any errors that occurred during the load.

See Also:

« Chapter 8, "SQL*Loader Log File Reference"
« Chapter 10, "SQL*Loader Case Studies" for sample log files

Conventional Path Loads, Direct Path Loads, and External Table Loads
SQL*Loader provides the following methods to load data:
« Conventional Path Loads
« Direct Path Loads

SQL*Loader Concepts 3-11

Conventional Path Loads, Direct Path Loads, and External Table Loads

« External Table Loads

Conventional Path Loads

During conventional path loads, the input records are parsed according to the field
specifications, and each data field is copied to its corresponding bind array. When
the bind array is full (or no more data is left to read), an array insert is executed.

See Also:
« Data Loading Methods on page 9-1
« Bind Arrays and Conventional Path Loads on page 5-42

SQL*Loader stores LOB fields after a bind array insert is done. Thus, if there are any
errors in processing the LOB field (for example, the LOBFILE could not be found),
the LOB field is left empty. Note also that because LOB data is loaded after the array
insert has been performed, BEFOREand AFTERrow triggers may not work as
expected for LOBcolumns. This is because the triggers fire before SQL*Loader has a
chance to load the LOB contents into the column. For instance, suppose you are
loading a LOBcolumn, C1, with data and that you want a BEFOREow trigger to
examine the contents of this LOBcolumn and derive a value to be loaded for some
other column, C2, based on its examination. This is not possible because the LOB
contents will not have been loaded at the time the trigger fires.

Direct Path Loads

A direct path load parses the input records according to the field specifications,
converts the input field data to the column datatype, and builds a column array.
The column array is passed to a block formatter, which creates data blocks in Oracle
database block format. The newly formatted database blocks are written directly to
the database, bypassing most RDBMS processing. Direct path load is much faster
than conventional path load, but entails several restrictions.

See Also: Direct Path Load on page 9-4

Parallel Direct Path

A parallel direct path load allows multiple direct path load sessions to concurrently
load the same data segments (allows intrasegment parallelism). Parallel direct path
is more restrictive than direct path.

See Also: Parallel Data Loading Models on page 9-27

3-12 Oracle9i Database Utilities

Loading Objects, Collections, and LOBs

External Table Loads

An external table load creates an external table for data in a data file and executes
INSERT statements to insert the data from the data file into the target table.

The advantages of using external table loads over conventional path and direct path
loads are as follows:

« An external table load attempts to load datafiles in parallel. If a datafile is big
enough, it will attempt to load that file in parallel.

« Anexternal table load allows modification of the data being loaded by using
SQL functions and PL/SQL functions as part of the INSERT statement that is
used to create the external table.

See Also:
» Chapter 11, "External Tables Concepts"

« Chapter 12, "External Tables Access Parameters"

Loading Objects, Collections, and LOBs

You can use SQL*Loader to bulk load objects, collections, and LOBs. It is assumed
that you are familiar with the concept of objects and with Oracle’s implementation
of object support as described in Oracle9i Database Concepts and in the Oracle9i
Database Administrator’s Guide.

Supported Object Types
SQL*Loader supports loading of the following two object types:

column-objects

When a column of a table is of some object type, the objects in that column are
referred to as column-objects. Conceptually such objects are stored in entirety in a

single column position in a row. These objects do not have object identifiers and
cannot be referenced.

If the object type of the column object is declared to be nonfinal, then SQL*Loader
allows a derived type (or subtype) to be loaded into the column object.

SQL*Loader Concepts 3-13

Loading Objects, Collections, and LOBs

row objects

These objects are stored in tables, known as object tables, that have columns
corresponding to the attributes of the object. The object tables have an additional
system-generated column, called SYS_NC_OID$, that stores system-generated
unique identifiers (OIDs) for each of the objects in the table. Columns in other tables
can refer to these objects by using the OIDs.

If the object type of the object table is declared to be nonfinal, then SQL*Loader
allows a derived type (or subtype) to be loaded into the row object.

See Also:

» Loading Column Objects on page 7-1

« Loading Object Tables on page 7-8

Supported Collection Types

SQL*Loader supports loading of the following two collection types:

Nested Tables

A nested table is a table that appears as a column in another table. All operations
that can be performed on other tables can also be performed on nested tables.

VARRAYs

VARRAY are variable sized arrays. An array is an ordered set of built-in types or
objects, called elements. Each array element is of the same type and has an index,
which is a number corresponding to the element’s position in the VARRAY.

When creating a VARRAWype, you must specify the maximum size. Once you have
declared a VARRAMYype, it can be used as the datatype of a column of a relational
table, as an object type attribute, or as a PL/SQL variable.

See Also: Loading Collections (Nested Tables and VARRAYS) on
page 7-24 for details on using SQL*Loader control file data
definition language to load these collection types

Supported LOB Types

A LOB is a large object type. This release of SQL*Loader supports loading of four
LOB types:

« BLOB: a LOB containing unstructured binary data.

3-14 Oracle9i Database Utilities

Application Development: Direct Path Load API

« CLOB: a LOB containing character data.
« NCLOB:a LOB containing characters in a database national character set.

« BFILE: aBLOBstored outside of the database tablespaces in a server-side
operating system file.

LOBs can be column datatypes, and with the exception of the NCLOB, they can be
an object’s attribute datatypes. LOBs can have an actual value, they can be null, or
they can be "empty."

See Also: Loading LOBs on page 7-13 for details on using
SQL*Loader control file data definition language to load these LOB

types

Partitioned Object Support

SQL*Loader supports loading partitioned objects in the database. A partitioned
object in an Oracle database is a table or index consisting of partitions (pieces) that
have been grouped, typically by common logical attributes. For example, sales data
for the year 2000 might be partitioned by month. The data for each month is stored
in a separate partition of the sales table. Each partition is stored in a separate
segment of the database and can have different physical attributes.

SQL*Loader partitioned object support enables SQL*Loader to load the following:
« Asingle partition of a partitioned table
« All partitions of a partitioned table

« A nonpartitioned table

Application Development: Direct Path Load API

Oracle Corporation provides a direct path load API for application developers. See
the Oracle Call Interface Programmer’s Guide for more information.

SQL*Loader Concepts 3-15

Application Development: Direct Path Load API

3-16 Oracle9i Database Utilities

A

SQL*Loader Command-Line Reference

This chapter describes the command-line parameters used to invoke SQL*Loader.
The following topics are discussed:

« Invoking SQL*Loader
« Command-Line Parameters

« Exit Codes for Inspection and Display

Invoking SQL*Loader

When you invoke SQL*Loader, you can specify certain parameters to establish
session characteristics. Parameters can be entered in any order, optionally separated
by commas. You specify values for parameters, or in some cases, you can accept the
default without entering a value.

For example:

SQLLDR CONTROL=foo.ctl, LOG=bar.log, BAD=baz.bad, DATA=etc.dat
USERID=scottfiger, ERRORS=999, LOAD=2000, DISCARD=toss.dis,
DISCARDMAX=5

If you invoke SQL*Loader without specifying any parameters, SQL*Loader displays
a help screen similar to the following. It lists the available parameters and their
default values.

sqlidr

Valid Keywords:

userid — ORACLE usemame/password

SQL*Loader Command-Line Reference 4-1

Invoking SQL*Loader

control - Control file name
log - Log file name
bad — Bad file name
data — Data file name
discard - Discard file name
discardmax — Number of discardstoallow ~ (Default all)
skip — Number of logical records to skip - (Default 0)
load — Number of logical records to load (Default all)
errors — Number of errors to allow (Default 50)
rows — Number of rows in conventional path bind array or between direct path data saves
(Default: Conventional path 64, Direct path all)
bindsize - Size of conventional path bind array in bytes (Defautt 256000)
silent — Suppress messages during run (header,feedback errors,discards, partitions)

direct — use direct path (Default FALSE)
parfile — parameter file: name of file that contains parameter specifications
parallel - do parallel load (Default FALSE)

file — File to allocate extents from

skip_unusable_indexes — disallow/allow unusable indexes or index partitions (Default FALSE)
skip_index_maintenance - do not maintain indexes, mark affected indexes as unusable (Default
FALSE)

readsize - Size of Read buffer (Default 1048576)
extemal_table — use extemal table for load; NOT_USED, GENERATE_ONLY, EXECUTE (Default NOT_
USED)
columnarrayrows — Number of rows for direct path column array (Default 5000)
streamsize - Size of direct path stream buffer in bytes (Default 256000)
multithreading — use multithreading in direct path

resumable — enable or disable resumable for current session (Default FALSE)
resumable_name — text string to help identify resumable statement
resumable_timeout — wait ime (in seconds) for RESUMABLE (Default 7200)

PLEASE NOTE: Command-line parameters may be specified either by position or by keywords. An
example of the former case is 'sqlldr scottftiger foo’; an example of the latter is *sgldr

control=foo userid=scottfiger. One may specify parameters by position before but not after
parameters specified by keywords. For example, 'sqlldr scottfiger control=foo logfile=log’ is

allowed, but 'sglldr scottftiger control=foo log' is not, even though the position of the

parameter ‘log’ is correct.

Note: The command to invoke SQL*Loader is operating
system-dependent. The examples in this chapter use the
UNIX-based name, sqlldr . See your Oracle operating
system-specific documentation for the correct command for your
system.

4-2 Oracle9j Database Utilities

Command-Line Parameters

See Also: Command-Line Parameters on page 4-3 for
descriptions of all the command-line parameters

Specifying Parameters in the Control File
If the length of the command line exceeds the size of the maximum command line
on your system, you can put some command-line parameters in the control file. See
OPTIONS Clause on page 5-4 for information on how to do this.

They can also be specified in a separate file specified by the PARFILE parameter.
These alternative methods are useful for specifying parameters whose values
seldom change. Parameters specified in this manner can be overridden from the

command line.

See Also:
« Chapter 5 for a detailed description of the SQL*Loader control
file

« PARFILE (parameter file) on page 4-8

Command-Line Parameters

This section describes each SQL*Loader command-line parameter.

BAD (bad file)
Default: The name of the datafile, with an extension of .bad.
BADspecifies the name of the bad file created by SQL*Loader to store records that

cause errors during insert or that are improperly formatted. If a filename is not
specified, the default is used.

A bad file filename specified on the command line becomes the bad file associated
with the first INFILE statement in the control file. If the bad file filename was also
specified in the control file, the command-line value overrides it.

See Also: Specifying the Bad File on page 5-11 for information
about the format of bad files

BINDSIZE (maximum size)

Default: To see the default value for this parameter, invoke SQL*Loader without
any parameters, as described in Invoking SQL*Loader on page 4-1.

SQL*Loader Command-Line Reference 4-3

Command-Line Parameters

BINDSIZE specifies the maximum size (bytes) of the bind array. The size of the
bind array given by BINDSIZE overrides the default size (which is system
dependent) and any size determined by ROWS.

See Also:

« Bind Arrays and Conventional Path Loads on page 5-42

« READSIZE (read buffer size) on page 4-9

COLUMNARRAYROWS

Default: To see the default value for this parameter, invoke SQL*Loader without
any parameters, as described in Invoking SQL*Loader on page 4-1.

Specifies the number of rows to allocate for direct path column arrays.

See Also: Specifying the Number of Column Array Rows and
Size of Stream Buffers on page 9-19

CONTROL (control file)

Default: none

CONTROKpecifies the name of the SQL*Loader control file that describes how to
load data. If a file extension or file type is not specified, it defaults to .ctl . If the
filename is omitted, SQL*Loader prompts you for it.

If the name of your SQL*Loader control file contains special characters, your

operating system may require that they be preceded by an escape character. Also, if

your operating system uses backslashes in its file system paths, you may need to
use multiple escape characters or to enclose the path in quotation marks. See your
operating system-specific documentation for more information.

See Also: Chapter 5 for a detailed description of the SQL*Loader
control file

DATA (datafile)

Default: The name of the control file, with an extension of .dat .

DATAspecifies the name of the datafile containing the data to be loaded. If you do
not specify a file extension or file type, the default is .dat.

If you specify a datafile on the command line and also specify datafiles in the

control file with INFILE, the data specified on the command line is processed first.

4-4 Oracle9j Database Utilities

Command-Line Parameters

The first datafile specified in the control file is ignored. All other datafiles specified
in the control file are processed.

If you specify a file processing option when loading data from the control file, a
warning message will be issued.

DIRECT (data path)

Default: false

DIRECT specifies the data path, that is, the load method to use, either conventional
path or direct path. A value of true specifies a direct path load. A value of false
specifies a conventional path load. Load methods are explained in Chapter 9.

DISCARD (filename)

Default: The name of the datafile, with an extension of .dsc .

DISCARDspecifies a discard file (optional) to be created by SQL*Loader to store
records that are neither inserted into a table nor rejected.

A discard file filename specified on the command line becomes the discard file
associated with the first INFILE statement in the control file. If the discard file
filename is specified also in the control file, the command-line value overrides it.

See Also: Discarded and Rejected Records on page 3-10 for
information about the format of discard files

DISCARDMAX (integer)
Default: ALL

DISCARDMAXpecifies the number of discard records to allow before data loading is
terminated. To stop on the first discarded record, specify one (1).

ERRORS (errors to allow)

Default: To see the default value for this parameter, invoke SQL*Loader without
any parameters, as described in Invoking SQL*Loader on page 4-1.

ERRORSpecifies the maximum number of insert errors to allow. If the number of
errors exceeds the value specified for ERRORShen SQL*Loader terminates the
load. To permit no errors at all, set ERRORS=0.To specify that all errors be allowed,
use a very high number.

SQL*Loader Command-Line Reference 4-5

Command-Line Parameters

On a single-table load, SQL*Loader terminates the load when errors exceed this
error limit. Any data inserted up that point, however, is committed.

SQL*Loader maintains the consistency of records across all tables. Therefore,
multitable loads do not terminate immediately if errors exceed the error limit. When
SQL*Loader encounters the maximum number of errors for a multitable load, it
continues to load rows to ensure that valid rows previously loaded into tables are
loaded into all tables and/or rejected rows filtered out of all tables.

In all cases, SQL*Loader writes erroneous records to the bad file.

EXTERNAL_TABLE
Default: NOT_USED

EXTERNAL_TABLEnNstructs SQL*Loader whether or not to load data using the
External Tables option. There are three possible values:

« NOT_USEB-the default value. It means the load is performed using either
conventional or direct path mode.

« GENERATE_ONI=¥places all the SQL statements needed to do the load using
external tables, as described in the control file, in the SQL*Loader log file. These
SQL statements can be edited and customized. The actual load can be done later
without the use of SQL*Loader by executing these statements in SQL*Plus. See
Log File Created When EXTERNAL_TABLE=GENERATE_ONLY on page 8-7
for an example of what this log file would look like.

« EXECUTE-attempts to execute the SQL statements that are needed to do the
load using external tables. However, if any of the SQL statements returns an
error, then the attempt to load stops. Statements are placed in the log file as they
are executed. This means that if a SQL statement returns an error, then the
remaining SQL statements required for the load will not be placed in the control
file.

Note that the external tables option uses directory objects in the database to indicate
where all datafiles are stored and to indicate where output files, such as bad files
and discard files, are created. You must have READaccess to the directory objects
containing the data files and you must have WRITEaccess to the directory objects
where the output files are created. If there are no existing directory objects for the
location of a data file or output file, SQL*Loader will generate the SQL statement to
create one. Note that if the EXECUTBoption is specified, then the you must have
CREATE ANY DIRECTORfivilege.

When using a multitable load, SQL*Loader does the following:

4-6 Oracle9i Database Utilities

Command-Line Parameters

1. Creates a table in the database that describes all fields in the data file that will
be loaded into any table.

2. Creates an INSERT statement to load this table from an external table
description of the data.

3. Executes one INSERT statement for every table in the control file.

To see an example of this, run case study 5 (Case Study 5: Loading Data into

Multiple Tables on page 10-18), but add the EXTERNAL_TABLE=GENERATE_ONLY
parameter. To guarantee unique names in the external table, SQL*Loader uses
generated names for all fields. This is because the field names may not be unique
across the different tables in the control file.

See Also:
» Chapter 11, "External Tables Concepts"

« Chapter 12, "External Tables Access Parameters"

FILE (file to load into)

Default: none

FILE specifies the database file to allocate extents from. It is used only for parallel
loads. By varying the value of the FILE parameter for different SQL*Loader
processes, data can be loaded onto a system with minimal disk contention.

See Also: Parallel Data Loading Models on page 9-27

LOAD (records to load)

Default: All records are loaded.

LOADspecifies the maximum number of logical records to load (after skipping the
specified number of records). No error occurs if fewer than the maximum number
of records are found.

LOG (log file)
Default: The name of the control file, with an extension of .log .

LOGspecifies the log file that SQL*Loader will create to store logging information
about the loading process.

SQL*Loader Command-Line Reference 4-7

Command-Line Parameters

MULTITHREADING

Default: true on multiple-CPU systems, false on single-CPU systems
This parameter is available only for direct path loads.

By default, the multithreading option is always enabled (set to true) on
multiple-CPU systems. In this case, the definition of a multiple-CPU system is a
single system that has more than one CPU.

On single-CPU systems, multithreading is set to false by default. To use
multithreading between two single-CPU systems, you must enable multithreading;
it will not be on by default. This will allow stream building on the client system to
be done in parallel with stream loading on the server system.

Multithreading functionality is operating system-dependent. Not all operating
systems support multithreading.

See Also: Optimizing Direct Path Loads on Multiple-CPU
Systems on page 9-20

PARALLEL (parallel load)

Default: false
PARALLELspecifies whether direct loads can operate in multiple concurrent
sessions to load data into the same table.

See Also: Parallel Data Loading Models on page 9-27

PARFILE (parameter file)

Default: none

PARFILE specifies the name of a file that contains commonly used command-line
parameters. For example, the command line could read:

sqlidr PARFILE=example.par

The parameter file could have the following contents:

USERID=scottfiger
CONTROL=example.ct
ERRORS=9999
LOG=example.log

4-8 Oracle9i Database Utilities

Command-Line Parameters

Note: Although it is not usually important, on some systems it
may be necessary to have no spaces around the equal sign (=) in the
parameter specifications.

READSIZE (read buffer size)

RESUMABLE

Default: To see the default value for this parameter, invoke SQL*Loader without
any parameters, as described in Invoking SQL*Loader on page 4-1.

The READSIZE parameter lets you specify (in bytes) the size of the read buffer. You
can use the default value or you can specify a read buffer of any size depending on
your system.

In the conventional path method, the bind array is limited by the size of the read
buffer. Therefore, the advantage of a larger read buffer is that more data can be read
before a commit is required.

For example:
sqldr scottfiger CONTROL=ulcas1.ci READSIZE=1000000

This example enables SQL*Loader to perform reads from the external datafile in
chunks of 1000000 bytes before a commit is required.

Note: If the READSIZE value specified is smaller than the
BINDSIZE value, the READSIZEvalue will be increased.

The READSIZEparameter has no effect on LOBs. The size of the LOB read buffer is
fixed at 64 KB.

See BINDSIZE (maximum size) on page 4-3.

Default: false

The RESUMABLIparameter is used to enable and disable resumable space
allocation. Because this parameter is disabled by default, you must set
RESUMABLE-=true in order to use its associated parameters, RESUMABLE_NAME
and RESUMABLE_TIMEOUT

SQL*Loader Command-Line Reference 4-9

Command-Line Parameters

See Also:
« Oracle9i Database Concepts and

« Oracle9i Database Administrator’s Guide for more information
about resumable space allocation

RESUMABLE_NAME

Default; 'User USERNAME (USERID), Session SESSIONID, Instance
INSTANCEID’

The value for this parameter identifies the statement that is resumable. This value is
a user-defined text string that is inserted in either the USER_RESUMABLd DBA _
RESUMABLRiew to help you identify a specific resumable statement that has been
suspended.

This parameter is ignored unless the RESUMABLIparameter is set to true to enable
resumable space allocation.

RESUMABLE_TIMEOUT
Default: 7200 seconds (2 hours)

The value of the parameter specifies the time period during which an error must be
fixed. If the error is not fixed within the timeout period, execution of the statement

is aborted.

This parameter is ignored unless the RESUMABLIparameter is set to true to enable
resumable space allocation.

ROWS (rows per commit)

Default: To see the default value for this parameter, invoke SQL*Loader without
any parameters, as described in Invoking SQL*Loader on page 4-1.

Conventional path loads only: ROWSpecifies the number of rows in the bind array.
See Bind Arrays and Conventional Path Loads on page 5-42.

Direct path loads only: ROW%dentifies the number of rows you want to read from
the datafile before a data save. The default is to read all rows and save data once at
the end of the load. See Using Data Saves to Protect Against Data Loss on page 9-12.

Because the direct load is optimized for performance, it uses buffers that are the
same size and format as the system’s 1/0 blocks. Only full buffers are written to the
database, so the value of ROWSs approximate.

4-10 Oracle9i Database Utilities

Command-Line Parameters

SILENT (feedback mode)

When SQL*Loader begins, a header message like the following appears on the
screen and is placed in the log file:

SQL*Loader: Release 9.0.1.0.0 - Production on Fri Apr 13 12:11:34 2001

() Copyright 2001 Oracle Corporation. All rights reserved.

As SQL*Loader executes, you also see feedback messages on the screen, for
example:

Commit point reached - logical record count 20

SQL*Loader may also display data error messages like the following:
Record 4: Rejected - Error on table EMP
ORA-00001: unique constraint <name> violated

You can suppress these messages by specifying SILENT with one or more values.

For example, you can suppress the header and feedback messages that normally
appear on the screen with the following command-line argument:

SILENT=(HEADER, FEEDBACK)

Use the appropriate values to suppress one or more of the following:

HEADER Suppresses the SQL*Loader header messages that normally appear
on the screen. Header messages still appear in the log file.

FEEDBACK Suppresses the "commit point reached" feedback messages that
normally appear on the screen.

ERRORS Suppresses the data error messages in the log file that occur when a
record generates an Oracle error that causes it to be written to the
bad file. A count of rejected records still appears.

DISCARDS Suppresses the messages in the log file for each record written to the
discard file.

PARTITIONS Disables writing the per-partition statistics to the log file during a
direct load of a partitioned table.

ALL Implements all of the suppression values: HEADER, FEEDBACK,

ERRORS, DISCARDS and PARTITIONS.

SQL*Loader Command-Line Reference 4-11

Command-Line Parameters

SKIP (records to skip)

Default: No records are skipped.

SKIP specifies the number of logical records from the beginning of the file that
should not be loaded.

This parameter continues loads that have been interrupted for some reason. It is
used for all conventional loads, for single-table direct loads, and for multiple-table
direct loads when the same number of records were loaded into each table. It is not
used for multiple-table direct loads when a different number of records were loaded
into each table.

See Also: Continuing Multiple-Table Conventional Loads on
page 5-24

SKIP_INDEX_MAINTENANCE

Default: false

The SKIP_INDEX_MAINTENANCHparameter stops index maintenance for direct
path loads but does not apply to conventional path loads. It causes the index
partitions that would have had index keys added to them instead to be marked
Index Unusable because the index segment is inconsistent with respect to the data it
indexes. Index segments that are not affected by the load retain the Index Unusable
state they had prior to the load.

The SKIP_INDEX_MAINTENANCHyarameter:
« Applies to both local and global indexes

« Can be used (with the PARALLELparameter) to do parallel loads on an object
that has indexes

« Can be used (with the PARTITION parameter on the INTO TABLEclause) to do
a single partition load to a table that has global indexes

« Puts a list (in the SQL*Loader log file) of the indexes and index partitions that
the load set into Index Unusable state

SKIP_UNUSABLE_INDEXES

Default: false

The SKIP_UNUSABLE_INDEXESarameter applies to both conventional and direct
path loads.

4-12 Oracle9i Database Utilities

Command-Line Parameters

STREAMSIZE

SKIP_UNUSABLE_INDEXES=true allows SQL*Loader to load a table with indexes
that are in Index Unusable (IU) state prior to the beginning of the load. Indexes that
are not in IU state at load time will be maintained by SQL*Loader. Indexes that are
in IU state at load time will not be maintained but will remain in 1U state at load
completion.

However, indexes that are unique and marked IU are not allowed to skip index
maintenance. This rule is enforced by DML operations, and enforced by the direct
path load to be consistent with DML.

Load behavior with SKIP_UNUSABLE_INDEXES=false differs slightly between
conventional path loads and direct path loads:

« Onaconventional path load, records that are to be inserted will instead be
rejected if their insertions would require updating an index.

« Onadirect path load, the load terminates upon encountering a record that
would require index maintenance be done on an index that is in unusable state.

Default: To see the default value for this parameter, invoke SQL*Loader without
any parameters, as described in Invoking SQL*Loader on page 4-1.

Specifies the size, in bytes, for direct path streams.

See Also: Specifying the Number of Column Array Rows and
Size of Stream Buffers on page 9-19

USERID (username/password)

Default: none

USERIDis used to provide your Oracle username/password. If it is omitted, you
are prompted for it. If only a slash is used, USERID defaults to your operating
system login.

If you connect as user SYS you must also specify AS SYSDBAIn the connect string.
For example:

sqlldr\SYS/ password AS SYSDBA foo.ctl

SQL*Loader Command-Line Reference 4-13

Exit Codes for Inspection and Display

Note: This example shows the entire connect string enclosed in
guotation marks and backslashes. This is because the string, AS
SYSDBA, contains a blank, a situation for which most operating
systems require that the entire connect string be placed in quotation
marks or marked as a literal by some method. Some operating
systems also require that quotation marks on the command line be
preceded by an escape character. In this example, backslashes are
used as the escape character. If the backslashes were not present,
the command line parser that SQL*Loader uses would not
understand the quotation marks and would remove them.

See your operating system-specific Oracle documentation for
information about special and reserved characters on your system.

Exit Codes for Inspection and Display

Oracle SQL*Loader provides the results of a SQL*Loader run immediately upon
completion. Depending on the platform, SQL*Loader may report the outcome in a
process exit code as well as recording the results in the log file. This Oracle
SQL*Loader functionality allows for checking the outcome of a SQL*Loader
invocation from the command line or script. The following load results return the
indicated exit codes:

Result Exit Code
All rows loaded successfully EX_SUCC
All or some rows rejected EX_WARN
All or some rows discarded EX_WARN
Discontinued load EX_WARN
Command-line or syntax errors EX_FAIL
Oracle errors nonrecoverable for SQL*Loader EX_FAIL
Operating system errors (such as file open/close and malloc) EX_FTL

For UNIX, the exit codes are as follows:

EX_SUCCO
EX_FAIL1
EX_WARN 2
EX_FTL 3

4-14 Oracle9i Database Utilities

Exit Codes for Inspection and Display

For Windows NT, the exit codes are as follows:

EX_SUCCO
EX_WARN 2
EX _FAL3
EX _FTL 4

If SQL*Loader returns any exit code other than zero, you should consult your
system log files and SQL*Loader log files for more detailed diagnostic information.

In UNIX, you can check the exit code from the shell to determine the outcome of a
load. For example, you could place the SQL*Loader command in a script and check
the exit code within the script:

#bin/sh

sqlidr scottftiger control=ulcasel.ctl log=ulcasel.log

retcode="echo $?'

case "$retcode” in

0) echo "SQL*Loader execution successful" ;;

1) echo "SQL*Loader execution exited with EX_FAIL, see logfile" ;;

2) echo "SQL*Loader execution exited with EX_WARN, see logfile" ;;
3) echo "SQL*Loader execution encountered a fatal error”;;

*) echo "unknown retum code”;

esac

SQL*Loader Command-Line Reference 4-15

Exit Codes for Inspection and Display

4-16 Oracle9/ Database Utilities

D

SQL*Loader Control File Reference

This chapter describes the SQL*Loader control file. The following topics are
included:

« Control File Contents

« Specifying Command-Line Parameters in the Control File
« Specifying Filenames and Object Names

« Specifying Datafiles

« ldentifying Data in the Control File with BEGINDATA
« Specifying Datafile Format and Buffering

« Specifying the Bad File

« Specifying the Discard File

« Handling Different Character Encoding Schemes

« Continuing an Interrupted Load

« Assembling Logical Records from Physical Records

« Loading Logical Records into Tables

« Index Options

« Benefits of Using Multiple INTO TABLE Clauses

« Bind Arrays and Conventional Path Loads

SQL*Loader Control File Reference 5-1

Control File Contents

Control File Contents

The SQL*Loader control file is a text file that contains data definition language
(DDL) instructions. DDL is used to control the following aspects of a SQL*Loader
session:

« Where SQL*Loader will find the data to load
« How SQL*Loader expects that data to be formatted

« How SQL*Loader will be configured (memory management, rejecting records,
interrupted load handling, and so on) as it loads the data

« How SQL*Loader will manipulate the data being loaded

See Appendix A for syntax diagrams of the SQL*Loader DDL.

To create the SQL*Loader control file, use a text editor such as vi or xemacs.create.
In general, the control file has three main sections, in the following order:

« Session-wide information

« Table and field-list information

« Input data (optional section)

Example 5-1 shows a sample control file.

Example 5-1 Sample Control File

—This is a sample control file

LOAD DATA

INFILE 'sample.dat’

BADFILE 'sample.bad’

DISCARDFILE 'sample.dsc’

APPEND

INTO TABLE emp

WHEN (57)="

TRAILING NULLCOLS

10 (hiredate SYSDATE,

deptno POSITION(1:2) INTEGER EXTERNAL(2)
NULLIF deptno=BLANKS,

job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
NULLIF job=BLANKS "UPPER(job)",

mgr POSITION(28:31) INTEGER EXTERNAL
TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,

ename POSITION(34:41) CHAR
TERMINATED BY WHITESPACE "UPPER(:ename)’,

OO ~NOOUILDA WNPEP

5-2 Oracle9/ Database Utilities

Control File Contents

empno POSITION(45) INTEGER EXTERNAL
TERMINATED BY WHITESPACE,

sal POSITION(51) CHAR TERMINATED BY WHITESPACE
"TO_NUMBER(:sal,$99,999.99)",

comm INTEGER EXTERNAL ENCLOSED BY '(AND %'
":comm*100"

)

In this sample control file, the numbers that appear to the left would not appear in a
real control file. They are keyed in this sample to the explanatory notes in the
following list:

1. This is how comments are entered in a control file. See Comments in the
Control File on page 5-4.

2. The LOAD DATAstatement tells SQL*Loader that this is the beginning of a new
data load. See Appendix A for syntax information.

If you were continuing a load that had been interrupted in progress, you would
use the CONTINUE_LOAD DAT#atement. See Continuing an Interrupted Load
on page 5-24.

3. TheINFILE clause specifies the name of a datafile containing data that you
want to load. See Specifying Datafiles on page 5-7.

4. The BADFILE parameter specifies the name of a file into which rejected records
are placed. See Specifying the Bad File on page 5-11.

5. The DISCARDFILE parameter specifies the name of a file into which discarded
records are placed. See Specifying the Discard File on page 5-14.

6. The APPENDparameter is one of the options you can use when loading data
into a table that is not empty. See Loading Data into Nonempty Tables on
page 5-31.

To load data into a table that is empty, you would use the INSERT parameter.
See Loading Data into Empty Tables on page 5-31.

7. The INTO TABLE clause allows you to identify tables, fields, and datatypes. It
defines the relationship between records in the datafile and tables in the
database. See Specifying Table Names on page 5-30.

8. The WHENIause specifies one or more field conditions, based upon which
SQL*Loader decides whether or not to load the data. See Loading Records
Based on a Condition on page 5-33.

SQL*Loader Control File Reference 5-3

Specifying Command-Line Parameters in the Control File

9. The TRAILING NULLCOLS clause tells SQL*Loader to treat any relatively
positioned columns that are not present in the record as null columns. See
Handling Short Records with Missing Data on page 5-35.

10. The remainder of the control file contains the field list, which provides
information about column formats in the table being loaded. See Chapter 6 for
information about that section of the control file.

Comments in the Control File

Comments can appear anywhere in the command section of the file, but they
should not appear within the data. Precede any comment with two hyphens, for
example:

—Thisis a comment

All text to the right of the double hyphen is ignored, until the end of the line. An
example of comments in a control file is shown in Case Study 3: Loading a
Delimited, Free-Format File on page 10-11.

Specifying Command-Line Parameters in the Control File

The OPTIONSclause is useful when you typically invoke a control file with the
same set of options. The OPTIONSclause precedes the LOAD DAT Atatement.

OPTIONS Clause

The OPTIONSclause allows you to specify runtime parameters in the control file,
rather than on the command line. The following parameters can be specified using
the OPTIONSclause. These parameters are described in greater detail in Chapter 4.

BINDSIZE= n
COLUMNARRYROWSE

DIRECT ={TRUE | FALSE}
ERRORS=n

LOAD= n

MULTITHREADING ={TRUE | FALSE}
PARALLEL ={TRUE | FALSE}
READSIZE= n

RESUMABLE

RESUMABLE NAME
RESUMABLE_TIMEOUT

ROWS =

SILENT ={FEEDBACK | ERRORS | DISCARDS | ALL}

5-4 Oracle9/ Database Utilities

Specifying Filenames and Object Names

SKIP= n
SKIP_INDEX_MAINTENANCE
SKIP_UNUSABLE_INDEXES
STREAMSIZE= n

For example:
OPTIONS (BINDSIZE=100000, SILENT=(ERRORS, FEEDBACK))

Note: Values specified on the command line override values
specified in the OPTIONSclause in the control file.

Specifying Filenames and Object Names

In general, SQL*Loader follows the SQL standard for specifying object names (for
example, table and column names). The information in this section discusses the
following topics:

« Filenames That Conflict with SQL and SQL*Loader Reserved Words
« Specifying SQL Strings

« Operating System Considerations

Filenames That Conflict with SQL and SQL*Loader Reserved Words

SQL and SQL*Loader reserved words must be specified within double quotation
marks. The only SQL*Loader reserved word is CONSTANT.

You must use double quotation marks if the object name contains special characters
other than those recognized by SQL ($, #, _), or if the name is case sensitive.

See Also: Oracle9i SQL Reference
Specifying SQL Strings

You must specify SQL strings within double quotation marks. The SQL string
applies SQL operators to data fields.

See Also: Applying SQL Operators to Fields on page 6-49

SQL*Loader Control File Reference 5-5

Specifying Filenames and Object Names

Operating System Considerations

The following sections discuss situations in which your course of action may
depend on the operating system you are using.

Specifying a Complete Path

If you encounter problems when trying to specify a complete path name, it may be
due to an operating system-specific incompatibility caused by special characters in
the specification. In many cases, specifying the path name within single quotation
marks prevents errors.

If not, please see your operating system-specific documentation for possible
solutions.

Backslash Escape Character

In DDL syntax, you can place a double quotation mark inside a string delimited by
double quotation marks by preceding it with the escape character, "\" (if the escape
character is allowed on your operating system). The same rule applies when single
guotation marks are required in a string delimited by single quotation marks.

For example, homedir\data"norm\mydata contains a double quotation mark.
Preceding the double quotation mark with a backslash indicates that the double
guotation mark is to be taken literally:

INFILE 'homedindata\'norm\mydata’

You can also put the escape character itself into a string by entering it twice:
For example:

"so\far' or 'so\"far isparsedas so"far

"solfar" or \soWan\" is parsed as 'so\far’

"solWfar" or 'so\Wfar isparsedas so\far

Note: A double quotation mark in the initial position cannot be
preceded by an escape character. Therefore, you should avoid
creating strings with an initial quotation mark.

Nonportable Strings

There are two kinds of character strings in a SQL*Loader control file that are not
portable between operating systems: filename and file processing option strings. When

5-6 Oracle9/ Database Utilities

Specifying Datafiles

you convert to a different operating system, you will probably need to modify these
strings. All other strings in a SQL*Loader control file should be portable between
operating systems.

Escaping the Backslash

If your operating system uses the backslash character to separate directories in a
path name, and if the version of the Oracle database server running on your
operating system implements the backslash escape character for filenames and
other nonportable strings, then you must specify double backslashes in your path
names and use single quotation marks.

See your Oracle operating system-specific documentation for information about
which escape characters are required or allowed.

Escape Character Is Sometimes Disallowed

The version of the Oracle database server running on your operating system may
not implement the escape character for nonportable strings. When the escape
character is disallowed, a backslash is treated as a normal character, rather than as
an escape character (although it is still usable in all other strings). Then path names
such as the following can be specified normally:

INFILE 'topdinmydinmyfie’
Double backslashes are not needed.

Because the backslash is not recognized as an escape character, strings within single
guotation marks cannot be embedded inside another string delimited by single
guotation marks. This rule also holds for double quotation marks. A string within
double quotation marks cannot be embedded inside another string delimited by
double quotation marks.

Specifying Datafiles

To specify a datafile that contains the data to be loaded, use the INFILE clause,
followed by the filename and optional file processing options string. You can
specify multiple files by using multiple INFILE clauses.

Note: You can also specify the datafile from the command line,
using the DATAparameter described in Command-Line Parameters
on page 4-3. A filename specified on the command line overrides
the first INFILE clause in the control file.

SQL*Loader Control File Reference 5-7

Specifying Datafiles

If no filename is specified, the filename defaults to the control filename with an
extension or file type of .dat .

If the control file itself contains the data to be loaded, specify an asterisk (*). This
specification is described in Identifying Data in the Control File with BEGINDATA
on page 5-10.

Note: The information in this section applies only to primary
datafiles. It does not apply to LOBFILEs or SDFs.

For information about LOBFILES, see Loading LOB Data from
LOBFILEs on page 7-18.

For information about SDFs, see Secondary Datafiles (SDFs) on
page 7-26.

The syntax for the INFILE clause is as follows:

BADFILE |—><fi|ename

INFILE ° os_file_proc_clause

INDDN input_filename)J

DISCARDS

DISCARDFILE
H .filename .integer
DISCARDDN

|

DISCARDMAX

where:

INFILE or INDDN Specifies that a datafile specification follows.

Note that INDDN has been retained for situations in which
compatibility with DB2 is required.

input_filename Name of the file containing the data.

Any spaces or punctuation marks in the filename must be enclosed
in single quotation marks. See Specifying Filenames and Object
Names on page 5-5.

5-8 Oracle9/ Database Utilities

Specifying Datafiles

* If your data is in the control file itself, use an asterisk instead of the
filename. If you have data in the control file as well as datafiles, you
must specify the asterisk first in order for the data to be read.

os_file_proc _ This is the file-processing options string. It specifies the datafile

clause format. It also optimizes datafile reads. The syntax used for this
string is specific to your operating system. See Specifying Datafile
Format and Buffering on page 5-11.

Examples of INFILE Syntax

The following list shows different ways you can specify INFILE syntax:
« Data contained in the control file itself:
INFILE *

« Data contained in a file named foo with a default extension of .dat:
INFILE foo

« Data contained in a file named datafile .dat with a full path specified:
INFILE 'c:fopdir/subdir/datafile.dat

Note: Filenames that include spaces or punctuation marks must
be enclosed in single quotation marks. For more details on filename
specification, see Specifying Filenames and Object Names on

page 5-5.

Specifying Multiple Datafiles

To load data from multiple datafiles in one SQL*Loader run, use an INFILE
statement for each datafile. Datafiles need not have the same file processing options,
although the layout of the records must be identical. For example, two files could be
specified with completely different file processing options strings, and a third could
consist of data in the control file.

You can also specify a separate discard file and bad file for each datafile. In such a
case, the separate bad files and discard files must be declared immediately after
each datafile name. For example, the following excerpt from a control file specifies
four datafiles with separate bad and discard files:

INFILE mydatl.dat BADFILE mydat1.bad DISCARDFILE mydat1.dis
INFILE mydat2.dat

SQL*Loader Control File Reference 5-9

Identifying Data in the Control File with BEGINDATA

INFILE mydat3.dat DISCARDFILE mydat3.dis
INFILE mydat4.dat DISCARDMAX 100

For mydatl.dat, both a bad file and discard file are explicitly specified.
Therefore both files are created, as needed.

For mydat2.dat, neither a bad file nor a discard file is specified. Therefore,
only the bad file is created, as needed. If created, the bad file has the default
filename and extension mydat2.bad . The discard file is not created, even if
rows are discarded.

For mydat3.dat, the default bad file is created, if needed. A discard file with
the specified name (mydat3.dis) is created, as needed.

For mydat4.dat, the default bad file is created, if needed. Because the
DISCARDMAXption is used, SQL*Loader assumes that a discard file is required
and creates it with the default name mydat4.dsc

|dentifying Data in the Control File with BEGINDATA

If the data is included in the control file itself, then the INFILE clause is followed
by an asterisk rather than a filename. The actual data is placed in the control file
after the load configuration specifications.

Specify the BEGINDAT Aparameter before the first data record. The syntax is:

BEGINDATA

data

Keep the following points in mind when using the BEGINDATAparameter:

If you omit the BEGINDATAparameter but include data in the control file,
SQL*Loader tries to interpret your data as control information and issues an
error message. If your data is in a separate file, do not use the BEGINDATA
parameter.

Do not use spaces or other characters on the same line as the BEGINDATA
parameter, or the line containing BEGINDATAwill be interpreted as the first line
of data.

Do not put comments after BEGINDATA, or they will also be interpreted as
data.

5-10 Oracle9/ Database Utilities

Specifying the Bad File

See Also:

« Specifying Datafiles on page 5-7 for an explanation of using
INFILE

. Case Study 1: Loading Variable-Length Data on page 10-5

Specifying Datafile Format and Buffering

When configuring SQL*Loader, you can specify an operating system-dependent file
processing options string (os_file_proc_clause) in the control file to specify
file format and buffering.

For example, suppose that your operating system has the following option-string
syntax:

RECSIZE [—>| BUFFERS |—><integerh

In this syntax, RECSIZE is the size of a fixed-length record, and BUFFERSSs the
number of buffers to use for asynchronous 1/0.

To declare a file named mydata.dat as a file that contains 80-byte records and
instruct SQL*Loader to use 8 1/0 buffers, you would use the following control file
entry:

INFILE 'mydata.dat "RECSIZE 80 BUFFERS 8"

For details on the syntax of the file processing options string, see your Oracle
operating system-specific documentation.

Note: This example uses the recommended convention of single
guotation marks for filenames and double quotation marks for
everything else.

Specifying the Bad File

When SQL*Loader executes, it can create a file called a bad file or reject file in which
it places records that were rejected because of formatting errors or because they
caused Oracle errors. If you have specified that a bad file is to be created, the
following applies:

SQL*Loader Control File Reference 5-11

Specifying the Bad File

« If one or more records are rejected, the bad file is created and the rejected
records are logged.

« Ifno records are rejected, then the bad file is not created. When this occurs, you
must reinitialize the bad file for the next run.

« Ifthe bad file is created, it overwrites any existing file with the same name;
ensure that you do not overwrite a file you wish to retain.

Note: On some systems, a new version of the file is created if a file
with the same name already exists. See your Oracle operating
system-specific documentation to find out if this is the case on your
system.

To specify the name of the bad file, use the BADFILE parameter (or BADDNor DB2
compatibility), followed by the bad file filename. If you do not specify a name for
the bad file, the name defaults to the name of the datafile with an extension or file
type of .bad. You can also specify the bad file from the command line with the
BADparameter described in Command-Line Parameters on page 4-3.

A filename specified on the command line is associated with the first INFILE or
INDDNCclause in the control file, overriding any bad file that may have been
specified as part of that clause.

The bad file is created in the same record and file format as the datafile so that the
data can be reloaded after making corrections. For datafiles in stream record format,
the record terminator that is found in the datafile is also used in the bad file.

The syntax for the bad file is as follows:

BADFILE
H bad_filename
BADDN

where:

BADFILE or BADDN (Use BADDNwvhen DB2 compatibility is required.) This parameter
specifies that a filename for the bad file follows.

bad_filename Any valid filename specification for your platform.

Any spaces or punctuation marks in the filename must be enclosed
in single quotation marks.

5-12 Oracle9/ Database Utilities

Specifying the Bad File

Examples of Specifying a Bad File Name

To specify a bad file with filename ugh and default file extension or file type of
.bad, enter:

BADFILE ugh

To specify a bad file with filename bad0001 and file extension or file type of .rej,
enter either of the following lines:

BADFILE badO00L1.rej
BADFILE /REJECT_DIR/bad0001.ref

How Bad Files Are Handled with LOBFILES and SDFs

Data from LOBFILEs and SDFs is not written to a bad file when there are rejected
rows. If there is an error loading a LOB, the row is not rejected. Rather, the LOB
column is left empty (not null with a length of zero (0) bytes). However, when the
LOBFILE is being used to load an XMLcolumn and there is an error loading this
LOB data, then the XMLcolumn is left as null.

Criteria for Rejected Records
A record can be rejected for the following reasons:

1. Upon insertion, the record causes an Oracle error (such as invalid data for a
given datatype).

2. The record is formatted incorrectly so that SQL*Loader cannot find field
boundaries.

3. The record violates a constraint or tries to make a unique index non-unique.

If the data can be evaluated according to the WHENIause criteria (even with
unbalanced delimiters), then it is either inserted or rejected.

Neither a conventional path nor a direct path load will write a row to any table if it
is rejected because of reason number 2 in the previous list.

Additionally, a conventional path load will not write a row to any tables if reason
number 1 or 3 in the previous list is violated for any one table. The row is rejected
for that table and written to the reject file.

The log file indicates the Oracle error for each rejected record. Case Study 4:
Loading Combined Physical Records on page 10-14 demonstrates rejected records.

SQL*Loader Control File Reference 5-13

Specifying the Discard File

Specifying the Discard File

During SQL*Loader execution, it can create a discard file for records that do not
meet any of the loading criteria. The records contained in this file are called
discarded records. Discarded records do not satisfy any of the WHENMIlauses
specified in the control file. These records differ from rejected records. Discarded
records do not necessarily have any bad data. No insert is attempted on a discarded
record.

A discard file is created according to the following rules:

= You have specified a discard filename and one or more records fail to satisfy all
of the WHENIauses specified in the control file. (If the discard file is created, it
overwrites any existing file with the same name, so be sure that you do not
overwrite any files you wish to retain.)

« Ifno records are discarded, then a discard file is not created.

To create a discard file, use any of the following syntax:

In a Control File On the Command Line
DISCARDFILE filename DISCARD
DISCARDDNjilename DISCARDMAX

(DB2)

DISCARDS

DISCARDMAX

You can specify the discard file directly by specifying its name, or indirectly by
specifying the maximum number of discards.

The discard file is created in the same record and file format as the datafile. For
datafiles in stream record format, the same record terminator that is found in the
datafile is also used in the discard file.

Specifying the Discard File in the Control File

To specify the name of the file, use the DISCARDFILE or DISCARDDNfor
DB2-compatibility) parameter, followed by the filename.

DISCARDFILE DISCARDS
H discard_filename H
DISCARDDN DISCARDMAX

5-14 Oracle9i Database Utilities

Specifying the Discard File

where:

DISCARDFILE or (Use DISCARDDNvhen DB2 compatibility is required.) This

DISCARDDN parameter specifies that a discard filename follows.
discard Any valid filename specification for your platform.
filename

Any spaces or punctuation marks in the filename must be enclosed
in single quotation marks.

The default filename is the name of the datafile, and the default file extension or file
type is .dsc . A discard filename specified on the command line overrides one
specified in the control file. If a discard file with that name already exists, it is either
overwritten or a new version is created, depending on your operating system.

Specifying the Discard File from the Command Line

See DISCARD (filename) on page 4-5 for information on how to specify a discard
file from the command line.

A filename specified on the command line overrides any discard file that you may
have specified in the control file.

Examples of Specifying a Discard File Name

The following list shows different ways you can specify a name for the discard file
from within the control file:

« To specify a discard file with filename circular ~ and default file extension or
file type of .dsc:

DISCARDFILE circular

« To specify a discard file named notappl with the file extension or file type of
.may.
DISCARDFILE notappl.may

« To specify a full path to the discard file forget .me
DISCARDFILE ‘/discard_dirflorgetme’

Criteria for Discarded Records

If there is no INTO TABLE clause specified for a record, the record is discarded.
This situation occurs when every INTO TABLE clause in the SQL*Loader control

SQL*Loader Control File Reference 5-15

Handling Different Character Encoding Schemes

file has a WHENIause and, either the record fails to match any of them, or all fields
are null.

No records are discarded if an INTO TABLE clause is specified without a WHEN
clause. An attempt is made to insert every record into such a table. Therefore,
records may be rejected, but none are discarded.

Case Study 7: Extracting Data from a Formatted Report on page 10-28 provides an
example of using a discard file.

How Discard Files Are Handled with LOBFILES and SDFs

Data from LOBFILEs and SDFs is not written to a discard file when there are
discarded rows.

Limiting the Number of Discarded Records

You can limit the number of records to be discarded for each datafile by specifying
an integer:

DISCARDS
H
DISCARDMAX

When the discard limit (specified with integer) is reached, processing of the
datafile terminates and continues with the next datafile, if one exists.

You can specify a different number of discards for each datafile. Or, if you specify
the number of discards only once, then the maximum number of discards specified
applies to all files.

If you specify a maximum number of discards, but no discard filename,
SQL*Loader creates a discard file with the default filename and file extension or file

type.

Handling Different Character Encoding Schemes

SQL*Loader supports different character encoding schemes (called character sets, or
code pages). SQL*Loader uses features of Oracle’s Globalization Support
technology to handle the various single-byte and multibyte character encoding
schemes available today.

See Also: Oracle9i Globalization Support Guide

5-16 Oracle9/ Database Utilities

Handling Different Character Encoding Schemes

In general, loading shift-sensitive character data can be much slower than loading
simple ASCII or EBCDIC data. The fastest way to load shift-sensitive character data
is to use fixed-position fields without delimiters. To improve performance,
remember the following points:

« The field data must have an equal number of shift-out/shift-in bytes.

« The field must start and end in single-byte mode.

« ltis acceptable for the first byte to be shift-out and the last byte to be shift-in.
« The first and last characters cannot be multibyte.

« If blanks are not preserved and multibyte-blank-checking is required, a slower
path is used. This can happen when the shift-in byte is the last byte of a field
after single-byte blank stripping is performed.

The following sections provide a brief introduction to some of the supported
character encoding schemes.

Multibyte (Asian) Character Sets

Multibyte character sets support Asian languages. Data can be loaded in multibyte
format, and database object names (fields, tables, and so on) can be specified with
multibyte characters. In the control file, comments and object names can also use
multibyte characters.

Unicode Character Sets
SQL*Loader supports loading data that is in a Unicode character set.

Unicode is a universal encoded character set that supports storage of information
from most languages in a single character set. Unicode provides a unique code
value for every character, regardless of the platform, program, or language. There
are two different encodings for Unicode, UTF-16 and UTF-8.

Note: In this manual, you will see the terms UTF-16 and UTF16
both used. The term UTF-16 is a general reference to UTF-16
encoding for Unicode. The term UTF16 (no hyphen) is the specific
name of the character set and is what you should specify for the
CHARACTERSEpParameter when you want to use UTF-16
encoding. This also applies to UTF-8 and UTF8.

SQL*Loader Control File Reference 5-17

Handling Different Character Encoding Schemes

The UTF-16 Unicode encoding is a fixed-width multibyte encoding in which the
character codes 0x0000 through 0x007F have the same meaning as the single-byte
ASCII codes 0x00 through 0x7F.

The UTF-8 Unicode encoding is a variable-width multibyte encoding in which the
character codes 0x00 through 0x7F have the same meaning as ASCII. A character in
UTF-8 can be 1 byte, 2 bytes, or 3 bytes long.

See Also:

« Case Study 11: Loading Data in the Unicode Character Set on
page 10-47

« Oracle9i Globalization Support Guide for more information on
Unicode encoding.

Database Character Sets

The Oracle database server uses the database character set for data stored in SQL
CHARdatatypes (CHAR, VARCHAR2, CLOBand LONG, for identifiers such as table
names, and for SQL statements and PL/SQL source code. Only single-byte
character sets and varying-width character sets that include either ASCII or
EBCDIC characters are supported as database character sets. Multibyte fixed-width
character sets (for example, AL16UTF16) are not supported as the database
character set.

An alternative character set can be used in the database for data stored in SQL
NCHARJatatypes (NCHAR, NVARCHARand NCLOB. This alternative character set is
called the database national character set. Only Unicode character sets are
supported as the database national character set.

Datafile Character Sets

By default, the datafile is in the character set as defined by the NLS_LANG
parameter. The datafile character sets supported with NLS_LANGare the same as
those supported as database character sets. SQL*Loader supports all
Oracle-supported character sets in the datafile (even those not supported as
database character sets).

For example, SQL*Loader supports multibyte fixed-width character sets (such as
AL16UTF16 and JA16EUCFIXED) in the datafile. SQL*Loader also supports UTF-16
encoding with little endian byte ordering. However, the Oracle database server
supports only UTF-16 encoding with big endian byte ordering (AL16UTF16) and
only as a database national character set, not as a database character set.

5-18 Oracle9/ Database Utilities

Handling Different Character Encoding Schemes

The character set of the datafile can be set up by using the NLS_LANGparameter or
by specifying a SQL*Loader CHARACTERSEjarameter.

Input Character Conversion

The default character set for all datafiles, if the CHARACTERSEparameter is not
specified, is the session character set defined by the NLS_LANGparameter. The
character set used in input datafiles can be specified with the CHARACTERSET
parameter.

SQL*Loader has the capacity to automatically convert data from the datafile
character set to the database character set or the database national character set,
when they differ.

When data character set conversion is required, the target character set should be a
superset of the source datafile character set. Otherwise, characters that have no
equivalent in the target character set are converted to replacement characters, often
a default character such as a question mark (?). This causes loss of data.

The sizes of the database character types CHARand VARCHARZ2an be specified in
bytes (byte-length semantics) or in characters (character-length semantics). If they
are specified in bytes, and data character set conversion is required, the converted
values may take more bytes than the source values if the target character set uses
more bytes than the source character set for any character that is converted. This
will result in the following error message being reported if the larger target value
exceeds the size of the database column:

ORA-01401: inserted value too large for column

You can avoid this problem by specifying the database column size in characters
and by also using character sizes in the control file to describe the data. Another
way to avoid this problem is to ensure that the maximum column size is large
enough, in bytes, to hold the converted value.

See Also:

« Oracle9i Database Concepts for more information about
character-length semantics in the database.

« Character-Length Semantics on page 5-22

CHARACTERSET Parameter

Specifying the CHARACTERSEparameter tells SQL*Loader the character set of the
input datafile. The default character set for all datafiles, if the CHARACTERSET

SQL*Loader Control File Reference 5-19

Handling Different Character Encoding Schemes

parameter is not specified, is the session character set defined by the NLS_LANG
parameter. Only character data (fields in the SQL*Loader datatypes CHAR,
VARCHAR, VARCHARQumeric EXTERNAL and the datetime and interval
datatypes) is affected by the character set of the datafile.

The CHARACTERSESyntax is as follows:
CHARACTERSET char_set name

The char_set name variable specifies the character set name. Normally, the
specified name must be the name of an Oracle-supported character set.

For UTF-16 Unicode encoding, use the name UTF16 rather than AL16UTF16.
AL16UTF16, which is the supported Oracle character set name for UTF-16 encoded
data, is only for UTF-16 data that is in big endian byte order. However, because you
are allowed to set up data using the byte order of the system where you create the
datafile, the data in the datafile can be either big endian or little endian. Therefore, a
different character set name (UTF16) is used. The character set name AL16UTF16 is
also supported. But if you specify AL16UTF16 for a datafile that has little endian
byte order, SQL*Loader issues a warning message and processes the datafile as big
endian.

The CHARACTERSEparameter can be specified for primary datafiles as well as
LOBFILEs and SDFs. It is possible to specify different character sets for different
input datafiles. A CHARACTERSEparameter specified before the INFILE
parameter applies to the entire list of primary datafiles. If the CHARACTERSET
parameter is specified for primary datafiles, the specified value will also be used as
the default for LOBFILEs and SDFs. This default setting can be overridden by
specifying the CHARACTERSEParameter with the LOBFILE or SDF specification.

The character set specified with the CHARACTERSEparameter does not apply to
data in the control file (specified with INFILE). To load data in a character set other
than the one specified for your session by the NLS _LANGparameter, you must place
the data in a separate datafile.

5-20 Oracle9/ Database Utilities

Handling Different Character Encoding Schemes

See Also:
« Byte Ordering on page 6-36

« Oracle9i Globalization Support Guide for more information on the
names of the supported character sets

« Control File Character Set on page 5-21

« Case Study 11: Loading Data in the Unicode Character Set on
page 10-47 for an example of loading a datafile that contains
little endian UTF-16 encoded data

Control File Character Set

The SQL*Loader control file itself is assumed to be in the character set specified for
your session by the NLS_LANGparameter. If the control file character set is different
from the datafile character set, keep the following issue in mind. Delimiters and
comparison clause values specified in the SQL*Loader control file as character
strings are converted from the control file character set to the datafile character set
before any comparisons are made. To ensure that the specifications are correct, you
may prefer to specify hexadecimal strings, rather than character string values.

If hexadecimal strings are used with a datafile in the UTF-16 Unicode encoding, the
byte order is different on a big endian versus a little endian system. For example, ","
(comma) in UTF-16 on a big endian system is X’002c’. On a little endian system it is
X’2c00’. SQL*Loader requires that you always specify hexadecimal strings in big
endian format. If necessary, SQL*Loader swaps the bytes before making
comparisons. This allows the same syntax to be used in the control file on both a big

endian and a little endian system.

Record terminators for datafiles that are in stream format in the UTF-16 Unicode
encoding default to "™\n" in UTF-16 (that is, 0OX000A on a big endian system and
0x0AO00 on a little endian system). You can override these default settings by using
the"STR ' char_str ™ orthe"STR x’hex_str’ " specification on the INFILE
line. For example, you could use either of the following to specify that 'ab’ is to be
used as the record terminator, instead of 'In’

INFILE myfie.dat "STR ‘ab™
INFILE myfile. dat "STR X00410042"

Any data included after the BEGINDATAstatement is also assumed to be in the
character set specified for your session by the NLS_LANGparameter.

SQL*Loader Control File Reference 5-21

Handling Different Character Encoding Schemes

For the SQL*Loader datatypes (CHAR, VARCHAR, VARCHARC, DATEand
EXTERNALnhumerics), SQL*Loader supports lengths of character fields that are
specified in either bytes (byte-length semantics) or characters (character-length
semantics). For example, the specification CHAR(10) in the control file can mean 10
bytes or 10 characters. These are equivalent if the datafile uses a single-byte
character set. However, they are often different if the datafile uses a multibyte
character set.

To avoid insertion errors caused by expansion of character strings during character
set conversion, use character-length semantics in both the datafile and the target
database columns.

Character-Length Semantics

Byte-length semantics are the default for all datafiles except those that use the
UTF16 character set (which uses character-length semantics by default). To override
the default you can specify CHARor CHARACTERas shown in the following syntax:

BYTE
SEMANTICS -
N [chAR |
LENGTH CHAR ‘

CHARACTER

The LENGTHparameter is placed after the CHARACTERSEparameter in the
SQL*Loader control file. The LENGTHparameter applies to the syntax specification
for primary datafiles as well as to LOBFILEs and secondary datafiles (SDFs). It is
possible to specify different length semantics for different input datafiles. However,
a LENGTHspecification before the INFILE parameters applies to the entire list of
primary datafiles. The LENGTHspecification specified for the primary datafile is
used as the default for LOBFILEs and SDFs. You can override that default by
specifying LENGTHwith the LOBFILE or SDF specification. Unlike the
CHARACTERSEparameter, the LENGTHparameter can also apply to data contained
within the control file itself (that is, INFILE * syntax).

You can specify CHARACTERhstead of CHARfor the LENGTHparameter.

If character-length semantics are being used for a SQL*Loader datafile, then the
following SQL*Loader datatypes will use character-length semantics:

« CHAR
« VARCHAR

5-22 Oracle9i Database Utilities

Handling Different Character Encoding Schemes

« VARCHARC
« DATE
« EXTERNALnumerics (INTEGER, FLOAT, DECIMAL, and ZONED

For the VARCHARIatatype, the length subfield is still a binary SMALLINT length
subfield, but its value indicates the length of the character string in characters.

The following datatypes use byte-length semantics even if character-length
semantics are being used for the datafile, because the data is binary, or is in a special
binary-encoded form in the case of ZONEDand DECIMAL.:

« INTEGER
» SMALLINT
« FLOAT

« DOUBLE

« BYTEINT

= ZONED

« DECIMAL
« RAW

« VARRAW
« VARRAWC
= GRAPHIC

« GRAPHIC EXTERNAL
« VARGRAPHIC

The start and end arguments to the POSITION parameter are interpreted in bytes,
even if character-length semantics are in use in a datafile. This is necessary to
handle datafiles that have a mix of data of different datatypes, some of which use
character-length semantics, and some of which use byte-length semantics. It is also
needed to handle position with the VARCHARIatatype, which has a SMALLINT
length field and then the character data. The SMALLINT length field takes up a
certain number of bytes depending on the system (usually 2 bytes), but its value
indicates the length of the character string in characters.

Character-length semantics in the datafile can be used independent of whether or
not character-length semantics are used for the database columns. Therefore, the

SQL*Loader Control File Reference 5-23

Continuing an Interrupted Load

datafile and the database columns can use either the same or different length
semantics.

Continuing an Interrupted Load

If SQL*Loader runs out of space for data rows or index entries, the load is
discontinued. (For example, the table might reach its maximum number of extents.)
Discontinued loads can be continued after more space is made available.

Status of Tables and Indexes After an Interrupted Load

When a load is discontinued, any data already loaded remains in the tables, and the
tables are left in a valid state. If the conventional path is used, all indexes are left in
a valid state.

If the direct path load method is used, any indexes that run out of space are left in
an unusable state. You must drop these indexes before the load can continue. You
can re-create the indexes either before continuing or after the load completes.

Other indexes are valid if no other errors occurred. See Indexes Left in Unusable
State on page 9-11 for other reasons why an index might be left in an unusable state.

Using the Log File to Determine Load Status

The SQL*Loader log file tells you the state of the tables and indexes and the number
of logical records already read from the input datafile. Use this information to
resume the load where it left off.

Continuing Single-Table Loads

To continue a discontinued direct or conventional path load involving only one
table, specify the number of logical records to skip with the command-line
parameter SKIP. If the SQL*Loader log file says that 345 records were previously
read, then the command to continue would look like this:

sqlldr USERID=scotttiger CONTROL=fast1.ctl DIRECT=true SKIP=345

Continuing Multiple-Table Conventional Loads

It is not possible for multiple tables in a conventional path load to become
unsynchronized. Therefore, a multiple-table conventional path load can also be
continued with the command-line parameter SKIP. Use the same procedure that

5-24 Oracle9/ Database Utilities

Continuing an Interrupted Load

you would use for single-table loads, as described in Continuing Single-Table Loads
on page 5-24.

Continuing Multiple-Table Direct Loads

If SQL*Loader cannot finish a multiple-table direct path load, the number of logical
records processed could be different for each table. If so, the tables are not
synchronized and continuing the load is slightly more complex.

To continue a discontinued direct path load involving multiple tables, inspect the
SQL*Loader log file to find out how many records were loaded into each table.

If the numbers are the same, you can use the same procedure that you would use
for single-table loads, as described in Continuing Single-Table Loads on page 5-24.

If the numbers are different, use the CONTINUE_LOAIParameter and specify SKIP
at the table level, instead of at the load level. These statements exist to handle
unsynchronized interrupted loads.

In this case, do not specify the following at the start of the control file:
LOAD DATA...

Instead, at the start of the control file, specify:
CONTINUE_LOAD DATA

Then, for each INTO TABLEclause, specify the number of logical records to skip for
that table, using the SKIP parameter:

INTO TABLE emp
SKIP 2345

INTO TABLE dept
SKIP 514

Combining SKIP and CONTINUE_LOAD

The CONTINUE_LOAIparameter is only needed after a direct load failure because
multiple table loads cannot become unsynchronized when using the conventional
path.

If you specify CONTINUE_LOAD you cannot use the command-line parameter
SKIP. You must use the table-level SKIP clause. If you specify LOAD, you can

SQL*Loader Control File Reference 5-25

Assembling Logical Records from Physical Records

optionally use the command-line parameter SKIP, but you cannot use the
table-level SKIP clause.

Assembling Logical Records from Physical Records

Because Oracle9i supports user-defined record sizes larger than 64 KB (see
READSIZE (read buffer size) on page 4-9), the need to break up logical records into
multiple physical records is reduced. However, there may still be situations in
which you may want to do so. At some point, when you want to combine those
multiple physical records back into one logical record, you can use one of the
following clauses, depending on your data:

= CONCATENATE
= CONTINUEIF

Using CONCATENATE to Assemble Logical Records

Use CONCATENAT®hen SQL*Loader should always add the same number of
physical records to form one logical record. In the following example, integer
specifies the number of physical records to combine.

CONCATENATE integer

Using CONTINUEIF to Assemble Logical Records

Use CONTINUEIFif the number of physical records to be continued varies. The
parameter CONTINUEIF is followed by a condition that is evaluated for each
physical record, as it is read. For example, two records might be combined if a
pound sign (#) were in byte position 80 of the first record. If any other character
were there, the second record would not be added to the first.

The full syntax for CONTINUEIF adds even more flexibility:

l'
O

pos_spec @ o
) S i R

where:

5-26 Oracle9/ Database Utilities

Assembling Logical Records from Physical Records

THIS

NEXT

operator

LAST

pos_spec

str

X’hex-str’

PRESERVE

If the condition is true in the current record, then the next physical
record is read and concatenated to the current physical record,
continuing until the condition is false. If the condition is false, then
the current physical record becomes the last physical record of the
current logical record. THIS is the default.

If the condition is true in the next record, then the current physical
record is concatenated to the current logical record, continuing until
the condition is false.

The supported operators are equal and not equal.

For the equal operator, the field and comparison string must match
exactly for the condition to be true. For the not equal operator, they
may differ in any character.

This test is similar to THIS, but the test is always against the last
nonblank character. If the last nonblank character in the current
physical record meets the test, then the next physical record is read
and concatenated to the current physical record, continuing until the
condition is false. If the condition is false in the current record, then
the current physical record is the last physical record of the current
logical record.

Specifies the starting and ending column numbers in the physical
record.

Column numbers start with 1. Either a hyphen or a colon is
acceptable (start -end or start :end).

If you omit end, the length of the continuation field is the length of
the byte string or character string. If you use end, and the length of
the resulting continuation field is not the same as that of the byte
string or the character string, the shorter one is padded. Character
strings are padded with blanks, hexadecimal strings with zeros.

A string of characters to be compared to the continuation field
defined by start and end, according to the operator. The string must
be enclosed in double or single quotation marks. The comparison is
made character by character, blank padding on the right if necessary.

A string of bytes in hexadecimal format used in the same way as str.
X’1FB033 would represent the three bytes with values 1F, B0, and 33
(hexadecimal).

Includes 'char_string *or X’hex_string " in the logical record.
The default is to exclude them.

Note:

The positions in the CONTINUEIF clause refer to positions

in each physical record. This is the only time you refer to positions
in physical records. All other references are to logical records.

SQL*Loader Control File Reference 5-27

Assembling Logical Records from Physical Records

If the PRESERVBparameter is not used, the continuation field is removed from all
physical records when the logical record is assembled. That is, data values are
allowed to span the records with no extra characters (continuation characters) in the
middle.

If the PRESERVBparameter is used, the continuation field is kept in all physical
records when the logical record is assembled.

Example 5-2 through Example 5-5 show the use of CONTINUEIF THIS and
CONTINUEIF NEXT, with and without the PRESERVEparameter.

Example 5-2 CONTINUEIF THIS Without the PRESERVE Parameter

Assume that you have physical records 14 bytes long and that a period represents a
space:

%%Yaaaaaaaa....
%%bbbbbbbb....
%%dddddddddd..
%%eeeceeeeeee..

In this example, the CONTINUEIF THIS clause does not use the PRESERVE
parameter:

CONTINUEIF THIS (1:2) ="%%'

Therefore, the logical records are assembled as follows:

aaaaaaaa....bbbbbbbb....ccocoecc....
dddddddddd..eeeeeeeeee. ..

Note that columns 1 and 2 (for example, %% in physical record 1) are removed from
the physical records when the logical records are assembled.

Example 5-3 CONTINUEIF THIS with the PRESERVE Parameter
Assume that you have the same physical records as in Example 5-2.

In this example, the CONTINUEIF THIS clause uses the PRESERVparameter:
CONTINUEIF THIS PRESERVE (1:2) ="%%'

5-28 Oracle9/ Database Utilities

Assembling Logical Records from Physical Records

Therefore, the logical records are assembled as follows:

%%aaaaaaaa... %%bbbbbbbb......coccocce....
%%dddddddddd. %%eeeeeeeeee... ffff..

Note that columns 1 and 2 are not removed from the physical records when the
logical records are assembled.

Example 5-4 CONTINUEIF NEXT Without the PRESERVE Parameter

Assume that you have physical records 14 bytes long and that a period represents a
space:

9%%bbbbbbbb....
%0%ccoceece....
.dddddddddd..
%Yoeeeeceeeeee..
oYfe..

In this example, the CONTINUEIF NEXT clause does not use the PRESERVE
parameter:

CONTINUEIF NEXT (1:2) ="%%’

Therefore, the logical records are assembled as follows (the same results as for
Example 5-2).

aaaaaaaa....bbbbbbbb....ccocoece....
dddddddddd..eeeeeeeeee. ..

Example 5-5 CONTINUEIF NEXT with the PRESERVE Parameter
Assume that you have the same physical records as in Example 5-4.

In this example, the CONTINUEIF NEXT clause uses the PRESERVEparameter:
CONTINUEIF NEXT PRESERVE (1:2) ="%%’

Therefore, the logical records are assembled as follows:

..aaaaaaaa....%0%bbbbbbbb....%%%cccceccc....
..dddddddddd..%%eeeeeeeeee. VoY ffffffif..

SQL*Loader Control File Reference 5-29

Loading Logical Records into Tables

See Also: Case Study 4: Loading Combined Physical Records on
page 10-14 for an example of the CONTINUEIF clause

Loading Logical Records into Tables
This section describes the way in which you specify:
« Which tables you want to load
« Which records you want to load into them
« Default data delimiters for those records

« How to handle short records with missing data

Specifying Table Names

The INTO TABLE clause of the LOAD DATAtatement allows you to identify tables,
fields, and datatypes. It defines the relationship between records in the datafile and
tables in the database. The specification of fields and datatypes is described in later
sections.

INTO TABLE Clause

Among its many functions, the INTO TABLEclause allows you to specify the table
into which you load data. To load multiple tables, you include one INTO TABLE
clause for each table you wish to load.

To begin an INTO TABLEclause, use the keywords INTO TABLE, followed by the
name of the Oracle table that is to receive the data.

The syntax is as follows:

PARTITION
l SUBPARTITION "

The table must already exist. The table name should be enclosed in double
guotation marks if it is the same as any SQL or SQL*Loader reserved keyword, if it
contains any special characters, or if it is case sensitive.

5-30 Oracle9i Database Utilities

Loading Logical Records into Tables

INTO TABLE scott."CONSTANT"
INTO TABLE scott."Constant"
INTO TABLE scott-CONSTANT"

The user must have INSERT privileges for the table being loaded. If the table is not
in the user’s schema, then the user must either use a synonym to reference the table
or include the schema name as part of the table name (for example, scott.emp).

Table-Specific Loading Method

The INTO TABLE clause may include a table-specific loading method (INSERT,
APPEND, REPLACE or TRUNCATIthat applies only to that table. Specifying one of
these methods within the INTO TABLE clause overrides the global table-loading
method. The global table-loading method is INSERT, by default, unless a different
method was specified before any INTO TABLE clauses. The following sections
discuss using these options to load data into empty and nonempty tables.

Loading Data into Empty Tables
If the tables you are loading into are empty, use the INSERT option.

INSERT This is SQL*Loader’s default method. It requires the table to be empty
before loading. SQL*Loader terminates with an error if the table contains rows.
Case Study 1: Loading Variable-Length Data on page 10-5 provides an example.

Loading Data into Nonempty Tables
If the tables you are loading into already contain data, you have three options:

« APPEND
« REPLACE
« TRUNCATE

Caution: When REPLACEor TRUNCATEHsS specified, the entire
table is replaced, not just individual rows. After the rows are
successfully deleted, a commit is issued. You cannot recover the
data that was in the table before the load, unless it was saved with
Export or a comparable utility.

SQL*Loader Control File Reference 5-31

Loading Logical Records into Tables

Note: This section corresponds to the DB2 keyword RESUME;
users of DB2 should also refer to the description of RESUMHEN
Appendix B.

APPEND If data already exists in the table, SQL*Loader appends the new rows to it.
If data does not already exist, the new rows are simply loaded. You must have
SELECTprivilege to use the APPENDbption. Case Study 3: Loading a Delimited,
Free-Format File on page 10-11 provides an example.

REPLACE With REPLACE,all rows in the table are deleted and the new data is
loaded. The table must be in your schema, or you must have DELETEprivilege on
the table. Case Study 4: Loading Combined Physical Records on page 10-14
provides an example.

The row deletes cause any delete triggers defined on the table to fire. If DELETE
CASCADHas been specified for the table, then the cascaded deletes are carried out.
For more information on cascaded deletes, see the information about data integrity
in Oracle9i Database Concepts.

Updating Existing Rows The REPLACEmMethod is a table replacement, not a
replacement of individual rows. SQL*Loader does not update existing records, even
if they have null columns. To update existing rows, use the following procedure:

1. Load your data into a work table.

2. Use the SQL language UPDATEstatement with correlated subqueries.

3. Drop the work table.

For more information, see the UPDATEstatement in Oracle9i SQL Reference.
TRUNCATE The SQL TRUNCATEtatement quickly and efficiently deletes all rows
from a table or cluster, to achieve the best possible performance. For the TRUNCATE

statement to operate, the table’s referential integrity constraints must first be
disabled. If they have not been disabled, SQL*Loader returns an error.

Once the integrity constraints have been disabled, DELETE CASCADEHs no longer
defined for the table. If the DELETE CASCADHunctionality is needed, then the
contents of the table must be manually deleted before the load begins.

The table must be in your schema, or you must have the DROP ANY TABLE
privilege.

5-32 Oracle9i Database Utilities

Loading Logical Records into Tables

See Also: Oracle9i Database Administrator’s Guide for more
information about the TRUNCATEtatement

Table-Specific OPTIONS Parameter

The OPTIONSparameter can be specified for individual tables in a parallel load. (It
is only valid for a parallel load.)

The syntax for the OPTIONSparameter is as follows:

opTIoNs () FILE=database_fiIenamem

See Also: Parameters for Parallel Direct Path Loads on page 9-30

Loading Records Based on a Condition
You can choose to load or discard a logical record by using the WHENIause to test a
condition in the record.

The WHENIause appears after the table name and is followed by one or more field
conditions. The syntax for field_condition is as follows:

3

full_fieldname

operator

i

pos_spec

BLANKS

For example, the following clause indicates that any record with the value "q" in the
fifth column position should be loaded:

WHEN (5)="q
A WHENIause can contain several comparisons, provided each is preceded by AND.

Parentheses are optional, but should be used for clarity with multiple comparisons
joined by AND, for example:

WHEN (deptno ="10) AND (job = 'SALES)

SQL*Loader Control File Reference 5-33

Loading Logical Records into Tables

See Also:

« Using the WHEN, NULLIF, and DEFAULTIF Clauses on
page 6-31 for information about how SQL*Loader evaluates
WHEN]Iauses, as opposed to NULLIF and DEFAULTIF clauses

» Case Study 5: Loading Data into Multiple Tables on page 10-18
provides an example of the WHENIause

Using the WHEN Clause with LOBFILES and SDFs

If a record with a LOBFILE or SDF is discarded, SQL*Loader skips the
corresponding data in that LOBFILE or SDF.

Specifying Default Data Delimiters

If all data fields are terminated similarly in the datafile, you can use the FIELDS
clause to indicate the default delimiters. The syntax for the fields_spec,
termination_spec, and enclosure_spec clauses is as follows:

fields_spec

enclosure_spec

OPTIONALLY
(enclosure_spec)—

/

termination_spec

termination_spec

WHITESPACE

TERMINATED

5-34 Oracle9i Database Utilities

Loading Logical Records into Tables

Note: Terminator strings can contain one or more characters. Also,
TERMINATED BY EOFapplies only to loading LOBs from
LOBFILE.

enclosure_spec

'string’ 'string’

e
e

X'hexstr X'hexstr

S
ENCLOSED

Note: Enclosure strings can contain one or more characters.

You can override the delimiter for any given column by specifying it after the
column name. Case Study 3: Loading a Delimited, Free-Format File on page 10-11
provides an example.

See Also:

« Specifying Delimiters on page 6-23 for a complete description
of the syntax

« Loading LOB Data from LOBFILEs on page 7-18

Handling Short Records with Missing Data

When the control file definition specifies more fields for a record than are present in
the record, SQL*Loader must determine whether the remaining (specified) columns
should be considered null or whether an error should be generated.

If the control file definition explicitly states that a field’s starting position is beyond
the end of the logical record, then SQL*Loader always defines the field as null. If a
field is defined with a relative position (such as dname and loc in the following
example), and the record ends before the field is found, then SQL*Loader could
either treat the field as null or generate an error. SQL*Loader uses the presence or
absence of the TRAILING NULLCOLS clause to determine the course of action.

SQL*Loader Control File Reference 5-35

Index Options

NULLCOLS
f>| FIELDS \ f>| TRAILING

1

[—>| TREAT |—>| AS Mypenameh

TRAILING NULLCOLS Clause

The TRAILING NULLCOLSclause tells SQL*Loader to treat any relatively positioned
columns that are not present in the record as null columns.

For example, consider the following data:

10 Accounting

Assume that the preceding data is read with the following control file and the
record ends after dname:

INTO TABLE dept
TRAILING NULLCOLS
(deptno CHAR TERMINATED BY ",
dname CHAR TERMINATED BY WHITESPACE,
loc CHAR TERMINATED BY WHITESPACE

)

In this case, the remaining loc field is set to null. Without the TRAILING
NULLCOLSlause, an error would be generated due to missing data.

See Also: Case Study 7: Extracting Data from a Formatted Report
on page 10-28 for an example of TRAILING NULLCOLS

Index Options

This section describes the following SQL*Loader options that control how index
entries are created:

= SORTED INDEXES
« SINGLEROW

5-36 Oracle9/ Database Utilities

Benefits of Using Multiple INTO TABLE Clauses

SORTED INDEXES Clause

The SORTED INDEXES$lause applies to direct path loads. It tells SQL*Loader that
the incoming data has already been sorted on the specified indexes, allowing
SQL*Loader to optimize performance.

See Also: SORTED INDEXES Clause on page 9-16

SINGLEROW Option

The SINGLEROWgption is intended for use during a direct path load with APPEND
on systems with limited memory, or when loading a small number of records into a
large table. This option inserts each index entry directly into the index, one record at
atime.

By default, SQL*Loader does not use SINGLEROWb append records to a table.
Instead, index entries are put into a separate, temporary storage area and merged
with the original index at the end of the load. This method achieves better
performance and produces an optimal index, but it requires extra storage space.
During the merge, the original index, the new index, and the space for new entries
all simultaneously occupy storage space.

With the SINGLEROV@ption, storage space is not required for new index entries or
for a new index. The resulting index may not be as optimal as a freshly sorted one,
but it takes less space to produce. It also takes more time because additional UNDO
information is generated for each index insert. This option is suggested for use
when either of the following situations exists:

« Available storage is limited.

« The number of records to be loaded is small compared to the size of the table (a
ratio of 1:20 or less is recommended).

Benefits of Using Multiple INTO TABLE Clauses
Multiple INTO TABLEclauses allow you to:
« Load data into different tables
« Extract multiple logical records from a single input record
« Distinguish different input record formats

« Distinguish different input row object subtypes

SQL*Loader Control File Reference 5-37

Benefits of Using Multiple INTO TABLE Clauses

In the first case, it is common for the INTO TABLEclauses to refer to the same table.
This section illustrates the different ways to use multiple INTO TABLE clauses and
shows you how to use the POSITION parameter.

Note: A key point when using multiple INTO TABLE clauses is
that field scanning continues from where it left off when a new INTO
TABLEclause is processed. The remainder of this section details
important ways to make use of that behavior. It also describes
alternative ways using fixed field locations or the POSITION
parameter.

Extracting Multiple Logical Records

Some data storage and transfer media have fixed-length physical records. When the
data records are short, more than one can be stored in a single, physical record to
use the storage space efficiently.

In this example, SQL*Loader treats a single physical record in the input file as two
logical records and uses two INTO TABLE clauses to load the data into the emp
table. For example, assume the data is as follows:

1119 Smith 1120 Yvonne
1121 Albert 1130 Thomas

The following control file extracts the logical records:

INTO TABLE emp
(empno POSITION(1:4) INTEGER EXTERNAL,
ename POSITION(6:15) CHAR)

INTO TABLE emp
(empno POSITION(17:20) INTEGER EXTERNAL,
ename POSITION(21:30) CHAR)

Relative Positioning Based on Delimiters

The same record could be loaded with a different specification. The following
control file uses relative positioning instead of fixed positioning. It specifies that
each field is delimited by a single blank (" ") or with an undetermined number of
blanks and tabs (WHITESPACE

INTO TABLE emp
(empno INTEGER EXTERNAL TERMINATED BY ",
ename CHAR TERMINATED BY WHITESPACE)
INTO TABLE emp

5-38 Oracle9/ Database Utilities

Benefits of Using Multiple INTO TABLE Clauses

(empno INTEGER EXTERNAL TERMINATED BY ",
ename CHAR) TERMINATED BY WHITESPACE)

The important point in this example is that the second empno field is found
immediately after the first ename, although it is in a separate INTO TABLE clause.
Field scanning does not start over from the beginning of the record for a new INTO
TABLEclause. Instead, scanning continues where it left off.

To force record scanning to start in a specific location, you use the POSITION
parameter. That mechanism is described in Distinguishing Different Input Record
Formats on page 5-39 and in Loading Data into Multiple Tables on page 5-42.

Distinguishing Different Input Record Formats

A single datafile might contain records in a variety of formats. Consider the
following data, in which empand dept records are intermixed:

150 Manufactuing — DEPT record
21119Smih 50 —EMP record
21120 Snyder 50

160 Shipping

21121 Stevens 60

A record ID field distinguishes between the two formats. Department records have
a 1 in the first column, while employee records have a 2. The following control file
uses exact positioning to load this data:

INTO TABLE dept
WHEN recid =1
(recid FILLER POSITION(1:1) INTEGER EXTERNAL,
deptno POSITION(3:4) INTEGER EXTERNAL,
dname POSITION(8:21) CHAR)

INTO TABLE emp
WHEN recid <1
(recid FILLER POSITION(1:1) INTEGER EXTERNAL,
empno POSITION(3:6) INTEGER EXTERNAL,
ename POSITION(8:17) CHAR,
deptno POSITION(19:20) INTEGER EXTERNAL)

Relative Positioning Based on the POSITION Parameter

The records in the previous example could also be loaded as delimited data. In this
case, however, it is necessary to use the POSITION parameter. The following control
file could be used:

SQL*Loader Control File Reference 5-39

Benefits of Using Multiple INTO TABLE Clauses

INTO TABLE dept
WHEN recid =1
(recid FILLER INTEGER EXTERNAL TERMINATED BY WHITESPACE,
deptno INTEGER EXTERNAL TERMINATED BY WHITESPACE,
dname CHAR TERMINATED BY WHITESPACE)

INTO TABLE emp
WHEN recid < 1
(recid FILLER POSITION(1) INTEGER EXTERNAL TERMINATED BY ',
empno INTEGER EXTERNAL TERMINATED BY ™’
ename CHAR TERMINATED BY WHITESPACE,
deptno INTEGER EXTERNAL TERMINATED BY)

The POSITION parameter in the second INTO TABLE clause is necessary to load
this data correctly. It causes field scanning to start over at column 1 when checking
for data that matches the second format. Without it, SQL*Loader would look for the
recid field after dname.

Distinguishing Different Input Row Object Subtypes

A single datafile may contain records made up of row objects inherited from the
same base row object type. For example, consider the following simple object type
and object table definitions in which a nonfinal base object type is defined along
with two object subtypes that inherit from the base type:

CREATE TYPE person_tAS OBJECT
(name VARCHAR2(30),
age NUMBER(3)) notfinal;

CREATE TYPE employee_t UNDER person t
(empid NUMBER(5),

deptno NUMBER(4),

dept VARCHAR2(30)) not final;

CREATE TYPE student_t UNDER person_t
(stdid NUMBER(5),
major VARCHAR2(20)) not final;

CREATE TABLE persons OF person t;

The following input datafile contains a mixture of these row objects subtypes. A
type ID field distinguishes between the three subtypes. person_t objects have a P
in the first column, employee _t objects have an E, and student t objects have
an S.

P,James,31,

5-40 Oracle9i Database Utilities

Benefits of Using Multiple INTO TABLE Clauses

P,Thomas,22,

E,Pat,38,93645,1122 Engineering,
P,Bill, 19,

P,Scott,55,

S,Judy,45,27316,English,

S Karen,34,80356,History,

E Karen,61,90056,1323 Manufacturing,
S,Pat,29,98625,Spanish,
S,Cody,22,99743 Math,

P,Ted43,
E,Judy,44,87616,1544,Accounting,
E,Bob,50,63421,1314,Shipping,
S,Bab,32,67420,Psychology,
E,Cody,33,25143,1002,Human Resources,

The following control file uses relative positioning based on the POSITION
parameter to load this data. Note the use of the TREAT Aclause with a specific
object type name. This informs SQL*Loader that all input row objects for the object
table will conform to the definition of the named object type.

INTO TABLE persons
REPLACE
WHEN typid ='P' TREAT AS person _t
FIELDS TERMINATED BY "
(typid FILLER POSITION(1) CHAR,
name CHAR,
age CHAR)

INTO TABLE persons
REPLACE
WHEN typid = 'E' TREAT AS employee_t
FIELDS TERMINATED BY ""
(typid FILLER POSITION(1) CHAR,
name CHAR,
age CHAR,
empid CHAR,
deptno CHAR,
dept CHAR)

INTO TABLE persons

REPLACE

WHEN typid ='S' TREAT AS student _t

FIELDS TERMINATED BY ""

(typid FILLER POSITION(1) CHAR,
name CHAR,

SQL*Loader Control File Reference 5-41

Bind Arrays and Conventional Path Loads

age CHAR,
stdid CHAR,
major CHAR)

See Also: Loading Column Objects on page 7-1 for more
information on loading object types

Loading Data into Multiple Tables

By using the POSITION clause with multiple INTO TABLE clauses, data from a
single record can be loaded into multiple normalized tables. See Case Study 5:
Loading Data into Multiple Tables on page 10-18.

Summary

Multiple INTO TABLE clauses allow you to extract multiple logical records from a
single input record and recognize different record formats in the same file.

For delimited data, proper use of the POSITION parameter is essential for achieving
the expected results.

When the POSITION parameter is not used, multiple INTO TABLE clauses process
different parts of the same (delimited data) input record, allowing multiple tables to
be loaded from one record. When the POSITION parameter is used, multiple INTO
TABLE clauses can process the same record in different ways, allowing multiple
formats to be recognized in one input file.

Bind Arrays and Conventional Path Loads

SQL*Loader uses the SQL array-interface option to transfer data to the database.
Multiple rows are read at one time and stored in the bind array. When SQL*Loader
sends the Oracle database an INSERT command, the entire array is inserted at one
time. After the rows in the bind array are inserted, a COMMITis issued.

The determination of bind array size pertains to SQL*Loader’s conventional path
option. It does not apply to the direct path load method because a direct path load
uses the Direct Path API, rather than Oracle’s SQL interface.

See Also: Oracle Call Interface Programmer’s Guide for more
information about the concepts of direct path loading

5-42 Oracle9i Database Utilities

Bind Arrays and Conventional Path Loads

Size Requirements for Bind Arrays

The bind array must be large enough to contain a single row. If the maximum row
length exceeds the size of the bind array, as specified by the BINDSIZE parameter,
SQL*Loader generates an error. Otherwise, the bind array contains as many rows as
can fit within it, up to the limit set by the value of the ROW$®arameter.

The BINDSIZE and ROW$®arameters are described in Command-Line Parameters
on page 4-3.

Although the entire bind array need not be in contiguous memory, the buffer for
each field in the bind array must occupy contiguous memory. If the operating
system cannot supply enough contiguous memory to store a field, SQL*Loader
generates an error.

Performance Implications of Bind Arrays

Large bind arrays minimize the number of calls to the Oracle database server and
maximize performance. In general, you gain large improvements in performance

with each increase in the bind array size up to 100 rows. Increasing the bind array
size to be greater than 100 rows generally delivers more modest improvements in
performance. The size (in bytes) of 100 rows is typically a good value to use.

In general, any reasonably large size permits SQL*Loader to operate effectively. It is
not usually necessary to perform the detailed calculations described in this section.
Read this section when you need maximum performance or an explanation of
memory usage.

Specifying Number of Rows Versus Size of Bind Array

When you specify a bind array size using the command-line parameter BINDSIZE
(see BINDSIZE (maximum size) on page 4-3) or the OPTIONSclause in the control
file (see OPTIONS Clause on page 5-4), you impose an upper limit on the bind
array. The bind array never exceeds that maximum.

As part of its initialization, SQL*Loader determines the size in bytes required to
load a single row. If that size is too large to fit within the specified maximum, the
load terminates with an error.

SQL*Loader then multiplies that size by the number of rows for the load, whether

that value was specified with the command-line parameter ROW$see ROWS (rows
per commit) on page 4-10) or the OPTIONSclause in the control file (see OPTIONS

Clause on page 5-4).

SQL*Loader Control File Reference 5-43

Bind Arrays and Conventional Path Loads

If that size fits within the bind array maximum, the load continues—SQL*Loader
does not try to expand the number of rows to reach the maximum bind array size. If
the number of rows and the maximum bind array size are both specified, SQL*Loader always
uses the smaller value for the bind array.

If the maximum bind array size is too small to accommodate the initial number of
rows, SQL*Loader uses a smaller number of rows that fits within the maximum.

Calculations to Determine Bind Array Size

The bind array’s size is equivalent to the number of rows it contains times the
maximum length of each row. The maximum length of a row is equal to the sum of
the maximum field lengths, plus overhead, as follows:

bind array size =
(number of rows) * (| SUM(fixed field lengths)
+ SUM(maximum varying field lengths)
+ ((number of varying length fields)
* (size of length indicator))
)

Many fields do not vary in size. These fixed-length fields are the same for each
loaded row. For these fields, the maximum length of the field is the field size, in
bytes, as described in SQL*Loader Datatypes on page 6-7. There is no overhead for
these fields.

The fields that can vary in size from row to row are:
« CHAR

« DATE

« INTERVAL DAY TO SECOND

« INTERVAL DAY TO YEAR

« LONG VARRAW

« numeric EXTERNAL

« TIME

« TIMESTAMP

« TIME WITH TIME ZONE

« TIMESTAMP WITH TIME ZONE
« VARCHAR

5-44 Oracle9i Database Utilities

Bind Arrays and Conventional Path Loads

« VARCHARC

= VARGRAPHIC
« VARRAW

« VARRAWC

The maximum length of these datatypes is described in SQL*Loader Datatypes on
page 6-7. The maximum lengths describe the number of bytes that the fields can
occupy in the input data record. That length also describes the amount of storage
that each field occupies in the bind array, but the bind array includes additional
overhead for fields that can vary in size.

When the character datatypes (CHARDATE and numeric EXTERNAI. are specified
with delimiters, any lengths specified for these fields are maximum lengths. When
specified without delimiters, the size in the record is fixed, but the size of the
inserted field may still vary, due to whitespace trimming. So internally, these
datatypes are always treated as varying-length fields—even when they are
fixed-length fields.

A length indicator is included for each of these fields in the bind array. The space
reserved for the field in the bind array is large enough to hold the longest possible
value of the field. The length indicator gives the actual length of the field for each
row.

Note: In conventional path loads, LOBFILESs are not included
when allocating the size of a bind array.

Determining the Size of the Length Indicator

On most systems, the size of the length indicator is 2 bytes. On a few systems, it is 3
bytes. To determine its size, use the following control file:

OPTIONS (ROWS=1)

LOAD DATA

INFILE *

APPEND

INTO TABLE DEPT

(deptno POSITION(L:1) CHAR(L))
BEGINDATA

a

This control file loads a 1-byte CHARusing a 1-row bind array. In this example, no
data is actually loaded because a conversion error occurs when the character a is

SQL*Loader Control File Reference 5-45

Bind Arrays and Conventional Path Loads

loaded into a numeric column (deptno). The bind array size shown in the log file,
minus one (the length of the character field) is the value of the length indicator.

Note: A similar technique can determine bind array size without
doing any calculations. Run your control file without any data and
with ROWS=10 determine the memory requirements for a single
row of data. Multiply by the number of rows you want in the bind
array to determine the bind array size.

Calculating the Size of Field Buffers

Table 5-1 through Table 5-4 summarize the memory requirements for each
datatype. "L" is the length specified in the control file. "P" is precision. "S" is the size
of the length indicator. For more information on these values, see SQL*Loader

Datatypes on page 6-7.

Table 5-1 Fixed-Length Fields

Datatype Size in Bytes (Operating System-Dependent)

INTEGER The size of the INT datatype, in C

INTEGER(N) N bytes

SMALLINT The size of SHORT INT datatype, in C

FLOAT The size of the FLOATdatatype, in C

DOUBLE The size of the DOUBLHlatatype, in C

BYTEINT The size of UNSIGNED CHARIn C

VARRAW The size of UNSIGNED SHORplus 4096 bytes or whatever is

specified as max_length

LONG VARRAW

The size of UNSIGNED INT, plus 4096 bytes or whatever is
specified as max_length

VARCHARC Composed of 2 numbers. The first specifies length, and the
second (which is optional) specifies max_length (default is
4096 bytes).

VARRAWC This datatype is for RAWdata. It is composed of 2 numbers.

The first specifies length, and the second (which is optional)
specifies max_length (default is 4096 bytes).

5-46 Oracle9/ Database Utilities

Bind Arrays and Conventional Path Loads

Table 5-2 Nongraphic Fields

Datatype Default Size [Specified Size
(packed) DECIMAL None (N+1)/2, rounded up
ZONED None P
RAW None L
CHAR(no delimiters) 1
L+S
datetime and interval (no delimiters) None
numeric EXTERNAL (no delimiters) None

Table 5-3 Graphic Fields

Length Specified Length Specified
Datatype Default Size with POSITION with DATATYPE
GRAPHIC None L 2*L
GRAPHIC None L-2 2*(L-2)
EXTERNAL
VARGRAPHIC 4Kb*2 L+S (2*L)+S

Table 5-4 Variable-Length Fields

Maximum Length
Datatype Default Size Specified (L)

VARCHAR 4Kb L+S

CHAR(delimited)
datetime and interval (delimited)
numeric EXTERNAL(delimited) 255 L+S

Minimizing Memory Requirements for Bind Arrays

Pay particular attention to the default sizes allocated for VARCHARVARGRAPHIC
and the delimited forms of CHARDATE and numeric EXTERNAILfields. They can
consume enormous amounts of memory—especially when multiplied by the
number of rows in the bind array. It is best to specify the smallest possible
maximum length for these fields. Consider the following example;

CHAR(10) TERMINATED BY ",

SQL*Loader Control File Reference 5-47

Bind Arrays and Conventional Path Loads

With byte-length semantics, this example uses (10 + 2) * 64 = 768 bytes in the bind

array, assuming that the length indicator is 2 bytes long and that 64 rows are loaded
at atime.

With character-length semantics, the same example uses ((10 * s) + 2) * 64 bytes in

the bind array, where "s" is the maximum size in bytes of a character in the datafile
character set.

Now consider the following example:
CHAR TERMINATED BY "

Regardless of whether byte-length semantics or character-length semantics are
used, this example uses (255 + 2) * 64 = 16,448 bytes, because the default maximum
size for a delimited field is 255 bytes. This can make a considerable difference in the
number of rows that fit into the bind array.

Calculating Bind Array Size for Multiple INTO TABLE Clauses

When calculating a bind array size for a control file that has multiple INTO TABLE
clauses, calculate as if the INTO TABLE clauses were not present. Imagine all of the
fields listed in the control file as one, long data structure—that is, the format of a
single row in the bind array.

If the same field in the data record is mentioned in multiple INTO TABLEclauses,
additional space in the bind array is required each time it is mentioned. It is
especially important to minimize the buffer allocations for such fields.

Note: Generated data is produced by the SQL*Loader functions
CONSTANTEXPRESSIONRECNUMSYSDATEand SEQUENCEuch
generated data does not require any space in the bind array.

5-48 Oracle9i Database Utilities

6

Field List Reference

This chapter describes the field-list portion of the SQL*Loader control file. The
following topics are included:

Field List Contents

Specifying the Position of a Data Field
Specifying Columns and Fields

SQL*Loader Datatypes

Specifying Field Conditions

Using the WHEN, NULLIF, and DEFAULTIF Clauses
Loading Data Across Different Platforms
Byte Ordering

Loading All-Blank Fields

Trimming Whitespace

Preserving Whitespace

Applying SQL Operators to Fields

Using SQL*Loader to Generate Data for Input

Field List Contents

The field-list portion of a SQL*Loader control file provides information about fields
being loaded, such as position, datatype, conditions, and delimiters.

Example 6-1 shows the field list section of the sample control file that was
introduced in Chapter 5.

Field List Reference 6-1

Field List Contents

Example 6-1 Field List Section of Sample Control File

=

(hiredate SYSDATE,
2 deptno POSITION(1:2) INTEGER EXTERNAL(2)
NULLIF depno=BLANKS,
3 job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
NULLIF job=BLANKS "UPPER(;job)",
mgr POSITION(28:31) INTEGER EXTERNAL
TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
ename POSITION(34:41) CHAR
TERMINATED BY WHITESPACE "UPPER(:ename)",
empno POSITION(45) INTEGER EXTERNAL
TERMINATED BY WHITESPACE,
sal POSITION(51) CHAR TERMINATED BY WHITESPACE
"TO_NUMBER(:sal,'$99,999.99)",
4 comm INTEGER EXTERNAL ENCLOSED BY '(AND %'
":comm*100"

)

In this sample control file, the numbers that appear to the left would not appear in a
real control file. They are keyed in this sample to the explanatory notes in the
following list:

1. SYSDATEsets the column to the current system date. See Setting a Column to
the Current Date on page 6-55.

2. POSITION specifies the position of a data field. See Specifying the Position of a
Data Field on page 6-3.

INTEGER EXTERNAISs the datatype for the field. See Specifying the Datatype of
a Data Field on page 6-7 and Numeric EXTERNAL on page 6-19.

The NULLIF clause is one of the clauses that can be used to specify field
conditions. See Using the WHEN, NULLIF, and DEFAULTIF Clauses on
page 6-31.

In this sample, the field is being compared to blanks, using the BLANKS
parameter. See Comparing Fields to BLANKS on page 6-30.

3. The TERMINATED BY WHITESPAQIause is one of the delimiters it is possible
to specify for a field. See TERMINATED Fields on page 6-24.

4. The ENCLOSED B¥lause is another possible field delimiter. See Enclosed Fields
on page 6-48.

6-2 Oracle9/ Database Utilities

Specifying the Position of a Data Field

Specifying the Position of a Data Field

To load data from the datafile, SQL*Loader must know the length and location of
the field. To specify the position of a field in the logical record, use the POSITION
clause in the column specification. The position may either be stated explicitly or
relative to the preceding field. Arguments to POSITION must be enclosed in
parentheses. The start, end, and integer values are always in bytes, even if
character-length semantics are used for a datafile.

The syntax for the position specification (pos_spec) clause is as follows:

where:

start The starting column of the data field in the logical record. The first
byte position in a logical record is 1.

end The ending position of the data field in the logical record. Either
start -end or start:end is acceptable. If you omit end, the length
of the field is derived from the datatype in the datafile. Note that
CHARdata specified without start or end, and without a length
specification (CHARn)), is assumed to have a length of 1. If it is
impossible to derive a length from the datatype, an error message is
issued.

* Specifies that the data field follows immediately after the previous
field. If you use * for the first data field in the control file, that field is
assumed to be at the beginning of the logical record. When you use *
to specify position, the length of the field is derived from the
datatype.

+integer You can use an offset, specified as +integer , to offset the current
field from the next position after the end of the previous field. A
number of bytes, as specified by +integer , are skipped before
reading the value for the current field.

For example:

ename POSITION (1:20) CHAR
empno POSITION (22-26) INTEGER EXTERNAL

Field List Reference 6-3

Specifying the Position of a Data Field

allow POSITION (*+2) INTEGER EXTERNAL TERMINATED BY "/*

Column ename is character data in positions 1 through 20, followed by column
empno, which is presumably numeric data in columns 22 through 26. Column
allow is offset from the end of empno by +2. Therefore, it starts in column 29 and
continues until a slash is encountered.

You may omit POSITION entirely. If you do, the position specification for the data
field is the same as if POSITION(*) had been used.

Using POSITION with Data Containing Tabs

When you are determining field positions, be alert for tabs in the datafile. The
following situation is highly likely when you use the SQL*Loader advanced SQL
string capabilities to load data from a formatted report:

= You look at a printed copy of the report, carefully measuring all character
positions, and create your control file.

« The load fails with multiple "invalid number" and "missing field" errors.

These kinds of errors occur when the data contains tabs. When printed, each tab
expands to consume several columns on the paper. In the datafile, however, each
tab is still only one character. As a result, when SQL*Loader reads the datafile, the
POSITION specifications are wrong.

To fix the problem, inspect the datafile for tabs and adjust the POSITION
specifications, or else use delimited fields.

See Also: Specifying Delimiters on page 6-23

Using POSITION with Multiple Table Loads

In a multiple table load, you specify multiple INTO TABLE clauses. When you
specify POSITION(*) for the first column of the first table, the position is
calculated relative to the beginning of the logical record. When you specify
POSITION(*) for the first column of subsequent tables, the position is calculated
relative to the last column of the last table loaded.

Thus, when a subsequent INTO TABLE clause begins, the position is not set to the
beginning of the logical record automatically. This allows multiple INTO TABLE
clauses to process different parts of the same physical record. For an example, see
Extracting Multiple Logical Records on page 5-38.

6-4 Oracle9/ Database Utilities

Specifying Columns and Fields

A logical record might contain data for one of two tables, but not both. In this case,
you would reset POSITION. Instead of omitting the position specification or using
POSITION(*+ n) for the first field in the INTO TABLE clause, use POSITION(1)
or POSITION(n) .

Examples of Using POSITION

siteid POSITION (*) SMALLINT
siteloc POSITION () INTEGER

If these were the first two column specifications, siteid would begin in columnl,
and siteloc would begin in the column immediately following.

ename POSITION (1:20) CHAR
empno POSITION (22-26) INTEGER EXTERNAL
allow POSITION (*+2) INTEGER EXTERNAL TERMINATED BY "/

Column ename is character data in positions 1 through 20, followed by column
empno, which is presumably numeric data in columns 22 through 26. Column
allow is offset from the next position (27) after the end of empno by +2, so it starts
in column 28 and continues until a slash is encountered.

Specifying Columns and Fields

You may load any number of a table’s columns. Columns defined in the database,
but not specified in the control file, are assigned null values.

A column specification is the name of the column, followed by a specification for
the value to be put in that column. The list of columns is enclosed by parentheses
and separated with commas as follows:

(columnspec,columnspec, ...)

Each column name must correspond to a column of the table named in the INTO
TABLEclause. A column name must be enclosed in quotation marks if it is a SQL or
SQL*Loader reserved word, contains special characters, or is case sensitive.

If the value is to be generated by SQL*Loader, the specification includes the
RECNUMSEQUENCHEr CONSTANPparameter. See Using SQL*Loader to Generate
Data for Input on page 6-53.

If the column’s value is read from the datafile, the data field that contains the
column’s value is specified. In this case, the column specification includes a column
name that identifies a column in the database table, and a field specification that

Field List Reference 6-5

Specifying Columns and Fields

describes a field in a data record. The field specification includes position, datatype,
null restrictions, and defaults.

It is not necessary to specify all attributes when loading column objects. Any
missing attributes will be set to NULL

Specifying Filler Fields

A filler field, specified by FILLER , is a datafile mapped field that does not
correspond to a database column. Filler fields are assigned values from the data
fields to which they are mapped.

Keep the following in mind with regard to filler fields:

The syntax for a filler field is same as that for a column-based field, except that a
filler field's name is followed by FILLER.

Filler fields have names but they are not loaded into the table.

Filler fields can be used as arguments to init_specs (for example, NULLIF
and DEFAULTIF).

Filler fields can be used as arguments to directives (for example, SID, OID, REFR
BFILE).

Filler fields can be used in field condition specifications in NULLIF, DEFAULTIF,
and WHENIauses. However, they cannot be used in SQL strings.

Filler field specifications cannot contain a NULLIF or DEFAULTIF clause.

Filler fields are initialized to NULLif TRAILING NULLCOLS is specified and
applicable. If another field references a nullified filler field, an error is
generated.

Filler fields can occur anyplace in the datafile, including inside the field list for
an object or inside the definition of a VARRAY.

SQL strings cannot be specified as part of a filler field specification because no
space is allocated for fillers in the bind array.

Note: The information in this section also applies to specifying
bound fillers by using BOUNDFILLER The only exception is that
with bound fillers, SQL strings can be specified as part of the field
because space is allocated for them in the bind array.

6-6 Oracle9/ Database Utilities

SQL*Loader Datatypes

A sample filler field specification looks as follows:

field 1 count FILLER char,
field_1 varray count(field_1_count)

(
filer_field1 char(2),
field_1 column object

(
atirl char(2),
filer_field2 char(2),
attr2 char(2),

)
filer field3 char(3),

)
filer_field4 char(6)

Specifying the Datatype of a Data Field

The datatype specification of a field tells SQL*Loader how to interpret the data in
the field. For example, a datatype of INTEGERspecifies binary data, while INTEGER
EXTERNALspecifies character data that represents a number. A CHARfield can
contain any character data.

Only one datatype can be specified for each field; if a datatype is not specified, CHAR
is assumed.

SQL*Loader Datatypes on page 6-7 describes how SQL*Loader datatypes are
converted into Oracle datatypes and gives detailed information on each
SQL*Loader datatype.

Before you specify the datatype, you must specify the position of the field.

SQL*Loader Datatypes

SQL*Loader datatypes can be grouped into portable and nonportable datatypes.
Within each of these two groups, the datatypes are subgrouped into value datatypes
and length-value datatypes.

Portable versus nonportable refers to whether or not the datatype is platform
dependent. Platform dependency can exist for a number of reasons, including
differences in the byte ordering schemes of different platforms (big endian versus
little endian), differences in the number of bits in a platform (16-bit, 32-bit, 64-bit),
differences in signed number representation schemes (2’s complement versus 1’s
complement), and so on. In some cases, such as with byte ordering schemes and

Field List Reference 6-7

SQL*Loader Datatypes

platform word length, SQL*Loader provides mechanisms to help overcome
platform dependencies. These mechanisms are discussed in the descriptions of the
appropriate datatypes.

Both portable and nonportable datatypes can be values or length-values. VALUE
datatypes assume that a data field has a single part. LENGTHVALUEdatatypes
require that the data field consist of two subfields where the length subfield
specifies how long the value subfield can be.

Nonportable Datatypes
VALUE Datatypes = LENGTH-VALUE Datatypes
INTEGER(n)
SMALLINT VARGRAPHIC
FLOAT VARCHAR
DOUBLE VARRAW
BYTEINT LONG VARRAW
ZONED

(packed) DECIMAL

The syntax for the nonportable datatypes is shown in the syntax diagram for
datatype_spec on page A-9.

INTEGER(n)

The data is a full-word binary integer, where n is an optionally supplied length of 1,
2, 4, or 8. If no length specification is given, then the length, in bytes, is based on the
size of a LONG INTin the C programming language on your particular platform.

INTEGER are not portable because their byte size, their byte order, and the
representation of signed values may be different between systems. However, if the
representation of signed values is the same between systems, SQL*Loader may be
able to access INTEGERdata with correct results. If INTEGERIs specified with a
length specification (n), and the appropriate technique is used (if necessary) to
indicate the byte order of the data, then SQL*Loader can access the data with
correct results between systems. If INTEGERIs specified without a length
specification, then SQL*Loader can access the data with correct results only if the
size of a LONG INTin the C programming language is the same length in bytes on
both systems. In that case, the appropriate technique must still be used (if
necessary) to indicated the byte order of the data.

6-8 Oracle9/ Database Utilities

SQL*Loader Datatypes

Specifying an explicit length for binary integers is useful in situations where the
input data was created on a platform whose word length differs from that on which
SQL*Loader is running. For instance, input data containing binary integers might
be created on a 64-bit platform and loaded into a database using SQL*Loader on a
32-bit platform. In this case, use INTEGER(8) to instruct SQL*Loader to process the
integers as 8-byte quantities, not as 4-byte quantities.

By default, INTEGERIs treated as a SIGNEDquantity. If you want SQL*Loader to
treat it as an unsigned quantity, specify UNSIGNEDTo return to the default
behavior, specify SIGNED

See Also: Loading Data Across Different Platforms on page 6-35

SMALLINT

The data is a half-word binary integer. The length of the field is the length of a
half-word integer on your system. By default, it is treated as a SIGNEDquantity. If
you want SQL*Loader to treat it as an unsigned quantity, specify UNSIGNEDTo
return to the default behavior, specify SIGNED

SMALLINT can be loaded with correct results only between systems where a SHORT
INT has the same length in bytes. If the byte order is different between the systems,
use the appropriate technique to indicate the byte order of the data. See Byte
Ordering on page 6-36.

Note: This is the SHORT INT datatype in the C programming
language. One way to determine its length is to make a small
control file with no data and look at the resulting log file. This
length cannot be overridden in the control file. See your Oracle
operating system-specific documentation for details.

FLOAT

The data is a single-precision, floating-point, binary number. If you specify end in
the POSITION clause, end is ignored. The length of the field is the length of a
single-precision, floating-point binary number on your system. (The datatype is
FLOATIn C.) This length cannot be overridden in the control file.

FLOATCcan be loaded with correct results only between systems where the
representation of a FLOATIs compatible and of the same length. If the byte order is
different between the two systems, use the appropriate technique to indicate the
byte order of the data. See Byte Ordering on page 6-36.

Field List Reference 6-9

SQL*Loader Datatypes

DOUBLE

The data is a double-precision, floating-point binary number. If you specify end in
the POSITION clause, end is ignored. The length of the field is the length of a
double-precision, floating-point binary number on your system. (The datatype is
DOUBLEor LONG FLOATiINn C.) This length cannot be overridden in the control file.

DOUBLEan be loaded with correct results only between systems where the
representation of a DOUBLHSs compatible and of the same length. If the byte order is
different between the two systems, use the appropriate technique to indicate the
byte order of the data. See Byte Ordering on page 6-36.

BYTEINT

The decimal value of the binary representation of the byte is loaded. For example,
the input character x"1C" is loaded as 28. The length of a BYTEINT field is always 1
byte. If POSITION(start.:end) is specified, end is ignored. (The datatype is
UNSIGNED CHARnN C.)

An example of the syntax for this datatype is:
(column paosition(1) BYTEINT,
column2 BYTEINT,

ZONED

ZONEDdata is in zoned decimal format: a string of decimal digits, one per byte,
with the sign included in the last byte. (In COBOL, this is a SIGN TRAILING field.)
The length of this field is equal to the precision (number of digits) that you specify.

The syntax for the ZONEDdatatype is:

.scale
—>| ZONED P@a(precision) ‘ @-)

In this syntax, precision is the number of digits in the number, and scale (if
given) is the number of digits to the right of the (implied) decimal point. The
following example specifies an 8-digit integer starting at position 32:

sa POSITIONG32) ZONEDE),

6-10 Oracle9/ Database Utilities

SQL*Loader Datatypes

The Oracle database server uses the VAX/VMS zoned decimal format when the
zoned data is generated on an ASCII-based platform. It is also possible to load
zoned decimal data that is generated on an EBCDIC-based platform. In this case,
Oracle uses the IBM format as specified in the ESA/390 Principles of Operations,
version 8.1 manual. The format that is used depends on the character set encoding
of the input data file. See CHARACTERSET Parameter on page 5-19 for more
information.

DECIMAL

DECIMALdata is in packed decimal format: two digits per byte, except for the last
byte, which contains a digit and sign. DECIMALfields allow the specification of an
implied decimal point, so fractional values can be represented.

The syntax for the DECIMALdatatype is:

“.scale
—>| DECIMAL @{precision} ‘ @

where:

precision The number of digits in a value. The length of the field in bytes, as
computed from digits, is (N+1)/2 rounded up.

scale The scaling factor, or number of digits to the right of the decimal

point. The default is zero (indicating an integer). Scale can be greater
than the number of digits but cannot be negative.

An example is:

sal DECIMAL (7,2)

This example would load a number equivalent to +12345.67. In the data record, this
field would take up 4 bytes. (The byte length of a DECIMALfield is equivalent to
(N+1)/2, rounded up, where Nis the number of digits in the value, and 1 is added
for the sign.)

VARGRAPHIC

The data is a varying-length, double-byte character string. It consists of a length
subfield followed by a string of double-byte characters (DBCS). The Oracle database
server does not support DBCS; however, SQL*Loader reads DBCS as single bytes
and loads it as RAWdata. Like RAWHata, VARGRAPHIGields are stored without
modification in whichever column you specify.

Field List Reference 6-11

SQL*Loader Datatypes

Note: The size of the length subfield is the size of the SQL*Loader
SMALLINT datatype on your system (C type SHORT INT). See
SMALLINT on page 6-9 for more information.

VARGRAPHI@ata can be loaded with correct results only between systems where a
SHORT INT has the same length in bytes. If the byte order is different between the
systems, use the appropriate technique to indicate the byte order of the length
subfield. See Byte Ordering on page 6-36.

The syntax for the VARGRAPHIGQatatype is:

Ot ()

—>| VARGRAPHIC

The length of the current field is given in the first 2 bytes. A maximum length
specified for the VARGRAPHIQ@latatype does not include the size of the length
subfield. The maximum length specifies the number of graphic (double-byte)
characters. It is multiplied by 2 to determine the maximum length of the field in
bytes.

The default maximum field length is 2 KB graphic characters, or 4 KB
(2 * 2KB). To minimize memory requirements, specify a maximum length for such
fields whenever possible.

If a position specification is specified (using pos_spec) before the VARGRAPHIC
statement, it provides the location of the length subfield, not of the first graphic
character. If you specify pos_spec (start:end), the end location determines a
maximum length for the field. Both start and end identify single-character (byte)
positions in the file. Start is subtracted from (end + 1) to give the length of the
field in bytes. If a maximum length is specified, it overrides any maximum length
calculated from the position specification.

If a VARGRAPHIGield is truncated by the end of the logical record before its full
length is read, a warning is issued. Because the length of a VARGRAPHIGield is

embedded in every occurrence of the input data for that field, it is assumed to be
accurate.

VARGRAPHIQlata cannot be delimited.

6-12 Oracle9/ Database Utilities

SQL*Loader Datatypes

VARCHAR

A VARCHARield is a length-value datatype. It consists of a binary length subfield
followed by a character string of the specified length. The length is in bytes unless
character-length semantics are used for the datafile. In that case, the length is in
characters. See Character-Length Semantics on page 5-22.

VARCHARields can be loaded with correct results only between systems where a
SHORT data field INT has the same length in bytes. If the byte order is different
between the systems, or if the VARCHARield contains data in the UTF16 character
set, use the appropriate technique to indicate the byte order of the length subfield
and of the data. The byte order of the data is only an issue for the UTF16 character
set. See Byte Ordering on page 6-36.

Note: The size of the length subfield is the size of the SQL*Loader
SMALLINT datatype on your system (C type SHORT INT). See
SMALLINT on page 6-9 for more information.

The syntax for the VARCHARlatatype is:

® O
—>| VARCHAR

A maximum length specified in the control file does not include the size of the
length subfield. If you specify the optional maximum length for a VARCHAR
datatype, then a buffer of that size, in bytes, is allocated for these fields. However, if
character-length semantics are used for the datafile, the buffer size in bytes is the
max_length times the size in bytes of the largest possible character in the character
set. See Character-Length Semantics on page 5-22.

The default maximum size is 4 KB. Specifying the smallest maximum length that is
needed to load your data can minimize SQL*Loader’s memory requirements,
especially if you have many VARCHARields.

The POSITION clause, if used, gives the location, in bytes, of the length subfield,
not of the first text character. If you specify POSITION (start:end) , the end
location determines a maximum length for the field. Start is subtracted from (end
+ 1) to give the length of the field in bytes. If a maximum length is specified, it
overrides any length calculated from POSITION.

Field List Reference 6-13

SQL*Loader Datatypes

If a VARCHARield is truncated by the end of the logical record before its full length
is read, a warning is issued. Because the length of a VARCHARiIeld is embedded in
every occurrence of the input data for that field, it is assumed to be accurate.

VARCHARIata cannot be delimited.

VARRAW

VARRAVIS made up of a 2-byte binary length subfield followed by a RAWstring
value subfield.

VARRAWesults in a VARRAWith a 2-byte length subfield and a maximum size of 4
KB (that is, the default). VARRAW/(65000) results in a VARRAWith a length
subfield of 2 bytes and a maximum size of 65000 bytes.

VARRAMields can be loaded between systems with different byte orders if the
appropriate technique is used to indicate the byte order of the length subfield. See
Byte Ordering on page 6-36.

LONG VARRAW

LONG VARRAW a VARRAWith a 4-byte length subfield instead of a 2-byte length
subfield.

LONG VARRAKsults in a VARRAWith 4-byte length subfield and a maximum size
of 4 KB (that is, the default). LONG VARRAW/(300000) results in a VARRAWVith a
length subfield of 4 bytes and a maximum size of 300000 bytes.

LONG VARRAMields can be loaded between systems with different byte orders if
the appropriate technique is used to indicate the byte order of the length subfield.
See Byte Ordering on page 6-36.

Portable Datatypes

VALUE Datatypes LENGTH-VALUE Datatypes
CHAR VARCHARC

Datetime and Interval VARRAWC

GRAPHIC

GRAPHIC EXTERNAL

Numeric EXTERNAL (INTEGER, FLOAT,
DECIMAL, ZONED)

RAW

6-14 Oracle9/ Database Utilities

SQL*Loader Datatypes

The syntax for these datatypes is shown in the diagram for datatype_spec on
page A-9.

The character datatypes are CHARDATE and the numeric EXTERNALdatatypes.
These fields can be delimited and can have lengths (or maximum lengths) specified
in the control file.

CHAR

The data field contains character data. The length, which is optional, is a maximum
length and is taken from the POSITION specification if it is not present here. If
present, this length overrides the length in the POSITION specification. If no length
is given and there is no position specification, CHARdata is assumed to have a
length of 1, unless the field is delimited.

The syntax for the CHARdatatype is:

)
—)| CHAR

A field of datatype CHARmay also be variable-length and delimited. See Specifying
Delimiters on page 6-23. For a delimited field, if a length is specified, that length is
used as a maximum. If no maximum is specified, it defaults to 255 bytes. For a CHAR
field that is delimited and is also greater than 255 bytes, you must specify a
maximum length for the CHARfield. Otherwise you will receive an error stating that
the field in the datafile exceeds maximum length.

Datetime and Interval Datatypes
The datetime datatypes are:

« DATE

« TIME

« TIMESTAMP

« TIME WITH TIME ZONE

« TIMESTAMP WITH TIME ZONE

Values of datetime datatypes are sometimes called datetimes.
The interval datatypes are:

« INTERVAL YEAR TO MONTH

Field List Reference 6-15

SQL*Loader Datatypes

« INTERVAL DAY TO SECOND

Values of interval datatypes are sometimes called intervals.

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the datatype.

See Also: Oracle9i SQL Reference for more detailed information
about datetime and interval datatypes

DATE The DATEfield contains character data that should be converted to an Oracle
date using the specified date mask. The syntax for the DATEfield is:

—>|DATE

For example:

LOAD DATA

INTO TABLE dates (col_a POSITION (1:15) DATE "DD-Mor-YYYY")
BEGINDATA

1-Jan-1991

1-Apr-1991 28-Feb-1991

Whitespace is ignored and dates are parsed from left to right unless delimiters are
present. (A DATEfield that consists entirely of whitespace is loaded as a NULL field.)

The length specification is optional, unless a varying-length date mask is specified.
The length is in bytes unless character-length semantics are used for the datafile. In
that case, the length is in characters. See Character-Length Semantics on page 5-22.

In the preceding example, the date mask, "DD-Mon-YYYY" contains 11 bytes, with
byte-length semantics. Therefore, SQL*Loader expects a maximum of 11 bytes in the
field, so the specification works properly. But, suppose a specification such as the
following is given:

DATE "Month dd, YYYY"
In this case, the date mask contains 14 bytes. If a value with a length longer than 14
bytes is specified, such as "September 30, 1991" , a length must be specified.

Similarly, a length is required for any Julian dates (date mask "J"). A field length is
required any time the length of the date string could exceed the length of the mask
(that is, the count of bytes in the mask).

6-16 Oracle9/ Database Utilities

SQL*Loader Datatypes

If an explicit length is not specified, it can be derived from the POSITION clause. It
is a good idea to specify the length whenever you use a mask, unless you are
absolutely sure that the length of the data is less than, or equal to, the length of the
mask.

An explicit length specification, if present, overrides the length in the POSITION
clause. Either of these overrides the length derived from the mask. The mask may
be any valid Oracle date mask. If you omit the mask, the default Oracle date mask
of "dd-mon-yy" is used.

The length must be enclosed in parentheses and the mask in quotation marks. Case
Study 3: Loading a Delimited, Free-Format File on page 10-11 provides an example
of the DATEdatatype.

A field of datatype DATEmay also be specified with delimiters. For more
information, see Specifying Delimiters on page 6-23.

TIME The TIME datatype stores hour, minute, and second values. For example:
09:26:50

TIMESTAMP The TIMESTAMPdatatype is an extension of the DATEdatatype. It stores
the year, month, and day of the DATEdatatype, plus the hour, minute, and second
values of the TIME datatype. An example TIMESTAMPis as follows:

TIMESTAMP "1999-01-31 09:26:50°

If you specify a date value without a time component, the default time is 12:00:00
AM (midnight).

TIME WITH TIME ZONE The TIME WITH TIME ZONEatatype is a variant of TIME that
includes a time zone displacement in its value. The time zone displacement is the
difference (in hours and minutes) between local time and UTC (coordinated
universal time, formerly Greenwich mean time).

If the LOCALoption is specified, then data stored in the database is normalized to
the database time zone, and time zone displacement is not stored as part of the
column data. When the data is retrieved, it is returned in the user’s local session
time zone.

TIMESTAMP WITH TIME ZONE The TIMESTAMP WITH TIME ZONE datatype is a
variant of TIMESTAMPthat includes a time zone displacement in its value. The time
zone displacement is the difference (in hours and minutes) between local time and
UTC (coordinated universal time, formerly Greenwich mean time).

Field List Reference 6-17

SQL*Loader Datatypes

If the LOCALoption is specified, then data stored in the database is normalized to
the database time zone, and time zone displacement is not stored as part of the
column data. When the data is retrieved, it is returned in the user’s local session
time zone.

INTERVAL YEAR TO MONTH The INTERVAL YEAR TO MONTd4tatype stores a period
of time using the YEARand MONTHlatetime fields.

INTERVAL DAY TO SECOND The INTERVAL DAY TO SECONfatatype stores a period
of time using the DAYand SECONIDlatetime fields.

GRAPHIC

The data is a string of double-byte characters (DBCS). The Oracle database server
does not support DBCS; however, SQL*Loader reads DBCS as single bytes. Like
RAWHata, GRAPHICfields are stored without modification in whichever column you
specify.

The syntax for the GRAPHICdatatype is:

(graphic_char_length)

—>| GRAPHIC

For GRAPHICand GRAPHIC EXTERNAIspecifying POSITION (start:end) gives
the exact location of the field in the logical record.

If you specify a length for the GRAPHIC (EXTERNAL)datatype, however, then you
give the number of double-byte graphic characters. That value is multiplied by 2 to
find the length of the field in bytes. If the number of graphic characters is specified,
then any length derived from POSITION is ignored. No delimited data field
specification is allowed with GRAPHICdatatype specification.

GRAPHIC EXTERNAL

If the DBCS field is surrounded by shift-in and shift-out characters, use GRAPHIC
EXTERNALThis is identical to GRAPHIC except that the first and last characters
(the shift-in and shift-out) are not loaded.

The syntax for the GRAPHIC EXTERNAHatatype is:

6-18 Oracle9/ Database Utilities

SQL*Loader Datatypes

(graphic_char_length)

—(GRAPHIC EXTERNAL)}

where:

GRAPHIC Data is double-byte characters.

EXTERNAL First and last characters are ignored.
graphic_char_ Length in DBCS (see GRAPHIC on page 6-18).
length

For example, let [] represent shift-in and shift-out characters, and let # represent
any double-byte character.

To describe ####, use POSITION(1:4) GRAPHIC or POSITION(1) GRAPHIC(2)

To describe [###], use POSITION(1:6) GRAPHIC EXTERNAL or POSITION(1)
GRAPHIC EXTERNAL(2).

Numeric EXTERNAL

The numeric EXTERNALdatatypes are the numeric datatypes (INTEGER, FLOAT,
DECIMAL, and ZONED specified as EXTERNALwith optional length and delimiter
specifications.

These datatypes are the human-readable, character form of numeric data. Numeric
EXTERNALdata may be specified with lengths and delimiters, just like CHARdata.
Length is optional, but if specified, overrides position. The length is in bytes unless
character-length semantics are used for the datafile. In that case, the length is in
characters. See Character-Length Semantics on page 5-22.

The syntax for the numeric EXTERNALdatatypes is shown as part of datatype_spec
on page A-9.

Note: The data is a number in character form, not binary
representation. Therefore, these datatypes are identical to CHARand
are treated identically, except for the use of DEFAULTIF. If you want
the default to be null, use CHARif you want it to be zero, use
EXTERNALSee also Using the WHEN, NULLIF, and DEFAULTIF
Clauses on page 6-31.

Field List Reference 6-19

SQL*Loader Datatypes

FLOAT EXTERNALdata can be given in either scientific or regular notation. Both
"5.33" and "533E-2" are valid representations of the same value.

RAW

When raw, binary data is loaded "as is" into a RAWHatabase column, it is not
converted by the Oracle database server. If it is loaded into a CHARcolumn, the
Oracle database server converts it to hexadecimal. It cannot be loaded into a DATE
or number column.

The syntax for the RAWHatatype is as follows:

(length)

H

The length of this field is the number of bytes specified in the control file. This
length is limited only by the length of the target column in the database and by
memory resources. The length is always in bytes, even if character-length semantics
are used for the datafile. RAWHata fields cannot be delimited.

VARCHARC

The datatype VARCHARConsists of a character length subfield followed by a
character string value-subfield.

The declaration for VARCHARG@as the length of the length subfield, optionally
followed by the maximum size of any string. The length and the maximum size are
both in bytes unless character-length semantics are used for the datafile. In that
case, both are in characters. See Character-Length Semantics on page 5-22. If a
maximum size is not specified, 4096 bytes is the default.

For example:
« VARCHARG@esults in an error.

« VARCHARC(7)results in a VARCHAR®vhose length subfield is 7 bytes long and
whose max size is 4 KB (that is, the default) if byte-length semantics are used
for the datafile. If character-length semantics are used, it results in a VARCHARC
with a length subfield that is 7 characters long and a maximum size of 4 KB (the
default).

« VARCHARC(3,500) results in a VARCHAR®@hose length subfield is 3 bytes
long and whose maximum size is 500 bytes if byte-length semantics are used for
the datafile. If character-length semantics are used, it results in a VARCHARC

6-20 Oracle9/ Database Utilities

SQL*Loader Datatypes

with a length subfield that is 3 characters long and a maximum size of 500
characters.

VARRAWC
The datatype VARRAWGEDnsists of a RAWstring value subfield.

For example:

VARRAWGEsults in an error.

VARRAWC(7)results in a VARRAWG@/hose length subfield is 7 bytes long and
whose maximum size is 4 KB (that is, the default).

VARRAWC(3,500) results in a VARRAWG@/hose length subfield is 3 bytes long
and whose maximum size is 500 bytes.

Conflicting Native Datatype Field Lengths

There are several ways to specify a length for a field. If multiple lengths are
specified and they conflict, then one of the lengths takes precedence. A warning is
issued when a conflict exists. The following rules determine which field length is

used:

1. The size of SMALLINT, FLOAT and DOUBLHEdata is fixed, regardless of the
number of bytes specified in the POSITION clause.

2. If the length specified (or precision) of a DECIMAL INTEGER ZONEDGRAPHIC
GRAPHIC EXTERNALor RAWfield conflicts with the size calculated from a
POSITION(start:end) specification, then the specified length (or precision)
is used.

3. If the maximum size specified for a character or VARGRAPHIQGield conflicts

with the size calculated from a POSITION (start:end) specification, then the
specified maximum is used.

For example, assume that the native datatype INTEGERIs 4 bytes long and the
following field specification is given:

columnl POSITION(1:6) INTEGER

In this case, a warning is issued, and the proper length (4) is used. The log file
shows the actual length used under the heading "Len" in the column table:

Column Name Posiion Len Term Encl Datatype

COLUMN1 16 4 INTEGER

Field List Reference 6-21

SQL*Loader Datatypes

Field Lengths for Length-Value Datatypes

A control file can specify a maximum length for the following length-value
datatypes: VARCHARVARCHARG/ARGRAPHICVARRAYENd VARRAW he
specified maximum length is in bytes if byte-length semantics are used for the field,
and in characters if character-length semantics are used for the field. If no length is
specified, the maximum length defaults to 4096 bytes. If the length of the field
exceeds the maximum length, the record is rejected with the following error:

Variable length field exceed maximum length

Datatype Conversions

The datatype specifications in the control file tell SQL*Loader how to interpret the
information in the datafile. The server defines the datatypes for the columns in the
database. The link between these two is the column name specified in the control file.

SQL*Loader extracts data from a field in the input file, guided by the datatype
specification in the control file. SQL*Loader then sends the field to the server to be
stored in the appropriate column (as part of an array of row inserts).

SQL*Loader or the server does any necessary data conversion to store the data in
the proper internal format. This includes converting data from the datafile character
set to the database character set when they differ.

The datatype of the data in the file does not need to be the same as the datatype of
the column in the Oracle table. The Oracle database server automatically performs
conversions, but you need to ensure that the conversion makes sense and does not
generate errors. For instance, when a datafile field with datatype CHARs loaded
into a database column with datatype NUMBERyou must make sure that the
contents of the character field represent a valid number.

Note: SQL*Loader does not contain datatype specifications for
Oracle internal datatypes such as NUMBERr VARCHARZThe
SQL*Loader datatypes describe data that can be produced with text
editors (character datatypes) and with standard programming
languages (native datatypes). However, although SQL*Loader does
not recognize datatypes like NUMBERNd VARCHARZany data that
Oracle is capable of converting may be loaded into these or other
database columns.

6-22 Oracle9i Database Utilities

SQL*Loader Datatypes

Datatype Conversions for Datetime and Interval Datatypes

Table 6-1 shows supported conversions between the SQL*Loader control file
datetime and interval datatypes and Oracle database datatypes. The abbreviations
for the columns labeled Oracle Database Datatypes are equal to:

N = NUMBER
C = CHARor VARCHAR?2
D = DATE

T =TIME and TIME WITH TIME ZONE

TS = TIMESTAMP and TIMESTAMP WITH TIME ZONE
YM = INTERVAL YEAR TO MONTH

DS = INTERVAL DAY TO SECOND

For the SQL*Loader datatypes, the definitions for the abbreviations in the table are
the same for D, T, TS, YM, and DS. However, as noted in the previous section,
SQL*Loader does not contain datatype specifications for Oracle internal datatypes
such as NUMBER,CHARInd VARCHARZHowever, any data that the Oracle database
server is capable of converting can be loaded into these or other database columns.

Table 6-1 Datatype Conversions for Datetime and Interval Datatypes

SQL*Loader Oracle Database Datatypes

Datatypes N C D T TS YM DS
N Yes Yes No No No No No
Cc Yes Yes Yes Yes Yes Yes Yes
D No Yes Yes No Yes No No
T No Yes No Yes Yes No No
TS No Yes Yes Yes Yes No No
YM No Yes No No No Yes No
DS No Yes No No No No Yes

Specifying Delimiters
The boundaries of CHAR datetime, interval, or numeric EXTERNALfields may also

be marked by specific delimiter characters contained in the input data record. The
RAWHatatype may also be marked by delimiters, but only if it is in an input

Field List Reference 6-23

SQL*Loader Datatypes

LOBFILE, and only if the delimiter is TERMINATED BY EOF(end of file). You
indicate how the field is delimited by using a delimiter specification after specifying
the datatype.

Delimited data can be terminated or enclosed, as shown in the following syntax:

enclosure_spec

OPTIONALLY
(enclosure_spec }—

/

termination_spec

You can specify a TERMINATED BYclause, an ENCLOSED Btlause, or both. If
both are used, the TERMINATED BYclause must come first.

TERMINATED Fields

TERMINATECLSields are read from the starting position of the field up to, but not
including, the first occurrence of the delimiter character. If the terminator delimiter
is found in the first column position, the field is null.

If TERMINATED BY WHITESPAGEspecified, data is read until the first occurrence
of a whitespace character (spaces, tabs, blanks, line feeds, form feeds, or carriage
returns). Then the current position is advanced until no more adjacent whitespace
characters are found. This allows field values to be delimited by varying amounts of
whitespace. For more information about the syntax, see Syntax for Termination and
Enclosure Specification on page 6-25.

ENCLOSED Fields

ENCLOSEDields are read by skipping whitespace until a nonwhitespace character
is encountered. If that character is the delimiter, then data is read up to the second
delimiter. Any other character causes an error.

If two delimiter characters are encountered next to each other, a single occurrence of
the delimiter character is used in the data value. For example, 'DON”T’ is stored as
DON'T. However, if the field consists of just two delimiter characters, its value is
null. For more information about the syntax, see Syntax for Termination and
Enclosure Specification on page 6-25.

6-24 Oracle9/ Database Utilities

SQL*Loader Datatypes

Syntax for Termination and Enclosure Specification

—)| ENCLOSED

where:

TERMINATED
BY
WHITESPACE

OPTIONALLY

ENCLOSED
string

X'hexstr ’

AND

EOF

TERMINATED

WHITESPACE

Xhexstr

@D
X'hexstr’

Data is read until the first occurrence of a delimiter.
An optional word to increase readability.

Delimiter is any whitespace character including spaces, tabs, blanks,
line feeds, form feeds, or carriage returns. (Only used with
TERMINATEDNot with ENCLOSED

Data can be enclosed by the specified character. If SQL*Loader finds
a first occurrence of the character, it reads the data value until it finds
the second occurrence. If the data is not enclosed, the data is read as
a terminated field. If you specify an optional enclosure, you must
specify a TERMINATED BYclause (either locally in the field
definition or globally in the FIELDS clause).

The data will be found between two delimiters.
The delimiter is a string.

The delimiter is a string that has the value specified by X’hexstr’
in the character encoding scheme, such as X'1F’ (equivalent to 31
decimal). "X"can be either lowercase or uppercase.

Specifies a trailing enclosure delimiter that may be different from the
initial enclosure delimiter. If ANDis not present, then the initial and
trailing delimiters are assumed to be the same.

Indicates that the entire file has been loaded into the LOB. This is
valid only when data is loaded from a LOB file. Fields terminated by
EOFcannot be enclosed.

Field List Reference 6-25

SQL*Loader Datatypes

Here are some examples, with samples of the data they describe:

TERMINATED BY ! adata string,
ENCLOSEDBY ™ "a data sting’
TERMINATED BY’; ENCLOSEDBY ™ "adata string’,
ENCLOSED BY ' AND) (adata string)

Delimiter Marks in the Data

Sometimes the punctuation mark that is a delimiter must also be included in the
data. To make that possible, two adjacent delimiter characters are interpreted as a
single occurrence of the character, and this character is included in the data. For
example, this data:

(The delimiters are left parentheses, (, and right parentheses,)).)

with this field specification:
ENCLOSED BY "(* AND")"

puts the following string into the database:

The delimiters are left parentheses, (, and right parentheses,).

For this reason, problems can arise when adjacent fields use the same delimiters.
For example, with the following specification:

fieldl TERMINATED BY "/"

field2 ENCLOSED by "/

the following data will be interpreted properly:

Thisisthefirststing/ /Thisiis the second string/

Butif fieldl and field2 were adjacent, then the results would be incorrect,
because

This is the first string//This is the second string/

would be interpreted as a single character string with a "/" in the middle, and that
string would belong to field1

Maximum Length of Delimited Data

The default maximum length of delimited data is 255 bytes. Therefore, delimited
fields can require significant amounts of storage for the bind array. A good policy is
to specify the smallest possible maximum value if the fields are shorter than 255

6-26 Oracle9/ Database Utilities

SQL*Loader Datatypes

bytes. If the fields are longer than 255 bytes, then you must specify a maximum
length for the field, either with a length specifier or with the POSITION clause.

Loading Trailing Blanks with Delimiters

Trailing blanks are not loaded with nondelimited datatypes unless you specify
PRESERVE BLANK® a data field is 9 characters long and contains the value
DANIELbbb, where bbb is three blanks, it is loaded into the Oracle database as
"DANIEL" if declared as CHAR(9).

If you want the trailing blanks, you could declare it as CHAR(9) TERMINATED BY
', and add a colon to the datafile so that the field is DANIELbbb: . This field is

loaded as "DANIEL " , with the trailing blanks. You could also specify
PRESERVE BLANK®ithout the TERMINATED BXlause and obtain the same
results.

See Also:

« Trimming Whitespace on page 6-41

« Preserving Whitespace on page 6-48

Conflicting Field Lengths for Character Datatypes

A control file can specify multiple lengths for the character-data fields CHARDATE
and numeric EXTERNALIf conflicting lengths are specified, one of the lengths takes
precedence. A warning is also issued when a conflict exists. This section explains
which length is used.

Predetermined Size Fields

If you specify a starting position and ending position for one of these fields, then
the length of the field is determined by these specifications. If you specify a length
as part of the datatype and do not give an ending position, the field has the given
length. If starting position, ending position, and length are all specified, and the
lengths differ, then the length given as part of the datatype specification is used for
the length of the field, as follows:

POSITION(1:10) CHAR(15)

In this example, the length of the field is 15.

Field List Reference 6-27

Specifying Field Conditions

Delimited Fields

If a delimited field is specified with a length, or if a length can be calculated from
the starting and ending positions, then that length is the maximum length of the
field. The specified maximum length is in bytes if byte-length semantics are used for
the field, and in characters if character-length semantics are used for the field. If no
length is specified or can be calculated from the start and end positions, the
maximum length defaults to 255 bytes. The actual length can vary up to that
maximum, based on the presence of the delimiter.

If starting and ending positions are specified for the field, as well as delimiters, then
only the position specification has any effect. Any enclosure or termination
delimiters are ignored.

If the expected delimiter is absent, then the end of record terminates the field. If
TRAILING NULLCOLS is specified, remaining fields are null. If either the delimiter
or the end of record produces a field that is longer than the maximum, SQL*Loader
rejects the record and returns and error.

Date Field Masks

The length of a date field depends on the mask, if a mask is specified. The mask
provides a format pattern, telling SQL*Loader how to interpret the data in the
record. For example, assume the mask is specified as follows:

"Month dd, yyyy"

Then "May 3, 1991" would occupy 11 bytes in the record (with byte-length
semantics), while "January 31, 1992" would occupy 16.

If starting and ending positions are specified, however, then the length calculated
from the position specification overrides a length derived from the mask. A
specified length such as DATE(12) overrides either of those. If the date field is also
specified with terminating or enclosing delimiters, then the length specified in the
control file is interpreted as a maximum length for the field.

See Also: Datetime and Interval Datatypes on page 6-15 for more
information on the DATEfield

Specifying Field Conditions

A field condition is a statement about a field in a logical record that evaluates as
true or false. It is used in the NULLIF and DEFAULTIF clauses, as well as in the
WHEN lause.

6-28 Oracle9/ Database Utilities

Specifying Field Conditions

A field condition is similar to the condition in the CONTINUEIF clause, with two
important differences. First, positions in the field condition refer to the logical
record, not to the physical record. Second, you can specify either a position in the
logical record or the name of a field in the datafile (including filler fields).

Note: A field condition cannot be based on fields in a secondary
data file (SDF).

The syntax for the field_condition clause is as follows:

{ AND k

()

where:

pos_spec Specifies the starting and ending position of the comparison field in
the logical record. It must be surrounded by parentheses. Either
start -end or start :end is acceptable.

The starting location can be specified as a column number, or as *
(next column), or as *+n (next column plus an offset).

If you omit end, the length of the field is determined by the length of
the comparison string. If the lengths are different, the shorter field is
padded. Character strings are padded with blanks, hexadecimal
strings with zeros.

start Specifies the starting position of the comparison field in the logical
record.

Field List Reference 6-29

Specifying Field Conditions

end Specifies the ending position of the comparison field in the logical
record.
full_fieldname full_fieldname is the full name of a field specified using dot

notation. If the field col2 is an attribute of a column object col1 ,
when referring to col2 in one of the directives, you must use the
notation coll .col2 . The column name and the field name
referencing or naming the same entity can be different, because the
column name never includes the full name of the entity (no dot

notation).
operator A comparison operator for either equal or not equal.
char_string A string of characters enclosed in single or double quotation marks

that is compared to the comparison field. If the comparison is true,
the current record is inserted into the table.

X'hex_string "’ A string of hexadecimal digits, where each pair of digits corresponds
to one byte in the field. It is enclosed in single or double quotation
marks. If the comparison is true, the current record is inserted into
the table.

BLANKS Allows you to test a field to see if it consists entirely of blanks.
BLANKSIs required when you are loading delimited data and you
cannot predict the length of the field, or when you use a multibyte
character set that has multiple blanks.

Comparing Fields to BLANKS

The BLANKSparameter makes it possible to determine if a field of unknown length
is blank.

For example, use the following clause to load a blank field as null:
full_fieldnarme ... NULLIF column_name =BLANKS
The BLANKSparameter recognizes only blanks, not tabs. It can be used in place of a

literal string in any field comparison. The condition is true whenever the column is
entirely blank.

The BLANKSparameter also works for fixed-length fields. Using it is the same as
specifying an appropriately sized literal string of blanks. For example, the following
specifications are equivalent:

fixed feld ~ CHARQ@NULLIF fixed field ~ =BLANKS
fxed field ~ CHARQNULLIF fxed field ="

6-30 Oracle9/ Database Utilities

Using the WHEN, NULLIF, and DEFAULTIF Clauses

There can be more than one blank in a multibyte character set. It is a good idea to
use the BLANKSparameter with these character sets instead of specifying a string of
blank characters.

The character string will match only a specific sequence of blank characters, while
the BLANKSparameter will match combinations of different blank characters. For
more information on multibyte character sets, see Multibyte (Asian) Character Sets
on page 5-17.

Comparing Fields to Literals

When a data field is compared to a literal string that is shorter than the data field,
the string is padded. Character strings are padded with blanks, for example:

NULLIF (L:4)=""

This example compares the data in position 1:4 with 4 blanks. If position 1:4
contains 4 blanks, then the clause evaluates as true.

Hexadecimal strings are padded with hexadecimal zeros, as in the following clause:
NULLIF (1:4)=XFF

This clause compares position 1:4 to hexadecimal "FF000000’.

Using the WHEN, NULLIF, and DEFAULTIF Clauses

The following information applies to scalar fields. For nonscalar fields (column
objects, LOBs, and collections), the WHENNULLIF, and DEFAULTIF clauses are
processed differently because nonscalar fields are more complex.

The results of a WHENNULLIF, or DEFAULTIF clause can be different depending on
whether the clause specifies a field name or a position.

If the WHENNULLIF, or DEFAULTIF clause specifies a field name, SQL*Loader
compares the clause to the evaluated value of the field. The evaluated value takes
trimmed whitespace into consideration. See Trimming Whitespace on page 6-41 for
information about trimming blanks and tabs.

If the WHENNULLIF, or DEFAULTIF clause specifies a position, SQL*Loader
compares the clause to the original logical record in the datafile. No whitespace
trimming is done on the logical record in that case.

Different results are more likely if the field has whitespace that is trimmed, or if the
WHENNULLIF, or DEFAULTIF clause contains blanks or tabs or uses the BLANKS

Field List Reference 6-31

Using the WHEN, NULLIF, and DEFAULTIF Clauses

parameter. If you require the same results for a field specified by name and for the
same field specified by position, use the PRESERVE BLANK&ption. The PRESERVE
BLANKSoption instructs SQL*Loader not to trim whitespace when it evaluates the
values of the fields.

The results of a WHENNULLIF, or DEFAULTIF clause are also affected by the order
in which SQL*Loader operates, as described in the following steps. SQL*Loader
performs these steps in order, but it does not always perform all of them. Once a
field is set, any remaining steps in the process are ignored. For example, if the field
is set in step 5, SQL*Loader does not move on to step 6.

1.

SQL*Loader evaluates the value of each field for the input record and trims any
whitespace that should be trimmed (according to existing guidelines for
trimming blanks and tabs).

For each record, SQL*Loader evaluates any WHENIauses for the table.

If the record satisfies the WHENIlauses for the table, or no WHENIlauses are
specified, SQL*Loader checks each field for a NULLIF clause.

If a NULLIF clause exists, SQL*Loader evaluates it.
If the NULLIF clause is satisfied, SQL*Loader sets the field to NULL

If the NULLIF clause is not satisfied, or if there is no NULLIF clause,
SQL*Loader checks the length of the field from field evaluation. If the field has
a length of 0 from field evaluation (for example, it was a null field, or
whitespace trimming resulted in a null field), SQL*Loader sets the field to
NULL In this case, any DEFAULTIF clause specified for the field is not
evaluated.

If any specified NULLIF clause is false or there is no NULLIF clause, and if the
field does not have a length of 0 from field evaluation, SQL*Loader checks the
field for a DEFAULTIF clause.

If a DEFAULTIF clause exists, SQL*Loader evaluates it.

If the DEFAULTIF clause is satisfied, then the field is set to 0 if the field in the
datafile is a numeric field. It is set to NULLf the field is not a numeric field. The
following fields are numeric fields and will be set to 0 if they satisfy the
DEFAULTIF clause:

« BYTEINT
» SMALLINT
« INTEGER

6-32 Oracle9/ Database Utilities

Using the WHEN, NULLIF, and DEFAULTIF Clauses

« FLOAT
« DOUBLE
« ZONED

« (packed) DECIMAL
« Numeric EXTERNAL (INTEGER FLOAT DECIMAL and ZONED

10. If the DEFAULTIF clause is not satisfied, or if there is no DEFAULTIF clause,
SQL*Loader sets the field with the evaluated value from step 1.

The order in which SQL*Loader operates could cause results that you do not expect.
For example, the DEFAULTIF clause may look like it is setting a numeric field to
NULL rather than to 0.

Example 6-2 through Example 6-5 clarify the results for different situations. In the
examples, a blank or space is indicated with a period (.). Assume that coll and
col2 are VARCHAR2(5) columns in the database.

Example 6-2 DEFAULTIF Clause Is Not Evaluated
The control file specifies:

(col1 POSITION (L5),

col2 POSITION (6:8) CHAR INTEGER EXTERNAL DEFAULTIF coll ="aname’)

The datafile contains:

aname...

In Example 6-2, coll for the row evaluates to aname. col2 evaluates to NULL with
a length of 0 (it is "..." but the trailing blanks are trimmed for a positional field).

When SQL*Loader determines the final loaded value for col2 , it finds no WHEN
clause and no NULLIF clause. It then checks the length of the field, which is 0 from
field evaluation. Therefore, SQL*Loader sets the final value for col2 to NULL The
DEFAULTIF clause is not evaluated, and the row is loaded as aname for coll and
NULL for col2 .

Example 6-3 DEFAULTIF Clause Is Evaluated
The control file specifies:

Field List Reference 6-33

Using the WHEN, NULLIF, and DEFAULTIF Clauses

PRESERVE BLANKS

(coll POSITION (15),
col2 POSITION (6:8) INTEGER EXTERNAL DEFAULTIF coll ="aname’

The datafile contains:

aname...

In Example 6-3, coll for the row again evaluates to 'aname’. col2 evaluates to
"... " because trailing blanks are not trimmed when PRESERVE BLANKS$s
specified.

When SQL*Loader determines the final loaded value for col2 , it finds no WHEN
clause and no NULLIF clause. It then checks the length of the field from field
evaluation, which is 3, not 0.

Then SQL*Loader evaluates the DEFAULTIF clause, which evaluates to true
because coll is’aname’, which is the same as ’aname’.

Because col2 is a numeric field, SQL*Loader sets the final value for col2 to’0’.
The row is loaded as "aname’ for coll and as '0’ for col2 .

Example 6-4 DEFAULTIF Clause Specifies a Position
The control file specifies:

(coll POSITION (15),
col2 POSITION (6:8) INTEGER EXTERNAL DEFAULTIF (1:5) = BLANKS)

The datafile contains:

In Example 64, coll for the row evaluates to NULLwith a length of O (itiis
but the trailing blanks are trimmed). col2 evaluates to 123.

When SQL*Loader sets the final loaded value for col2 , it finds no WHENIause and
no NULLIF clause. It then checks the length of the field from field evaluation, which
is 3, not 0.

6-34 Oracle9/ Database Utilities

Loading Data Across Different Platforms

Then SQL*Loader evaluates the DEFAULTIF clause. It compares (1:5) which is
..... to BLANKS which evaluates to true. Therefore, because col2 is a numeric
field (integer EXTERNAL is numeric), SQL*Loader sets the final value for col2 to
0. The row is loaded as NULLfor col1 and O for col2 .

Example 6-5 DEFAULTIF Clause Specifies a Field Name
The control file specifies:

(coll POSITION (15),
col2 POSITION(6:8) INTEGER EXTERNAL DEFAULTIF coll = BLANKS)

The datafile contains:

In Example 6-5, coll for the row evaluates to NULLwith a length of O (it is ,
but the trailing blanks are trimmed). Col2 evaluates to 123.

When SQL*Loader determines the final value for col2 , it finds no WHENIlause and
no NULLIF clause. It then checks the length of the field from field evaluation, which
is 3, not 0.

Then SQL*Loader evaluates the DEFAULTIF clause. As part of the evaluation, it
checks to see that coll is NULLfrom field evaluation. It is NULL, so the DEFAULTIF
clause evaluates to false. Therefore, SQL*Loader sets the final value for col2 to
123, its original value from field evaluation. The row is loaded as NULL for coll
and 123 for col2 .

Loading Data Across Different Platforms

When a datafile created on one platform is to be loaded on a different platform, the
data must be written in a form that the target system can read. For example, if the
source system has a native, floating-point representation that uses 16 bytes, and the
target system’s floating-point numbers are 12 bytes, the target system cannot
directly read data generated on the source system.

The best solution is to load data across an Oracle Net database link, taking
advantage of the automatic conversion of datatypes. This is the recommended
approach, whenever feasible, and means that SQL*Loader must be run on the
source system.

Field List Reference 6-35

Byte Ordering

Problems with interplatform loads typically occur with native datatypes. In some
situations, it is possible to avoid problems by lengthening a field by padding it with
zeros, or to read only part of the field to shorten it (for example, when an 8-byte
integer is to be read on a system that uses 4-byte integers, or the reverse). Note,
however, that incompatible datatype implementation may prevent this.

If you cannot use an Oracle Net database link and the datafile must be accessed by
SQL*Loader running on the target system, it is advisable to use only the portable
SQL*Loader datatypes (for example, CHARDATE VARCHARGNd numeric
EXTERNAL. Datafiles written using these datatypes may be longer than those
written with native datatypes. They may take more time to load, but they transport
more readily across platforms.

If you know in advance that the byte ordering schemes or native integer lengths
differ between the platform on which the input data will be created and the
platform on which SQL*loader will be run, then investigate the possible use of the
appropriate technique to indicate the byte order of the data or the length of the
native integer. Possible techniques for indicating the byte order are to use the
BYTEORDEIRarameter or to place a byte-order mark (BOM) in the file. Both
methods are described in Byte Ordering on page 6-36. It may then be possible to
eliminate the incompatibilities and achieve a successful cross-platform data load. If
the byte order is different from the SQL*Loader default, then you must indicate a
byte order.

Byte Ordering

Note: The information in this section is only applicable if you are
planning to create input data on a system that has a different
byte-ordering scheme than the system on which SQL*Loader will
be run. Otherwise, you can skip this section.

SQL*Loader can load data from a datafile that was created on a system whose byte
ordering is different from the byte ordering on the system where SQL*Loader is
running, even if the datafile contains certain nonportable datatypes.

By default, SQL*Loader uses the byte order of the system where it is running as the
byte order for all datafiles. For example, on a Sun Solaris system, SQL*Loader uses
big endian byte order. On an Intel or an Intel-compatible PC, SQL*Loader uses little
endian byte order.

6-36 Oracle9/ Database Utilities

Byte Ordering

Byte order affects the results when data is written and read an even number of bytes
at a time (typically 2 bytes, 4 bytes, or 8 bytes). The following are some examples of
this:

« The 2-byte integer value 1 is written as 0x0001 on a big endian system and as
0x0100 on a little endian system.

« The 4-byte integer 66051 is written as 0x00010203 on a big endian system and as
0x03020100 on a little endian system.

Byte order also affects character data in the UTF16 character set if it is written and
read as 2-byte entities. For example, the character ’a’ (0x61 in ASCII) is written as
0x0061 in UTF16 on a big endian system, but as 0x6100 on a little endian system.

All Oracle-supported character sets, except UTF16, are written one byte at a time.
So, even for multibyte character sets such as UTF8, the characters are written and
read the same way on all systems, regardless of the byte order of the system.
Therefore, data in the UTF16 character set is nonportable because it is byte-order
dependent. Data in all other Oracle-supported character sets is portable.

Byte order in a datafile is only an issue if the datafile that contains the
byte-order-dependent data is created on a system that has a different byte order
from the system on which SQL*Loader is running. If SQL*Loader knows the byte
order of the data, it swaps the bytes as necessary to ensure that the data is loaded
correctly in the target database. Byte swapping means that data in big endian
format is converted to little endian format, or the reverse.

To indicate byte order of the data to SQL*Loader, you can use the BYTEORDER
parameter, or you can place a byte-order mark (BOM) in the file. If you do not use
one of these techniques, SQL*Loader will not correctly load the data into the
datafile.

See Also: Case Study 11: Loading Data in the Unicode Character
Set on page 10-47 for an example of how SQL*Loader handles byte
swapping

Specifying Byte Order

To specify the byte order of data in the input datafiles, use the following syntax in
the SQL*Loader control file:

Field List Reference 6-37

Byte Ordering

BYTEORDER
LITTLE

|

The BYTEORDEIRarameter has the following characteristics:

BYTEORDER placed after the LENGTHparameter in the SQL*Loader control
file.

It is possible to specify a different byte order for different datafiles. However,
the BYTEORDERpecification before the INFILE parameters applies to the
entire list of primary datafiles.

The BYTEORDERpecification for the primary datafiles is also used as the
default for LOBFILEs and SDFs. To override this default, specify BYTEORDER
with the LOBFILE or SDF specification.

The BYTEORDEIRarameter is not applicable to data contained within the
control file itself.

The BYTEORDERarameter applies to the following:
— Binary INTEGERand SMALLINT data

— Binary lengths in varying-length fields (that is, for the VARCHAR
VARGRAPHICVARRAYéNd LONG VARRAMétatypes)

— Character data for datafiles in the UTF16 character set

- FLOATand DOUBLHatatypes, if the system where the data was written has
a compatible floating-point representation with that on the system where
SQL*Loader is running.

The BYTEORDEIRarameter does not apply to any of the following:

— Raw datatypes (RAWARRAYr VARRAW)C

— Graphic datatypes (GRAPHIC VARGRAPHICor GRAPHIC EXTERNAL
— Character data for datafiles in any character set other than UTF16.

— ZONEDor (packed) DECIMALdatatypes.

Using Byte Order Marks (BOMs)

Datafiles that use a Unicode encoding (UTF-16 or UTF-8) may contain a byte-order
mark (BOM) in the first few bytes of the file. For a datafile that uses the character set

6-38 Oracle9/ Database Utilities

Byte Ordering

UTF16, the value OXFEFF in the first two bytes of the file is the BOM indicating that
the file contains big endian data. A value of OXFFFE is the BOM indicating that the
file contains little endian data.

If the first primary datafile uses the UTF16 character set and it also begins with a
BOM, that mark is read and interpreted to determine the byte order for all primary
datafiles. SQL*Loader reads and interprets the BOM, skips it, and begins processing
data with the byte immediately after the BOM. The BOM setting overrides any
BYTEORDERpecification for the first primary datafile. BOMs in datafiles other than
the first primary datafile are read and used for checking for byte-order conflicts
only. They do not change the byte-order setting that SQL*Loader uses in processing
the datafile.

In summary, the precedence of the byte-order indicators for the first primary
datafile is as follows:

« BOM in the first primary datafile, if the datafile uses a Unicode character set
that is byte-order dependent (UTF16) and a BOM is present

« BYTEORDERarameter value, if specified before the INFILE parameters
« The byte order of the system where SQL*Loader is running

For a datafile that uses a UTF8 character set, a BOM of OXEFBBBF in the first 3 bytes
indicates that the file contains UTF8 data. It does not indicate the byte order of the
data, because data in UTF8 is not byte-order dependent. If SQL*Loader detects a
UTF8 BOM, it skips it but does not change any byte-order settings for processing
the datafiles.

SQL*Loader first establishes a byte-order setting for the first primary datafile using
the precedence order just defined. This byte-order setting is used for all primary
datafiles. If another primary datafile uses the character set UTF16 and also contains
a BOM, the BOM value is compared to the byte-order setting established for the first
primary datafile. If the BOM value matches the byte-order setting of the first
primary datafile, SQL*Loader skips the BOM, and uses that byte-order setting to
begin processing data with the byte immediately after the BOM. If the BOM value
does not match the byte-order setting established for the first primary datafile, then
SQL*Loader issues an error message and stops processing.

If any LOBFILEs or secondary datafiles are specified in the control file, SQL*Loader
establishes a byte-order setting for each LOBFILE and secondary datafile (SDF)
when it is ready to process the file. The default byte-order setting for LOBFILEs and
SDFs is the byte-order setting established for the first primary datafile. This is
overridden if the BYTEORDERarameter is specified with a LOBFILE or SDF. In
either case, if the LOBFILE or SDF uses the UTF16 character set and contains a

Field List Reference 6-39

Byte Ordering

BOM, the BOM value is compared to the byte-order setting for the file. If the BOM
value matches the byte-order setting for the file, SQL*Loader skips the BOM, and
uses that byte-order setting to begin processing data with the byte immediately
after the BOM. If the BOM value does not match, then SQL*Loader issues an error
message and stops processing.

In summary, the precedence of the byte-order indicators for LOBFILEs and SDFs is
as follows:

« BYTEORDERarameter value specified with the LOBFILE or SDF
« The byte-order setting established for the first primary datafile

Suppressing Checks for BOMs

A datafile in a Unicode character set may contain binary data that matches the BOM
in the first bytes of the file. For example the integer(2) value OXFEFF = 65279
decimal matches the big endian BOM in UTF16. In that case, you can tell
SQL*Loader to read the first bytes of the datafile as data and not check for a BOM
by specifying the BYTEORDERMARIérameter with the value NOCHECKT he syntax
for the BYTEORDERMARiérameter is:

==y

BYTEORDERMARK NOCHH@Kcates that SQL*Loader should not check for a BOM
and should read all the data in the datafile as data.

BYTEORDERMARK CHBEEHs SQL*Loader to check for a BOM. This is the default
behavior for a datafile in a Unicode character set. But this specification may be used

in the control file for clarification. It is an error to specify BYTEORDERMARK CHECK
for a datafile that uses a non-Unicode character set.

The BYTEORDERMARMrameter has the following characteristics:

« ltis placed after the optional BYTEORDEIRarameter in the SQL*Loader control
file.

BYTEORDERMARK

« It applies to the syntax specification for primary datafiles, as well as to
LOBFILEs and secondary datafiles (SDFs).

« ltis possible to specify a different BY TEORDERMARA/dlue for different datafiles;
however, the BYTEORDERMARKHKecification before the INFILE parameters
applies to the entire list of primary datafiles.

6-40 Oracle9/ Database Utilities

Trimming Whitespace

« The BYTEORDERMARKHEecification for the primary datafiles is also used as the
default for LOBFILEs and SDFs, except that the value CHECKs ignored in this
case if the LOBFILE or SDF uses a non-Unicode character set. This default
setting for LOBFILEs and secondary datafiles can be overridden by specifying
BYTEORDERMARAth the LOBFILE or SDF specification.

Loading All-Blank Fields

Fields that are numeric or totally blank cause the record to be rejected. To load one
of these fields as NULL, use the NULLIF clause with the BLANKSparameter.

If an all-blank CHARfield is surrounded by enclosure delimiters, then the blanks
within the enclosures are loaded. Otherwise, the field is loaded as NULL

A DATEfield that consists entirely of blanks is loaded as a NULL field.

See Also:

« Case Study 6: Loading Data Using the Direct Path Load
Method on page 10-24 for an example of how to load all-blank
fields as NULLwith the NULLIF clause

« Trimming Whitespace on page 6-41
« Preserving Whitespace on page 6-48

Trimming Whitespace

Blanks, tabs, and other nonprinting characters (such as carriage returns and line
feeds) constitute whitespace. Leading whitespace occurs at the beginning of a field.
Trailing whitespace occurs at the end of a field. Depending on how the field is
specified, whitespace may or may not be included when the field is inserted into the
database. This is illustrated in Figure 6-1 where two CHARfields are defined for a
data record.

The field specifications are contained in the control file. The control file CHAR
specification is not the same as the database CHARspecification. A data field defined
as CHARIn the control file merely tells SQL*Loader how to create the row insert. The
data could then be inserted into a CHARVARCHAR2NCHARNVARCHAPRr even a
NUMBERFr DATEcolumn in the database, with the Oracle database server handling
any necessary conversions.

Field List Reference 6-41

Trimming Whitespace

6-42 Oracle9i Dat

By default, SQL*Loader removes trailing spaces from CHARdata before passing it to
the database. So, in Figure 6-1, both field 1 and field 2 are passed to the database as
3-byte fields. However, when the data is inserted into the table, there is a difference.

Figure 6-1 Example of Field Conversion

Field 1 Field 2
DATA | ———>| | ——|
FILE
Ialalal 1 1 1 1 1 1 1 1 1 Iblblbl 1]
CHAR (5) Control File Specifications CHAR (5) | SQL*Loader
ROW
INSERT aaa bbb
DATABASE
Table — SERVER
Column 1 Column 2
a a a _ bbb
CHAR (5) Column Datatypes VARCHAR (5)

Column 1 is defined in the database as a fixed-length CHARcolumn of length 5. So
the data (aaa) is left-justified in that column, which remains 5 bytes wide. The extra
space on the right is padded with blanks. Column 2, however, is defined as a
varying-length field with a maximum length of 5 bytes. The data for that column
(bbb) is left-justified as well, but the length remains 3 bytes.

Table 6-2 summarizes when and how whitespace is removed from input data fields
when PRESERVE BLANKIS not specified. See Preserving Whitespace on page 6-48
for details on how to prevent whitespace trimming.

abase Utilities

Trimming Whitespace

Table 6-2 Behavior Summary for Trimming Whitespace

Leading Trailing
Whitespace Whitespace
Specification Data Result Present ! Present !
Predetermined size __aa__ __aa Yes No
Terminated __aa__, __aa__ Yes Yes?
Enclosed " aa " | _aa Yes Yes
Terminated and " aa ", | _aa__ Yes Yes
enclosed
Optional enclosure " aa ", | __aa__ Yes Yes
(present)
Optional enclosure __aa_, aa__ No Yes
(absent)
Previous field _aa__ aa3 No 3
terminated by
whitespace

1 When an all-blank field is trimmed, its value is NULL
2 Except for fields that are terminated by whitespace.

3 Presence of trailing whitespace depends on the current field’s specification, as shown by the
other entries in the table.

The rest of this section discusses the following topics with regard to trimming
whitespace:

« Datatypes for Which Whitespace Can Be Trimmed

« Field Length Specifications for Datatypes for Which Whitespace Can Be
Trimmed

« Relative Positioning of Fields
« Leading Whitespace
« Trailing Whitespace

« Enclosed Fields

Datatypes for Which Whitespace Can Be Trimmed

The information in this section applies only to fields specified with one of the
character-data datatypes:

Field List Reference 6-43

Trimming Whitespace

Field Length Sp

« CHARdatatype
« Datetime and interval datatypes
« Numeric EXTERNALdatatypes:
— INTEGER EXTERNAL
— FLOAT EXTERNAL
— (packed) DECIMAL EXTERNAL
- ZONED(decimal) EXTERNAL

Note: Although VARCHARNd VARCHAR(ields also contain
character data, these fields are never trimmed. These fields include
all whitespace that is part of the field in the datafile.

ecifications for Datatypes for Which Whitespace Can Be Trimmed

There are two ways to specify field length. If a field has a constant length that is
defined in the control file with a position specification or the datatype and length,
then it has a predetermined size. If a field’s length is not known in advance, but
depends on indicators in the record, then the field is delimited, using either
enclosure or termination delimiters.

If a position specification with start and end values is defined for a field that also
has enclosure or termination delimiters defined, only the position specification has
any effect. The enclosure and termination delimiters are ignored.

Predetermined Size Fields

Fields that have a predetermined size are specified with a starting position and
ending position, or with a length, as in the following examples:

loc POSITION(19:31)
loc CHAR(14)

In the second case, even though the exact position of the field is not specified, the
length of the field is predetermined.

Delimited Fields
Delimiters are characters that demarcate field boundaries.

6-44 Oracle9/ Database Utilities

Trimming Whitespace

Enclosure delimiters surround a field, like the quotation marks in the following
example, where " " represents blanks or tabs:

" @a "

Termination delimiters signal the end of a field, like the comma in the following
example:

aa

Delimiters are specified with the control clauses TERMINATED B¥and ENCLOSED
BY, as shown in the following example:

loc TERMINATED BY "." OPTIONALLY ENCLOSED BY |

Relative Positioning of Fields

This section describes how SQL*Loader determines the starting position of a field in
the following situations:

« No Start Position Specified for a Field
« Previous Field Terminated by a Delimiter

« Previous Field Has Both Enclosure and Termination Delimiters

No Start Position Specified for a Field

When a starting position is not specified for a field, it begins immediately after the
end of the previous field. Figure 6-2 illustrates this situation when the previous
field (Field 1) has a predetermined size.

Figure 6-2 Relative Positioning After a Fixed Field

Field 1 CHAR(9) Field 2 TERMINATED BY ","

PN »

L 1 1 1 1 Ialalalal 1 1 1 1 Iblblblbl’l

Previous Field Terminated by a Delimiter

If the previous field (Field 1) is terminated by a delimiter, then the next field begins
immediately after the delimiter, as shown in Figure 6-3.

Field List Reference 6-45

Trimming Whitespace

Figure 6-3 Relative Positioning After a Delimited Field

Field 1 TERMINATED BY "," Field 2 TERMINATED BY ","

|4 ;l |4 ;l
o »)} »

L 1 1 1 1 Ialalalal’l 1 1 1 Iblblblbl’l

Previous Field Has Both Enclosure and Termination Delimiters

When a field is specified with both enclosure delimiters and a termination delimiter,
then the next field starts after the termination delimiter, as shown in Figure 6-4. If a
nonwhitespace character is found after the enclosure delimiter, but before the
terminator, then SQL*Loader generates an error.

Figure 6-4 Relative Positioning After Enclosure Delimiters

Field 1 TERMINATED BY ","

ENCLOSED BY ' "' Field 2 TERMINATED BY ","
| —————| | ¢———|
[|"| 1 |a|a|a|a|"| I I B | |b|b|b|b|r|

Leading Whitespace

6-46 Oracle9/ Dat

In Figure 6-4, both fields are stored with leading whitespace. Fields do not include
leading whitespace in the following cases:

=« When the previous field is terminated by whitespace, and no starting position is
specified for the current field

= When optional enclosure delimiters are specified for the field, and the enclosure
delimiters are not present

These cases are illustrated in the following sections.

Previous Field Terminated by Whitespace

If the previous field is TERMINATED BY WHITESPACHen all whitespace after the
field acts as the delimiter. The next field starts at the next nonwhitespace character.
Figure 6-5 illustrates this case.

abase Utilities

Trimming Whitespace

Figure 6-5 Fields Terminated by Whitespace

Field 1 TERMINATED Field 2 TERMINATED
BY WHITESPACE BY WHITESPACE
|« > | |
L 1 1 1 1 1 Ialalalal 1 1 1 1 Iblblblbl 1 1 1]

This situation occurs when the previous field is explicitly specified with the
TERMINATED BY WHITESPACHuse, as shown in the example. It also occurs when
you use the global FIELDS TERMINATED BY WHITESPAGHause.

Optional Enclosure Delimiters

Leading whitespace is also removed from a field when optional enclosure
delimiters are specified but not present.

Whenever optional enclosure delimiters are specified, SQL*Loader scans forward,
looking for the first enclosure delimiter. If an enclosure delimiter is not found,
SQL*Loader skips over whitespace, eliminating it from the field. The first
nonwhitespace character signals the start of the field. This situation is shown in
Field 2 in Figure 6-6. (In Field 1 the whitespace is included because SQL*Loader
found enclosure delimiters for the field.)

Figure 6-6 Fields Terminated by Optional Enclosure Delimiters

Field 1 TERMINATED BY ", " Field 2 TERMINATED BY ", "
OPTIONALLY ENCLOSED BY, """ OPTIONALLY ENCLOSED BY ' "'
| ad | ¢——|
L I"I 1 1 Ialalalalulil 1 1 1 Iblblblbl’l 1 1]

Unlike the case when the previous field is TERMINATED BY WHITESPACthis
specification removes leading whitespace even when a starting position is specified
for the current field.

Note: If enclosure delimiters are present, leading whitespace after
the initial enclosure delimiter is kept, but whitespace before this
delimiter is discarded. See the first quotation mark in Field 1,
Figure 6-6.

Field List Reference 6-47

Preserving Whitespace

Trailing Whitespace

Trailing whitespace is always trimmed from character-data fields that have a
predetermined size. These are the only fields for which trailing whitespace is
always trimmed.

Enclosed Fields

If a field is enclosed, or terminated and enclosed, like the first field shown in
Figure 6-6, then any whitespace outside the enclosure delimiters is not part of the
field. Any whitespace between the enclosure delimiters belongs to the field,
whether it is leading or trailing whitespace.

Preserving Whitespace

To prevent whitespace trimming in all CHARDATE and numeric EXTERNAILfields,
you specify PRESERVE BLANKI® the control file. Whitespace trimming is
described in Trimming Whitespace on page 6-41.

PRESERVE BLANKS Option
The PRESERVE BLANK&ption:

« Retains leading whitespace when optional enclosure delimiters are not present

« Leaves trailing whitespace intact when fields are specified with a
predetermined size

For example, consider the following field, where underscores represent blanks:

aa

If this field is loaded with the following control clause, then both the leading
whitespace and the trailing whitespace are retained if PRESERVE BLANKI(S
specified. Otherwise, the leading whitespace is trimmed.

TERMINATED BY ', OPTIONALLY ENCLOSED BY ™

Note: The word BLANKSIs not optional. Both words must be
specified.

6-48 Oracle9/ Database Utilities

Applying SQL Operators to Fields

Terminated by Whitespace

When the previous field is terminated by whitespace, then PRESERVE BLANK®&oes
not preserve the space at the beginning of the next field, unless that field is specified
with a POSITION clause that includes some of the whitespace. Otherwise,
SQL*Loader scans past all whitespace at the end of the previous field until it finds a
nonblank, nontab character.

Applying SQL Operators to Fields

A wide variety of SQL operators can be applied to field data with the SQL string.
This string can contain any combination of SQL expressions that are recognized by
the Oracle database server as valid for the VALUESclause of an INSERT statement.
In general, any SQL function that returns a single value that is compatible with the
target column’s datatype can be used. SQL strings can be applied to simple scalar
column types as well as to user-defined complex types such as column object and
collections. See the information about expressions in the Oracle9i SQL Reference.

The column name and the name of the column in the SQL string must match
exactly, including the quotation marks, as in the following example of specifying
the control file:

LOAD DATA
INFILE *

APPEND INTO TABLE XXX

("Last' posifon(L7) char "UPPER(\'Last\)"
FIRST posiion(8:15) char "UPPER(FIRST)"

)

BEGINDATA

Phil Locke
Jason Durbin

The following requirements and restrictions apply when you are using SQL strings:
« The SQL string appears after any other specifications for a given column.
« The SQL string must be enclosed in double quotation marks.

« Toenclose a column name in quotation marks within a SQL string, you must
use escape characters.

In the preceding example, Last is enclosed in double quotation marks to
preserve the mixed case, and the double quotation marks necessitate the use of
the backslash (escape) character.

Field List Reference 6-49

Applying SQL Operators to Fields

« Ifthe SQL string contains a column name that references a column object
attribute, then the full field name must be used and it must be enclosed in
guotation marks.

« The SQL string is evaluated after any NULLIF or DEFAULTIF clauses, but
before a date mask.

« If the Oracle database server does not recognize the string, the load terminates
in error. If the string is recognized, but causes a database error, the row that
caused the error is rejected.

« SQL strings are required when using the EXPRESSIONparameter in a field
specification.

« Ifthe SQL string contains a bind variable, the bind variable cannot be longer
than 4000 bytes or the record will be rejected.

« The SQL string cannot reference fields that are loaded using OID, SID, REF, or
BFILE . Also, it cannot reference filler fields, LOBcolumns or LOB attributes.

« Indirect path mode, a SQL string cannot reference a VARRAYor nested table
column. This also include a VARRAYor nested table column that is an attribute
of a column object.

« The SQL string cannot be used on RECNUMBEQUENCECONSTANTor SYSDATE
fields.

« The SQL string cannot be used on LOBs, BFILE s, XMLcolumns, or a file that is
an element of a collection.

« Indirect path mode, the final result that is returned after evaluation of the
expression in the SQL string must be a scalar data type. That is, the expression
may not return an object or collection data type when performing a direct path
load.

6-50 Oracle9/ Database Utilities

Applying SQL Operators to Fields

Referencing Fields

To refer to fields in the record, precede the field name with a colon (). Field values
from the current record are substituted. A field name preceded by a colon (:) in a
SQL string is also referred to as a bind variable. The following example illustrates
how a reference is made to both the current field and to other fields in the control
file:

LOAD DATA
INFILE *
APPEND INTO TABLE YYY
(

field1 POSITION(L:6) CHAR "LOWER(field1)"

field2 CHAR TERMINATED BY !

NULLIF ((1) = 'a) DEFAULTIF (1)="b)
"RTRIM(field2)"

field3 CHAR(7) " TRANSLATE(field3, "field?’, 1",
fielkdd COLUMN OBJECT

(

airl CHAR(3) "UPPER(\'FIELD4ATTR3!Y’,

a2 CHAR(),

a3 CHAR(3) "\'FIELD4ATTRIY" + 1"

»

field5 EXPRESSION "MYFUNC(FIELD4, SYSDATE)"
)
BEGINDATA
ABCDEF1234511 field1500YYabc
abcDEF67890 ,field26002Zghl

Note the following about the preceding example:

« Onlythe:fieldl thatis not in single quotation marks is interpreted as a bind
variable; ":field1’ and 1" are text literals that are passed unchanged to
the TRANSLATHunction. For more information on the use of quotation marks
inside quoted strings, see Specifying Filenames and Object Names on page 5-5.

» For each input record read, the value of the field referenced by the bind variable
will be substituted for the bind variable. For example, the value ABCDEHRN the
first record is mapped to the first field :fieldl . This value is then passed as an
argument to the LOWERunction.

« When a bind variable is a reference to an attribute of a column object, the full
field name must be in uppercase and enclosed in quotation marks. For instance,
\"FIELD4.ATTR1\" and :\"FIELD4.ATTR3\"

Field List Reference 6-51

Applying SQL Operators to Fields

« Abind variable in a SQL string need not reference the current field. In the
preceding example, the bind variable in the SQL string for field FIELD4.ATTR1
references field FIELD4.ATTR3 . The field FIELD4.ATTR1 is still mapped to
the values 500 and 600 in the input records, but the final values stored in its
corresponding columns are ABC and GHL.

« field5 is not mapped to any field in the input record. The value that is stored
in the target column is the result of executing the MYFUN®L/SQL function,
which takes two arguments. The use of the EXPRESSIONparameter requires
that a SQL string be used to compute the final value of the column because no
input data is mapped to the field.

Common Uses of SQL Operators in Field Specifications
SQL operators are commonly used for the following tasks:
« Loading external data with an implied decimal point:
field1 POSITION(1:9) DECIMAL EXTERNAL(8) "field1/1000"

« Truncating fields that could be too long:
fieldl CHAR TERMINATED BY ",""SUBSTR(field1, 1, 10)"

Combinations of SQL Operators
Multiple operators can also be combined, as in the following examples:

field1 POSITION(*+3) INTEGER EXTERNAL
"TRUNC(RPAD(field1,6,0), -2)"

fiekd1 POSITION(L:8) INTEGER EXTERNAL
"TRANSLATERTRIM(field1) N/A, 0)"

fieldl CHAR(10)
"NVL(LTRIMRTRIM(field1)), ‘unknown’)"

Using SQL Strings with a Date Mask

When a SQL string is used with a date mask, the date mask is evaluated after the
SQL string. Consider a field specified as follows:

fieldl DATE "dd-mon-yy" "RTRIM(field1)"

SQL*Loader internally generates and inserts the following:
TO_DATE(RTRIM(<field1._value>), 'dd-mon-yyyy)

6-52 Oracle9/ Database Utilities

Using SQL*Loader to Generate Data for Input

Note that when using the DATEfield datatype, it is not possible to have a SQL string
without a date mask. This is because SQL*Loader assumes that the first quoted
string it finds after the DATEparameter is a date mask. For instance, the following
field specification would result in an error (ORA-01821: date format not
recognized):

fieldl DATE "RTRIM(TO_DATE(field1, ‘dd-mon-yyyy))"

In this case, a simple workaround is to use the CHARdatatype.

Interpreting Formatted Fields

It is possible to use the TO_CHAPRperator to store formatted dates and numbers.
For example:

field1 ..."TO_CHAR(field1, '$09999.99)"
This example could store numeric input data in formatted form, where fieldl is a

character column in the database. This field would be stored with the formatting
characters (dollar sign, period, and so on) already in place.

You have even more flexibility, however, if you store such values as numeric
guantities or dates. You can then apply arithmetic functions to the values in the
database, and still select formatted values for your reports.

The SQL string is used in Case Study 7: Extracting Data from a Formatted Report on
page 10-28 to load data from a formatted report.

Using SQL*Loader to Generate Data for Input

The parameters described in this section provide the means for SQL*Loader to
generate the data stored in the database record, rather than reading it from a
datafile. The following parameters are described:

= CONSTANT Parameter
=« EXPRESSION Parameter
« RECNUM Parameter

= SYSDATE Parameter

« SEQUENCE Parameter

Field List Reference 6-53

Using SQL*Loader to Generate Data for Input

Loading Data Without Files

It is possible to use SQL*Loader to generate data by specifying only sequences,
record numbers, system dates, constants, and SQL string expressions as field
specifications.

SQL*Loader inserts as many records as are specified by the LOADstatement. The
SKIP parameter is not permitted in this situation.

SQL*Loader is optimized for this case. Whenever SQL*Loader detects that only
generated specifications are used, it ignores any specified datafile—no read 1/0 is
performed.

In addition, no memory is required for a bind array. If there are any WHENIauses in
the control file, SQL*Loader assumes that data evaluation is necessary, and input
records are read.

Setting a Column to a Constant Value

This is the simplest form of generated data. It does not vary during the load or
between loads.

CONSTANT Parameter
To set a column to a constant value, use CONSTANTollowed by a value:

CONSTANT value
CONSTANTata is interpreted by SQL*Loader as character input. It is converted, as
necessary, to the database column type.

You may enclose the value within quotation marks, and you must do so if it
contains whitespace or reserved words. Be sure to specify a legal value for the target
column. If the value is bad, every record is rejected.

Numeric values larger than 2732 - 1 (4,294,967,295) must be enclosed in quotation
marks.

Note: Do not use the CONSTANParameter to set a column to null.
To set a column to null, do not specify that column at all. Oracle
automatically sets that column to null when loading the record. The
combination of CONSTAN®ENd a value is a complete column
specification.

6-54 Oracle9/ Database Utilities

Using SQL*Loader to Generate Data for Input

Setting a Column to an Expression Value

Use the EXPRESSIONoarameter after a column name to set that column to the
value returned by a SQL operator or specially written PL/SQL function. The
operator or function is indicated in a SQL string that follows the EXPRESSION
parameter. Any arbitrary expression may be used in this context provided that any
parameters required for the operator or function are correctly specified and that the
result returned by the operator or function is compatible with the datatype of the
column being loaded.

EXPRESSION Parameter

The combination of column name, EXPRESSIONparameter, and a SQL string is a
complete field specification.

column_name EXPRESSION "SQL string"

Setting a Column to the Datafile Record Number

Use the RECNUNarameter after a column name to set that column to the number of
the logical record from which that record was loaded. Records are counted
sequentially from the beginning of the first datafile, starting with record 1. RECNUM
is incremented as each logical record is assembled. Thus it increments for records
that are discarded, skipped, rejected, or loaded. If you use the option SKIP=10, the
first record loaded has a RECNUMf 11.

RECNUM Parameter
The combination of column name and RECNUNs a complete column specification.

column_name RECNUM

Setting a Column to the Current Date

A column specified with SYSDATEgets the current system date, as defined by the
SQL language SYSDATBEparameter. See the section on the DATEdatatype in Oracle9i
SQL Reference.

SYSDATE Parameter

The combination of column name and the SYSDATEparameter is a complete
column specification.

column_name SYSDATE

Field List Reference 6-55

Using SQL*Loader to Generate Data for Input

The database column must be of type CHARor DATE If the column is of type CHAR
then the date is loaded in the form 'dd-mon-yy.” After the load, it can be loaded
only in that form. If the system date is loaded into a DATEcolumn, then it can be
loaded in a variety of forms that include the time and the date.

A new system date/time is used for each array of records inserted in a conventional
path load and for each block of records loaded during a direct path load.

Setting a Column to a Unique Sequence Number

The SEQUENCIRarameter ensures a unique value for a particular column.
SEQUENCImncrements for each record that is loaded or rejected. It does not
increment for records that are discarded or skipped.

SEQUENCE Parameter

The combination of column name and the SEQUENCIBarameter is a complete
column specification.

—>Ccolumn_name)—>| SEQUENCE i

where:

column_name The name of the column in the database to which to assign the
sequence

SEQUENCE Use the SEQUENCIparameter to specify the value for a column

integer Specifies the specific sequence number to begin with

COUNT The sequence starts with the number of records already in the table
plus the increment

MAX The sequence starts with the current maximum value for the column
plus the increment

incr The value that the sequence number is to increment after a record is

loaded or rejected

6-56 Oracle9/ Database Utilities

Using SQL*Loader to Generate Data for Input

If a record is rejected (that is, it has a format error or causes an Oracle error), the
generated sequence numbers are not reshuffled to mask this. If four rows are
assigned sequence numbers 10, 12, 14, and 16 in a particular column, and the row
with 12 is rejected, the three rows inserted are numbered 10, 14, and 16, not 10, 12,
and 14. This allows the sequence of inserts to be preserved despite data errors.
When you correct the rejected data and reinsert it, you can manually set the
columns to agree with the sequence.

Case Study 3: Loading a Delimited, Free-Format File on page 10-11 provides an
example of the SEQUENCparameter.

Generating Sequence Numbers for Multiple Tables

Because a unique sequence number is generated for each logical input record, rather
than for each table insert, the same sequence number can be used when inserting
data into multiple tables. This is frequently useful.

Sometimes, however, you might want to generate different sequence numbers for
each INTO TABLEclause. For example, your data format might define three logical
records in every input record. In that case, you can use three INTO TABLE clauses,
each of which inserts a different part of the record into the same table. When you
use SEQUENCE(MAX)SQL*Loader will use the maximum from each table, which
can lead to inconsistencies in sequence numbers.

To generate sequence numbers for these records, you must generate unique
numbers for each of the three inserts. Use the number of table-inserts per record as
the sequence increment and start the sequence numbers for each insert with
successive numbers.

Example: Generating Sequence Numbers

Suppose you want to load the following department names into the dept table.
Each input record contains three department names, and you want to generate the
department numbers automatically.

Accounting Personnel Manufacturing
Shipping Purchasing Maintenance

You could use the following control file entries to generate unique department
numbers:

INTO TABLE dept
(deptno SEQUENCE(L, 3),
dname POSITION(L:14) CHAR)

Field List Reference 6-57

Using SQL*Loader to Generate Data for Input

INTO TABLE dept

(deptno SEQUENCE(?, 3),
dname POSITION(16:29) CHAR)
INTO TABLE dept

(deptno SEQUENCE(3, 3),
dname POSITION(31:44) CHAR)

The first INTO TABLE clause generates department number 1, the second number 2,
and the third number 3. They all use 3 as the sequence increment (the number of
department names in each record). This control file loads Accounting as department
number 1, Personnel as 2, and Manufacturing as 3.

The sequence numbers are then incremented for the next record, so Shipping loads
as 4, Purchasing as 5, and so on.

6-58 Oracle9/ Database Utilities

v

Loading Objects, LOBs, and Collections

This chapter discusses the following topics:

« Loading Column Objects

« Loading Object Tables

« Loading REF Columns

« Loading LOBs

« Loading Collections (Nested Tables and VARRAYS)
« Dynamic Versus Static SDF Specifications

« Loading a Parent Table Separately from Its Child Table

Loading Column Objects

Column objects in the control file are described in terms of their attributes. If the
object type on which the column object is based is declared to be nonfinal, then the
column object in the control file may be described in terms of the attributes, both
derived and declared, of any subtype derived from the base object type. In the
datafile, the data corresponding to each of the attributes of a column object is in a
data field similar to that corresponding to a simple relational column.

Loading Objects, LOBs, and Collections 7-1

Loading Column Objects

Note: With SQL*Loader support for complex datatypes like
column-objects, the possibility arises that two identical field names
could exist in the control file, one corresponding to a column, the
other corresponding to a column object’s attribute. Certain clauses
can refer to fields (for example, WHENNULLIF, DEFAULTIF, SID,
OID, REF, BFILE , and so on), causing a naming conflict if
identically named fields exist in the control file.

Therefore, if you use clauses that refer to fields, you must specify
the full name. For example, if field fld1 is specified to be a
COLUMN OBJEGINd it contains field fld2 , when you specify
fld2 ina clause such as NULLIF, you must use the full field name
fld1.fld2

The following sections show examples of loading column objects:
« Loading Column Objects in Stream Record Format

« Loading Column Objects in Variable Record Format

« Loading Nested Column Objects

« Loading Column Objects with a Derived Subtype

« Specifying Null Values for Objects

Loading Column Objects in Stream Record Format

Example 7-1 shows a case in which the data is in predetermined size fields. The
newline character marks the end of a physical record. You can also mark the end of
a physical record by using a custom record separator in the operating system
file-processing clause (os_file_proc_clause).

Example 7-1 Loading Column Objects in Stream Record Format

Control File Contents

LOAD DATA
INFILE 'sample.dat
INTO TABLE departments

(dept no POSITION(01:03) CHAR,
dept name POSITION(05:15) CHAR,
1 dept mgr COLUMN OBJECT

7-2 Oracle9i Database Utilities

Loading Column Objects

(name POSITION(17:33) CHAR,
age POSITION(35:37) INTEGER EXTERNAL,
emp_id POSITION(40:46) INTEGER EXTERNAL))

Datafile (sample.dat)

101 Mathematics Johny Quest 30 1024
237Physics AlbertEinstein 65 0000

Note:

1. This type of column object specification can be applied recursively to describe
nested column objects.

Loading Column Objects in Variable Record Format
Example 7-2 shows a case in which the data is in delimited fields.

Example 7-2 Loading Column Objects in Variable Record Format
Control File Contents

LOAD DATA
1 INFILE 'sample.dat’ "var 6"
INTO TABLE departments
FIELDS TERMINATED BY ’; OPTIONALLY ENCLOSED BY ™
2 (dept no
dept_name,
dept mgr COLUMN OBJECT
(hame CHAR(30),
age INTEGER EXTERNAL(5),
emp_id INTEGER EXTERNAL(S)))

Datafile (sample.dat)

3 000034 101,Mathematics,Johny Q.,30,1024,
000039 237,Physics,"Albert Einstein”,65,0000,

Notes:

1. The"var" string includes the number of bytes in the length field at the
beginning of each record (in this example, the number is 6). If no value is
specified, the default is 5 bytes. The maximum size of a variable record is
27\32-1. Specifying larger values will result in an error.

Loading Objects, LOBs, and Collections 7-3

Loading Column Objects

2. Although no positional specifications are given, the general syntax remains the
same (the column object’s name followed by the list of its attributes enclosed in
parentheses). Also note that an omitted type specification defaults to CHARof
length 255.

3. The first six bytes (italicized) specify the length of the forthcoming record.
These length specifications include the newline characters, which are ignored
thanks to the terminators after the emp_id field.

Loading Nested Column Objects

Example 7-3 shows a control file describing nested column objects (one column
object nested in another column object).

Example 7-3 Loading Nested Column Objects

Control File Contents
LOAD DATA
INFILE “sample.dat
INTO TABLE departments_v2
FIELDS TERMINATED BY ', OPTIONALLY ENCLOSED BY ™
(dept no CHAR(5),
dept name CHAR(I0),
dept mgr COLUMN OBJECT
(hame CHAR(30),
age INTEGER EXTERNAL(3),
emp id INTEGER EXTERNAL(?),
1 em contact COLUMN OBJECT
(name CHAR(30),
phone_num CHAR(20))))

Datafile (sample.dat)
101,Mathematics,Johny Q.,30,1024,"Barbie",650-251-0010,
237,Physics,"Albert Einstein',65,0000,Wife Einstein,654-3210,

Note:

1. This entry specifies a column object nested within a column object.

Loading Column Objects with a Derived Subtype

Example 7-4 shows a case in which a nonfinal base object type has been extended to
create a new derived subtype. Although the column object in the table definition is

7-4 Oracle9i Database Utilities

Loading Column Objects

declared to be of the base object type, SQL*Loader allows any subtype to be loaded
into the column object, provided that the subtype is derived from the base object

type.

Example 7-4 Loading Column Objects with a Subtype

Object Type Definitions

CREATE TYPE person_type AS OBJECT
(hame VARCHAR(30),
ssn NUMBER(9)) not final;

CREATE TYPE employee_type UNDER person_type
(empid NUMBER(5));

CREATE TABLE personnel
(deptno NUMBER(3),
deptname VARCHAR(30),
person person_type);

Control File Contents

LOAD DATA
INFILE 'sample.dat’
INTO TABLE personnel
FIELDS TERMINATED BY ’; OPTIONALLY ENCLOSED BY ™
(depno INTEGER EXTERNAL(3),
depname CHAR,
1 person COLUMN OBJECT TREAT AS employee _type
(hame CHAR,
ssn INTEGER EXTERNAL(9),
2 empd INTEGER EXTERNAL(S))

Datafile (sample.dat)

101,Mathematics,Johny Q.,301189453,10249,
237,Physics,"Albert Einstein”,128606590,10030,

Notes:

1. The TREAT AXlause indicates that SQL*Loader should treat the column object

person as if it were declared to be of the derived type employee_type
instead of its actual declared type, person_type

Loading Objects, LOBs, and Collections 7-5

Loading Column Objects

2. The empid attribute is allowed here because it is an attribute of the employee
type . If the TREAT ASclause had not been specified, this attribute would have
resulted in an error, because it is not an attribute of the column’s declared type.

Specifying Null Values for Objects

Specifying null values for nonscalar datatypes is somewhat more complex than for
scalar datatypes. An object can have a subset of its attributes be null, it can have all
of its attributes be null (an attributively null object), or it can be null itself (an
atomically null object).

Specifying Attribute Nulls

In fields corresponding to column objects, you can use the NULLIF clause to specify
the field conditions under which a particular attribute should be initialized to NULL
Example 7-5 demonstrates this.

Example 7-5 Specifying Attribute Nulls Using the NULLIF Clause

Control File Contents

LOAD DATA
INFILE 'sample.dat’
INTO TABLE departments
(dept no POSITION(01.03) CHAR,
dept name POSITION(05:15) CHAR NULLIF dept_name=BLANKS,
dept mgr COLUMN OBJECT
1 (name POSITION@7:33) CHARNULLIF dept mgr.name=BLANKS,
1 age POSITION(35:37) INTEGER EXTERNAL
NULLIF dept_mgr.age=BLANKS,
1 emp_id POSITION@4046) INTEGER EXTERNAL
NULLIF dept_mgr.emp_id=BLANKS))

Datafile (sample.dat)
2 101 Johny Quest 1024
237 Physics Albert Einstein 65 0000

Notes:

1. The NULLIF clause corresponding to each attribute states the condition under
which the attribute value should be NULL

7-6 Oracle9/ Database Utilities

Loading Column Objects

2. The age attribute of the dept_mgr value is null. The dept_name value is also
null.

Specifying Atomic Nulls

To specify in the control file the condition under which a particular object should
take null value (atomic null), you must follow that object’s name with a NULLIF
clause based on a logical combination of any of the mapped fields (for example, in
Example 7-5, the named mapped fields would be dept_no , dept_name , name,
age, emp_id , but dept_mgr would not be a named mapped field because it does
not correspond (is not mapped) to any field in the datafile).

Although the preceding is workable, it is not ideal when the condition under which
an object should take the value of null is independent of any of the mapped fields. In
such situations, you can use filler fields.

You can map a filler field to the field in the datafile (indicating if a particular object
is atomically null or not) and use the filler field in the field condition of the NULLIF
clause of the particular object. This is shown in Example 7-6.

Example 7-6 Loading Data Using Filler Fields

Control File Contents

LOAD DATA
INFILE 'sample.dat’
INTO TABLE departments_v2
FIELDS TERMINATED BY ', OPTIONALLY ENCLOSED BY ™
(dept no CHAR(),
dept name CHAR(J0),
1 is_null FILLER CHAR,
2 dept mgr COLUMN OBJECT NULLIFis_nul=BLANKS
(hame CHAR(30) NULLIF dept_mgrname=BLANKS,
age INTEGER EXTERNAL(3) NULLIF dept_mgr.age=BLANKS,
emp_id INTEGER EXTERNAL(7)
NULLIF dept_mgremp_id=BLANKS,
em_contact COLUMN OBJECT NULLIFis_null2=BLANKS
(hame CHAR(30)
NULLIF dept_mgr.em_contactname=BLANKS,
phone_num CHAR(20)
NULLIF dept_mgr.em_contactphone_num=BLANKS)),
1 isnul2 FILLERCHAR)

Loading Objects, LOBs, and Collections 7-7

Loading Object Tables

Datafile (sample.dat)

101, Mathematics,n,Johny Q.,,1024,"Barbie,608-251-0010,,
237 Physics,,"Albert Einstein,65,0000,,650-654-3210,n,

Notes:

1. The filler field (datafile mapped; no corresponding column) is of type CHAR
(because it is a delimited field, the CHARdefaults to CHAR(255)). Note that the
NULLIF clause is not applicable to the filler field itself.

2. Gets the value of null (atomic null) if the is_null field is blank.

See Also: Specifying Filler Fields on page 6-6

Loading Object Tables

The control file syntax required to load an object table is nearly identical to that
used to load a typical relational table. Example 7-7 demonstrates loading an object
table with primary key object identifiers (OIDs).

Example 7-7 Loading an Object Table with Primary Key OIDs

Control File Contents

LOAD DATA

INFILE 'sample.dat

DISCARDFILE 'sample.dsc’

BADFILE 'sample.bad’

REPLACE

INTO TABLE employees

FIELDS TERMINATED BY ', OPTIONALLY ENCLOSED BY ™
(name CHAR(30) NULLIF name=BLANKS,
age INTEGEREXTERNAL(3) NULLIFage=BLANKS,
emp_id INTEGER EXTERNAL(5))

Datafile (sample.dat)

Johny Quest, 18, 007,
Speed Racer, 16, 000,

By looking only at the preceding control file you might not be able to determine if

the table being loaded was an object table with system-generated OIDs (real OIDs),
an object table with primary key OIDs, or a relational table.

7-8 Oracle9/ Database Utilities

Loading Object Tables

You may want to load data that already contains real OIDs and to specify that
instead of generating new OIDs, the existing OIDs in the datafile should be used. To
do this, you would follow the INTO TABLE clause with the OID clause:

OID (fieldname)

In this clause, fieldname s the name of one of the fields (typically a filler field)
from the field specification list that is mapped to a data field that contains the real
OIDs. SQL*Loader assumes that the OIDs provided are in the correct format and
that they preserve OID global uniqueness. Therefore, to ensure uniqueness, you
should use the Oracle OID generator to generate the OIDs to be loaded.

The OID clause can only be used for system-generated OIDs, not primary key OIDs.

Example 7-8 demonstrates loading real OlDs with the row-objects.

Example 7-8 Loading OIDs

Control File Contents

LOAD DATA
INFILE 'sample.dat’
INTO TABLE employees_v2
1 OID (s_oid)
FIELDS TERMINATED BY ', OPTIONALLY ENCLOSED BY ™
(name CHAR(30) NULLIF name=BLANKS,
age INTEGEREXTERNAL(3) NULLIFage=BLANKS,
emp_id INTEGER EXTERNAL(5),
2 s od FILLERCHAR(32)

Datafile (sample.dat)

3 Johny Quest, 18, 007, 21E978406D3E41FCE03400400B403BC3,
Speed Racer, 16, 000, 21E978406D4441FCE03400400B403BC3,

Notes:

1. The OID clause specifies that the s_oid loader field contains the OID. The
parentheses are required.

2. Ifs_oid does not contain a valid hexadecimal number, the particular record is
rejected.

3. The OID in the datafile is a character string and is interpreted as a 32-digit
hexadecimal number. The 32-digit hexadecimal number is later converted into a
16-byte RAWANd stored in the object table.

Loading Objects, LOBs, and Collections 7-9

Loading Object Tables

Loading Object Tables with a Subtype

If an object table’s row object is based on a nonfinal type, SQL*Loader allows for
any derived subtype to be loaded into the object table. As previously mentioned,
the syntax required to load an object table with a derived subtype is almost
identical to that used for a typical relational table. However, in this case, the actual
subtype to be used must be named, so that SQL*Loader can determine if it is a valid
subtype for the object table.

Consider the following object type and object table definitions:

CREATE TYPE employees_type AS OBJECT
(name VARCHAR2(30),
age NUMBER(3),
emp_id NUMBER(5)) not final;

CREATE TYPE hourly_emps_type UNDER employees type
(hours NUMBER(3));

CREATE TABLE employees V3 of employees_type;

Example 7-9 Loading an Object Table with a Subtype

Control File Contents
LOAD DATA

INFILE 'sample.dat’
INTO TABLE employees_v3
1 TREAT AS hourly_emps _type
FIELDS TERMINATED BY %}
(name CHAR(30),
age INTEGER EXTERNAL(3),
emp_id INTEGER EXTERNAL(5),
2 hours INTEGER EXTERNAL(2))

Datafile (sample.dat)

Johny Quest, 18,007, 32,
Speed Racer, 16, 000, 20,

7-10 Oracle9i Database Utilities

Loading REF Columns

Notes:
1. The TREAT Alause indicates that SQL*Loader should treat the object table as
if it were declared to be of type hourly_emps_type , instead of its actual

declared type, employee_type

2. The hours attribute is allowed here because it is an attribute of the hourly _
emps_type . If the TREAT AXlause had not been specified, this attribute would
have resulted in an error, because it is not an attribute of the object table’s
declared type.

Loading REF Columns

SQL*Loader can load real REFcolumns (REFs containing real OIDs of the
referenced objects) as well as primary key REFcolumns.

Real REF Columns

SQL*Loader assumes, when loading real REFcolumns, that the actual OIDs from
which the REFcolumns are to be constructed are in the datafile with the rest of the
data. The description of the field corresponding to a REFcolumn consists of the
column name followed by the REFclause.

The REFclause takes as arguments the table name and an OID. Note that the
arguments can be specified either as constants or dynamically (using filler fields).
See ref_spec on page A-7 for the appropriate syntax. Example 7-10 demonstrates
real REFloading.

Example 7-10 Loading Real REF Columns

Control File Contents

LOAD DATA
INFILE ‘sample.dat
INTO TABLE departments_alt v2
FELDS TERMINATED BY *; OPTIONALLY ENCLOSED BY ™
(dept no CHAR(5),
dept name CHAR(J0),
1 dept mgr REF({ name,s oid),
s od FILLERCHAR(3?),
t name FILLER CHAR(30))

Loading Objects, LOBs, and Collections 7-11

Loading REF Columns

Datafile (sample.dat)

22345, QuestWorld, 21E978406D3E41FCE03400400B403BC3, EMPLOYEES_V2,
23423, Geography, 21E978406D4441FCE03400400B403BC3, EMPLOYEES V2,

Note:

1. If the specified table does not exist, the record is rejected. The dept_mgr field
itself does not map to any field in the datafile.

Primary Key REF Columns

To load a primary key REFcolumn, the SQL*Loader control-file field description
must provide the column name followed by a REFclause. The REFclause takes for
arguments a comma-separated list of field names and constant values. The first
argument is the table name, followed by arguments that specify the primary key
OID on which the REFcolumn to be loaded is based. See ref_spec on page A-7 for
the appropriate syntax.

SQL*Loader assumes that the ordering of the arguments matches the relative
ordering of the columns making up the primary key OID in the referenced table.
Example 7-11 demonstrates loading primary key REFs.

Example 7-11 Loading Primary Key REF Columns

Control File Contents

LOAD DATA

INFILE ‘sample.dat

INTO TABLE departments_alt

FELDS TERMINATED BY *; OPTIONALLY ENCLOSED BY *
(dept no CHAR(5),

dept name CHAR(30),

dept mgr REF(CONSTANT ‘EMPLOYEES', emp _id),
emp id FILLER CHAR(32))

Datafile (sample.dat)

22345, QuestWorld, 007,
23423, Geography, 000,

7-12 Oracle9i Database Utilities

Loading LOBs

Loading LOBs

A LOB is a large object type. SQL*Loader supports the following types of LOBs:
« BLOB an internal LOB containing unstructured binary data.

« CLOBan internal LOB containing character data.

« NCLOBan internal LOB containing characters from a national character set.

« BFILE: a BLOBstored outside of the database tablespaces in a server-side
operating system file.

LOBs can be column datatypes, and with the exception of the NCLOBthey can be an
object’s attribute datatypes. LOBs can have an actual value, they can be null, or they
can be "empty."

XMLcolumns are columns declared to be of type SYSXMLTYPESQL*Loader treats
XMLcolumns as if they were CLOB. All of the methods described in the following
sections for loading LOB data from the primary datafile or from LOBFILEs are
applicable to loading XMLcolumns.

Note: You cannot specify a SQL string for LOB fields. This is true
even if you specify LOBFILE_spec .

Because LOBs can be quite large, SQL*Loader is able to load LOB data from either a
primary datafile (in line with the rest of the data) or from LOBFILEs. This section
addresses the following topics:

« Loading LOB Data from a Primary Datafile
« Loading LOB Data from an External LOBFILE (BFILE)
« Loading LOB Data from LOBFILEs

Loading LOB Data from a Primary Datafile

To load internal LOBs (BLOB, CLOB, and NCLOB) or XMLcolumns from a primary
datafile, you can use the following standard SQL*Loader formats:

« Predetermined size fields
« Delimited fields
« Length-value pair fields

Each of these formats is described in the following sections.

Loading Objects, LOBs, and Collections 7-13

Loading LOBs

LOB Data in Predetermined Size Fields

This is a very fast and conceptually simple format in which to load LOBs, as shown
in Example 7-12.

Note: Because the LOBs you are loading may not be of equal size,
you can use whitespace to pad the LOB data to make the LOBs all
of equal length within a particular data field.

To load LOBs using this format, you should use either CHARor RAWaAs the loading
datatype.

Example 7-12 Loading LOB Data in Predetermined Size Fields

Control File Contents

LOAD DATA
INFILE 'sample.dat "fix 501"

INTO TABLE person_table

(name POSITION(1:21) CHAR,

1 "RESUME" POSITION(23500) CHAR DEFAULTIF "RESUME"=BLANKS)

Datafile (sample.dat)

Johny Quest Johny Quest
500 Oracle Parkway
jguest@us.oracle.com...

Note:

1. If the data field containing the resume is empty, the result is an empty LOB
rather than a null LOB. The opposite would occur if the NULLIF clause were
used instead of the DEFAULTIF clause. You can use SQL*Loader datatypes
other than CHARto load LOBs. For example, when loading BLOB, you would
probably want to use the RAWHatatype.

LOB Data in Delimited Fields

This format handles LOBs of different sizes within the same column (datafile field)
without problem. However, this added flexibility can affect performance, because
SQL*Loader must scan through the data, looking for the delimiter string.

7-14 Oracle9i Database Utilities

Loading LOBs

As with single-character delimiters, when you specify string delimiters, you should
consider the character set of the datafile. When the character set of the datafile is
different than that of the control file, you can specify the delimiters in hexadecimal
(that is, X’hexadecimal string). If the delimiters are specified in hexadecimal
notation, the specification must consist of characters that are valid in the character
set of the input datafile. In contrast, if hexadecimal specification is not used, the
delimiter specification is considered to be in the client’s (that is, the control file’s)
character set. In this case, the delimiter is converted into the datafile's character set
before SQL*Loader searches for the delimiter in the datafile.

Note the following:

« Stutter syntax is supported with string delimiters (that is, the closing enclosure
delimiter can be stuttered).

« Leading whitespaces in the initial multicharacter enclosure delimiter are not
allowed.

« Ifafield is terminated by WHITESPACEthe leading whitespaces are trimmed.

Example 7-13 shows an example of loading LOB data in delimited fields.

Example 7-13 Loading LOB Data in Delimited Fields
Control File Contents

LOAD DATA
INFILE 'sample.dat "str [
INTO TABLE person_table
FIEELDS TERMINATED BY’;
(name CHAR(25),
1 "RESUME" CHAR(07) ENCLOSED BY '<startiob>" AND '<endiob>")

Datafile (sample.dat)

Johny Quest<stariob> Johny Quest
500 Oracle Parkway
jouest@us.oracle.com ... <endlob>
2 |Speed Racer,

Notes:

1. <startlob> and <endlob> are the enclosure strings. With the default
byte-length semantics, the maximum length for a LOB that can be read using
CHAR(507) is 507 bytes. If character-length semantics were used, the

Loading Objects, LOBs, and Collections 7-15

Loading LOBs

maximum would be 507 characters. See Character-Length Semantics on
page 5-22.

2. Ifthe record separator’| had been placed right after <endlob> and followed
with the newline character, the newline would have been interpreted as part of
the next record. An alternative would be to make the newline part of the record
separator (for example, '[\n’ or, in hexadecimal notation, X’7COA’).

LOB Data in Length-Value Pair Fields

You can use VARCHARVARCHAR®r VARRAWatatypes to load LOB data
organized in length-value pair fields. This method of loading provides better
performance than using delimited fields, but can reduce flexibility (for example,
you must know the LOB length for each LOB before loading). Example 7-14
demonstrates loading LOB data in length-value pair fields.

Example 7-14 Loading LOB Data in Length-Value Pair Fields

Control File Contents

LOAD DATA
1 INFILE 'sample.dat’ "str '<endrec>\n"
INTO TABLE person_table
FIELDS TERMINATED BY
(hame CHAR(25),
2 "RESUME' VARCHARC(3500))

Datafile (sample.dat)

Johny Quest479 Johny Quest
500 Oracle Parkway
jouest@us.oracle.com

... <endrec>
3 Speed Racer,000<endrec>

Notes:

1. If the backslash escape character is not supported, the string used as a record
separator in the example could be expressed in hexadecimal notation.

2. "RESUME"is a field that corresponds to a CLOBcolumn. In the control file, it is a
VARCHARGwvhose length field is 3 bytes long and whose maximum size is 500
bytes (with byte-length semantics). If character-length semantics were used, the
length would be 3 characters and the maximum size would be 500 characters.
See Character-Length Semantics on page 5-22.

7-16 Oracle9/ Database Utilities

Loading LOBs

3. The length subfield of the VARCHARG 0 (the value subfield is empty).
Consequently, the LOB instance is initialized to empty.

Loading LOB Data from an External LOBFILE (BFILE)

The BFILE datatype stores unstructured binary data in operating system files
outside the database. A BFILE column or attribute stores a file locator that points to
the external file containing the data. The file to be loaded as a BFILE does not have
to exist at the time of loading; it can be created later. SQL*Loader assumes that the
necessary directory objects have already been created (a logical alias name for a
physical directory on the server's file system). For more information, see the Oracle9i
Application Developer’s Guide - Large Objects (LOBSs).

A control file field corresponding to a BFILE column consists of column name
followed by the BFILE clause. The BFILE clause takes as arguments a DIRECTORY
OBIECT (the server_directory alias) name followed by a BFILE name. Both
arguments can be provided as string constants, or they can be dynamically loaded
through some other field. See the Oracle9i SQL Reference for more information.

In the next two examples of loading BFILE s, Example 7-15 has only the filename
specified dynamically, while Example 7-16 demonstrates specifying both the BFILE
and the DIRECTORY OBJECT dynamically.

Example 7-15 Loading Data Using BFILESs; Only Filename Specified Dynamically

Control File Contents

LOAD DATA
INFILE sample dat
INTO TABLE planets
FIELDS TERMINATED BY’;
(pLid CHAR®),
pl_name CHAR(20),
fname FILLER CHAR(30),
1 pl pict BFILE(CONSTANT "scott_dirl", fname))

Datafile (sample.dat)

1,Mercury,mercury.jpegd,
2\Venusvenus.jpeg,
3 Earth,earth jpeg,

Loading Objects, LOBs, and Collections 7-17

Loading LOBs

Note:

1. The directory name is quoted; therefore, the string is used as is and is not
capitalized.

Example 7-16 Loading Data Using BFILEs: Filename and Directory Name Specified
Dynamically

Control File Contents

LOAD DATA
INFILE sample.dat
INTO TABLE planets
FIELDS TERMINATED BY ', OPTIONALLY ENCLOSED BY ™
(plid NUMBER(@),
pl_name CHAR(20),
fname FILLER CHAR(30),
1 dname FILLER CHAR(20),
pl_pict BFILE(dname, fname))

Datafile (sample.dat)

1, Mercury, mercury.jpeg, scott_dirl,
2, Venus, venus.jpeg, scott_dirl,
3, Earth, earth.jpeg, scott_dir2,

Note:

1. dname is mapped to the datafile field containing the directory name
corresponding to the file being loaded.

Loading LOB Data from LOBFILES

LOB data can be lengthy enough so that it makes sense to load it from a LOBFILE
instead of from a primary datafile. In LOBFILEs, LOB data instances are still
considered to be in fields (predetermined size, delimited, length-value), but these
fields are not organized into records (the concept of a record does not exist within
LOBFILEs). Therefore, the processing overhead of dealing with records is avoided.
This type of organization of data is ideal for LOB loading.

There is no requirement that a LOB from a LOBFILE fit in memory. SQL*Loader
reads LOBFILEs in 64 KB chunks.

In LOBFILEs the data can be in any of the following types of fields:

« Asingle LOB field into which the entire contents of a file can be read

7-18 Oracle9i Database Utilities

Loading LOBs

« Predetermined size fields (fixed-length fields)
« Delimited fields (that is, TERMINATED BYor ENCLOSED B)YY
The clause PRESERVE BLANKIS not applicable to fields read from a LOBFILE.

« Length-value pair fields (variable-length fields)—VARRAYWARCHARor
VARCHAR®ader datatypes—are used for loading from this type of field.

See Examples of Loading LOB Data from LOBFILEs on page 7-19 for examples of
using each of these field types. All of the previously mentioned field types can be
used to load XMLcolumns.

See lobfile_spec on page A-8 for LOBFILE syntax.

Dynamic Versus Static LOBFILE Specifications

You can specify LOBFILEs either statically (you specify the actual name of the file)
or dynamically (you use a FILLER field as the source of the filename). In either
case, when the EOF of a LOBFILE is reached, the file is closed and further attempts
to read data from that file produce results equivalent to reading data from an empty
field.

You should not specify the same LOBFILE as the source of two different fields. If
you do so, typically, the two fields will read the data independently.

Examples of Loading LOB Data from LOBFILES

This section contains examples of loading data from different types of fields in
LOBFILEs.

One LOB per File In Example 7-17, each LOBFILE is the source of a single LOB. To
load LOB data that is organized in this way, you follow the column or field name
with the LOBFILE datatype specifications.

Example 7-17 Loading LOB DATA with One LOB per LOBFILE

Control File Contents

LOAD DATA
INFILE 'sample.dat’
INTO TABLE person_table
FIELDS TERMINATED BY ’,
(hame CHAR(20),
1 ext fname FILLER CHAR(0),
2 '"RESUME" LOBFILE(ext fname) TERMINATED BY EOF)

Loading Objects, LOBs, and Collections 7-19

Loading LOBs

Datafile (sample.dat)

Johny Questjgresume.txt,
Speed Racer, /private/sracer/siresume.txt,

Secondary Datafile (jgresume.txt)

Johny Quest
500 Oracle Parkway

Secondary Datafile (Srresume.txt)

Speed Racer
400 Oracle Parkway

Notes:

1. The filler field is mapped to the 40-byte data field, which is read using the
SQL*Loader CHARdatatype. This assumes the use of default byte-length
semantics. If character-length semantics were used, the field would be mapped
to a 40-character data field.

2. SQL*Loader gets the LOBFILE name from the ext_fname filler field. It then
loads the data from the LOBFILE (using the CHARdatatype) from the first byte
to the EOF character. If no existing LOBFILE is specified, the "RESUME"field is
initialized to empty. See Loading a Parent Table Separately from Its Child Table
on page 7-28.

Predetermined Size LOBs In Example 7-18, you specify the size of the LOBs to be
loaded into a particular column in the control file. During the load, SQL*Loader
assumes that any LOB data loaded into that particular column is of the specified
size. The predetermined size of the fields allows the data-parser to perform
optimally. However, it is often difficult to guarantee that all LOBs are the same size.

Example 7-18 Loading LOB Data Using Predetermined Size LOBs

Control File Contents

LOAD DATA

INFILE 'sample.dat

INTO TABLE person_table

FIELDS TERMINATED BY *;
(name CHAR(20),

7-20 Oracle9i Database Utilities

Loading LOBs

1 "RESUME" LOBFILE(CONSTANT Yusr/private/jquestjgresume.txt)
CHAR(2000))

Datafile (sample.dat)

Johny Quest,
Speed Racer,

Secondary Datafile (jgresume.txt)

Johny Quest
500 Oracle Parkway

Speed Racer
400 Oracle Parkway

Note:

1. This entry specifies that SQL*Loader load 2000 bytes of data from the
jgresume.txt LOBFILE, using the CHARdatatype, starting with the byte
following the byte loaded last during the current loading session. This assumes
the use of the default byte-length semantics. If character-length semantics were
used, SQL*Loader would load 2000 characters of data, starting from the first
character after the last-loaded character. See Character-Length Semantics on
page 5-22.

Delimited LOBs In Example 7-19, the LOB data instances in the LOBFILE are
delimited. In this format, loading different size LOBs into the same column is not a
problem. However, this added flexibility can affect performance, because
SQL*Loader must scan through the data, looking for the delimiter string.

Example 7-19 Loading LOB Data Using Delimited LOBs

Control File Contents

LOAD DATA
INFILE 'sample.dat’
INTO TABLE person_table
FIELDS TERMINATED BY’,;
(hame CHAR(20),
1 "RESUME" LOBFILE(CONSTANT jgresume’) CHAR(2000)
TERMINATED BY "<endiob>\n")

Loading Objects, LOBs, and Collections 7-21

Loading LOBs

Datafile (sample.dat)

Johny Quest,
Speed Racer,

Secondary Datafile (jgresume.txt)

Johny Quest

500 Oracle Parkway
... <endlob>
Speed Racer

400 Oracle Parkway
... <endlob>

Note:

1. Because a maximum length of 2000 is specified for CHARSQL*Loader knows
what to expect as the maximum length of the field, which can result in memory
usage optimization. If you choose to specify a maximum length, you should be sure
not to underestimate its value. The TERMINATED BXtlause specifies the string that
terminates the LOBs. Alternatively, you could use the ENCLOSED B¥lause. The
ENCLOSED Bvlause allows a bit more flexibility as to the relative positioning
of the LOBs in the LOBFILE (the LOBs in the LOBFILE need not be sequential).

Length-Value Pair Specified LOBs In Example 7-20 each LOB in the LOBFILE is
preceded by its length. You could use VARCHARVARCHAR®@r VARRAWatatypes
to load LOB data organized in this way.

This method of loading can provide better performance over delimited LOBs, but at
the expense of some flexibility (for example, you must know the LOB length for
each LOB before loading).

Example 7-20 Loading LOB Data Using Length-Value Pair Specified LOBs

Control File Contents

LOAD DATA
INFILE 'sample.dat
INTO TABLE person_table
FIELDS TERMINATED BY *;
(hame CHAR(20),
1 "RESUME" LOBFILE(CONSTANT jgresume) VARCHARC(4,2000))

7-22 Oracle9i Database Utilities

Loading LOBs

Datafile (sample.dat)

Johny Quest,

Speed Racer,

Secondary Datafile (jgresume.txt)

2 0501Johny Quest

500 Oracle Parkway

3 0000

Notes:

1. Theentry VARCHARC(4,2000) tells SQL*Loader that the LOBs in the LOBFILE
are in length-value pair format and that the first 4 bytes should be interpreted
as the length. The value of 2000 tells SQL*Loader that the maximum size of the
field is 2000 bytes. This assumes the use of the default byte-length semantics. If
character-length semantics were used, the first 4 characters would be
interpreted as the length in characters. The maximum size of the field would be
2000 characters. See Character-Length Semantics on page 5-22.

2. Theentry 0501 preceding Johny Quest tells SQL*Loader that the LOB
consists of the next 501 characters.

3. This entry specifies an empty (not null) LOB.

Considerations When Loading LOBs from LOBFILES
Keep in mind the following when you load data using LOBFILEs:

Only LOBs and XMLcolumns can be loaded from LOBFILEs.

The failure to load a particular LOB does not result in the rejection of the record
containing that LOB. Instead, you will have a record that contains an empty
LOB. In the case of an XMLcolumn, a null value will be inserted if there is a
failure loading the LOB.

It is not necessary to specify the maximum length of field corresponding to a
LOBtype column; nevertheless, if a maximum length is specified, SQL*Loader
uses it as a hint to optimize memory usage. Therefore, it is important that the
maximum length specification does not understate the true maximum length.

You cannot supply a position specification (pos_spec) when loading data from
a LOBFILE.

Loading Objects, LOBs, and Collections 7-23

Loading Collections (Nested Tables and VARRAYS)

NULLIF or DEFAULTIF field conditions cannot be based on fields read from
LOBFILEs.

If a nonexistent LOBFILE is specified as a data source for a particular field, that
field is initialized to empty. If the concept of empty does not apply to the
particular field type, the field is initialized to null.

Table-level delimiters are not inherited by fields that are read from a LOBFILE.

Loading Collections (Nested Tables and VARRAYSS)

Like LOBs, collections can be loaded either from a primary datafile (data inline) or
from secondary datafiles (data out of line). See Secondary Datafiles (SDFs) on
page 7-26 for details about SDFs.

When you load collection data, a mechanism must exist by which SQL*Loader can
tell when the data belonging to a particular collection instance has ended. You can
achieve this in two ways:

To specify the number of rows or elements that are to be loaded into each
nested table or VARRAMnNstance, use the DDL COUNTunction. The value
specified for COUNTmust either be a number or a character string containing a
number, and it must be previously described in the control file before the
COUNTlause itself. This positional dependency is specific to the COUNTlause.
COUNT(0) or COUNT(cnt_field) , where cnt_field is 0 for the current row,
results in a empty collection (not null), unless overridden by a NULLIF clause.
See count_spec on page A-12.

Use the TERMINATED B¥and ENCLOSED B¥lauses to specify a unique
collection delimiter. This method cannot be used if an SDFclause is used.

In the control file, collections are described similarly to column objects. See Loading
Column Objects on page 7-1. There are some differences:

Collection descriptions employ the two mechanisms discussed in the preceding
list.

Collection descriptions can include a secondary datafile (SDF) specification.

A NULLIF or DEFAULTIF clause cannot refer to a field in an SDF unless the
clause is on a field in the same SDF.

Clauses that take field names as arguments cannot use a field name thatis in a
collection unless the DDL specification is for a field in the same collection.

7-24 Oracle9i Database Utilities

Loading Collections (Nested Tables and VARRAYS)

« The field list must contain only one nonfiller field and any number of filler
fields. If the VARRAYis a VARRAYof column objects, then the attributes of each
column object will be in a nested field list.

Restrictions in Nested Tables and VARRAY's
The following restrictions exist for nested tables and VARRAYS:

« Afield_list cannot contain a collection_fld_spec

« Acol _obj_spec nested within a varray cannot contain a collection_fld__
spec .

« The column_name specified as part of the field_list must be the same as

the column_name preceding the VARRAYparameter.

Example 7-21 demonstrates loading a VARRAYand a nested table.

Example 7-21 Loading a VARRAY and a Nested Table

Control File Contents

LOAD DATA
INFILE ‘sample.dat “str \n’”
INTO TABLE dept
REPLACE
FIELDS TERMINATED BY ‘; OPTIONALLY ENCLOSED BY *”
(
dept no CHAR(Q3),
dname CHAR(25) NULLIF dname=BLANKS,
1 emps VARRAY TERMINATED BY "/
(
emps COLUMN OBJECT
(
name CHAR(I0),
age INTEGER EXTERNAL(J),
2 empid CHAR(7) NULLIF emps.emps.emp_id=BLANKS
)
)
3 projcnt FILLER CHAR(3),
4 projects NESTED TABLE SDF (CONSTANT "pr.bet" "fix 57") COUNT (proj_
cnt)
(
projects COLUMN OBJECT
(

Loading Objects, LOBs, and Collections 7-25

Loading Collections (Nested Tables and VARRAYS)

project id POSITION (1.5) INTEGER EXTERNAL(5),
project name POSITION (7:30) CHAR
NULLIF projects.projects.project_name = BLANKS
)
)
)

Datafile (sample.dat)
101,MATH,"Napier",28,2828,"Euclid", 123,9999:0
210, Topological Transforms”,:2

Secondary Datafile (SDF) (pr.txt)

21034 Topological Transforms

77777 Impossible Proof

Notes:

1. The TERMINATED BYXlause specifies the VARRAYInstance terminator (note that
no COUNTlause is used).

2. Full name field references (using dot notation) resolve the field name conflict
created by the presence of this filler field.

3. proj_cnt isafiller field used as an argument to the COUNTlause.
4. This entry specifies the following:

— An SDF called pr .txt as the source of data. It also specifies a fixed-record
format within the SDF.

— If COUNTis 0, then the collection is initialized to empty. Another way to
initialize a collection to empty is to use a DEFAULTIF clause. The main field
name corresponding to the nested table field description is the same as the
field name of its nested nonfiller-field, specifically, the name of the column
object field description.

Secondary Datafiles (SDFs)

Secondary datafiles (SDFs) are similar in concept to primary datafiles. Like primary
datafiles, SDFs are a collection of records, and each record is made up of fields. The
SDFs are specified on a per control-file-field basis. They are useful when you load
large nested tables and VARRAY.

7-26 Oracle9i Database Utilities

Loading Collections (Nested Tables and VARRAYS)

Note: Only a collection_fld_spec can name an SDF as its
data source.

SDFs are specified using the SDFparameter. The SDFparameter can be followed by
either the file specification string, or a FILLER field that is mapped to a data field
containing one or more file specification strings.

As for a primary datafile, the following can be specified for each SDF:

The record format (fixed, stream, or variable). Also, if stream record format is
used, you can specify the record separator.

The record size.

The character set for an SDF can be specified using the CHARACTERSEdlause
(see Handling Different Character Encoding Schemes on page 5-16).

A default delimiter (using the delimiter specification) for the fields that inherit a
particular SDF specification (all member fields or attributes of the collection that
contain the SDF specification, with exception of the fields containing their own
LOBFILE specification).

Also note the following with regard to SDFs:

If a nonexistent SDF is specified as a data source for a particular field, that field
is initialized to empty. If the concept of empty does not apply to the particular
field type, the field is initialized to null.

Table-level delimiters are not inherited by fields that are read from an SDF.

To load SDFs larger than 64 KB, you must use the READSIZE parameter to
specify a larger physical record size. You can specify the READSIZE parameter
either from the command line or as part of an OPTIONSclause.

See Also:

« READSIZE (read buffer size) on page 4-9
« OPTIONS Clause on page 5-4

« sdf spec on page A-11

Loading Objects, LOBs, and Collections 7-27

Dynamic Versus Static SDF Specifications

Dynamic Versus Static SDF Specifications

You can specify SDFs either statically (you specify the actual name of the file) or
dynamically (you use a FILLER field as the source of the filename). In either case,
when the EOF of an SDF is reached, the file is closed and further attempts at
reading data from that particular file produce results equivalent to reading data
from an empty field.

In a dynamic secondary file specification, this behavior is slightly different.
Whenever the specification changes to reference a new file, the old file is closed, and
the data is read from the beginning of the newly referenced file.

The dynamic switching of the data source files has a resetting effect. For example,
when SQL*Loader switches from the current file to a previously opened file, the
previously opened file is reopened, and the data is read from the beginning of the
file.

You should not specify the same SDF as the source of two different fields. If you do
so, typically, the two fields will read the data independently.

Loading a Parent Table Separately from Its Child Table

When you load a table that contains a nested table column, it may be possible to
load the parent table separately from the child table. You can load the parent and
child tables independently if the SIDs (system-generated or user-defined) are
already known at the time of the load (that is, the SIDs are in the datafile with the
data).

Example 7-22 and Example 7-23 illustrate how to load parent and child tables with
user-provided SIDs.

Example 7-22 Loading a Parent Table with User-Provided SIDs

Control File Contents

LOAD DATA
INFILE ‘sample.dat’ “str \n’”
INTO TABLE dept
FIELDS TERMINATED BY ‘; OPTIONALLY ENCLOSED BY
TRAILING NULLCOLS
(dept_ no CHAR(3),
dname CHAR(20) NULLIF dname=BLANKS,
mysid FILLER CHAR(32),
1 projects SID(mysid))

7-28 Oracle9i Database Utilities

Loading a Parent Table Separately from Its Child Table

Datafile (sample.dat)

101,Math,21E978407D4441FCEQ3400400B403BC3)|
210, Topology’,21E978408D4441FCEQ3400400B403BC3|

Note:

1. mysid is afiller field that is mapped to a datafile field containing the actual
set-ids and is supplied as an argument to the SID clause.

Example 7-23 Loading a Child Table (the Nested Table Storage Table) with
User-Provided SIDs

Control File Contents

LOAD DATA
INFILE ‘sample.dat’
INTO TABLE dept
FIELDS TERMINATED BY ‘; OPTIONALLY ENCLOSED BY *
TRAILING NULLCOLS
1 SID(sidsrc)
(project_id INTEGER EXTERNAL(5),
project_ name CHAR(20) NULLIF project_name=BLANKS,
sidsrc FILLER CHAR(32))

Datafile (sample.dat)

21034, "Topological Transforms", 21E978407D4441FCEQ3400400B403BC3,
77777, "Impossible Proof’, 21E978408D4441FCE03400400B403BC3,
Note:

1. Thetable-level SID clause tells SQL*Loader that it is loading the storage table
for nested tables. sidsrc is the filler field name that is the source of the real
set-ids.

Memory Issues When Loading VARRAY Columns

The following list describes some issues to keep in mind when you load VARRAY
columns:

« VARRAY are created in the client’s memory before they are loaded into the
database. Each element of a VARRAYequires 4 bytes of client memory before it
can be loaded into the database. Therefore, when you load a VARRAYwith a
thousand elements, you will require at least 4000 bytes of client memory for

Loading Objects, LOBs, and Collections 7-29

Loading a Parent Table Separately from Its Child Table

each VARRAYinstance before you can load the VARRAY into the database. In
many cases, SQL*Loader requires two to three times that amount of memory to
successfully construct and load a VARRAY

« The BINDSIZE parameter specifies the amount of memory allocated by
SQL*Loader for loading records. Given the value specified for BINDSIZE ,
SQL*Loader takes into consideration the size of each field being loaded, and
determines the number of rows it can load in one transaction. The larger the
number of rows, the fewer transactions, resulting in better performance.

But if the amount of memory on your system is limited, then at the expense of
performance, you can specify a lower value for ROW$han SQL*Loader
calculated.

« Loading very large VARRAY or a large number of smaller VARRAY could cause
you to run out of memory during the load. If this happens, specify a smaller
value for BINDSIZE or ROW&nd retry the load.

7-30 Oracle9i Database Utilities

8

SQL*Loader Log File Reference

When SQL*Loader begins execution, it creates a log file. The log file contains a
detailed summary of the load.

Most of the log file entries are records of successful SQL*Loader execution.
However, errors can also cause log file entries. For example, errors found during
parsing of the control file appear in the log file.

This chapter describes the following sections of a SQL*Loader log file:

« Header Information

« Global Information

« Table Information

« Datafile Information

« Table Load Information

« Summary Statistics

« Additional Summary Statistics for Direct Path Loads and Multithreading
« Log File Created When EXTERNAL_TABLE=GENERATE_ONLY

Header Information
The Header Section contains the following entries:
« Date of the run
« Software version number
For example:
SQL*Loader: Release 9.0.1.0.0 - Production on Mon Apr 2 14:21:39 2001

SQL*Loader Log File Reference 8-1

Global Information

() Copyright 2001 Oracle Corporation. All rights reserved.

Global Information
The Global Information Section contains the following entries:
« Names of all input/output files
« Echo of command-line arguments
« Continuation character specification
If the data is in the control file, then the datafile is shown as "*".
For example:

Control File: LOAD.CTL

DataFile: LOAD.DAT
BadFile: LOAD.BAD
Discard File: LOAD.DSC

(Allow all discards)

Number to load: ALL

Number to skip: O

Emors allowed: 50

Bindarray: 64 rows, maximum of 65536 bytes
Continuation: 1:1="*,in current physical record
Pathused: Conventional

Table Information
The Table Information Section provides the following entries for each table loaded:
« Table name

« Load conditions, if any. That is, whether all records were loaded or only those
meeting criteria specified in the WHENIause.

« INSERT, APPENDor REPLACEspecification
« The following column information:
— Column name

— If found in a datafile, the position, length, delimiter, and datatype. See
Column Information on page 8-3 for a description of these columns.

8-2 Oracle9/ Database Utilities

Table Information

— If specified, RECNUMBEQUENCECONSTANTor EXPRESSION
— If specified, DEFAULTIF or NULLIF
For example:

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

Column Name Paosttion Len Term Encl Datatype
€empno 14 4 CHARACTER
ename 6:15 10 CHARACTER

job 1725 9 CHARACTER

mgr 2730 4 CHARACTER

sal 3239 8 CHARACTER

comm 4148 8 CHARACTER
deptno 5051 2 CHARACTER

Column empnois NULL if empno = BLANKS
Column mgris NULL if mgr = BLANKS
Column salis NULL if sal = BLANKS

Column comm is NULL if comm = BLANKS
Column deptno is NULL if deptno = BLANKS

Column Information

This section contains a more detailed description of the column information that is
provided in the Table Information Section of the SQL*Loader log file.

Position
The following are the possibilities for the Position column:

« Ifaposition is specified, the position values are in bytes, starting with byte
position 1, regardless of whether byte-length semantics or character-length
semantics are used.

« If both a start and end position are specified, they are separated by a colon.
« If only a start position is specified, then only that position is displayed.

« If nostart or end position is specified, then FIRST is displayed for the first field
and NEXTis displayed for other fields.

« If the start position is derived from other information, then DERIVEDis
displayed.

SQL*Loader Log File Reference 8-3

Datafile Information

Length

The length, in bytes, is displayed under the heading Len. It gives the maximum
size of the field, including the size of any embedded length fields. The size will be
different with byte-length semantics versus character-length semantics. For
example, for VARCHAR (2,10) with byte-length semantics, the length is 2 (the size
of the length field) plus 10 (maximum size of the field itself), which equals 12 bytes.
For VARCHAR (2,10) with character-length semantics, the length is calculated
using the maximum size, in bytes, of a character in the datafile character set.

For fields that do not have a specified maximum length, an asterisk (*) is written in
the Length column.

Delimiter

The delimiters are displayed under the headings, Term (for terminated by) and
Encl (for enclosed by). If the delimiter is optional, it is preceded by Oand is
displayed within parentheses.

Datatype
The datatype is displayed as specified in the control file.

If the SQL*Loader control file contains any directives for loading datetime and
interval datatypes, then the log file contains the parameter DATE DATETIME, or
INTERVAL under the Datatype heading. If applicable, the parameter DATE
DATETIME, or INTERVAL is followed by the corresponding mask. For example:

Table emp, loaded from every logical record.
Insert option in effect for this table; REPLACE

Column Name Position Len Term Encl Datatype

coll NEXT * DATETIME HH.MLSSXFF AM

Datafile Information

The Datafile Information Section appears only for datafiles with data errors, and
provides the following entries:

« SQL*Loader and Oracle data record errors
« Records discarded
For example:

Record 2: Rejected - Error on table EMP.

8-4 Oracle9/ Database Utilities

Summary Statistics

ORA-00001: unique constraint < name>violated
Record 8: Rejected - Error on table emp, column deptno.
ORA-01722: invalid number

Record 3: Rejected - Eror on table proj, column projno.
ORA-01722: invalid number

Table Load Information

The Table Load Information Section provides the following entries for each table
that was loaded:

« Number of rows loaded
« Number of rows that qualified for loading but were rejected due to data errors

« Number of rows that were discarded because they did not meet the specified
criteria for the WHENIause

« Number of rows whose relevant fields were all null
For example:

The following indexes on table EMP were processed:
Index EMPIX was leftin Direct Load State due to
ORA-01452: cannot CREATE UNIQUE INDEX; duplicate keys found

Table EMP:

7 Rows successfully loaded.

2 Rows not loaded due to data errors.|

0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Summary Statistics
The Summary Statistics Section displays the following data:
« Amount of space used:

— For bind array (what was actually used, based on what was specified by
BINDSIZE)

— For other overhead (always required, independent of BINDSIZE)

« Cumulative load statistics. That is, for all datafiles, the number of records that
were:

— Skipped

SQL*Loader Log File Reference 8-5

Summary Statistics

- Read

- Rejected

— Discarded
« Beginning and ending time of run
« Total elapsed time

« Total CPU time (includes all file /0 but may not include background Oracle
CPU time)

For example:
Space allocated for bind array: 65336 bytes (64 rows)
Space allocated for memory less bind array: 6470 bytes

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Mon Nov 26 10:46:53 1990
Run ended on Mon Nov 26 10:47:17 1990

Elapsedtimewas: 00:00:15.62
CPUtimewas: 00:00:07.76

Oracle Statistics That Are Logged
The statistics that are reported to the log file vary, depending on the load type.

« For conventional loads and direct loads of a nonpartitioned table, statistics
reporting is unchanged from Oracle?.

« Fordirect loads of a partitioned table, a per-partition statistics section is
provided after the (Oracle7) table-level statistics section.

« For asingle-partition load, the partition name will be included in the table-level
statistics section.

Information About Single-Partition Loads
The following information is logged when a single partition is loaded:

« The table column description includes the partition name.

« Error messages include the partition name.

8-6 Oracle9/ Database Utilities

Log File Created When EXTERNAL_TABLE=GENERATE_ONLY

« Statistics listings include the partition name.

Statistics for Loading a Table
The following statistics are logged when a table is loaded:

« Direct path load of a partitioned table reports per-partition statistics.
« Conventional path load cannot report per-partition statistics.
« For loading a nonpartitioned table, stats are unchanged from Oracle7.

For conventional loads and direct loads of a nonpartitioned table, statistics
reporting is unchanged from Oracle?.

If you request logging, but media recovery is not enabled, the load is not logged.

Additional Summary Statistics for Direct Path Loads and Multithreading

For direct path loads, the log contains the following additional data (the numbers in
your log file will be different):

Column array rows: 20000
Stream buffer bytes: 256000

See Specifying the Number of Column Array Rows and Size of Stream Buffers on
page 9-19 for information about the origin of these statistics.

Direct path loads on multiple-CPU systems have the option of using
multithreading. If multithreading is enabled (the default behavior), the following
additional statistics are logged (the numbers in your log will be different):

Total stream buffers loaded by SQL*Loader main thread: 102
Total stream buffers loaded by SQL*Loader load thread: 200

See Optimizing Direct Path Loads on Multiple-CPU Systems on page 9-20 for more
information about multithreading.

Log File Created When EXTERNAL_TABLE=GENERATE_ONLY

When you use the external tables feature, you can place all of the SQL commands
needed to do the load, as described in the control file, in the SQL*Loader log file. To
do this, set the EXTERNAL_TABLEparameter to GENERATE_ONLYhe actual load
can be done later without the use of SQL*Loader by executing these statements in
SQL*Plus.

SQL*Loader Log File Reference 8-7

Log File Created When EXTERNAL_TABLE=GENERATE_ONLY

To generate an example of the log file created when using EXTERNAL _
TABLE=GENERATE_ON|&%ecute the following command for case study 1 (Case
Study 1: Loading Variable-Length Data on page 10-5):

sqllr scottfiger uicasel EXTERNAL TABLE=GENERATE_ONLY

The resulting log file looks as follows:

Control File: ulcasel.ctl
DataFile: ulcasel.ct
Bad File: ulcasel.bad
Discard File: none specified

(Allow all discards)

Number to load: ALL
Number to skip: 0

Errors allowed: 50
Continuation: - none specified
Pathused: Extemal Table

Table DEPT, loaded from every logical record.
Insert option in effect for this table: INSERT

Column Name Posiion Len Term Encl Datatype
DEPTNO FIRST * , O() CHARACTER
DNAME NEXT * , O()CHARACTER
LOC NEXT * , O() CHARACTER

CREATE DIRECTORY statements needed for files

CREATE DIRECTORY SYS_SQLLDR XT_TMPDIR_00000 AS ‘/home/rdbms/demo’

CREATE TABLE statement for extemal table:

CREATE TABLE SYS_SQLLDR_X_EXT _DEPT
(

DEPTNO NUMBER(2),

DNAME CHAR(14),

LOC CHAR(13)

)
ORGANIZATION extemal

8-8 Oracle9/ Database Utilities

Log File Created When EXTERNAL_TABLE=GENERATE_ONLY

(
TYPE oracle_loader

DEFAULT DIRECTORY SYS_SQLLDR XT_TMPDIR_00000
ACCESS PARAMETERS
(
RECORDS DELIMITED BY NEWLINE
BADFILE'SYS SQLLDR XT TMPDIR_00000:ulcasel.bad’
SKIP 20
FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY ™ LDRTRIM
(
DEPTNO CHAR(255)
TERMINATED BY "," OPTIONALLY ENCLOSED BY ™,
DNAME CHAR(255)
TERMINATED BY """ OPTIONALLY ENCLOSED BY ™,
LOC CHAR(255)
TERMINATED BY "," OPTIONALLY ENCLOSED BY ™"
)
)
location
(

‘ulcasel.ctf

)
JREJECT LIMIT UNLIMITED

INSERT statements used to load intemal tables:

INSERT /+ append * INTO DEPT
(

DEPTNO,

DNAME,

LOC
)
SELECT

DEPTNO,

DNAME,

LOC
FROMSYS_SQLLDR X_EXT DEPT

statements to clean up objects created by previous statements:

DROP TABLE SYS_SQLLDR X_EXT_DEPT
DROP DIRECTORY SYS_SQLLDR_XT_TMPDIR_00000

SQL*Loader Log File Reference 8-9

Log File Created When EXTERNAL_TABLE=GENERATE_ONLY

See Also: EXTERNAL_TABLE on page 4-6

8-10 Oracle9/ Database Utilities

9

Conventional and Direct Path Loads

This chapter describes SQL*Loader’s conventional and direct path load methods.
The following topics are covered:

« Data Loading Methods

« Conventional Path Load

« Direct Path Load

« Using Direct Path Load

« Optimizing Performance of Direct Path Loads

« Optimizing Direct Path Loads on Multiple-CPU Systems
« Avoiding Index Maintenance

« Direct Loads, Integrity Constraints, and Triggers

« Parallel Data Loading Models

« General Performance Improvement Hints

For an example of using the direct path load method, see Case Study 6: Loading
Data Using the Direct Path Load Method on page 10-24. The other cases use the
conventional path load method.

Data Loading Methods
SQL*Loader provides two methods for loading data:
« Conventional Path Load
« Direct Path Load

Conventional and Direct Path Loads 9-1

Conventional Path Load

A conventional path load executes SQL INSERT statements to populate tables in an
Oracle database. A direct path load eliminates much of the Oracle database
overhead by formatting Oracle data blocks and writing the data blocks directly to
the database files. A direct load does not compete with other users for database
resources, so it can usually load data at near disk speed. Considerations inherent to
direct path loads, such as restrictions, security, and backup implications, are
discussed in this chapter.

The tables to be loaded must already exist in the database. SQL*Loader never
creates tables. It loads existing tables that either already contain data or are empty.

The following privileges are required for a load:
« You must have INSERT privileges on the table to be loaded.

« You must have DELETEprivileges on the table to be loaded, when using the
REPLACBEor TRUNCATBption to empty old data from the table before loading
the new data in its place.

Conventional Path Load

Conventional path load (the default) uses the SQL INSERT statement and a bind
array buffer to load data into database tables. This method is used by all Oracle
tools and applications.

When SQL*Loader performs a conventional path load, it competes equally with all
other processes for buffer resources. This can slow the load significantly. Extra
overhead is added as SQL commands are generated, passed to Oracle, and
executed.

The Oracle database server looks for partially filled blocks and attempts to fill them
on each insert. Although appropriate during normal use, this can slow bulk loads
dramatically.

Conventional Path Load of a Single Partition

By definition, a conventional path load uses SQL INSERT statements. During a
conventional path load of a single partition, SQL*Loader uses the
partition-extended syntax of the INSERT statement, which has the following form:

INSERT INTO TABLE T PARTITION (P) VALUES....

The SQL layer of the Oracle kernel determines if the row being inserted maps to the
specified partition. If the row does not map to the partition, the row is rejected, and
the SQL*Loader log file records an appropriate error message.

9-2 Oracle9/ Database Utilities

Conventional Path Load

When to Use a Conventional Path Load

If load speed is most important to you, you should use direct path load because it is
faster than conventional path load. However, certain restrictions on direct path
loads may require you to use a conventional path load. You should use a
conventional path load in the following situations:

When accessing an indexed table concurrently with the load, or when applying
inserts or updates to a nonindexed table concurrently with the load

To use a direct path load (with the exception of parallel loads), SQL*Loader
must have exclusive write access to the table and exclusive read/write access to
any indexes.

When loading data into a clustered table
A direct path load does not support loading of clustered tables.
When loading a relatively small number of rows into a large indexed table

During a direct path load, the existing index is copied when it is merged with
the new index keys. If the existing index is very large and the number of new
keys is very small, then the index copy time can offset the time saved by a direct
path load.

When loading a relatively small number of rows into a large table with
referential and column-check integrity constraints

Because these constraints cannot be applied to rows loaded on the direct path,
they are disabled for the duration of the load. Then they are applied to the
whole table when the load completes. The costs could outweigh the savings for
a very large table and a small number of new rows.

When loading records and you want to ensure that a record is rejected under
any of the following circumstances:

— If the record, upon insertion, causes an Oracle error

— If the record is formatted incorrectly, so that SQL*Loader cannot find field
boundaries

— If the record violates a constraint or tries to make a unique index
non-unique

Conventional and Direct Path Loads 9-3

Direct Path Load

Direct Path Load

Instead of filling a bind array buffer and passing it to the Oracle database server
with a SQL INSERT statement, a direct path load uses the direct path API to pass
the data to be loaded to the load engine in the server. The load engine builds a
column array structure from the data passed to it.

The direct path load engine uses the column array structure to format Oracle data
blocks and build index keys. The newly formatted database blocks are written
directly to the database (multiple blocks per 1/0 request using asynchronous writes
if the host platform supports asynchronous 170).

Internally, multiple buffers are used for the formatted blocks. While one buffer is
being filled, one or more buffers are being written if asynchronous 170 is available
on the host platform. Overlapping computation with 1/0 increases load
performance.

Figure 9-1 shows how conventional and direct path loads perform database writes.

9-4 Oracle9/ Database Utilities

Direct Path Load

Figure 9—1 Database Writes on Direct Path and Conventional Path

SQL*Loader SQL*Loader User Processes
Write Database Generate SQL Generate SQL
Block Commands Commands
1
Direct Conventional 1
Path Path

Oracle Server v

SQL Command Processing

Space Management

i
——))]
:| Get new extents | Find partial blocks
Adjust high-water mark 1 Fill partial blocks
! A
Buffer Cache Management v

- Manage queues

i Buffer h
- Resolve contention utter cache

Read Database I V Write Database
Blocks Blocks
v
» | Database

Conventional and Direct Path Loads 9-5

Direct Path Load

Direct Path Load of a Partitioned or Subpartitioned Table

When loading a partitioned or subpartitioned table, SQL*Loader partitions the rows
and maintains indexes (which can also be partitioned). Note that a direct path load
of a partitioned or subpartitioned table can be quite resource-intensive for tables
with many partitions or subpartitions.

Direct Path Load of a Single Partition or Subpartition

When loading a single partition of a partitioned or subpartitioned table,
SQL*Loader partitions the rows and rejects any rows that do not map to the
partition or subpartition specified in the SQL*Loader control file. Local index
partitions that correspond to the data partition or subpartition being loaded are
maintained by SQL*Loader. Global indexes are not maintained on single partition
or subpartition direct path loads. During a direct path load of a single partition,
SQL*Loader uses the partition-extended syntax of the LOADstatement, which has
either of the following forms:

LOAD INTO TABLE T PARTITION (P) VALUES. ...
LOAD INTO TABLE T SUBPARTITION (P) VALUES. ...

While you are loading a partition of a partitioned or subpartitioned table, you are
also allowed to perform DML operations on, and direct path loads of, other
partitions in the table.

Although a direct path load minimizes database processing, several calls to the
Oracle database server are required at the beginning and end of the load to initialize
and finish the load, respectively. Also, certain DML locks are required during load
initialization and are released when the load completes. The following operations
occur during the load: index keys are built and put into a sort, and space
management routines are used to get new extents when needed and to adjust the
upper boundary (high-water mark) for a data savepoint. See Using Data Saves to
Protect Against Data Loss on page 9-12 for information on adjusting the upper
boundary.

Advantages of a Direct Path Load
A direct path load is faster than the conventional path for the following reasons:

« Partial blocks are not used, so no reads are needed to find them, and fewer
writes are performed.

9-6 Oracle9/ Database Utilities

Direct Path Load

SQL*Loader need not execute any SQL INSERT statements; therefore, the
processing load on the Oracle database is reduced.

A direct path load calls on Oracle to lock tables and indexes at the start of the
load and releases them when the load is finished. A conventional path load calls
Oracle once for each array of rows to process a SQL INSERT statement.

A direct path load uses multiblock asynchronous 1/0 for writes to the database
files.

During a direct path load, processes perform their own write 1/0, instead of
using Oracle’s buffer cache. This minimizes contention with other Oracle users.

The sorted indexes option available during direct path loads allows you to
presort data using high-performance sort routines that are native to your
system or installation.

When a table to be loaded is empty, the presorting option eliminates the sort
and merge phases of index-building. The index is filled in as data arrives.

Protection against instance failure does not require redo log file entries during
direct path loads. Therefore, no time is required to log the load when:

— Oracle is operating in NOARCHIVELO@ode
— The UNRECOVERABLRarameter is setto Y
— The object being loaded has the NOLOGuttribute set

See Instance Recovery and Direct Path Loads on page 9-14.

Restrictions on Using Direct Path Loads

The following conditions must be satisfied for you to use the direct path load
method:

Tables are not clustered.
Tables to be loaded do not have any active transactions pending.

To check for this condition, use the Oracle Enterprise Manager command
MONITOR TABLEo find the object ID for the tables you want to load. Then use
the command MONITOR LOCKo see if there are any locks on the tables.

You can perform a SQL*Loader direct load only for databases of the same
version. For example, you cannot perform a SQL*Loader release 8.0 direct path
load to load data into an Oracle release 8.1 database.

The following features are not available with direct path load.

Conventional and Direct Path Loads 9-7

Direct Path Load

« Loading VARRAY¥
« Loading a parent table together with a child table
« Loading BFILE columns

Restrictions on a Direct Path Load of a Single Partition

In addition to the previously listed restrictions, loading a single partition has the
following restrictions:

« The table that the partition is a member of cannot have any global indexes
defined on it.

« Enabled referential and check constraints on the table that the partition is a
member of are not allowed.

« Enabled triggers are not allowed.

When to Use a Direct Path Load
If none of the previous restrictions apply, you should use a direct path load when:

= You have a large amount of data to load quickly. A direct path load can quickly
load and index large amounts of data. It can also load data into either an empty
or nonempty table.

« You want to load data in parallel for maximum performance. See Parallel Data
Loading Models on page 9-27.

Integrity Constraints

All integrity constraints are enforced during direct path loads, although not
necessarily at the same time. NOT NULLconstraints are enforced during the load.
Records that fail these constraints are rejected.

UNIQUEconstraints are enforced both during and after the load. A record that
violates a UNIQUEconstraint is not rejected (the record is not available in memory
when the constraint violation is detected).

Integrity constraints that depend on other rows or tables, such as referential
constraints, are disabled before the direct path load and must be reenabled
afterwards. If REENABLHS specified, SQL*Loader can reenable them automatically
at the end of the load. When the constraints are reenabled, the entire table is
checked. Any rows that fail this check are reported in the specified error log. See
Direct Loads, Integrity Constraints, and Triggers on page 9-22.

9-8 Oracle9/ Database Utilities

Using Direct Path Load

Field Defaults on the Direct Path

Default column specifications defined in the database are not available when you
use direct path loading. Fields for which default values are desired must be
specified with the DEFAULTIF clause. If a DEFAULTIF clause is not specified and
the field is NULL then a null value is inserted into the database.

Loading into Synonyms

You can load data into a synonym for a table during a direct path load, but the
synonym must point directly to a table. It cannot be a synonym for a view, or a
synonym for another synonym.

Using Direct Path Load

This section explains how to use the SQL*Loader direct path load method.

Setting Up for Direct Path Loads

To prepare the database for direct path loads, you must run the setup script,
catldr .sqgl , to create the necessary views. You need only run this script once for
each database you plan to do direct loads to. You can run this script during
database installation if you know then that you will be doing direct loads.

Specifying a Direct Path Load

To start SQL*Loader in direct load mode, set the DIRECT parameter to true on the
command line or in the parameter file, if used, in the format:

DIRECT=true

See Also:

« Case Study 6: Loading Data Using the Direct Path Load
Method on page 10-24

« Optimizing Performance of Direct Path Loads on page 9-15 for
information about parameters you can use to optimize
performance of direct path loads

« Optimizing Direct Path Loads on Multiple-CPU Systems on
page 9-20 if you are doing a direct path load on a multiple-CPU
system or across systems

Conventional and Direct Path Loads 9-9

Using Direct Path Load

Building Indexes

You can improve performance of direct path loads by using temporary storage.
After each block is formatted, the new index keys are put to a sort (temporary)
segment. The old index and the new keys are merged at load finish time to create
the new index. The old index, sort (temporary) segment, and new index segment all
require storage until the merge is complete. Then the old index and temporary
segment are removed.

During a conventional path load, every time a row is inserted the index is updated.
This method does not require temporary storage space, but it does add processing
time.

Improving Performance

To improve performance on systems with limited memory, use the SINGLEROW
parameter. For more information, see SINGLEROW Option on page 5-37.

Note: If, during a direct load, you have specified that the data is to
be presorted and the existing index is empty, a temporary segment
is not required, and no merge occurs—the keys are put directly into
the index. See Optimizing Performance of Direct Path Loads on
page 9-15 for more information.

When multiple indexes are built, the temporary segments corresponding to each
index exist simultaneously, in addition to the old indexes. The new keys are then
merged with the old indexes, one index at a time. As each new index is created, the
old index and the corresponding temporary segment are removed.

Index Storage Requirements

The formula for calculating the amount of space needed for storing the index itself
can be found in the description of how to manage database files in the Oracle9i
Database Administrator’s Guide. Remember that two indexes exist until the load is
complete: the old index and the new index.

Temporary Segment Storage Requirements

To estimate the amount of temporary segment space needed for storing the new
index keys (in bytes), use the following formula:

13*key_storage

9-10 Oracle9/ Database Utilities

Using Direct Path Load

In this formula, key storage is defined as follows:

key_storage = (number_of rows)*
(10+sum_of_column_sizes + number_of columns)

The columns included in this formula are the columns in the index. There is one
length byte per column, and 10 bytes per row are used for a ROWIDand additional
overhead.

The constant 1.3 reflects the average amount of extra space needed for sorting. This
value is appropriate for most randomly ordered data. If the data arrives in exactly
opposite order, twice the key-storage space is required for sorting, and the value of
this constant would be 2.0. That is the worst case.

If the data is fully sorted, only enough space to store the index entries is required,
and the value of this constant reduces to 1.0. See Presorting Data for Faster Indexing
on page 9-16 for more information.

Indexes Left in Unusable State

SQL*Loader leaves indexes in an Index Unusable state when the data segment
being loaded becomes more up-to-date than the index segments that index it.

Any SQL statement that tries to use an index that is in an Index Unusable state
returns an error. The following conditions cause a direct path load to leave an index
or a partition of a partitioned index in an Index Unusable state:

» SQL*Loader runs out of space for the index and cannot update the index.
« The data is not in the order specified by the SORTED INDEXES$lause.

« There is an instance failure, or the Oracle shadow process fails while building
the index.

« There are duplicate keys in a unique index.

« Data savepoints are being used, and the load fails or is terminated by a
keyboard interrupt after a data savepoint occurred.

To determine if an index is in an Index Unusable state, you can execute a simple

query:

SELECT INDEX_NAME, STATUS

FROMUSER_INDEXES
WHERE TABLE_NAME = ‘fablename’

Conventional and Direct Path Loads 9-11

Using Direct Path Load

If you are not the owner of the table, then search ALL_INDEXES or DBA_INDEXES
instead of USER_INDEXES

To determine if an index partition is in an unusable state, you can execute the
following query:

SELECT INDEX_NAME,
PARTITION_NAME,
STATUS FROM USER_IND_PARTITIONS
WHERE STATUS =’ VALID';

If you are not the owner of the table, then search ALL_IND_PARTITIONS and DBA _
IND_PARTITIONS instead of USER_IND_PARTITIONS

Using Data Saves to Protect Against Data Loss

You can use data saves to protect against loss of data due to instance failure. All
data loaded up to the last savepoint is protected against instance failure. To
continue the load after an instance failure, determine how many rows from the
input file were processed before the failure, then use the SKIP parameter to skip
those processed rows.

If there were any indexes on the table, drop them before continuing the load, then
re-create them after the load. See Data Recovery During Direct Path Loads on
page 9-13 for more information on media and instance recovery.

Note: Indexes are not protected by a data save, because
SQL*Loader does not build indexes until after data loading
completes. (The only time indexes are built during the load is when
presorted data is loaded into an empty table, but these indexes are
also unprotected.)

Using the ROWS Parameter

The ROW®arameter determines when data saves occur during a direct path load.
The value you specify for ROW$s the number of rows you want SQL*Loader to
read from the input file before saving inserts in the database.

The number of rows you specify for a data save is an approximate number. Direct
loads always act on full data buffers that match the format of Oracle database
blocks. So, the actual number of data rows saved is rounded up to a multiple of the
number of rows in a database block.

9-12 Oracle9/ Database Utilities

Using Direct Path Load

SQL*Loader always reads the number of rows needed to fill a database block.
Discarded and rejected records are then removed, and the remaining records are
inserted into the database. The actual number of rows inserted before a save is the
value you specify, rounded up to the number of rows in a database block, minus the
number of discarded and rejected records.

A data save is an expensive operation. The value for ROWShould be set high
enough so that a data save occurs once every 15 minutes or longer. The intent is to
provide an upper boundary (high-water mark) on the amount of work that is lost
when an instance failure occurs during a long-running direct path load. Setting the
value of ROW$o a small number adversely affects performance.

Data Save Versus Commit

In a conventional load, ROWSs the number of rows to read before a commit. A
direct load data save is similar to a conventional load commit, but it is not identical.

The similarities are as follows:
« A data save will make the rows visible to other users.
« Rows cannot be rolled back after a data save.

The major difference is that the indexes will be unusable (in Index Unusable state)
until the load completes.

Data Recovery During Direct Path Loads

SQL*Loader provides full support for data recovery when using the direct path
load method. There are two main types of recovery:

Media Recovery Recovery from the loss of a database file. You must be operating in
ARCHIVELOGnNode to recover after you lose a database file.

Instance Recovery Recovery from a system failure in which in-memory data was
changed but lost due to the failure before it was written to disk. The
Oracle database server can always recover from instance failures,
even when redo logs are not archived.

See Also: Oracle9i Database Administrator’s Guide for more
information about recovery

Media Recovery and Direct Path Loads

If redo log file archiving is enabled (you are operating in ARCHIVELOGNode),
SQL*Loader logs loaded data when using the direct path, making media recovery

Conventional and Direct Path Loads 9-13

Using Direct Path Load

possible. If redo log archiving is not enabled (you are operating in NOARCHIVELOG
mode), then media recovery is not possible.

To recover a database file that was lost while it was being loaded, use the same
method that you use to recover data loaded with the conventional path:

1. Restore the most recent backup of the affected database file.

2. Recover the tablespace using the RECOVERommand.

See Also: Oracle9i User-Managed Backup and Recovery Guide for
more information on the RECOVERommand

Instance Recovery and Direct Path Loads

Because SQL*Loader writes directly to the database files, all rows inserted up to the
last data save will automatically be present in the database files if the instance is
restarted. Changes do not need to be recorded in the redo log file to make instance
recovery possible.

If an instance failure occurs, the indexes being built may be left in an Index
Unusable state. Indexes that are Unusable must be rebuilt before you can use the
table or partition. See Indexes Left in Unusable State on page 9-11 for more
information on how to determine if an index has been left in Index Unusable state.

Loading LONG Data Fields

Data that is longer than SQL*Loader’s maximum buffer size can be loaded on the
direct path by using LOBs. You can improve performance when doing this by using
a large streamsize value. For more information about loading LOBs, see Loading
LOBs on page 7-13.

You could also load data that is longer than the maximum buffer size by using the
PIECED parameter, as described in the next section, but Oracle Corporation highly
recommends that you use LOBs instead.

Loading Data As PIECED

The PIECED parameter can be used to load data in sections, provided the data is in
the last column of the logical record.

Declaring a column as PIECED informs the direct path loader that a LONGfield
might be split across multiple physical records (pieces). In such cases, SQL*Loader
processes each piece of the LONGfield as it is found in the physical record. All the
pieces are read before the record is processed. SQL*Loader makes no attempt to

9-14 Oracle9/ Database Utilities

Optimizing Performance of Direct Path Loads

materialize the LONGrield before storing it; however, all the pieces are read before
the record is processed.

The following restrictions apply when you declare a column as PIECED:

This option is only valid on the direct path.
Only one field per table may be PIECED.
The PIECED field must be the last field in the logical record.

The PIECED field may not be used in any WHENNULLIF, or DEFAULTIF
clauses.

The PIECEDfield’s region in the logical record must not overlap with any other
field’s region.

The PIECED corresponding database column may not be part of the index.

It may not be possible to load a rejected record from the bad file if it contains a
PIECED field.

For example, a PIECED field could span 3 records. SQL*Loader loads the piece
from the first record and then reuses the buffer for the second buffer. After
loading the second piece, the buffer is reused for the third record. If an error is
then discovered, only the third record is placed in the bad file because the first
two records no longer exist in the buffer. As a result, the record in the bad file
would not be valid.

Optimizing Performance of Direct Path Loads

You can control the time and temporary storage used during direct path loads.

To minimize time:

Preallocate storage space
Presort the data

Perform infrequent data saves
Minimize use of the redo log

Specify number of column array rows and size of stream buffer

To minimize space:

When sorting data before the load, sort data on the index that requires the most
temporary storage space

Conventional and Direct Path Loads 9-15

Optimizing Performance of Direct Path Loads

« Avoid index maintenance during the load

Preallocating Storage for Faster Loading

SQL*Loader automatically adds extents to the table if necessary, but this process
takes time. For faster loads into a new table, allocate the required extents when the
table is created.

To calculate the space required by a table, see the information about managing
database files in the Oracle9i Database Administrator’s Guide. Then use the INITIAL
or MINEXTENT<lause in the SQL CREATE TABLEtatement to allocate the
required space.

Another approach is to size extents large enough so that extent allocation is
infrequent.

Presorting Data for Faster Indexing

You can improve the performance of direct path loads by presorting your data on
indexed columns. Presorting minimizes temporary storage requirements during the
load. Presorting also allows you to take advantage of high-performance sorting
routines that are optimized for your operating system or application.

If the data is presorted and the existing index is not empty, then presorting
minimizes the amount of temporary segment space needed for the new keys. The
sort routine appends each new key to the key list.

Instead of requiring extra space for sorting, only space for the keys is needed. To
calculate the amount of storage needed, use a sort factor of 1.0 instead of 1.3. For
more information on estimating storage requirements, see Temporary Segment
Storage Requirements on page 9-10.

If presorting is specified and the existing index is empty, then maximum efficiency
is achieved. The new keys are simply inserted into the index. Instead of having a
temporary segment and new index existing simultaneously with the empty, old
index, only the new index exists. So, temporary storage is not required, and time is
saved.

SORTED INDEXES Clause

The SORTED INDEXES$lause identifies the indexes on which the data is presorted.
This clause is allowed only for direct path loads. See Case Study 6: Loading Data
Using the Direct Path Load Method on page 10-24 for an example.

9-16 Oracle9/ Database Utilities

Optimizing Performance of Direct Path Loads

Generally, you specify only one index in the SORTED INDEXES$lause, because data
that is sorted for one index is not usually in the right order for another index. When
the data is in the same order for multiple indexes, however, all indexes can be
specified at once.

All indexes listed in the SORTED INDEXES$lause must be created before you start
the direct path load.

Unsorted Data

If you specify an index in the SORTED INDEXES$lause, and the data is not sorted
for that index, then the index is left in an Index Unusable state at the end of the
load. The data is present, but any attempt to use the index results in an error. Any
index that is left in an Index Unusable state must be rebuilt after the load.

Multiple-Column Indexes

If you specify a multiple-column index in the SORTED INDEXES8lause, the data
should be sorted so that it is ordered first on the first column in the index, next on
the second column in the index, and so on.

For example, if the first column of the index is city, and the second column is last
name; then the data should be ordered by name within each city, as in the following
list:

Albuguerque Adams
Abbuguerque Hartstein
Albuguerque Klein

Boston Andrews
Boston Bobrowski
Boston Heigham

Choosing the Best Sort Order

For the best overall performance of direct path loads, you should presort the data
based on the index that requires the most temporary segment space. For example, if
the primary key is one numeric column, and the secondary key consists of three text
columns, then you can minimize both sort time and storage requirements by
presorting on the secondary key.

To determine the index that requires the most storage space, use the following
procedure;

1. For each index, add up the widths of all columns in that index.

Conventional and Direct Path Loads 9-17

Optimizing Performance of Direct Path Loads

2. Forasingle-table load, pick the index with the largest overall width.

3. For each table in a multiple-table load, identify the index with the largest
overall width for each table. If the same number of rows are to be loaded into
each table, then again pick the index with the largest overall width. Usually, the
same number of rows are loaded into each table.

4. If adifferent number of rows are to be loaded into the indexed tables in a
multiple-table load, then multiply the width of each index identified in step 3
by the number of rows that are to be loaded into that index, and pick the index
with the largest result.

Infrequent Data Saves

Frequent data saves resulting from a small ROW%alue adversely affect the
performance of a direct path load. Because direct path loads can be many times
faster than conventional loads, the value of ROWShould be considerably higher for
a direct load than it would be for a conventional load.

During a data save, loading stops until all of SQL*Loader’s buffers are successfully
written. You should select the largest value for ROW$hat is consistent with safety. It
is a good idea to determine the average time to load a row by loading a few
thousand rows. Then you can use that value to select a good value for ROWS

For example, if you can load 20,000 rows per minute, and you do not want to repeat
more than 10 minutes of work after an interruption, then set ROW%$o be 200,000
(20,000 rows/minute * 10 minutes).

Minimizing Use of the Redo Log

One way to speed a direct load dramatically is to minimize use of the redo log.
There are three ways to do this. You can disable archiving, you can specify that the
load is UNRECOVERABI.Br you can set the NOLOGuttribute of the objects being
loaded. This section discusses all methods.

Disabling Archiving
If archiving is disabled, direct path loads do not generate full image redo. Use the

ARCHIVELOGind NOARCHIVELO@arameters to set the archiving mode. See the
Oracle9i Database Administrator’s Guide for more information about archiving.

9-18 Oracle9/ Database Utilities

Optimizing Performance of Direct Path Loads

Specifying UNRECOVERABLE
To save time and space in the redo log file, use the UNRECOVERABLgarameter

when you load data. An UNRECOVERABLBad does not record loaded data in the
redo log file; instead, it generates invalidation redo.

The UNRECOVERABLtarameter applies to all objects loaded during the load
session (both data and index segments). Therefore, media recovery is disabled for
the loaded table, although database changes by other users may continue to be
logged.

Note: Because the data load is not logged, you may want to make
a backup of the data after loading.

If media recovery becomes necessary on data that was loaded with the
UNRECOVERABLtarameter, the data blocks that were loaded are marked as
logically corrupted.

To recover the data, drop and re-create the data. It is a good idea to do backups
immediately after the load to preserve the otherwise unrecoverable data.

By default, a direct path load is RECOVERABLE

Setting the NOLOG Attribute

If a data or index segment has the NOLOGttribute set, then full image redo logging
is disabled for that segment (invalidation redo is generated.) Use of the NOLOG
attribute allows a finer degree of control over the objects that are not logged.

Specifying the Number of Column Array Rows and Size of Stream Buffers

The number of column array rows determines the number of rows loaded before
the stream buffer is built. The STREAMSIZEparameter specifies the size (in bytes) of
the data stream sent from the client to the server.

Use the COLUMNARRAYROpégameter to specify a value for the number of column
array rows.

Use the STREAMSIZEparameter to specify the size for direct path stream buffers.

The optimal values for these parameters vary, depending on the system, input
datatypes, and Oracle column datatypes used. When you are using optimal values
for your particular configuration, the elapsed time in the SQL*Loader log file
should go down.

Conventional and Direct Path Loads 9-19

Optimizing Direct Path Loads on Multiple-CPU Systems

To see a list of default values for these and other parameters, invoke SQL*Loader
without any parameters, as described in Invoking SQL*Loader on page 4-1.

Note: You should monitor process paging activity, because if
paging becomes excessive, performance can be significantly
degraded. You may need to lower the values for READSIZE
STREAMSIZE and COLUMNARRAYROWSvoid excessive paging.

It can be particularly useful to specify the number of column array rows and size of
the steam buffer when you perform direct path loads on multiple-CPU systems. See
Optimizing Direct Path Loads on Multiple-CPU Systems on page 9-20 for more
information.

Optimizing Direct Path Loads on Multiple-CPU Systems

If you are performing direct path loads on a multiple-CPU system, SQL*Loader
uses multithreading by default. A multiple-CPU system in this case is defined as a
single system that has two or more CPUs.

Multithreaded loading means that, when possible, conversion of the column arrays
to stream buffers and stream buffer loading are performed in parallel. This
optimization works best when:

Column arrays are large enough to generate multiple direct path stream buffers
for loads

Data conversions are required from input field datatypes to Oracle column
datatypes

The conversions are performed in parallel with stream buffer loading.

The status of this process is recorded in the SQL*Loader log file, as shown in the
following sample portion of a log:

Total stream buffers loaded by SQL*Loader mainthread: 47
Total stream buffers loaded by SQL*Loader load thread: 180
Column array rows: 1000

Stream buffer bytes: 256000

In this example, the SQL*Loader load thread has offloaded the SQL*Loader main
thread, allowing the main thread to build the next stream buffer while the load
thread loads the current stream on the server.

9-20 Oracle9/ Database Utilities

Avoiding Index Maintenance

The goal is to have the load thread perform as many stream buffer loads as possible.
This can be accomplished by increasing the number of column array rows and/or
decreasing the stream buffer size. You can monitor the elapsed time in the
SQL*Loader log file to determine whether your changes are having the desired
effect. See Specifying the Number of Column Array Rows and Size of Stream
Buffers on page 9-19 for more information.

On single-CPU systems, optimization is turned off by default. When the server is on
another system, performance may improve if you manually turn on multithreading.

To turn the multithreading option on or off, use the MULTITHREADINGparameter at
the SQL*Loader command line or specify it in your SQL*Loader control file.

See Also: Oracle Call Interface Programmer’s Guide for more
information about the concepts of direct path loading

Avoiding Index Maintenance

For both the conventional path and the direct path, SQL*Loader maintains all
existing indexes for a table.

To avoid index maintenance, use one of the following methods:
« Drop the indexes prior to the beginning of the load.

« Mark selected indexes or index partitions as Index Unusable prior to the
beginning of the load and use the SKIP_UNUSABLE_INDEXES$arameter.

« Use the SKIP_INDEX_ MAINTENANCHEparameter (direct path only, use with
caution).

By avoiding index maintenance, you minimize the amount of space required during
a direct path load, in the following ways:

= You can build indexes one at a time, reducing the amount of sort (temporary)
segment space that would otherwise be needed for each index.

« Only one index segment exists when an index is built, instead of the three
segments that temporarily exist when the new keys are merged into the old
index to make the new index.

Avoiding index maintenance is quite reasonable when the number of rows to be
loaded is large compared to the size of the table. But if relatively few rows are
added to a large table, then the time required to resort the indexes may be excessive.
In such cases, it is usually better to use the conventional path load method, or to use

Conventional and Direct Path Loads 9-21

Direct Loads, Integrity Constraints, and Triggers

the SINGLEROVWparameter of SQL*Loader. For more information, see SINGLEROW
Option on page 5-37.

Direct Loads, Integrity Constraints, and Triggers

With the conventional path load method, arrays of rows are inserted with standard
SQL INSERT statements—integrity constraints and insert triggers are automatically
applied. But when you load data with the direct path, SQL*Loader disables some
integrity constraints and all database triggers. This section discusses the
implications of using direct path loads with respect to these features.

Integrity Constraints

During a direct path load, some integrity constraints are automatically disabled.
Others are not. For a description of the constraints, see the information on
maintaining data integrity in the Oracle9i Application Developer’s Guide -
Fundamentals.

Enabled Constraints
The constraints that remain in force are:

« NOT NULL
« UNIQUE
« PRIMARY KEYunique-constraints on not-null columns)

NOT NULLconstraints are checked at column array build time. Any row that violates
the NOT NULLconstraint is rejected.

UNIQUEconstraints are verified when indexes are rebuilt at the end of the load. The
index will be left in an Index Unusable state if a violation of a UNIQUEconstraint is
detected. See Indexes Left in Unusable State on page 9-11.

Disabled Constraints

During a direct path load, the following constraints are automatically disabled by
default:

« CHECKonstraints
« Referential constraints (FOREIGN KEY

9-22 Oracle9/ Database Utilities

Direct Loads, Integrity Constraints, and Triggers

You can override the disabling of CHECkconstraints by specifying the EVALUATE_
CHECK_CONSTRAINTSause. SQL*Loader will then evaluate CHECKconstraints
during a direct path load. Any row that violates the CHECkKconstraint is rejected.

Reenable Constraints

When the load completes, the integrity constraints will be reenabled automatically
if the REENABLEIlause is specified. The syntax for the REENABLElause is as
follows:

[—>| EVALUATE_CHECK_CONSTRAINTS |—\ [—>| REENABLE |—\ f—)| DISABLED_CONSTRAINTS |—\

[\

EXCEPTIONS [—>| WHEN Kfield_conditionh

The optional parameter DISABLED_CONSTRAINTSs provided for readability. If
the EXCEPTIONSlause is included, the table must already exist, and you must be
able to insert into it. This table contains the ROWIB of all rows that violated one of
the integrity constraints. It also contains the name of the constraint that was
violated. See Oracle9i SQL Reference for instructions on how to create an exceptions
table.

The SQL*Loader log file describes the constraints that were disabled, the ones that
were reenabled, and what error, if any, prevented reenabling or validating of each
constraint. It also contains the name of the exceptions table specified for each
loaded table.

If the REENABLElause is not used, then the constraints must be reenabled
manually, at which time all rows in the table are verified. If the Oracle database
server finds any errors in the new data, error messages are produced. The names of
violated constraints and the ROWIDs of the bad data are placed in an exceptions
table, if one is specified.

If the REENABLElause is used, SQL*Loader automatically reenables the constraint
and then verifies all new rows. If no errors are found in the new data, SQL*Loader
automatically marks the constraint as validated. If any errors are found in the new
data, error messages are written to the log file and SQL*Loader marks the status of
the constraint as ENABLE NOVALIDATEThe names of violated constraints and the
ROWIDs of the bad data are placed in an exceptions table, if one is specified.

Conventional and Direct Path Loads 9-23

Direct Loads, Integrity Constraints, and Triggers

Note: Normally, when a table constraint is left in an ENABLE
NOVALIDATEstate, new data can be inserted into the table but no
new invalid data may be inserted. However, SQL*Loader direct
path load does not enforce this rule. Thus, if subsequent direct path
loads are performed with invalid data, the invalid data will be
inserted but the same error reporting and exception table
processing as described previously will take place. In this scenario
the exception table may contain duplicate entries if it is not cleared
out before each load. Duplicate entries can easily be filtered out by
performing a query such as the following:

SELECT UNIQUE * FROM exceptions_table;

Note: Because referential integrity must be reverified for the entire
table, performance may be improved by using the conventional
path, instead of the direct path, when a small number of rows are to
be loaded into a very large table.

Database Insert Triggers

Table insert triggers are also disabled when a direct path load begins. After the rows
are loaded and indexes rebuilt, any triggers that were disabled are automatically
reenabled. The log file lists all triggers that were disabled for the load. There should
not be any errors reenabling triggers.

Unlike integrity constraints, insert triggers are not reapplied to the whole table
when they are enabled. As a result, insert triggers do not fire for any rows loaded on
the direct path. When using the direct path, the application must ensure that any
behavior associated with insert triggers is carried out for the new rows.

Replacing Insert Triggers with Integrity Constraints

Applications commonly use insert triggers to implement integrity constraints. Most
of these application insert triggers are simple enough that they can be replaced with
Oracle’s automatic integrity constraints.

When Automatic Constraints Cannot Be Used

Sometimes an insert trigger cannot be replaced with Oracle’s automatic integrity
constraints. For example, if an integrity check is implemented with a table lookup in

9-24 Oracle9i Database Utilities

Direct Loads, Integrity Constraints, and Triggers

an insert trigger, then automatic check constraints cannot be used, because the
automatic constraints can only reference constants and columns in the current row.
This section describes two methods for duplicating the effects of such a trigger.

Preparation
Before either method can be used, the table must be prepared. Use the following
general guidelines to prepare the table:

1. Before the load, add a 1-byte or 1-character column to the table that marks rows
as "old data" or "new data.”

2. Let the value of null for this column signify "old data,” because null columns do
not take up space.

3. When loading, flag all loaded rows as "new data" with SQL*Loader’s
CONSTANparameter.

After following this procedure, all newly loaded rows are identified, making it
possible to operate on the new data without affecting the old rows.

Using an Update Trigger

Generally, you can use a database update trigger to duplicate the effects of an insert
trigger. This method is the simplest. It can be used whenever the insert trigger does
not raise any exceptions.

1. Create an update trigger that duplicates the effects of the insert trigger.

Copy the trigger. Change all occurrences of " new.column_name" to
" old .column_name"

2. Replace the current update trigger, if it exists, with the new one.

3. Update the table, changing the "new data" flag to null, thereby firing the update
trigger.

4. Restore the original update trigger, if there was one.

Depending on the behavior of the trigger, it may be necessary to have exclusive
update access to the table during this operation, so that other users do not
inadvertently apply the trigger to rows they modify.

Duplicating the Effects of Exception Conditions

If the insert trigger can raise an exception, then more work is required to duplicate
its effects. Raising an exception would prevent the row from being inserted into the

Conventional and Direct Path Loads 9-25

Direct Loads, Integrity Constraints, and Triggers

table. To duplicate that effect with an update trigger, it is necessary to mark the
loaded row for deletion.

The "new data" column cannot be used as a delete flag, because an update trigger
cannot modify the columns that caused it to fire. So another column must be added
to the table. This column marks the row for deletion. A null value means the row is
valid. Whenever the insert trigger would raise an exception, the update trigger can
mark the row as invalid by setting a flag in the additional column.

In summary, when an insert trigger can raise an exception condition, its effects can
be duplicated by an update trigger, provided:

« Two columns (which are usually null) are added to the table

« The table can be updated exclusively (if necessary)

Using a Stored Procedure

The following procedure always works, but it is more complex to implement. It can
be used when the insert trigger raises exceptions. It does not require a second
additional column; and, because it does not replace the update trigger, and it can be
used without exclusive access to the table.

1. Do the following to create a stored procedure that duplicates the effects of the
insert trigger:

a. Declare a cursor for the table, selecting all new rows.

b. Open the cursor and fetch rows, one at a time, in a processing loop.

c. Perform the operations contained in the insert trigger.

d. If the operations succeed, change the "new data" flag to null.

e. If the operations fail, change the "new data" flag to "bad data."

Execute the stored procedure using an administration tool such as SQL*Plus.
After running the procedure, check the table for any rows marked "bad data".

Update or remove the bad rows.

o 0 w0 DN

Reenable the insert trigger.

See Also: PL/SQL User’s Guide and Reference for more information
about cursor management

9-26 Oracle9/ Database Utilities

Parallel Data Loading Models

Permanently Disabled Triggers and Constraints

SQL*Loader needs to acquire several locks on the table to be loaded to disable
triggers and constraints. If a competing process is enabling triggers or constraints at
the same time that SQL*Loader is trying to disable them for that table, then
SQL*Loader may not be able to acquire exclusive access to the table.

SQL*Loader attempts to handle this situation as gracefully as possible. It attempts
to reenable disabled triggers and constraints before exiting. However, the same
table-locking problem that made it impossible for SQL*Loader to continue may also
have made it impossible for SQL*Loader to finish enabling triggers and constraints.
In such cases, triggers and constraints will remain permanently disabled until they
are manually enabled.

Although such a situation is unlikely, it is possible. The best way to prevent it is to
make sure that no applications are running that could enable triggers or constraints
for the table while the direct load is in progress.

If a direct load is aborted due to failure to acquire the proper locks, carefully check
the log. It will show every trigger and constraint that was disabled, and each
attempt to reenable them. Any triggers or constraints that were not reenabled by
SQL*Loader should be manually enabled with the ENABLEclause of the ALTER
TABLE sstatement described in Oracle9i SQL Reference.

Increasing Performance with Concurrent Conventional Path Loads

If triggers or integrity constraints pose a problem, but you want faster loading, you
should consider using concurrent conventional path loads. That is, use multiple
load sessions executing concurrently on a multiple-CPU system. Split the input
datafiles into separate files on logical record boundaries, and then load each such
input datafile with a conventional path load session. The resulting load has the
following attributes:

« ltis faster than a single conventional load on a multiple-CPU system, but
probably not as fast as a direct load.

= Triggers fire, integrity constraints are applied to the loaded rows, and indexes
are maintained using the standard DML execution logic.

Parallel Data Loading Models

This section discusses three basic models of concurrency that you can use to
minimize the elapsed time required for data loading:

Conventional and Direct Path Loads 9-27

Parallel Data Loading Models

« Concurrent conventional path loads
« Intersegment concurrency with direct path load method

« Intrasegment concurrency with direct path load method

Concurrent Conventional Path Loads

Using multiple conventional path load sessions executing concurrently is discussed
in Increasing Performance with Concurrent Conventional Path Loads on page 9-27.
You can use this technique to load the same or different objects concurrently with
no restrictions.

Intersegment Concurrency with Direct Path

Intersegment concurrency can be used for concurrent loading of different objects.
You can apply this technique to concurrent direct path loading of different tables, or
to concurrent direct path loading of different partitions of the same table.

When you direct path load a single partition, consider the following items:
« Local indexes can be maintained by the load.

« Global indexes cannot be maintained by the load.

« Referential integrity and check constraints must be disabled.

« Triggers must be disabled.

« The input data should be partitioned (otherwise many records will be rejected,
which adversely affects performance).

Intrasegment Concurrency with Direct Path

SQL*Loader permits multiple, concurrent sessions to perform a direct path load
into the same table, or into the same partition of a partitioned table. Multiple
SQL*Loader sessions improve the performance of a direct path load given the
available resources on your system.

This method of data loading is enabled by setting both the DIRECT and the
PARALLELparameters to true , and is often referred to as a parallel direct path
load.

It is important to realize that parallelism is user managed. Setting the PARALLEL
parameter to true only allows multiple concurrent direct path load sessions.

9-28 Oracle9/ Database Utilities

Parallel Data Loading Models

Restrictions on Parallel Direct Path Loads
The following restrictions are enforced on parallel direct path loads:

« Neither local or global indexes can be maintained by the load.
« Referential integrity and CHECkKconstraints must be disabled.
« Triggers must be disabled.

« Rows can only be appended. REPLACETRUNCATEand INSERT cannot be used
(this is due to the individual loads not being coordinated). If you must truncate
a table before a parallel load, you must do it manually.

If a parallel direct path load is being applied to a single partition, you should
partition the data first (otherwise, the overhead of record rejection due to a partition
mismatch slows down the load).

Initiating Multiple SQL*Loader Sessions

Each SQL*Loader session takes a different datafile as input. In all sessions executing
a direct load on the same table, you must set PARALLELto true . The syntax is:

PARALLEL H
PRALEL ()

PARALLELcan be specified on the command line or in a parameter file. It can also
be specified in the control file with the OPTIONSclause.

For example, to invoke three SQL*Loader direct path load sessions on the same
table, you would execute the following commands at the operating system prompt:

sqflldr USERID=scotifiger CONTROL=load1.ctl DIRECT=TRUE PARALLEL ~true
sqlldr USERID=scotttiger CONTROL=load2.ctl DIRECT=TRUE PARALLEL=true
sqlldr USERID=scotttiger CONTROL=load3.ctl DIRECT=TRUE PARALLEL=true

The previous commands must be executed in separate sessions, or if permitted on
your operating system, as separate background jobs. Note the use of multiple
control files. This allows you to be flexible in specifying the files to use for the direct
path load.

Conventional and Direct Path Loads 9-29

Parallel Data Loading Models

Note: Indexes are not maintained during a parallel load. Any
indexes must be created or re-created manually after the load
completes. You can use the parallel index creation or parallel index
rebuild feature to speed the building of large indexes after a
parallel load.

When you perform a parallel load, SQL*Loader creates temporary segments for
each concurrent session and then merges the segments upon completion. The
segment created from the merge is then added to the existing segment in the
database above the segment’s high-water mark. The last extent used of each
segment for each loader session is trimmed of any free space before being combined
with the other extents of the SQL*Loader session.

Parameters for Parallel Direct Path Loads

When you perform parallel direct path loads, there are options available for
specifying attributes of the temporary segment to be allocated by the loader.

Specifying Temporary Segments

To allow for maximum 1/0 throughput, Oracle Corporation recommends that each
concurrent direct path load session use files located on different disks. Use the FILE
parameter of the OPTIONSclause to specify the filename of any valid datafile in the
tablespace of the object (table or partition) being loaded.

For example:

LOAD DATA

INFILE 'load1.dat’

INSERT INTO TABLE emp

OPTIONS(FILE=/dat/datal.dat)

(empno POSITION(01:04) INTEGER EXTERNAL NULLIF empno=BLANKS

You could also specify the FILE parameter on the command line of each concurrent
SQL*Loader session, but then it would apply globally to all objects being loaded
with that session.

Using the FILE Parameter The FILE parameter in the Oracle database server has the
following restrictions for direct path parallel loads:

9-30 Oracle9/ Database Utilities

Parallel Data Loading Models

« For nonpartitioned tables: The specified file must be in the tablespace of the
table being loaded.

« For partitioned tables, single-partition load: The specified file must be in the
tablespace of the partition being loaded.

« For partitioned tables, full-table load: The specified file must be in the
tablespace of all partitions being loaded; that is, all partitions must be in the
same tablespace.

Using the STORAGE Parameter You can use the STORAGPparameter to specify the
storage attributes of the temporary segments allocated for a parallel direct path
load. If the STORAGHarameter is not used, the storage attributes of the segment
containing the object (table, partition) being loaded are used. Also, when the
STORAGHPparameter is not specified, SQL*Loader uses a default of 2 KB for
EXTENTS.

OPTIONS(STORAGE=(MINEXTENTS n1 MAXEXTENTS n2 INITIAL n3[K|M]
NEXT n4[K|M] PCTINCREASE 1)

For example, the following STORAGIEElause could be used:
OPTIONS (STORAGE=(INITIAL 100M NEXT 100M PCTINCREASE 0))

You can use the STORAGIHparameter only in the control file, and not on the
command line. Use of the STORAGParameter to specify anything other than
PCTINCREASKEOf 0, and INITIAL or NEXTvalues is strongly discouraged (and may
be silently ignored in the future).

Enabling Constraints After a Parallel Direct Path Load

Constraints and triggers must be enabled manually after all data loading is
complete.

Because each SQL*Loader session can attempt to reenable constraints on a table
after a direct path load, there is a danger that one session may attempt to reenable a
constraint before another session is finished loading data. In this case, the first
session to complete the load will be unable to enable the constraint because the
remaining sessions possess share locks on the table.

Because there is a danger that some constraints might not be reenabled after a direct
path load, you should check the status of the constraint after completing the load to
ensure that it was enabled properly.

Conventional and Direct Path Loads 9-31

General Performance Improvement Hints

PRIMARY KEY and UNIQUE KEY Constraints

PRIMARY KEYand UNIQUE KEYtonstraints create indexes on a table when they are
enabled, and subsequently can take a significantly long time to enable after a direct
path loading session if the table is very large. You should consider enabling these
constraints manually after a load (and not specifying the automatic enable feature).
This allows you to manually create the required indexes in parallel to save time
before enabling the constraint.

See Also: Oracle9i Database Performance Guide and Reference

General Performance Improvement Hints

If you have control over the format of the data to be loaded, you can use the
following hints to improve load performance:

Make logical record processing efficient:

— Use one-to-one mapping of physical records to logical records (avoid
continueif, concatenate)

— Make it easy for the software to figure out physical record boundaries. Use
the file processing option string "FIX nnn" or "VAR" . If you use the
default (stream mode) on most platforms (for example, UNIX and NT) the
loader must scan each physical record for the record terminator (newline
character).

Make field setting efficient. Field setting is the process of mapping fields in the
datafile to their corresponding columns in the table being loaded. The mapping
function is controlled by the description of the fields in the control file. Field
setting (along with data conversion) is the biggest consumer of CPU cycles for
most loads.

— Avoid delimited fields; use positional fields. If you use delimited fields, the
loader must scan the input data to find the delimiters. If you use positional
fields, field setting becomes simple pointer arithmetic (very fast).

— Do not trim whitespace if you do not need to (use PRESERVE BLANKS

Make conversions efficient. SQL*Loader performs character set conversion and
datatype conversion for you. Of course, the quickest conversion is no
conversion.

— Use single-byte character sets if you can.

9-32 Oracle9i Database Utilities

General Performance Improvement Hints

— Avoid character set conversions if you can. The loader supports four
character sets:

* Client character set (NLS_LANGof the client sqlldr process)

* Datafile character set (usually the same as the client character set)
* Database server character set

* Database server national character set

Performance is optimized if all character sets are the same. For direct path
loads, it is best if the datafile character set and the database server character
set are the same. If the character sets are the same, character set conversion
buffers are not allocated.

« Use direct path loads.
« Use the SORTED INDEXESlause.

« Avoid unnecessary NULLIF and DEFAULTIF clauses. Each clause must be
evaluated on each column that has a clause associated with it for every row
loaded.

« Use parallel direct path loads and parallel index creation when you can.

Additionally, the performance tips provided in Performance Hints When Using
External Tables on page 11-6 also apply to SQL*Loader.

Conventional and Direct Path Loads 9-33

General Performance Improvement Hints

9-34 Oracle9/ Database Utilities

10

SQL*Loader Case Studies

The case studies in this chapter illustrate some of the features of SQL*Loader. These
case studies start simply and progress in complexity.

Note: The commands used in this chapter, such as sqlldr, are
UNIX-specific invocations. Refer to your Oracle operating
system-specific documentation for information about the correct
commands to use on your operating system.

This chapter contains the following sections:

The Case Studies

Case Study Files

Tables Used in the Case Studies

Checking the Results of a Load

References and Notes

Case Study 1: Loading Variable-Length Data

Case Study 2: Loading Fixed-Format Fields

Case Study 3: Loading a Delimited, Free-Format File
Case Study 4: Loading Combined Physical Records
Case Study 5: Loading Data into Multiple Tables

Case Study 6: Loading Data Using the Direct Path Load Method
Case Study 7: Extracting Data from a Formatted Report

SQL*Loader Case Studies 10-1

The Case Studies

Case Study 8: Loading Partitioned Tables

Case Study 9: Loading LOBFILEs (CLOBSs)

Case Study 10: Loading REF Fields and VARRAYs

Case Study 11: Loading Data in the Unicode Character Set

The Case Studies

This chapter contains the following case studies:

Case Study 1: Loading Variable-Length Data: Loads stream format records in
which the fields are terminated by commas and may be enclosed by quotation
marks. The data is found at the end of the control file.

Case Study 2: Loading Fixed-Format Fields: Loads data from a separate datafile.

Case Study 3: Loading a Delimited, Free-Format File: Loads data from stream
format records with delimited fields and sequence numbers. The data is found
at the end of the control file.

Case Study 4: Loading Combined Physical Records: Combines multiple
physical records into one logical record corresponding to one database row.

Case Study 5: Loading Data into Multiple Tables: Loads data into multiple
tables in one run.

Case Study 6: Loading Data Using the Direct Path Load Method: Loads data
using the direct path load method.

Case Study 7: Extracting Data from a Formatted Report: Extracts data from a
formatted report.

Case Study 8: Loading Partitioned Tables: Loads partitioned tables.

Case Study 9: Loading LOBFILEs (CLOBs): Adds a CLOBcolumn called
resume to the table emp, uses a FILLER field (res_file), and loads multiple
LOBFILEs into the emptable.

Case Study 10: Loading REF Fields and VARRAYSs: Loads a customer table that
has a primary key as its OID and stores order items in a VARRAYLoads an
order table that has a reference to the customer table and the order itemsin a
VARRAY

10-2 Oracle9i Database Utilities

Case Study Files

« Case Study 11: Loading Data in the Unicode Character Set: Loads data in the
Unicode character set, UTF16, in little endian byte order. This case study uses
character-length semantics.

Case Study Files
The distribution media for SQL*Loader contains files for each case:
« Control files (for example, ulcase5.ctl)
« Datafiles (for example, ulcase5.dat)
« Setup files (for example, ulcase5.sgl)

If the sample data for the case study is contained in the control file, then there will
be no .dat file for that case.

If there are no special setup steps for a case study, there may be no .sqgl file for that
case. Starting (setup) and ending (cleanup) scripts are denoted by an S or E after the
case number.

Table 10-1 lists the files associated with each case.

Table 10-1 Case Studies and Their Related Files

Case .ctl .dat .sql

1 Yes No Yes
2 Yes Yes No
3 Yes No Yes
4 Yes Yes Yes
5 Yes Yes Yes
6 Yes Yes Yes
7 Yes Yes Yes (S, E)
8 Yes Yes Yes
9 Yes Yes Yes
10 Yes No Yes
11 Yes Yes Yes

SQL*Loader Case Studies 10-3

Tables Used in the Case Studies

Note: The actual names of the case study files are operating
system-dependent. See your Oracle operating system-specific
documentation for the exact names.

Tables Used in the Case Studies

The case studies are based upon the standard Oracle demonstration database tables,

empand dept , owned by scott /tiger . (In some case studies, additional columns
have been added.)

Contents of Table emp

(empno NUMBER(4) NOT NULL,
ename VARCHAR2(10),

job VARCHAR2(9),

mgr NUMBER(4),

hiredate DATE,

sal NUMBER(7,2),

comm NUMBER(7,2),

deptno NUMBER(2))

Contents of Table dept

(depno NUMBER(2) NOT NULL,
dname VARCHAR2(14),
loc VARCHAR2(13))

Checking the Results of a Load

To check the results of a load, start SQL*Plus and perform a select operation from
the table that was loaded in the case study. This is done, as follows:

1. Start SQL*Plus as scott/tiger by entering the following at your system
prompt:

sqlplus scotttiger

The SQL prompt is displayed.

2. Atthe SQL prompt, use the SELECTstatement to select all rows from the table
that the case study loaded. For example, if the table empwas loaded, enter:

SQL> SELECT * FROM emp;

10-4 Oracle9i Database Utilities

Case Study 1: Loading Variable-Length Data

The contents of each row in the emptable will be displayed.

References and Notes

The summary at the beginning of each case study directs you to the sections of this
guide that discuss the SQL*Loader feature being demonstrated.

In the control file fragment and log file listing shown for each case study, the
numbers that appear to the left are not actually in the file; they are keyed to the
numbered notes following the listing. Do not use these numbers when you write
your control files.

Case Study 1. Loading Variable-Length Data

Case 1 demonstrates:
« Asimple control file identifying one table and three columns to be loaded.

« Including data to be loaded from the control file itself, so there is no separate
datafile. See Identifying Data in the Control File with BEGINDATA on
page 5-10.

« Loading data in stream format, with both types of delimited fields: terminated
and enclosed. See Field Length Specifications for Datatypes for Which
Whitespace Can Be Trimmed on page 6-44.

Control File for Case Study 1

The control file is ulcasel .ctl

1) LOAD DATA

2) INFILE *

3) INTOTABLE dept

4) FIELDS TERMINATED BY ’; OPTIONALLY ENCLOSED BY ™

5) (deptno, dname, loc)

6) BEGINDATA
12 RESEARCH,"SARATOGA"
10,"ACCOUNTING",CLEVELAND
11ART"SALEM
13,FINANCE,"BOSTON"
21,"SALES"PHILA.
22"SALES" ROCHESTER
42"INTL","SAN FRAN"

SQL*Loader Case Studies 10-5

Case Study 1: Loading Variable-Length Data

Notes:

1. The LOAD DATAtatement is required at the beginning of the control file.

2. INFILE * specifies that the data is found in the control file and not in an
external file.

3. The INTO TABLEstatement is required to identify the table to be loaded (dept)
into. By default, SQL*Loader requires the table to be empty before it inserts any
records.

4. FIELDS TERMINATED BYspecifies that the data is terminated by commas, but
may also be enclosed by quotation marks. Datatypes for all fields default to
CHAR

5. The names of columns to load are enclosed in parentheses. Because no datatype
or length is specified, the default is type CHAR with a maximum length of 255.

6. BEGINDATAspecifies the beginning of the data.

Running Case Study 1

Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at your system
prompt:
sqlplus scottfiger
The SQL prompt is displayed.

2. Atthe SQL prompt, execute the SQL script for this case study, as follows:

SQL> @ulcasel
This prepares and populates tables for the case study and then returns you to
your system prompt.

3. Atyour system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scottfiger CONTROL=ulcasel.cl LOG=ulcasel.log

SQL*Loader loads the dept table, creates the log file, and returns you to your
system prompt. You can check the log file to see the results of running the case
study.

10-6 Oracle9i Database Utilities

Case Study 1: Loading Variable-Length Data

Log File for Case Study 1

The following shows a portion of the log file:

Control File: ulcasel.ct
DataFile: ulcasel.ct
Bad File: ulcasel.bad
Discard File: none specified

(Allow al discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 50

Bindarray: 64 rows, maximum of 256000 bytes
Continuation: - nhone specified

Pathused: Conventional

Table DEPT, loaded from every logical record.
Insert option in effect for this table: INSERT

Column Name Position Len Term Encl Datatype
1) DEPTNO FIRST * , O() CHARACTER
DNAME NEXT * , O) CHARACTER
2) LoC NEXT * , O) CHARACTER
Table DEPT:
7 Rows successiully loaded.

0 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array: 49536 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Fri Mar 30 14:10:13 2001
Run ended on Fri Mar 30 14:10:14 2001

SQL*Loader Case Studies 10-7

Case Study 2: Loading Fixed-Format Fields

Elapsed imewas: 00:00:01.53
CPUtmewas: 00:00:00.20

Notes:

1. Position and length for each field are determined for each record, based on
delimiters in the input file.

2. The notation O(") signifies optional enclosure by quotation marks.

Case Study 2: Loading Fixed-Format Fields
Case 2 demonstrates:
« A separate datafile. See Specifying Datafiles on page 5-7.
« Data conversions. See Datatype Conversions on page 6-22.

In this case, the field positions and datatypes are specified explicitly.

Control File for Case Study 2
The control file is ulcase2 .ctl

1) LOAD DATA

2) INFILE 'ulcase2.daf

3) INTO TABLE emp

4) (empno POSITION(01:04) INTEGER EXTERNAL,
ename POSITION(06:15) CHAR,
job POSITION(17:25) CHAR,
mgr POSITION(27:30) INTEGER EXTERNAL,
sal POSITION(32:39) DECIMAL EXTERNAL,
comm POSITION(41:48) DECIMAL EXTERNAL,

5) depno POSITION(50:51) INTEGER EXTERNAL)

Notes:

1. The LOAD DATAtatement is required at the beginning of the control file.

2. The name of the file containing data follows the INFILE parameter.

3. The INTO TABLEstatement is required to identify the table to be loaded into.
4

Lines 4 and 5 identify a column name and the location of the data in the datafile
to be loaded into that column. empno, ename, job , and so on are names of
columns in table emp. The datatypes (INTEGER EXTERNALCHARDECIMAL

10-8 Oracle9i Database Utilities

Case Study 2: Loading Fixed-Format Fields

EXTERNAL identify the datatype of data fields in the file, not of corresponding
columns in the emptable.

5. Note that the set of column specifications is enclosed in parentheses.

Datafile for Case Study 2

The following are a few sample data lines from the file ulcase2.dat . Blank fields
are set to null automatically.

77182CLARK MANAGER 7839 2572.50 10
7839KING PRESIDENT 5500.00 10
7934MILLER CLERK 7782 920.00 10

7566 JONES MANAGER 7839 3123.75 20
TA9ALLEN SALESMAN 7698 1600.00 300.0030
7654 MARTIN SALESMAN 7698 131250 1400.00 30
7658 CHAN ANALYST 7566 3450.00 20

7654 MARTIN SALESMAN 7698 1312.50 1400.00 30

Running Case Study 2

Take the following steps to run the case study. If you have already run case study 1,
you can skip to step 3 because the ulcasel .sqgl script handles both case 1 and case

2.

1. Start SQL*Plus as scott/tiger by entering the following at your system
prompt:
sqlplus scotttiger

The SQL prompt is displayed.

2. Atthe SQL prompt, execute the SQL script for this case study, as follows:
SQL> @ulcasel
This prepares and populates tables for the case study and then returns you to
your system prompt.

3. Atyour system prompt, invoke SQL*Loader and run the case study, as follows:
sqlldr USERID=scotttiger CONTROL=ulcase2.ctl LOG=ulcase2.log

SQL*Loader loads the table, creates the log file, and returns you to your system
prompt. You can check the log file to see the results of running the case study.

SQL*Loader Case Studies 10-9

Case Study 2: Loading Fixed-Format Fields

Records loaded in this example from the emptable contain department
numbers. Unless the dept table is loaded first, referential integrity checking
rejects these records (if referential integrity constraints are enabled for the emp
table).

Log File for Case Study 2

The following shows a portion of the log file:

Control File: ulcase2.ct

DataFille: ulcase2.dat
Bad File: ulcase2.bad
Discard File: none specified

(Allow all discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 50

Bind array: 64 rows, maximum of 256000 bytes
Continuation: - none specified

Pathused: ~Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: INSERT

Column Name Posiion Len Term Encl Datatype
EMPNO 14 4 CHARACTER
ENAME 6:15 10 CHARACTER
JOB 1725 9 CHARACTER
MGR 2730 4 CHARACTER
SAL 3239 8 CHARACTER
COMM 4148 8 CHARACTER
DEPTNO 5051 2 CHARACTER
Table EMP:

7 Rows successfully loaded.

0 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array: 3840 bytes(64 rows)

10-10 Oracle9i Database Utilities

Case Study 3: Loading a Delimited, Free-Format File

Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Fri Mar 30 14:17:39 2001
Run ended on Fri Mar 30 14:17:39 2001

Elapsed imewas: 00:00:00.81
CPUtmewas: 00:00.00.15

Case Study 3: Loading a Delimited, Free-Format File
Case 3 demonstrates:

« Loading data (enclosed and terminated) in stream format. See Delimited Fields
on page 6-44.

« Loading dates using the datatype DATE See Datetime and Interval Datatypes
on page 6-15.

« Using SEQUENCBEumbers to generate unique keys for loaded data. See Setting
a Column to a Unique Sequence Number on page 6-56.

« Using APPENLDIo indicate that the table need not be empty before inserting new
records. See Table-Specific Loading Method on page 5-31.

« Using Comments in the control file set off by two hyphens. See Comments in
the Control File on page 5-4.

Control File for Case Study 3

This control file loads the same table as in case 2, but it loads three additional
columns (hiredate , projno , and loadseq). The demonstration table empdoes
not have columns projno and loadseq . To test this control file, add these columns
to the emptable with the command:

ALTER TABLE emp ADD (projno NUMBER, loadseq NUMBER);
The data is in a different format than in case 2. Some data is enclosed in quotation

marks, some is set off by commas, and the values for deptno and projno are
separated by a colon.

SQL*Loader Case Studies 10-11

Case Study 3: Loading a Delimited, Free-Format File

1) - \Varablelength, delimited, and enclosed data format
LOAD DATA
2) INFILE *
3) APPEND
INTO TABLE emp
4) FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY ™
(empno, ename, job, mgr,
5) hiredate DATE(20) "DD-Month-YYYY",
sal, comm, deptno CHAR TERMINATED BY ™7,
projno,
6) loadseq SEQUENCE(MAX,1))
7) BEGINDATA
8) 7782, "Clark’, "Manager", 7839, 09-June-1981, 2572.50,, 10:101
7839, "King", "President", , 17-November-1981,5500.00,,10:102
7934, "Miller", "Clerk", 7782, 23-January-1982, 920.00,, 10:102
7566, "Jones", "Manager", 7839, 02-Apri-1981, 3123.75,, 20:101
7499, "Allen”, "Salesman’, 7698, 20-February-1981, 1600.00,

(same line continued) 300.00, 30:103
7654, "Martin", "Salesman", 7698, 28-September-1981, 1312.50,
(same line continued) 1400.00, 3:103

7658, "Chan", "Analyst', 7566, 03-May-1982, 3450,, 20:101

Notes:

1. Comments may appear anywhere in the command lines of the file, but they
should not appear in data. They are preceded with two hyphens that may
appear anywhere on a line.

2. INFILE * specifies that the data is found at the end of the control file.

3. APPENDpecifies that the data can be loaded even if the table already contains
rows. That is, the table need not be empty.

4. The default terminator for the data fields is a comma, and some fields may be
enclosed by double quotation marks ().

5. The data to be loaded into column hiredate appears in the format
DD-Month-YYYY. The length of the date field is specified to have a maximum
of 20. The maximum length is in bytes, with default byte-length semantics. If
character-length semantics were used instead, the length would be in
characters. If a length is not specified, then the length depends on the length of
the date mask.

6. The SEQUENCIuUNction generates a unique value in the column loadseq . This
function finds the current maximum value in column loadseq and adds the
increment (1) to it to obtain the value for loadseq for each row inserted.

10-12 Oracle9i Database Utilities

Case Study 3: Loading a Delimited, Free-Format File

7. BEGINDATAspecifies the end of the control information and the beginning of
the data.

8. Although each physical record equals one logical record, the fields vary in
length, so that some records are longer than others. Note also that several rows
have null values for comm

Running Case Study 3
Take the following steps to run the case study.
1. Start SQL*Plus as scott/tiger by entering the following at your system
prompt:
sqlplus scottfiger
The SQL prompt is displayed.
2. Atthe SQL prompt, execute the SQL script for this case study, as follows:
SQL> @ulcase3
This prepares and populates tables for the case study and then returns you to
your system prompt.

3. Atyour system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scotttiger CONTROL=ulcase3.ctl LOG=ulcase3.log

SQL*Loader loads the table, creates the log file, and returns you to your system
prompt. You can check the log file to see the results of running the case study.

Log File for Case Study 3

The following shows a portion of the log file:

Control File: ulcase3.ct
DataFile: ulcase3.ct

Bad File: ulcase3.bad

Discard File: none specified
(Allow all discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 50

Bind array: 64 rows, maximum of 256000 bytes

SQL*Loader Case Studies 10-13

Case Study 4: Loading Combined Physical Records

Continuation: - none specified
Pathused: Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: APPEND

Column Name Posiion Len Term Encl Datatype
EMPNO FIRST * , O() CHARACTER
ENAME NEXT * , O()CHARACTER
JOB NEXT * , O() CHARACTER
MGR NEXT * , O() CHARACTER
HIREDATE NEXT 20 , O(") DATE DD-Month-YYYY
SAL NEXT * , O(") CHARACTER
COMM NEXT * , O()CHARACTER
DEPTNO NEXT * : O() CHARACTER
PROJNO NEXT * , O()CHARACTER
LOADSEQ SEQUENCE (MAX; 1)
Table EMP:

7 Rows successfully loaded.

0 Rows not loaded due to data errors.

0 Rows not loaded because all WHEN clauses were failed.

0 Rows not loaded because all fields were null.
Space allocated for bind array: 134976 bytes(64 rows)
Read buffer bytes; 1048576

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Fri Mar 30 14:25:29 2001
Run ended on Fri Mar 30 14:25:30 2001

Elapsed ime was: 00:00:00.81
CPUtimewas: 00:00:00.15

Case Study 4: Loading Combined Physical Records

Case 4 demonstrates:

10-14 Oracle9i Database Utilities

Case Study 4: Loading Combined Physical Records

Combining multiple physical records to form one logical record with
CONTINUEIF, see Using CONTINUEIF to Assemble Logical Records on
page 5-26.

Inserting negative numbers.

Indicating with REPLACRhat the table should be emptied before the new data
is inserted; see Table-Specific Loading Method on page 5-31.

Specifying a discard file in the control file using DISCARDFILE; see Specifying
the Discard File on page 5-14.

Specifying a maximum number of discards using DISCARDMAXsee Specifying
the Discard File on page 5-14.

Rejecting records due to duplicate values in a unique index or due to invalid
data values; see Criteria for Rejected Records on page 5-13.

Control File for Case Study 4

The control file is ulcase4 .ctl

LOAD DATA

INFILE ‘ulcased.dat

1) DISCARDFILE uicased.dsc
2) DISCARDMAX 999

3) REPLACE
4) CONTINUEIFTHIS ()=
INTO TABLE emp

(empno POSITION(1:4) INTEGER EXTERNAL,
ename POSITION®:15) CHAR,

joo POSITION(17:25) CHAR,

mgr POSITION(27:30) INTEGER EXTERNAL,
sal POSITION(32:39) DECIMAL EXTERNAL,
comm POSITION@41:48) DECIMAL EXTERNAL,
depno POSITION(GO51) INTEGER EXTERNAL,
hiredate POSITION(52:60) INTEGER EXTERNAL)

Notes:
1. DISCARDFILE specifies a discard file named ulcase4 .dsc.

2. DISCARDMAXpecifies a maximum of 999 discards allowed before terminating
the run (for all practical purposes, this allows all discards).

3. REPLACHEspecifies that if there is data in the table being loaded, then
SQL*Loader should delete that data before loading new data.

SQL*Loader Case Studies 10-15

Case Study 4: Loading Combined Physical Records

4. CONTINUEIF THIS specifies that if an asterisk is found in column 1 of the
current record, then the next physical record after that record should be
appended to it from the logical record. Note that column 1 in each physical
record should then contain either an asterisk or a nondata value.

Datafile for Case Study 4

The datafile for this case, ulcase4 .dat , looks as follows. Note the asterisks in the
first position and, though not visible, a newline character is in position 20. Note that
clark ’s commission is -10, and SQL*Loader loads the value, converting it to a
negative number.

*7782 CLARK

MANAGER 7839257250 -10 2512-NOV-85
*7839 KING

PRESIDENT 5500.00 2505-APR-83
*7934 MILLER

CLERK 7782920.00 2508-MAY-80
*7566 JONES

MANAGER 78393123.75 2517-JUL-85
*7499 ALLEN

SALESMAN 7698 1600.00 300.00 253-JUN-84
*7654 MARTIN

SALESMAN 7698 1312.50 1400.00 2521-DEC-85
*7658 CHAN

ANALYST 7566 3450.00 2516-FEB-84

* CHEN

ANALYST 7566 3450.00 2516-FEB-84
*7658 CHIN

ANALYST 7566 3450.00 2516-FEB-84

Rejected Records

The last two records are rejected, given two assumptions. If a unique index is
created on column empno, then the record for chin will be rejected because his
empno is identical to chan ’s. If empno is defined as NOT NULI_then chen ’s record
will be rejected because it has no value for empno.

Running Case Study 4
Take the following steps to run the case study.
1. Start SQL*Plus as scott/tiger by entering the following at your system
prompt;

10-16 Oracle9/ Database Utilities

Case Study 4: Loading Combined Physical Records

sqlplus scottfiger

The SQL prompt is displayed.
2. Atthe SQL prompt, execute the SQL script for this case study, as follows:
SQL> @ulcased

This prepares and populates tables for the case study and then returns you to
your system prompt.

3. Atyour system prompt, invoke SQL*Loader and run the case study, as follows:
sqlldr USERID=scottftiger CONTROL=ulcase4.cl LOG=ulcase4.log

SQL*Loader loads the table, creates the log file, and returns you to your system
prompt. You can check the log file to see the results of running the case study.

Log File for Case Study 4
The following is a portion of the log file:

Control File: ulcase4.ct

DataFile: ulcase4.dat
Bad File: ulcase4.bad
Discard File: ulcase4.dis
(Allow 999 discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 50

Bindarray: 64 rows, maximum of 256000 bytes

Continuation: 1:1 =0X2a(character *), in current physical record
Pathused: Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

Column Name Position Len Term Encl Datatype
EMPNO 14 4 CHARACTER
ENAME 6:15 10 CHARACTER
JOB 1725 9 CHARACTER
MGR 2730 4 CHARACTER
SAL 3239 8 CHARACTER
COMM 41:48 8 CHARACTER

SQL*Loader Case Studies 10-17

Case Study 5: Loading Data into Multiple Tables

DEPTNO 5051 2 CHARACTER
HIREDATE 5260 9 CHARACTER

Record 8: Rejected - Error on table EMP.
ORA-01400: cannotinsert NULL into ('SCOTT"."EMP"."EMPNQ")

Record 9: Rejected - Error on table EMP.
ORA-00001: unique constraint (SCOTT.EMPIX) violated

Table EMP:
7 Rows successfully loaded.
2 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array: 4608 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 9
Total logical records rejected: 2
Total logical records discarded: 0

Run began on Fri Mar 30 14:28:53 2001
Run ended on Fri Mar 30 14:28:54 2001

Elapsed timewas: 00:00:00.91
CPUtmewas: 00:00.00.13

Bad File for Case Study 4

The bad file, shown in the following display, lists records 8 and 9 for the reasons
stated earlier. (The discard file is not created.)

* CHEN ANALYST

7566 3450.00 2516-FEB-84
* CHIN ANALYST

7566 3450.00 2516-FEB-84

Case Study 5: Loading Data into Multiple Tables

Case 5 demonstrates:

10-18 Oracle9i Database Utilities

Case Study 5: Loading Data into Multiple Tables

« Loading multiple tables. See Loading Data into Multiple Tables on page 5-42.

« Using SQL*Loader to break down repeating groups in a flat file and to load the
data into normalized tables. In this way, one file record may generate multiple
database rows.

« Deriving multiple logical records from each physical record. See Benefits of
Using Multiple INTO TABLE Clauses on page 5-37.

« Using a WHENIause. See Loading Records Based on a Condition on page 5-33.

« Loading the same field (empno) into multiple tables.

Control File for Case Study 5
The control file is ulcase5.ctl

- Loads EMP records from first 23 characters
- Creates and loads PROJ records for each PROJINO listed
—for each employee
LOAD DATA
INFILE 'ulcaseb.dat
BADFILE 'ulcase5.bad'
DISCARDFILE 'ulcase5.dsc’
1) REPLACE
2) INTO TABLE emp
(empno POSITION(1:4) INTEGER EXTERNAL,
ename POSITION(6:15) CHAR,
deptno POSITION(17:18) CHAR,
mgr POSITION(20:23) INTEGER EXTERNAL)
2) INTO TABLE proj
- PRQJ has two columns, both not null: EMPNO and PROINO
3) WHEN projno ="’
(empno POSITION(1:4) INTEGER EXTERNAL,
3) projno POSITION(25:27) INTEGER EXTERNAL) - 1st proj
2) INTO TABLE proj
4) WHEN projno ="’
(empno POSITION(1:4) INTEGER EXTERNAL,
4) projno POSITION(29:31 INTEGER EXTERNAL) - 2nd proj

2) INTO TABLE proj
5) WHEN projno ="’
(empno POSITION(1:4) INTEGER EXTERNAL,
5) projno POSITION(33:35) INTEGER EXTERNAL) - 3rd proj

SQL*Loader Case Studies 10-19

Case Study 5: Loading Data into Multiple Tables

Notes:

1. REPLACHspecifies that if there is data in the tables to be loaded (empand
proj), SQL*loader should delete the data before loading new rows.

2. Multiple INTO TABLEclauses load two tables, empand proj . The same set of
records is processed three times, using different combinations of columns each

time to load table proj

3. WHENobads only rows with nonblank project numbers. When projno is

defined as columns 25...27, rows are inserted into proj only if there is a value

in those columns.

4. When projno is defined as columns 29...31, rows are inserted into proj only if

there is a value in those columns.

5. When projno is defined as columns 33...35, rows are inserted into proj only if

there is a value in those columns.

Datafile for Case Study 5

1234BAKER 109999101 102103
1234 JOKER 109999 777 888 999
2664 YOUNG 202893425 abc 102
5321 OTOOLE 109999321 55 40
2134FARMER 204555 236 456
2414LITTLE 205634 236 456 40
6542LEE 104532102321 14
2840EDDS xx4555 294 40
4532 PERKINS 109999 40

1244 HUNT 113452 665133456
123 DOOLITTLE 129940 132
1453 MACDONALD 255532 200

Running Case Study 5

Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at your system
prompt:
sqlplus scottfiger

The SQL prompt is displayed.
2. Atthe SQL prompt, execute the SQL script for this case study, as follows:

10-20 Oracle9i Database Utilities

Case Study 5: Loading Data into Multiple Tables

SQL> @ulcase5

This prepares and populates tables for the case study and then returns you to
your system prompt.

3. Atyour system prompt, invoke SQL*Loader and run the case study, as follows:
sglldr USERID=scotttiger CONTROL=ulcase5.ctl LOG=ulcase5.log

SQL*Loader loads the tables, creates the log file, and returns you to your system
prompt. You can check the log file to see the results of running the case study.

Log File for Case Study 5
The following is a portion of the log file:

Control File: ulcaseb.ctl
DataFile: ulcase5.dat
Bad File: ulcase5.bad
Discard File: ulcaseb.dis
(Allow all discards)

Number to load: ALL

Number to skip: O

Errors allowed: 50

Bindaray: 64 rows, maximum of 256000 bytes
Continuation: none specified

Pathused: Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

Column Name Position Len Term Encl Datatype
EMPNO 14 4 CHARACTER
ENAME 615 10 CHARACTER
DEPTNO 1718 2 CHARACTER
MGR 2023 4 CHARACTER

Table PROJ, loaded when PROJINO !=0X202020(character’)
Insert option in effect for this table: REPLACE

Column Name Posiion Len Term Encl Datatype

EMPNO 14 4 CHARACTER

SQL*Loader Case Studies 10-21

Case Study 5: Loading Data into Multiple Tables

PROJNO 2527 3 CHARACTER

Table PROJ, loaded when PROJNO = 0X202020(character’)
Insert option in effect for this table: REPLACE

Column Name Position Len Term Encl Datatype
EMPNO 14 4 CHARACTER
PROJNO 2931 3 CHARACTER

Table PROJ, loaded when PROJINO !=0X202020(character’)
Insert option in effect for this table: REPLACE

Column Name Posiion Len Term Encl Datatype
EMPNO 14 4 CHARACTER
PROJINO 3335 3 CHARACTER

1) Record 2: Rejected - Enor on table EMP.
1) ORA-00001: unique constraint (SCOTT.EMPIX) violated

1) Record 8: Rejected - Error on table EMP, column DEPTNO.
1) ORA-01722: invalid number

1) Record 3: Rejected - Eror on table PROJ, column PROJNO.
1) ORA-01722: invalid number

Table EMP:

2) 9Rows successfully loaded.

2) 3 Rows notloaded due to data errors.

2) 0Rows notloaded because all WHEN clauses were failed.
2) 0Rows notloaded because all fields were null.

Table PROJ:

3) 7 Rows successfully loaded.

3) 2Rows notloaded due to data errors.

3) 3 Rows notloaded because all WHEN clauses were failed.
3) 0Rows notloaded because all fields were null.

Table PROJ:
4) 7 Rows successiully loaded.
4) 3 Rows not loaded due to data errors.

10-22 Oracle9i Database Utilities

Case Study 5: Loading Data into Multiple Tables

4) 2 Rows notloaded because all WHEN clauses were failed.
4) 0Rows not loaded because all fields were null.

Table PROJ:

5) 6 Rows successfully loaded.

5) 3 Rows notloaded due to data errors.

5) 3 Rows notloaded because all WHEN clauses were failed.
5) 0 Rows notloaded because all fields were null.

Space allocated for bind array: 4096 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 12
Total logical records rejected: 3
Total logical records discarded: 0

Run began on Fri Mar 30 14:34:33 2001
Run ended on Fri Mar 30 14:34:34 2001

Elapsed imewas: 00:00:01.00
CPU time was: 00:00:00.22

Notes:

1.

Errors are not encountered in the same order as the physical records due to
buffering (array batch). The bad file and discard file contain records in the same
order as they appear in the log file.

Of the 12 logical records for input, three rows were rejected (rows for joker
young , and edds). No data was loaded for any of the rejected records.

Of the 9 records that met the WHENIause criteria, two (joker and young) were
rejected due to data errors.

Of the 10 records that met the WHENMIause criteria, three (joker , young, and
edds) were rejected due to data errors.

Of the 9 records that met the WHENIause criteria, three (joker , young, and
edds) were rejected due to data errors.

Loaded Tables for Case Study 5

The following are sample SQL queries and their results:

SQL*Loader Case Studies 10-23

Case Study 6: Loading Data Using the Direct Path Load Method

SQL> SELECT empno, ename, mgr, deptno FROM emp;
EMPNO ENAME MGR DEPTNO
1234 BAKER 9999 10

5321 OTOOLE 9999 10

2134 FARMER 4555 20

2414 LITTLE 5634 20

6542 LEE 4532 10

4532 PERKINS 9999 10

1244 HUNT 3452 11

123 DOOLTTLE 9940 12

1453 MACDONALD 5532 25

SQL> SELECT *from PROJ order by EMPNO;

EMPNO PROJNO

123 132
1234 101
1234 103
1234 102
1244 665
1244 456
1244 133
1453 200
2134 236
2134 456
2414 236
2414 456
2414 40

4532 40

5321 321
5321 40

5321 55

6542 102
6542 14

6542 321

Case Study 6: Loading Data Using the Direct Path Load Method

This case study loads the emptable using the direct path load method and
concurrently builds all indexes. It illustrates the following functions:

« Use of the direct path load method to load and index data. See Chapter 9.

10-24 Oracle9i Database Utilities

Case Study 6: Loading Data Using the Direct Path Load Method

« How to specify the indexes for which the data is presorted. See Presorting Data
for Faster Indexing on page 9-16.

« The NULLIF clause. See Using the WHEN, NULLIF, and DEFAULTIF Clauses
on page 6-31.

« Loading all-blank numeric fields as NULL See Loading All-Blank Fields on
page 6-41.

In this example, field positions and datatypes are specified explicitly.

Control File for Case Study 6
The control file is ulcase6.ctl

LOAD DATA
INFILE 'ulcase6.dat’
REPLACE
INTO TABLE emp
1) SORTED INDEXES (empix)
2) (empno POSITION(01:04) INTEGER EXTERNAL NULLIF empno=BLANKS,
ename POSITION(06:15) CHAR,
job POSITION(@17:25) CHAR,
mgr POSITION(27:30) INTEGER EXTERNAL NULLIF mgr=BLANKS,
sal POSITION(32:39) DECIMAL EXTERNAL NULLIF sal=BLANKS,
comm POSITION(41:48) DECIMAL EXTERNAL NULLIF comm=BLANKS,
deptno POSITION(50:51) INTEGER EXTERNAL NULLIF deptno=BLANKS)

Notes:

1. The SORTED INDEXEStatement identifies the indexes on which the data is
sorted. This statement indicates that the datafile is sorted on the columns in the
empix index. It allows SQL*Loader to optimize index creation by eliminating
the sort phase for this data when using the direct path load method.

2. The NULLIF...BLANKS clause specifies that the column should be loaded as
NULL f the field in the datafile consists of all blanks. For more information,
refer to Using the WHEN, NULLIF, and DEFAULTIF Clauses on page 6-31.

Datafile for Case Study 6

TA9ALLEN SALESMAN 7698 1600.00 300.0030
7566 JONES MANAGER 7839 3123.75 20
7654 MARTIN SALESMAN 7698 1312.50 1400.00 30
7658 CHAN ANALYST 7566 3450.00 20
7782CLARK MANAGER 7839 257250 10

SQL*Loader Case Studies 10-25

Case Study 6: Loading Data Using the Direct Path Load Method

7839KING PRESIDENT 5500.00 10
7934MILLER CLERK 7782 920.00 10

Running Case Study 6

Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at your system
prompt:
sqlplus scottfiger
The SQL prompt is displayed.

2. Atthe SQL prompt, execute the SQL script for this case study, as follows:
SQL> @ulcaseb
This prepares and populates tables for the case study and then returns you to
your system prompt.

3. Atyour system prompt, invoke SQL*Loader and run the case study, as follows.

Be sure to specify DIRECT=true. Otherwise, conventional path is used as the
default, which will result in failure of the case study.

sqlldr USERID=scotttiger CONTROL=ulcase6.ctl LOG=ulcase6.log DIRECT=true
SQL*Loader loads the emptable using the direct path load method, creates the

log file, and returns you to your system prompt. You can check the log file to
see the results of running the case study.

Log File for Case Study 6

The following is a portion of the log file:

Control File: ulcase6.ctl
DataFile: ulcase6.dat

Bad File: ulcase6.bad
Discard File: none specified

(Allow all discards)

Number to load: ALL
Number to skip: 0

Errors allowed: 50
Continuation: - none specified

10-26 Oracle9i Database Utilities

Case Study 6: Loading Data Using the Direct Path Load Method

Pathused: Direct

Table EMP, loaded from every logical record.
Insert option in effect for this table; REPLACE

Column Name Position Len Term Encl Datatype
EMPNO 14 4 CHARACTER
ENAME 6:15 10 CHARACTER
JOB 1725 9 CHARACTER
MGR 2730 4 CHARACTER
NULL if MGR = BLANKS

SAL 3239 8 CHARACTER
NULL if SAL = BLANKS

COMM 4148 8 CHARACTER
NULL if COMM = BLANKS

DEPTNO 5051 2 CHARACTER

NULL if EMPNO = BLANKS

The following index(es) on table EMP were processed:
index SCOTT.EMPIX loaded successfully with 7 keys

Table EMP:
7 Rows successfully loaded.
0 Rows not loaded due to data errors.

0 Rows not loaded because all WHEN clauses were failed.

0 Rows not loaded because all fields were null.
Bind array size not used in direct path.
Column array rows: 5000
Stream buffer bytes: 256000
Read buffer bytes: 1048576

Total logical records skipped: 0

Total logical records read: 7

Total logical records rejected: 0

Total logical records discarded: 0

Total stream buffers loaded by SQL*Loader main thread:
Total stream buffers loaded by SQL*Loader load thread:

Run began on Tue Jan 09 13:21:29 2001
Run ended on Tue Jan 09 13:21:32 2001

Elapsed ime was: 00:00:02.96
CPUtimewas: 00:00:00.22

2
0

SQL*Loader Case Studies 10-27

Case Study 7: Extracting Data from a Formatted Report

Case Study 7: Extracting Data from a Formatted Report

In this case study, SQL*Loader string-processing functions extract data from a
formatted report. This example creates a trigger that uses the last value of
unspecified fields. This case illustrates the following:

« Use of SQL*Loader with an INSERT trigger. See Oracle9i Application Developer’s
Guide - Fundamentals for more information on database triggers.

« Use of the SQL string to manipulate data; see Applying SQL Operators to Fields
on page 6-49.

« Different initial and trailing delimiters. See Specifying Delimiters on page 6-23.

» Use of SYSDATESsee Setting a Column to the Current Date on page 6-55.

« Use of the TRAILING NULLCOLSclause; see TRAILING NULLCOLS Clause on
page 5-36.

« Ambiguous field length warnings; see Conflicting Native Datatype Field
Lengths on page 6-21 and Conflicting Field Lengths for Character Datatypes on
page 6-27.

« Use of adiscard file. See Specifying the Discard File in the Control File on
page 5-14.

Creating a BEFORE INSERT Trigger

In this case study, a BEFORE INSERTrigger is required to fill in the department
number, job name, and manager’s number when these fields are not present on a
data line. When values are present, they should be saved in a global variable. When
values are not present, the global variables are used.

The INSERT trigger and the global variables package are created when you execute
the ulcase7s .sqgl script.

The package defining the global variables looks as follows:

CREATE OR REPLACE PACKAGE uldemo7 AS - Global Package Variables
last_deptno NUMBER(2);
last job VARCHAR2(9);
last mgr NUMBER(@);
END uldemot;
/

The definition of the INSERT trigger looks as follows:
CREATE OR REPLACE TRIGGER uldemo7_emp_insert

10-28 Oracle9/ Database Utilities

Case Study 7: Extracting Data from a Formatted Report

BEFORE INSERT ON emp
FOR EACHROW
BEGIN
IF :new.deptno IS NOT NULL THEN
uldemo? last_deptno := :new.deptno; — save value for later
ELSE
‘new.deptno := uldemo7 last_deptno; — use last valid value
ENDIF;
IF :new,job IS NOT NULL THEN
uldemo7 last_job :=:new.job;
ELSE
‘new.job := uldemo7 last_job;
ENDIF;
IF :new.mgr IS NOT NULL THEN
uldemo7 last_mgr :=:new.mgr;
ELSE
‘new.mgr = uldemo? last_mgr;
ENDIF;
END;
/

Note: The FOR EACH ROMa4use is important. If it was not
specified, the INSERT trigger would only execute once for each
array of inserts, because SQL*Loader uses the array interface.

Be sure to execute the ulcase7e .sqgl script to drop the INSERT trigger and the
global variables package before continuing with the rest of the case studies. See
Running Case Study 7 on page 10-31.

Control File for Case Study 7

The control file is ulcase7.ctl

LOAD DATA
INFILE 'ulcase7.dat’
DISCARDFILE 'ulcase7.dis’
APPEND
INTO TABLE emp
1) WHENG7)="
2) TRAILING NULLCOLS
3) (hiredate SYSDATE,
4) depino POSITION(1:2) INTEGER EXTERNAL(3)
5) NULLIF deptno=BLANKS,

SQL*Loader Case Studies 10-29

Case Study 7: Extracting Data from a Formatted Report

job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
6) NULLIF job=BLANKS "UPPER(job)",
7) mgr POSITION(28:31) INTEGER EXTERNAL
TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
ename POSITION(34:41) CHAR
TERMINATED BY WHITESPACE "UPPER(:ename)",
empno POSITION(45) INTEGER EXTERNAL
TERMINATED BY WHITESPACE,
sal POSITION(51) CHAR TERMINATED BY WHITESPACE
8) "TO_NUMBER(:sal,$99,999.99)",
9) comm INTEGER EXTERNAL ENCLOSED BY '(AND %'
":comm* 100"

)

Notes:

1. The decimal point in column 57 (the salary field) identifies a line with data on it.
All other lines in the report are discarded.

2. The TRAILING NULLCOLSclause causes SQL*Loader to treat any fields that are
missing at the end of a record as null. Because the commission field is not
present for every record, this clause says to load a null commission instead of
rejecting the record when only seven fields are found instead of the expected
eight.

3. Employee’s hire date is filled in using the current system date.

4. This specification generates a warning message because the specified length
does not agree with the length determined by the field’s position. The specified
length (3) is used. See Log File for Case Study 7 on page 10-32. The length is in
bytes with the default byte-length semantics. If character-length semantics were
used instead, this length would be in characters.

5. Because the report only shows department number, job, and manager when the
value changes, these fields may be blank. This control file causes them to be
loaded as null, and an insert trigger fills in the last valid value.

6. The SQL string changes the job name to uppercase letters.

7. Itis necessary to specify starting position here. If the job field and the manager
field were both blank, then the job field’s TERMINATED BY WHITESPAGCHuse
would cause SQL*Loader to scan forward to the employee name field. Without
the POSITION clause, the employee name field would be mistakenly
interpreted as the manager field.

10-30 Oracle9i Database Utilities

Case Study 7: Extracting Data from a Formatted Report

8. Here, the SQL string translates the field from a formatted character string into a
number. The numeric value takes less space and can be printed with a variety of
formatting options.

9. Inthis case, different initial and trailing delimiters pick the numeric value out of
a formatted field. The SQL string then converts the value to its stored form.

Datafile for Case Study 7

The following listing of the report shows the data to be loaded:

Today's Newty Hired Employees
Dept Job Manager MgrNo Emp Name EmpNo Salary (Comm)
20 Salesman Blake 7698 Shepard 8061 $1,600.00 (3%)
Falstaff 8066 $1,250.00 (5%)
Major 8064 $1,250.00 (14%)
30 Clerkk Scott 7788 Conrad 8062 $1,100.00
Ford 7369
DeSiva 8063 $800.00
Manager King 7839 Provo 8065 $2,975.00

Running Case Study 7
Take the following steps to run the case study.
1. Start SQL*Plus as scott/tiger by entering the following at your system
prompt:
sqlplus scottfiger

The SQL prompt is displayed.

2. Atthe SQL prompt, execute the SQL script for this case study, as follows:
SQL> @ulcase7s
This prepares and populates tables for the case study and then returns you to
your system prompt.

3. Atyour system prompt, invoke SQL*Loader and run the case study, as follows:
sqlldr USERID=scotttiger CONTROL=ulcase7.ctl LOG=ulcase7.log

SQL*Loader Case Studies 10-31

Case Study 7: Extracting Data from a Formatted Report

SQL*Loader extracts data from the report, creates the log file, and returns you
to your system prompt. You can check the log file to see the results of running

the case study.

4. After running this case study, you must drop the insert triggers and
global-variable package before you can continue with the rest of the case
studies. To do this, execute the ulcase7e.sql

SQL> @ulcase7e

Log File for Case Study 7

script as follows:

The following is a portion of the log file:
1) SQL*Loader-307: Waming: conflicting lengths 2 and 3 specified for column

DEPTNO

table EMP

Control File: ulcase7.ctl
Data File: ulcase7.dat
Bad File: ulcase7.bad
Discard File: ulcase?.dis
(Allow all discards)

Number to load: ALL
Number to skip: 0
Enors allowed: 50

Bindarray: 64 rows, maximum of 256000 bytes

Continuation: none specified
Pathused: Conventional

Table EMP, loaded when 57:57 = 0X2e(character)
Insert option in effect for this table: APPEND

TRAILING NULLCOLS option in effect

Column Name Position Len Term Encl Datatype
HIREDATE
DEPTNO 12 3
NULL if DEPTNO = BLANKS
JOB 714 8 WHT CHARACTER
NULL if JOB = BLANKS
SQL string for column : "UPPER(job)"
MGR 2831 4 WHT CHARACTER
NULL if MGR = BLANKS
ENAME 3441 8 WHT CHARACTER

10-32 Oracle9i Database Utilities

CHARACTER

Case Study 7: Extracting Data from a Formatted Report

SQL string for column : "UPPER(:ename)”

EMPNO NEXT * WHT CHARACTER
SAL 51 *WHT CHARACTER
SQL string for column : "TO_NUMBER(:sal, $99,999.99)"
COMM NEXT * (CHARACTER

%
SQL string for column : *:comm * 100"

2) Record 1: Discarded - failed all WHEN clauses.
Record 2: Discarded - failed all WHEN clauses.
Record 3: Discarded - failed all WHEN clauses.
Record 4: Discarded - failed all WHEN clauses.
Record 5: Discarded - failed all WHEN clauses.
Record 6: Discarded - failed all WHEN clauses.
Record 10: Discarded - failed all WHEN clauses.

Table EMP:
6 Rows successfully loaded.
0 Rows not loaded due to data errors.

2) 7 Rows notloaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array: 51584 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 13
Total logical records rejected: 0

2) Totallogical records discarded: 7

Run began on Fri Mar 30 14:54:03 2001
Run ended on Fri Mar 30 14:54:04 2001

Elapsed imewas: 00:00:00.99
CPU time was: 00:00:00.21

Notes:

1. A warning is generated by the difference between the specified length and the
length derived from the position specification.

2. The six header lines at the top of the report are rejected, as is the blank
separator line in the middle.

SQL*Loader Case Studies 10-33

Case Study 8: Loading Partitioned Tables

Case Study 8: Loading Partitioned Tables
Case 8 demonstrates:

« Partitioning of data. See Oracle9i Database Concepts for more information on
partitioned data concepts.

« Explicitly defined field positions and datatypes.

« Loading using the fixed record length option. See Input Data and Datafiles on
page 3-4.

Control File for Case Study 8

The control file is ulcase8 .ctl . It loads the lineitem table with fixed-length
records, partitioning the data according to shipment date.

LOAD DATA

1) INFILE 'ulcase8.dat "fix 129"

BADFILE 'ulcase8.bad

TRUNCATE

INTO TABLE lineitem

PARTITION (ship_q1)

2) (Lorderkey posiion (1:6)char,
| partkey position (7:11) char,
| suppkey position (12:15) char,
| linenumber position (16:16) char,
| quantity position (17:18) char,
|_extendedprice position (19:26) char,
| discount position (27:29) char,
| tax position (30:32) char,
| retumflag position (33:33) char,
| linestatus position (34:34) char,
| shipdate position (35:43) char,
| commitdate position (44:52) char,
| receiptdate position (53:61) char,
|_shipinstruct position (62:78) char,
| shipmode position (79:85) char,
| comment position (86:128) char)

Notes:

1. Specifies that each record in the datafile is of fixed length (128 bytes in this
example).

10-34 Oracle9i Database Utilities

Case Study 8: Loading Partitioned Tables

Table Creation

2. ldentifies the column name and location of the data in the datafile to be loaded
into each column.

In order to partition the data, the lineitem table is created using four partitions
according to the shipment date:

create table lineitem

(Lorderkey number,

| partkey number,

|_suppkey number,

|_linenumber number,

| _quantity number,

|_extendedprice number,

| discount number,

| tax number,

|_retumflag char,

|linestatus char,

|_shipdate date,

| commitdate date,

|_receiptdate date,

|_shipinstruct char(17),

|_shipmode char(7),

| comment char(43))

partition by range (I_shipdate)

(

partition ship_g1 values less than (TO_DATE(01-APR-1996, 'DD-MON-YYYY?)
tablespace p01,

partition ship_g2 values less than (TO_DATE(01-JUL-1996",'DD-MON-YYYY’))
tablespace p02,

partition ship_g3 values less than (TO_DATE(01-OCT-1996, 'DD-MON-YYYY")
tablespace p03,

partition ship_g4 values less than (TO_DATE(01-JAN-1997',' DD-MON-YYYY’))
tablespace p04

)

Datafile for Case Study 8

The datafile for this case, ulcase8.dat , looks as follows. Each record is 128 bytes
in length. Five blanks precede each record in the file.

1151978511724386.60 7.04.0NO09-SEP-6412-FEB-9622-MAR-96DELIVER IN
PERSONTRUCK iPBWwAmMm7w7kQ zNPL i2610PP
12731 73223658958.28.09.06NO12-FEB-9628-FEB-9620-APR-96 TAKE BACK RETURN

SQL*Loader Case Studies 10-35

Case Study 8: Loading Partitioned Tables

MAIL 5wMO4SNyIOAnghCP2nx [Ai

13370 3713 810210.96 .1.02NO29-MAR-9605-MAR-9631-JAN-96 TAKE BACK RETURN
REG AIRSQC2C 5PNCy4mM

15214 46542831197.88.09.06N0O21-APR-9630-MAR-9616-MAY-96NONE
AR OmOL65CSAWS]5kek

16564 6763246897.92.07.02NO30-MAY-9607-FEB-9603-FEB-96DELIVER IN
PERSONMAIL CB0OSnyOL PQ32B70wB75k 6Aw10m0Owh

17403 160524 31329.6 .1.04NO30-JUN-9614-MAR-9601 APR-96NONE
FOB C2g0OQj OB6RLKk1BS15 igN

28819 82012441659.44 0.08NO05-AUG-9609-FEB-9711-MAR-97COLLECT COD
AR 052M70MRgRNNmMm476mNm

39451 721230 41113.5.05.01AF05-SEP-9629-DEC-9318-FEB-94TAKE BACK RETURN
FOB 6wQnOO0LIgey

39717 1834440788.44.07.03RFO9-NOV-9623-DEC-9315-FEB-94TAKE BACK RETURN
SHIP LhiA7wygzOkdg4zRhMLBAM

39844 1955 6 8066.64.04.01RF28-DEC-9615-DEC-9314-FEB-94TAKE BACK RETURN
REG AIR6nmBmjQkgiCyzCQBkxPPOX5j4hB OIRywgniP1297

Running Case Study 8
Take the following steps to run the case study.
1. Start SQL*Plus as scott/tiger by entering the following at your system
prompt:
sqlplus scottfiger

The SQL prompt is displayed.

2. Atthe SQL prompt, execute the SQL script for this case study, as follows:
SQL> @ulcase8
This prepares and populates tables for the case study and then returns you to
your system prompt.

3. Atyour system prompt, invoke SQL*Loader and run the case study, as follows:
sqlldr USERID=scotttiger CONTROL=ulcase8.ctl LOG=ulcase8.log
SQL*Loader partitions and loads the data, creates the log file, and returns you

to your system prompt. You can check the log file to see the results of running
the case study.

10-36 Oracle9/ Database Utilities

Case Study 8: Loading Partitioned Tables

Log File for Case Study 8

The following shows a portion of the log file:

Control File: ulcase8.ctl

DataFile: ulcase8.dat
File processing option string: "fix 129"
Bad File: ulcase8.bad
Discard File: none specified

(Allow all discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 50

Bindarray: 64 rows, maximum of 256000 bytes
Continuation: - none specified

Pathused: ~Conventional

Table LINEITEM, partiion SHIP_Q1, loaded from every logical record.
Insert option in effect for this partiion: TRUNCATE

Column Name Posiion Len Term Encl Datatype
L_ORDERKEY 16 6 CHARACTER
L_PARTKEY 711 5 CHARACTER
L_SUPPKEY 1215 4 CHARACTER
L_LINENUMBER 1616 1 CHARACTER
L_QUANTITY 1718 2 CHARACTER
L_EXTENDEDPRICE 1926 8 CHARACTER
L_DISCOUNT 27129 3 CHARACTER
L_TAX 3032 3 CHARACTER
L_RETURNFLAG 3333 1 CHARACTER
L_LINESTATUS #4341 CHARACTER
L_SHIPDATE 3543 9 CHARACTER
L_COMMITDATE 452 9 CHARACTER
L_RECEIPTDATE 5361 9 CHARACTER
L_SHIPINSTRUCT 6278 17 CHARACTER
L_SHIPMODE 7985 7 CHARACTER
L_COMMENT 86:128 43 CHARACTER

Record 4: Rejected - Error on table LINEITEM, partiion SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Record 5: Rejected - Eror on table LINEITEM, partition SHIP_Q1.

SQL*Loader Case Studies 10-37

Case Study 9: Loading LOBFILEs (CLOBS)

ORA-14401: inserted partition key is outside specified partition

Record 6: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401. inserted partition key is outside specified partition

Record 7: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Record 8: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401. inserted partition key is outside specified partition

Record 9: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Record 10: Rejected - Error on table LINEITEM, partiion SHIP_Q1.
ORA-14401. inserted partition key is outside specified partition

Table LINEITEM, partiion SHIP_Q1:
3 Rows successiully loaded.
7 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array: 11008 bytes(64 rows)
Read buffer bytes; 1048576

Total logical records skipped: 0
Total logical records read: 10
Total logical records rejected: 7
Total logical records discarded: 0

Run began on Fri Mar 30 15:02:28 2001
Run ended on Fri Mar 30 15:02:29 2001

Elapsed ime was: 00:00:01.37
CPUtimewas: 00:00:00.20

Case Study 9: Loading LOBFILEs (CLOBSs)

Case 9 demonstrates:

« Adding a CLOBcolumn called resume to the table emp

10-38 Oracle9/ Database Utilities

Case Study 9: Loading LOBFILEs (CLOBSs)

« Using afiller field (res_file)
« Loading multiple LOBFILEs into the emptable

Control File for Case Study 9

The control file is ulcase9.ctl . It loads new records into emp, including a resume
for each employee. Each resume is contained in a separate file.

LOAD DATA
INFILE *
INTO TABLE emp
REPLACE
FIELDS TERMINATED BY ’;
(empno INTEGER EXTERNAL,

ename CHAR,

job CHAR,

mgr INTEGER EXTERNAL,

sal DECIMAL EXTERNAL,

comm DECIMAL EXTERNAL,

deptno INTEGER EXTERNAL,
1) res file FILLER CHAR,
2) "RESUME"LOBFILE (res_file) TERMINATED BY EOF NULLIF res_file ='NONE’
)
BEGINDATA
7782,CLARKMANAGER,7839,2572.50,,10,ulcase91.dat
7839,KING,PRESIDENT,,5500.00,,10,ulcase92.dat
7934 MILLER,CLERK,7782,920.00,,10,ulcase93.dat
7566,JONES,MANAGER,7839,3123.75,,20,ulcase94.dat
7499,ALLEN,SALESMAN,7698,1600.00,300.00,30,ulcase95.dat
7654 MARTIN,SALESMAN,7698,1312.50,1400.00,30,ulcase96.dat
7658,CHAN,ANALYST,7566,3450.00,,20,NONE

Notes:

1. Thisis afiller field. The filler field is assigned values from the data field to
which it is mapped. See Specifying Filler Fields on page 6-6 for more
information.

2. Theresume column is loaded as a CLOB The LOBFILE function specifies the
field name in which the name of the file that contains data for the LOB field is
provided. See Loading LOB Data from LOBFILEs on page 7-18 for more
information.

SQL*Loader Case Studies 10-39

Case Study 9: Loading LOBFILEs (CLOBS)

Datafiles for Case Study 9

>>Ulcase91.dat<<
Resume for Mary Clark

Career Objective: Manage a sales team with consistent record-breaking
performance.

Education: BA Business University of lowa 1992

Experience: 1992-1994 - Sales Support at MicroSales Inc.
Won "Best Sales Support' award in 1993 and 1994
1994-Present - Sales Manager at MicroSales Inc.
Most sales in mid-South division for 2 years

>>Ulcase92.dat<<

Resume for Monica King
Career Objective: President of large computer services company
Education: BA English Literature Bennington, 1985
Experience: 1985-1986 - Mailroom at New World Services
1986-1987 - Secretary for sales management at
New World Services
1988-1989 - Sales support at New \World Services
1990-1992 - Salesman at New World Services
1993-1994 - Sales Manager at New World Services
1995 -Vice President of Sales and Marketing at
New World Services
1996-Present - President of New World Services

>>Ulcase93.dat<<
Resume for Dan Miller
Career Objective: Work as a sales support specialist for a services
company
Education: Plainview High School, 1996
Experience: 1996 - Present Mail room clerk at New World Services
>>Ulcase94.dat<<
Resume for Alyson Jones
Career Objective: Work in senior sales management for a vibrant and
growing company

Education: BA Philosophy Howard Univerity 1993
Experience: 1993 - Sales Support for New World Services

10-40 Oracle9i Database Utilities

Case Study 9: Loading LOBFILEs (CLOBSs)

1994-1995 - Salesman for New World Services. Ledin
US sales in both 1994 and 1995.

1996 - present - Sales Manager New World Services. My
sales team has beat its quota by at least 15% each

year.
>>Ulcase95.dat<<
Resume for David Allen

Career Objective: Senior Sales man for agressive Services company
Education: BS Business Administration, \Weber State 1994
Experience: 1993-199%4 - Sales Support New World Services
1994-present - Salesman at New World Service. Won sales
award for exceeding sales quota by over 20%
in 1995, 1996.

>>Ulcase96.dat<<

Resume for Tom Martin
Career Objective; Salesman for a computing service company
Education: 1988 - BA Mathematics, University of the North

Experience: 1988-1992 Sales Support, New World Services
1993-present Salesman New World Services

Running Case Study 9
Take the following steps to run the case study.
1. Start SQL*Plus as scott/tiger by entering the following at your system
prompt:
sqlplus scotttiger

The SQL prompt is displayed.

2. Atthe SQL prompt, execute the SQL script for this case study, as follows:
SQL> @ulcase9
This prepares and populates tables for the case study and then returns you to
your system prompt.

3. Atyour system prompt, invoke SQL*Loader and run the case study, as follows:
sqlldr USERID=scottfiger CONTROL=ulcase9.cl LOG=ulcase9.log

SQL*Loader Case Studies 10-41

Case Study 9: Loading LOBFILEs (CLOBS)

SQL*Loader loads the emptable, creates the log file, and returns you to your
system prompt. You can check the log file to see the results of running the case
study.

Log File for Case Study 9

The following shows a portion of the log file:

Control File: ulcase9.ct
DataFile: ulcase9.ct
Bad File: ulcase9.bad
Discard File: none specified

(Allow all discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 50

Bindarray: 64 rows, maximum of 256000 bytes
Continuation: - none specified

Pathused: Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

Column Name Posiion Len Term Encl Datatype
EMPNO FIRST *, CHARACTER
ENAME NEXT *, CHARACTER
JOB NEXT * , CHARACTER
MGR NEXT *, CHARACTER
SAL NEXT *, CHARACTER
COMM NEXT *, CHARACTER
DEPTNO NEXT *, CHARACTER
RES FILE NEXT *, CHARACTER
(FILLER FIELD)

"RESUME" DERIVED * EOF CHARACTER

Dynamic LOBFILE. Filename infield RES_FILE
NULL if RES_FILE = 0X4e4f4ed5(character NONE)

Table EMP:
7 Rows successfully loaded.
0 Rows not loaded due to data errors.

10-42 Oracle9i Database Utilities

Case Study 10: Loading REF Fields and VARRAYs

0 Rows not loaded because all WHEN clauses were failed.

0 Rows not loaded because all fields were null.

Space allocated for bind array:
Read buffer bytes: 1048576

Total logical records skipped:
Total logical records read:
Total logical records rejected:
Total logical records discarded:

Run began on Fri Mar 30 15:06:49 2001
Run ended on Fri Mar 30 15:06:50 2001

Elapsed imewas: 00:00:01.01

CPU time was: 00:00:00.20

132096 bytes(64 rows)

Case Study 10: Loading REF Fields and VARRAYs

Case 10 demonstrates:

« Loading a customer table that has a primary key as its OID and stores order

items in a VARRAY

« Loading an order table that has a reference to the customer table and the order

items in a VARRAY

Note: Case study 10 requires that the COMPATIBILITY parameter
be set to 8.1.0 or higher in your initialization parameter file.
Otherwise, the table cannot be properly created and you will
receive an error message. For more information on setting the
COMPATIBILITY parameter, see Oracle9i Database Migration.

Control File for Case Study 10

LOAD DATA

INFILE *

CONTINUEIF THIS () =*
INTO TABLE customers
REPLACE

FIELDS TERMINATED BY "'

(

SQL*Loader Case Studies 10-43

Case Study 10: Loading REF Fields and VARRAYs

CUST_NO CHAR,
NAME CHAR,
ADDR CHAR
)
INTO TABLE orders
REPLACE
FIELDS TERMINATED BY ""
(
order no CHAR,
1) cust no FILLER CHAR,
2) cust REF (CONSTANT 'CUSTOMERS, cust_no),
1) item_list count FLLER CHAR,
3) item list VARRAY COUNT (item_list_count)
(
4) item list COLUMN OBJECT
(
5) item CHAR,
cnt CHAR,
price CHAR

)
)

)
6) BEGINDATA

*00001,Spacely Sprockets,15 Space Way,
*00101,00001,2,

*Sprocket clips, 10000, .01,

*Sprocket cleaner, 10, 14.00
*00002,Cogswell Cogs,12 Cogswell Lane,
*00100,00002/4,

*one quarter inch cogs,1000,.02,

*one halfinch cog, 150, .04,

*oneinch cog, 75, .10,

*Custom coffee mugs, 10, 2.50

Notes:

1. ThisisaFILLER field. The FILLER field is assigned values from the data field
to which it is mapped. See Specifying Filler Fields on page 6-6 for more
information.

2. This field is created as a REFfield. See Loading REF Columns on page 7-11 for
more information.

3. item_list is stored in a VARRAY

10-44 Oracle9i Database Utilities

Case Study 10: Loading REF Fields and VARRAYs

4. The second occurrence of item_list identifies the datatype of each element of
the VARRAYHere, the datatype is a COLUMN OBJECT

5. This list shows all attributes of the column object that are loaded for the
VARRAYThe list is enclosed in parentheses. See Loading Column Objects on
page 7-1 for more information.

6. The data is contained in the control file and is preceded by the BEGINDATA
parameter.

Running Case Study 10

Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at your system
prompt:
sqlplus scottfiger
The SQL prompt is displayed.

2. Atthe SQL prompt, execute the SQL script for this case study, as follows:
SQL> @ulcasel0
This prepares and populates tables for the case study and then returns you to
your system prompt.

3. Atyour system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scotttiger CONTROL=ulcase10.cti LOG=ulcase10.log

SQL*Loader loads the data, creates the log file, and returns you to your system
prompt. You can check the log file to see the results of running the case study.

Log File for Case Study 10
The following shows a portion of the log file:

Control File: ulcase10.ct

DataFile: ulcaselO.ct
Bad File: ulcasel0.bad
Discard File: none specified

(Allow all discards)

Number to load: ALL

SQL*Loader Case Studies 10-45

Case Study 10: Loading REF Fields and VARRAYs

Number to skip: 0

Errors allowed: 50

Bindarray. 64 rows, maximum of 256000 bytes

Continuation: 1:1 =0X2a(character *), in current physical record
Pathused: Conventional

Table CUSTOMERS, loaded from every logical record.
Insert option in effect for this table: REPLACE

Column Name Posiion Len Term Encl Datatype
CUST_NO FRST * , CHARACTER
NAME NEXT * , CHARACTER
ADDR NEXT *, CHARACTER

Table ORDERS, loaded from every logical record.
Insert option in effect for this table: REPLACE

Column Name Posiion Len Term Encl Datatype
ORDER_NO NEXT *, CHARACTER
CUST_NO NEXT *, CHARACTER
(FILLER FIELD)
CUSsT DERIVED REF
Arguments are:
CONSTANT 'CUSTOMERS'
CUST_NO
ITEM_LIST_COUNT NEXT *, CHARACTER
(FILLER FIELD)
ITEM_LIST DERIVED * VARRAY
Count for VARRAY

ITEM_LIST COUNT

** Fields in [TEM_LIST
ITEM_LIST DERIVED * COLUMN OBJECT

** Fields in [TEM_LIST.ITEM_LIST

ITEM FIRST *, CHARACTER
CNT NEXT *, CHARACTER
PRICE NEXT *, CHARACTER

**End of fields in TEM_LIST.ITEM_LIST

** End of fields in ITEM_LIST

10-46 Oracle9i Database Utilities

Case Study 11: Loading Data in the Unicode Character Set

Table CUSTOMERS:
2 Rows successiully loaded.
0 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Table ORDERS:
2 Rows successfully loaded.
0 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array: 149120 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 2
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Tue Jan 09 14:05:29 2001
Run ended on Tue Jan 09 14:05:31 2001

Elapsed ime was: 00:00:02.07
CPUtmewas: 00:00:00.20

Case Study 11: Loading Data in the Unicode Character Set

In this case study, SQL*Loader loads data from a datafile in a Unicode character set.
This case study parallels case study 3, except that it uses the character set UTF16
and a maximum length is specified for the empno and deptno fields. The data must
be in a separate datafile because the CHARACTERSEReyword is specified.This case
study demonstrates the following:

« Using SQL*Loader to load data in the Unicode character set, UTF16.
« Using SQL*Loader to load data in a fixed-width multibyte character set.
« Using character-length semantics.

« Using SQL*Loader to load data in little endian byte order. SQL*Loader checks
the byte order of the system on which it is running. If necessary, SQL*Loader

SQL*Loader Case Studies 10-47

Case Study 11: Loading Data in the Unicode Character Set

swaps the byte order of the data to ensure that any byte-order-dependent data
is correctly loaded.

Control File for Case Study 11
The control file is ulcasell .ctl

LOAD DATA

1) CHARACTERSET UTF16
2) BYTEORDERLITTLE
INFILE ulcase11.dat
REPLACE

INTO TABLE emp

3) FIELDS TERMINATED BY X'002c’ OPTIONALLY ENCLOSED BY X'0022
4) (empno INTEGER EXTERNAL (5), ename, job, mgr,

hiredate DATE(20) "DD-Month-YYYY",

sal, comm,

5) depno CHAR(S) TERMINATED BY ™",

projno,

loadseq SEQUENCE(MAX,1))

Notes:

1. The character set specified with the CHARACTERSEHReyword is UTF16.
SQL*Loader will convert the data from the UTF16 character set to the datafile
character set. This line also tells SQL*Loader to use character-length semantics
for the load.

2. BYTEORDER LITTLRells SQL*Loader that the data in the datafile is in little
endian byte order. SQL*Loader checks the byte order of the system on which it
is running to determine if any byte-swapping is necessary. In this example, all
the character data in UTF16 is byte-order dependent.

3. The TERMINATED B¥aind OPTIONALLY ENCLOSED Bitauses both specify
hexadecimal strings. The X'002c’ is the encoding for a comma (,) in UTF-16
big endian format. The X’0022’ s the encoding for a double quotation mark
(" in big endian format. Because the datafile is in little endian format,
SQL*Loader swaps the bytes before checking for a match.

If these clauses were specified as character strings instead of hexadecimal
strings, SQL*Loader would convert the strings to the datafile character set
(UTF16) and byte-swap as needed before checking for a match.

10-48 Oracle9i Database Utilities

Case Study 11: Loading Data in the Unicode Character Set

4.

Because character-length semantics are used, the maximum length for the
empno, hiredate , and deptno fields is interpreted as characters, not bytes.

The TERMINATED BXlause for the deptno field is specified using the
character string ":". SQL*Loader converts the string to the datafile character set
(UTF16) and byte-swaps as needed before checking for a match.

See Also:
« Handling Different Character Encoding Schemes on page 5-16
» Byte Ordering on page 6-36

Data File for Case Study 11

7782, "Clark’, "Manager", 7839, 09-June-1981, 2572.50,, 10:101

7839, "King'", "President", , 17-November-1981, 5500.00,, 10:102

7934, "Miller", "Clerk", 7782, 23-January-1982, 920.00,, 10:102

7566, "Jones', "Manager", 7839, 02-Apri-1981, 3123.75,, 20:101

7499, "Allen”, "Salesman", 7698, 20-February-1981, 1600.00, 300.00, 30:103
7654, "Martin", "Salesman", 7698, 28-September-1981, 1312.50, 1400.00, 30:103
7658, "Chan", "Analyst’, 7566, 03-May-1982, 3450,, 20:101

Running Case Study 11

Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at your system
prompt:
sqlplus scottfiger
The SQL prompt is displayed.

2. Atthe SQL prompt, execute the SQL script for this case study, as follows:
SQL> @uicasell
This prepares the table empfor the case study and then returns you to your
system prompt.

3. Atyour system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scotttiger CONTROL=ulcase11.cti LOG=ulcasell.log

SQL*Loader Case Studies 10-49

Case Study 11: Loading Data in the Unicode Character Set

SQL*Loader loads the table emp, creates the log file, and returns you to your
system prompt. You can check the log file to see the results of running the case
study.

Log File for Case Study 11
The following shows a portion of the log file for case study 11:

Control File: ulcasell.ct

Character Set utf16 specified for all input.

1) Using character length semantics.

2) Byteorder litle endian specified.

Processing datafile as litle endian.

3) SQL*Loader running on a big endian platform. Swapping bytes where needed.

DataFile: ulcasell.dat
Bad File: ulcasell.bad
Discard File: none specified

(Allow all discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 50

Bindaray: 64 rows, maximum of 256000 bytes
Continuation: - none specified

Pathused: Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

Column Name Posiion Len Term Encl Datatype
4) EMPNO FIRST 10 , O() CHARACTER
ENAME NEXT * , O()CHARACTER
JOB NEXT * , O() CHARACTER
MGR NEXT * , O() CHARACTER
4) HIREDATE NEXT 40 , O(') DATE DD-Month-YYYY
SAL NEXT * , O(") CHARACTER
COMM NEXT * , O()CHARACTER
DEPTNO NEXT 10 : O() CHARACTER
4) PROINO NEXT * , O() CHARACTER
LOADSEQ SEQUENCE (MAX;, 1)

10-50 Oracle9i Database Utilities

Case Study 11: Loading Data in the Unicode Character Set

Table EMP:
7 Rows successiully loaded.
0 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array: 104768 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Mon Feb 19 16:33:47 2001
Run ended on Mon Feb 19 16:33:49 2001

Elapsed imewas: 00:00.01.74
CPUtimewas: 00:00:00.20

Notes:

1.

SQL*Loader used character-length semantics for this load. This is the default if
the character set is UTF16. This means that length checking for the maximum
sizes is in characters (see item number 4 in this list).

BYTEORDER LITTLEwas specified in the control file. This tells SQL*Loader that
the byte order for the UTF16 character data in the datafile is little endian.

This message only appears when SQL*Loader is running on a system with the
opposite byte order (in this case, big endian) from the datafile’s byte order. It
indicates that SQL*Loader detected that the byte order of the datafile is
opposite from the byte order of the system on which SQL*Loader is running.
Therefore, SQL*Loader had to byte-swap any byte-order-dependent data (in
this case, all the UTF16 character data).

The maximum lengths under the len heading are in bytes even though
character-length semantics were used. However, the maximum lengths are
adjusted based on the maximum size, in bytes, of a character in UTF16. All
characters in UTF16 are 2 bytes. Therefore, the sizes given for empno and
projno (5) are multiplied by 2, resulting in a maximum size of 10 bytes.

Similarly, the hiredate maximum size (20) is multiplied by 2, resulting in a
maximum size of 40 bytes.

SQL*Loader Case Studies 10-51

Case Study 11: Loading Data in the Unicode Character Set

Loaded Tables for Case Study 11

To see the results of this execution of SQL*Loader, execute the following query at
the SQL prompt:

SQL> SELECT * FROM emp;

The results of the query look as follows (the formatting may be slightly different on
your display):

EMPNOENAME JOB MGRHIREDATE SAL COMM DEPTNO PROJNO LOADSEQ

7782 Clark Manager 7839 09-JUN-81 257250 10 101 1

7839King President 17-NOV-81 5500.00 10 102 2

7934 Miller Clerk 7782 23-JAN-82 920.00 10 102 3

7566 Jones Manager 7839 02-APR-81 3123.75 20 101 4

EMPNO ENAME JOB MGRHIREDATE SAL COMM DEPTNO PROJNO LOADSEQ
7499 Allen Salesman 7698 20-FEB-81 160000 300 30 103 5

7654 Martin Salesman 7698 28-SEP-81 131250 1400 30 103 6

7658 Chan Analyst 7566 03-MAY-82 3450.00 20 101 7

7 rows selected.

The output for the table is displayed in the character set US7ASCII, which is the
normal default character set when the NLS_LANGparameter is not defined.
SQL*Loader converts the output from the database character set, which normally
defaults to WE8BDEC, to the character set specified for your session by the NLS
LANGparameter.

10-52 Oracle9i Database Utilities

Part Il

External Tables

This chapters in this section describe the use of external tables.
Chapter 11, "External Tables Concepts"

This chapter describes basic concepts about external tables.
Chapter 12, "External Tables Access Parameters”

This chapter describes the access parameters used to interface with the external
tables API.

11

External Tables Concepts

The Oracle9i external tables feature is a complement to existing SQL*Loader
functionality. It allows you to access data in external sources as if it were in a table
in the database.

External tables are read-only. No data manipulation language (DML) operations or
index creation is allowed on an external table. Therefore, SQL*Loader may be the
better choice in data loading situations that require additional indexing of the
staging table.

To use the external tables feature, you must have some knowledge of the file format
and record format of the datafiles on your platform. You must also know enough
about SQL to be able to create an external table and execute DML statements that
access the external table.

This chapter discusses the following topics:
« The Access Driver

« External Table Restrictions

« Location of Datafiles and Output Files
« Using External Tables to Load Data

« Parallel Access to External Tables

« Performance Hints When Using External Tables

The Access Driver

An external table describes how the external table layer must present the data to the
server. This is accomplished using the external table API, which is implemented

External Tables Concepts 11-1

The Access Driver

through an access driver. The access driver and the external table layer transform
the data in the datafile to match the external table definition.

When you create an external table of a particular type, you provide access
parameters that describe the external data source. See Chapter 12 for descriptions of
these access parameters.

The description of the data in the data source is separate from the definition of the
external table. This means that:

« The source file can contain more or fewer fields than there are columns in the
external table.

« The datatypes for fields in the data source can be different from the columns in
the external table.

The access driver ensures that data from the data source is processed so that it
matches the definition of the external table.

In the following example, a traditional table named empis defined along with an
external table named emp_load .

CREATE TABLE emp (emp_no CHAR(®), last_name CHAR(25), first_name CHAR(20), middle_initial
CHAR(D);

CREATE TABLE emp_load (employee_number CHAR(5), employee_last name CHAR(20),
employee_first_ name CHAR(15), employee_middle_name CHAR(15))
ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
ACCESS PARAMETERS (FIXED 62 FIELDS (employee_number INTEGER(2),
employee_dob CHAR(20),
employee_last name CHAR(18),
employee_first_ name CHAR(11),
employee_middle_name CHAR(11))
LOCATION (foo.dat));

INSERT INTO emp (emp_no, first_name, middle_initial, last_ name) AS
SELECT employee_number, employee first name, substr(employee_middle_initial, 1, 1),
employee_last_ name
FROM emp_load;

Note the following in the preceding example:

« The numfield in the datafile is converted to a character string for the
employee_number field.

« The datafile contains an employee_dob field that is not loaded into any field in
the table.

11-2 Oracle9/ Database Utilities

Location of Datafiles and Output Files

External Table Restrictions
« An external table does not describe any data that is stored in the database.
« An external table does not describe how data is stored in the external source.

« External tables are a read-only source. You cannot perform insert operations
into external tables, nor can you update records in them.

Location of Datafiles and Output Files

The access driver runs inside of the database server. This is different from
SQL*Loader in that SQL*Loader is a client program that sends the data to be loaded
over to the server. This difference has the following implications:

« The server must have access to any files to be loaded by the access driver.

« The server must create and write the files created by the access driver: log file,
bad file, and discard file.

The access driver does not allow you to specify random names for a file. This is
because the server may have access to files that you do not, and allowing you to
read this data would affect security. Similarly, you cannot specify a location for an
output file, because the server could overwrite a file that you might not normally
have privileges to delete.

Instead, you are required to specify directory objects as the locations from which to
read files and write files. A directory object maps a name to a directory name on the
file system. Once a directory object is created by the system user, then the system
user can grant READor WRITEpermission on the object. For example, the following
statement creates a directory object load_src

create directory load_src as ‘/ust/apps/datafies);

After a directory is created, the user creating the directory object needs to grant
READor WRITEpermission on the directory to other users. For example, to allow
the server to read files on behalf of user scott in the directory named by load_

src , the user who created the directory object must execute the following
command:

GRANT READ ON DIRECTORY load_src TO scott;

The name of the directory object can appear in the following places in a CREATE
TABLE...ORGANIZATION EXTERNAL statement:

External Tables Concepts 11-3

Using External Tables to Load Data

« The default directory clause, which specifies the default directory to use for all
input and output files that do not explicitly name a directory object.

« The LOCATIONCclause, which lists all of the datafiles for the external table. The
files are named in the form directory:file . The directory portion is
optional. If it is missing, the default directory is used as the directory for the file.

« The access parameters where output files are named. The files are named in the
form directory:file . The directory ~ portion is optional. If it is missing,
the default directory is used as the directory for the file. There is syntax in the
access parameters that allows you to indicate that a particular output file
should not be created. This is useful if you do not care about the output files or
if you do not have write access to any directory objects.

The SYSTEMuser is the only user that can create directory objects, but the SYSTEM
user can grant other users the privilege to create directory objects. Note that READ
or WRITEpermission to a directory object only means that the Oracle database
server will read or write that file on your behalf. You are not given direct access to
those files outside of the Oracle database server unless you have the operating
system privileges to do so. Similarly, the Oracle database server requires permission
from the operating system to read and write files in the directories.

Using External Tables to Load Data

The main use for external tables is as a row source for loading data into a real table

in the database. After you create an external table, you can issue a CREATE TABLE
AS SELECTor INSERT INTO... AS SELECT statement using the external table

as the source of the SELECTclause. Remember that external tables are read-only, so
you cannot insert into them or update records in them.

When the external table is accessed through a SQL statement, the fields of the
external table can be used just like any other field in a normal table. In particular,
the fields can be used as arguments for any SQL built-in function, PL/SQL function,
or Java function. This allows you to manipulate the data from the external source.

Although external tables cannot contain a column object, you can use constructor
functions to build a column object from attributes in the external table. For example,
assume a table in the database is defined as follows:

CREATE TYPE student_type AS object (
student_no CHAR(5),
name CHAR(0)

CREATE TABLE roster

11-4 Oracle9/ Database Utilities

Parallel Access to External Tables

student student type,
gade CHAR(Q2);

Also assume there is an external table defined as follows:

CREATE TABLE roster_data (
student_no CHAR(5),
name CHAR(20),
gade CHAR(?2)
ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
ACCESS PARAMETERS (FIELDS TERMINATED BY)
LOCATION (‘foo.dat);

To load table roster from roster_data , you would specify something similar to
the following:

INSERT INTO roster (student, grade)
AS SELECT (student_type(student_no, name), grade) FROM roster_data;

Parallel Access to External Tables

The external table feature supports parallel processing on the datafiles. You control
the degree of parallelism using the standard parallel hints and with the PARALLEL
clause when creating the external table. The degree of parallelism indicates the
number of access drivers that can be started to process the datafiles. The access
driver attempts to divide large datafiles into chunks that can be processed
separately. The chunks are not too small (so that the overhead of managing the
chunks is small) and not too big (so that all of the parallel access drivers have a
chance to keep equally busy).

The following file, record, and data characteristics make it impossible for a file to be
processed in parallel:

« Sequential data sources (such as a tape drive or pipe)

« Data in any multibyte character set whose character boundaries cannot be
determined starting at an arbitrary byte in the middle of the string

This restriction does not apply to any datafile with a fixed number of bytes per
record.

= Records with the VARformat

External Tables Concepts 11-5

Performance Hints When Using External Tables

Performance Hints When Using External Tables

When you monitor performance, the most important measurement is the elapsed
time for a load. Other important measurements are CPU usage, memory usage, and
170 rates.

You can alter performance by increasing or decreasing the degree of parallelism.
The degree of parallelism allows you to choose on a scale between slower load with
little resource usage and faster load with all resources utilized. The access driver
cannot automatically tune itself, because it cannot determine how many resources
you want to dedicate to the access driver.

In addition to changing the degree of parallelism to improve performance, consider
the following information:

« Fixed-length records are processed faster than records terminated by a string.
« Fixed-length fields are processed faster than delimited fields.
« Single-byte character sets are the fastest to process.

« Fixed-width character sets are faster to process than varying-width character
sets.

« Byte-length semantics for varying-width character sets are faster to process than
character-length semantics.

« Single-character delimiters for record terminators and field delimiters are faster
to process than multicharacter delimiters.

« Having the character set in the datafile match the character set of the database is
faster than a character set conversion.

« Having datatypes in the datafile match the datatypes in the database is faster
than datatype conversion.

« Not writing rejected rows to a reject file is faster because of the reduced
overhead of not writing the rows and because the driver no longer needs to
preserve context about the original row data.

« Condition clauses (including WHENNULLIF, and DEFAULTIF) slow down
processing.

The access driver takes advantage of multithreading to streamline the work as
much as possible.

11-6 Oracle9i Database Utilities

12

External Tables Access Parameters

The access parameters described in this chapter provide the interface to the external
table access driver. You specify access parameters when you create the external
table. This chapter describes the syntax for the access parameters for the default
access driver.

To use the information in this chapter, you must have some knowledge of the file
format and record format (including character sets and field datatypes) of the
datafiles on your platform. You also must know enough about SQL to use the
commands to create an external table and execute DML statements that access the
external table.

Notes:

« Itis sometimes difficult to describe syntax without using other
syntax that is not documented until later in the chapter. If it is
not clear what some syntax is supposed to do, you might want
to skip ahead and read about that particular element.

« Many examples in this chapter show a CREATE
TABLE...ORGANIZATION EXTERNAL statement followed by
a sample of contents of the datafile for the external table. These
contents are not part of the CREATE TABLEstatement, but are
shown to help complete the example.

The access parameters clause contains comments, record formatting, and field
formatting information. The syntax for the access_parameters clause is as
follows:

External Tables Access Parameters 12-1

record_format_info Clause

comments

Comments are lines that begin with two dashes followed by text. Comments must
be placed before any access parameters, for example:

—Thisis a comment
—This is another comment
RECORDS DELIMITED BY NEWLINE

All text to the right of the double hyphen is ignored, until the end of the line.

record_format_info

The record_format_info clause contains information about the record, such as
its format, the character set of the data, and what rules are used to exclude records
from being loaded. The record_format_info clause is optional. For a full
description of the syntax, see record_format_info Clause on page 12-2.

field_definitions

The field_definitions clause is used to describe the fields in the datafile. If a
datafile field has the same name as a column in the external table, then the data
from the field is loaded into that column. For a full description of the syntax, see
field_definitions Clause on page 12-11.

record_format_info Clause

The record_format_info clause contains information about the record, such as
its format, the character set of the data, and what rules are used to exclude records
from being loaded. The record_format_info clause is optional. If the clause is
not specified, the default value is RECORDS DELIMITED BY NEWLINEhe syntax
for the record_format_info clause is as follows:

12-2 Oracle9/ Database Utilities

record_format_info Clause

CHARACTERSET |5(string
LITTLE

DATA H ENDIAN
-BIG

STRING SIZES ARE IN
Lo e He M)

—I LOAD |—>| WHEN |e<condmon_spec)
4 NOBADFILE

| directory object name o =
NEWLINE &| BADFILE filename

(| NODISCARDFILE
[directory object name o
¥| DISCARDFILE filename

,1 NOLOGFILE
[directory object name o
¥| LOGFILE filename

SKIP integer

| FIXED q
VARIABLE
DELIMITED

FIXED length

The FIXED clause is used to identify the records as all having a fixed size of length
bytes. The size specified for FIXED records must include any record termination
characters, such as newlines. Compared to other record types, fixed-length fields in
fixed-length records are the easiest field and record formats for the access driver to
process.

The following is an example of using FIXED records. It assumes there is a 1-byte
newline character at the end of each record in the datafile. It is followed by a sample
of the datafile that can be used to load it.

CREATE TABLE (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
ORGANIZATION EXTERNAL (TYPE ORACLE LOADER DEFAULT DIRECTORY ext tab_dir
ACCESS PARAMETERS (RECORD FIXED 20 FIELDS (first_name CHAR(7),
last name CHAR(8),
year_of birth CHAR(4))

External Tables Access Parameters 12-3

record_format_info Clause

LOCATION (foo.dat));

Alvin Tolliver1976
KennethBaer 1963
Mary Dube 1973

VARIABLE size

The VARIABLE clause is used to indicate that the records have a variable length and
that each record is preceded by a character string containing a number with the
count of bytes for the record. The length of the character string containing the count
field is the size argument that follows the VARIABLE parameter. Note that size
indicates a count of bytes, not characters. The count at the beginning of the record
must include any record termination characters, but it does not include the size of
the count field itself.

The following is an example of using VARIABLE records. It assumes there is a
1-byte newline character at the end of each record in the datafile. It is followed by a
sample of the datafile that can be used to load it.

CREATE TABLE (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
ORGANIZATION EXTERNAL (TYPE ORACLE LOADER DEFAULT DIRECTORY ext tab_dir
ACCESS PARAMETERS (RECORDS VARIABLE 2 FIELDS TERMINATED BY
(first_name CHAR(7),
last_ name CHAR(8),
year_of birth CHAR(4))
LOCATION (foodat));

20Alvin,Tolliver,1976
18Kenneth,Baer,1963
15Mary,Dube,1973

DELIMITED BY

The DELIMITED BY clause is used to indicate the characters that identify the end of
a record.

If DELIMITED BY NEWLINE is specified, then the actual value used is
platform-specific. On UNIX platforms, NEWLINEis assumed to be “\n . On
Windows NT, NEWLINEis assumed to be “\r\n .

If DELIMITED BY string is specified, string can either be text or a series of
hexadecimal digits. If it is text, then the text is converted to the character set of the
datafile and the result is used for identifying record boundaries. See string on
page 12-8.

12-4 Oracle9/ Database Utilities

record_format_info Clause

If the following conditions are true, then you must use hexadecimal digits to
identify the delimiter:

« The character set of the access parameters is different from the character set of
the datafile

« Some characters in the delimiter string cannot be translated into the character
set of the datafile

The hexadecimal digits are converted into bytes, and there is no character set
translation performed on the hexadecimal string.

If the end of the file is found before the record terminator, the access driver proceeds
as if a terminator was found, and all unprocessed data up to the end of the file is
considered part of the record.

Note: Do not include any binary data, including binary counts for
VARCHARNd VARRAWN a record that has delimiters. Doing so
could cause errors or corruption, because the binary data will be
interpreted as characters during the search for the delimiter.

The following is an example of using DELIMITED BY records.

CREATE TABLE (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
ORGANIZATION EXTERNAL (TYPE ORACLE LOADER DEFAULT DIRECTORY ext_tab_dir
ACCESS PARAMETERS (DELIMITED BY | FIELDS TERMINATED BY
(first_name CHAR(7),
last_ name CHAR(8),
year_of_birth CHAR(4))
LOCATION (foo.dat));

Alvin, Toliiver,1976|Kenneth,Baer,1963|Mary,Dube, 1973

CHARACTERSET

The CHARACTERSEString clause identifies the character set of the data source. If
a character set is not specified, the data is assumed to be in the default character set
for the database. See string on page 12-8.

External Tables Access Parameters 12-5

record_format_info Clause

DATA IS...ENDIAN

The DATA IS...ENDIAN clause indicates the endianness of data whose byte order
may vary depending on the platform that generated the datafile. Fields of the
following types are affected by this clause:

« INTEGER

« UNSIGNED INTEGER
« FLOAT

« DOUBLE

« VARCHAR(nhumeric count only)
« VARRAWNumeric count only)
« Any character datatype in the UTF16 character set

« Any string specified by RECORDS DELIMITED B¥tring and in the UTF16
character set

Common platforms that generate little endian data include Windows 98 and
Windows NT. Big endian platforms include Sun Solaris and IBM MVS. If the DATA
IS...ENDIAN clause is not specified, then the data is assumed to have the same
endianness as the platform where the access driver is running. UTF16 datafiles may
have a mark at the beginning of the file indicating the endianness of the data. This
mark will override the DATA IS...ENDIAN clause.

STRING SIZES ARE IN

LOAD WHEN

The STRING SIZES ARE INclause is used to indicate whether the lengths specified
for character strings are in bytes or characters. If not specified, the access driver uses
the mode that the database uses. Character types with embedded lengths (such as
VARCHARare also affected by this clause. If this clause is specified, the embedded
lengths are a character count, not a byte count. Specifying STRING SIZES ARE IN
CHARACTERBS needed only when loading multibyte character sets, such as UTF16.

The LOAD WHEBbndition_spec clause is used to identify the records that
should be passed to the database. The evaluation method varies:

« If the condition_spec references a field in the record, the clause is evaluated
only after all fields have been parsed from the record, but before any NULLIF or
DEFAULTIF clauses have been evaluated.

12-6 Oracle9i Database Utilities

record_format_info Clause

« If the condition specification only references ranges (and no field names), then
the clause is evaluated before the fields are parsed. This is useful for cases
where the records in the file that are not to be loaded cannot be parsed into the
current record definition without errors.

See condition_spec on page 12-8.
The following are some examples of using LOAD WHEN

LOAD WHEN (empid '= BLANKS)
LOAD WHEN ((dept_id =*SPORTING GOODS’ OR dept id =“SHOES’) AND total_sales 1=0)

BADFILE | NOBADFILE

The BADFILE clause names the file to which records are written when they cannot
be loaded because of errors. For example, a record was written to the bad file
because a field in the data source could not be converted to the datatype of a
column in the external table. Records that fail the LOAD WHE®Nause are not written
to the bad file but are written to the discard file instead. Also, any errors in using a
record from an external table (such as a constraint violation when using INSERT
INTO...AS SELECT... from an external table) will not cause the record to be
written into the bad file.

The purpose of the bad file is to have one file where all rejected data can be
examined and fixed so that it can be loaded. If you do not intend to fix the data,
then you can use the NOBADFILEoption to prevent creation of a bad file, even if
there are bad records.

See [directory object name:] filename on page 12-9.

DISCARDFILE | NODISCARDFILE

The DISCARDFILE clause names the file to which records are written that fail the
condition in the LOAD WHEBause. The discard file is created when the first record
to be discarded is encountered. If the same external table is accessed multiple times,
then the discard file is rewritten each time. If there is no need to save the discarded
records in a separate file, then use NODISCARDFILE

See [directory object name:] filename on page 12-9.

LOG FILE | NOLOGFILE

The LOGFILE clause names the file that contains messages generated by the
external tables utility while it was accessing data in the datafile. If a log file already

External Tables Access Parameters 12-7

record_format_info Clause

exists by the same name, the access driver reopens that log file and appends new
log information to the end. This is different from bad files and discard files, which
overwrite any existing file. NOLOGFILEis used to prevent creation of a log file.

See [directory object name:] filename on page 12-9.

SKIP n

Skips n records in the data source before loading. SKIP can be specified only when
nonparallel access is being made to the data.

string

Astring is a quoted series of characters or hexadecimal digits. There must be an
even number of hexadecimal digits. All text will be converted to the character set of
the data source. Hexadecimal digits are converted into their binary translation, and
the translation is treated as a character string. The access driver does not translate
that string, but assumes it is in the character set of the data source.

O RO
o EDE O

condition_spec

The condition_spec is an expression that evaluates to either true or false. It
specifies one or more conditions that are joined by Boolean operators. The
conditions and Boolean operators are evaluated from left to right. (Boolean
operators are applied after the conditions are evaluated.) Parentheses can be used to
override the default order of evaluation of Boolean operators. The evaluation of
condition_spec clauses slow record processing, so they should be used
sparingly. See also condition on page 12-10.

12-8 Oracle9i Database Utilities

record_format_info Clause

condition

Note that if the condition specification contains any conditions that reference field
names, then the condition specifications are evaluated only after all fields have been
found in the record and after blank trimming has been done. It is not useful to
compare a field to BLANKSIf blanks have been trimmed from the field.

The following are some examples of using condition_spec

empid =BLANKS OR last_name = BLANKS
(dept_id =SPORTING GOODS OR dept_id = SHOES) AND total sales!=0

[directory object name:] filename

This clause is used to specify the name of an output file (BADFILE, DISCARDFILE,
or LOGFILE). The directory object name is the name of a directory object where the
user accessing the external table has privileges to write. If the directory object name
is omitted, then the value specified for the DEFAULT DIRECTORVYlause in the
CREATE TABLE AS EXTERNAtatement is used.

The filename parameter is the name of the file to create in the directory object.
The access driver does some symbol substitution to help make filenames unique in
parallel loads. The symbol substitutions supported are as follows:

« %pis replaced by the process ID of the current process. For example, if the
process ID of the access driver is 12345, then exttab_%p.log becomes
exttab_12345.log.

« %ais replaced by the agent number of the current process. The agent number is
the unique number assigned to each parallel process accessing the external
table. This number is padded to the left with zeros to fill three characters. For
example, if the third parallel agent is creating a file and bad_data_%a.bad
was specified as the filename, then the agent would create a file named bad_
data_003.bad.

External Tables Access Parameters 12-9

record_format_info Clause

condition

« %Y%s replaced by % If there is a need to have a percent sign in the filename, then
this symbol substitution is used.

If the %character is encountered followed by anything other than one of the
preceding characters, then an error is returned.

If %por %ais not used to create unique filenames for output files and an external
table is being accessed in parallel, then there may be problems with corrupted
output files or with agents not being able to write to the files.

If the filename is missing, then the access driver uses the name of the table followed
by _%pas the name of the file. If no extension is supplied for the file, a default
extension will be used. For bad files, the default extension is .bad , for discard files,
the default is .dsc, and for log files, the default is .log

A condition compares a range of bytes or a field from the record against a
constant string. The source of the comparison can be either a field in the record or a
byte range in the record. The comparison is done on a byte-by-byte basis. If a string
is specified as the target of the comparison, it will be translated into the character
set of the datafile. If the field has a non-character datatype, no datatype conversion
is performed on either the field value or the string. The syntax for a condition s
as follows:

FIELDNAME
range start)»@—(range end

FIELDNAME
range start)a@»(range end

range start : range end

This clause describes a range of bytes or characters in the record to use for a
condition. The value used for the STRING SIZES ARE clause determines whether
range refers to bytes or characters. The range start and range end are byte or
character offsets into the record. The range start ~ must be less than or equal to the
range end . Finding ranges of characters is faster for data in fixed-width character

12-10 Oracle9i Database Utilities

field_definitions Clause

sets than it is for data in varying-width character sets. If the range refers to parts of
the record that do not exist, then the record is rejected when an attempt is made to
reference the range.

Note: The datafile should not mix binary data (including
datatypes with binary counts, such as VARCHAIRand character data
that is in a varying-width character set or more than one byte wide.
In these cases, the access driver may not find the correct start for
the field, because it treats the binary data as character data when
trying to find the start.

If a field is NULL, then any comparison of that field to any value other than NULL
will return FALSE

The following are some examples of using condition

empid '=BLANKS
10:13=0x00000830
PRODUCT_COUNT ="MISSING”

field_definitions Clause

The field_definitions clause names the fields in the datafile and specifies how
to find them in records.

If the field_defintions clause is omitted, then:

« The fields are assumed to be delimited by ;'

« The fields are assumed to be character type

« The maximum length of the field is assumed to be 255

=« The order of the fields in the datafile is the order in which the fields were
defined in the external table

= No blanks are trimmed from the field

The following is an example of an external table created without any access
parameters. It is followed by a sample of the datafile that can be used to load it.

CREATE TABLE (first_name CHAR(15), last_name CHAR(20), year_of _hirth CHAR(4))
ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir LOCATION (foo.dat);

External Tables Access Parameters 12-11

field_definitions Clause

Alvin,Tolliver,1976
Kenneth,Baer,1963

The syntax for the field_definitions clause is as follows:

/—>| misSING | FIELD | vaLUES [ARe | NuLL |—\
—>| FIELDS

delim_spec

delim_spec Clause

The delim_spec clause is used to identify how all fields are terminated in the
record. The delim_spec specified for all fields can be overridden for a particular
field as part of the field_list clause. For a full description of the syntax, see
delim_spec on page 12-12.

trim_spec Clause

The trim_spec clause specifies the type of whitespace trimming to be performed
by default on all character fields. The trim_spec clause specified for all fields can
be overridden for individual fields by specifying a trim_spec clause for those
fields. For a full description of the syntax, see trim_spec on page 12-15.

MISSING FIELD VALUES ARE NULL

MISSING FIELD VALUES ARE NULL indicates that if there is not enough data in
a record for all fields, then those fields with missing data values are set to NULL For
a full description of the syntax, see MISSING FIELD VALUES ARE NULL on

page 12-16.

field_list Clause

The field_list clause identifies the fields in the datafile and their datatypes. For
a full description of the syntax, see field_list on page 12-17.

The delim_spec clause is used to find the end (and if ENCLOSED B¥ specified,
the start) of a field.

12-12 Oracle9i Database Utilities

field_definitions Clause

Ji ENCLOSED |->->(string) \

string

WHITESPACE

TERMINATED

If ENCLOSED B specified, the access driver starts at the current position in the
record and skips over all whitespace looking for the first delimiter. All whitespace
between the current position and the first delimiter is ignored. Next, the access
driver looks for the second enclosure delimiter (or looks for the first one again if a
second one is not specified). Everything between those two delimiters is considered
part of the field.

If TERMINATED BYstring is specified with the ENCLOSED B¥lause, then the
terminator string must immediately follow the second enclosure delimiter. Any
whitespace between the second enclosure delimiter and the terminating delimiter is
skipped. If any non-whitespace is found between the two delimiters, then the row is
rejected for being incorrectly formatted.

If TERMINATED BYs specified without the ENCLOSED B¥lause, then everything
between the current position in the record and the next occurrence of the
termination string is considered part of the field.

If OPTIONALLYi s specified, then TERMINATED BYnust also be specified. The
OPTIONALLYparameter means the ENCLOSED BWelimiters can either both be
present or both be absent. The terminating delimiter must be present regardless of
whether the ENCLOSED BW4elimiters are present. If OPTIONALLYis specified, then
the access driver skips over all whitespace, looking for the first nonblank character.
Once the first nonblank character is found, the access driver checks to see if the
current position contains the first enclosure delimiter. If it does, then it finds the
second enclosure string and everything between the first and second enclosure
delimiters is considered part of the field. The terminating delimiter must
immediately follow the second enclosure delimiter (with optional whitespace
allowed between the second enclosure delimiter and the terminating delimiter). If
the first enclosure string is not found at the first nonblank character, then the access
driver looks for the terminating delimiter. In this case, all characters from the
beginning (including the leading blanks) to the terminating delimiter are
considered part of the field.

External Tables Access Parameters 12-13

field_definitions Clause

After the delimiters have been found, the current position in the record is set to
after the last delimiter for the field. If TERMINATED BY WHITESPAG#as specified,
then the current position in the record is set to after all whitespace following the
field.

A missing terminator for the last field in the record is not an error. The access driver
proceeds as if the terminator was found. It is an error if the second enclosure
delimiter is missing.

The string used for the second enclosure can be included in the data field by
including the second enclosure twice. For example, if a field is enclosed by single
guotation marks, a data field could contain a single quotation mark by doing
something like the following:

| don'tlike green eggs and ham'

There is no way to quote a terminator string in the field data without using
enclosing delimiters. Because the field parser does not look for the terminating
delimiter until after it has found the enclosing delimiters, the field can contain the
terminating delimiter.

In general, specifying single characters for the strings is faster than multiple
characters. Also, searching data in fixed-width character sets is usually faster than
searching data in varying-width character sets.

The following are some examples of using delim_spec

TERMINATED BY "'
ENCLOSED BY "\" TERMINATED BY ",
ENCLOSED BY "START MESSAGE" AND "END MESSAGE"

The following is an example of an external table with terminating delimiters. It is
followed by a sample of the datafile that can be used to load it.

CREATE TABLE (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
ORGANIZATION EXTERNAL (TYPE ORACLE LOADER DEFAULT DIRECTORY ext tab_dir
ACCESS PARAMETERS (FIELDS TERMINATED BY WHITESPACE)
LOCATION (foo.dat));

Alvin Tolliver 1976

Kenneth Baer 1963
Mary Dube 1973

The following example uses both enclosure and terminator delimiters. Remember
that all whitespace between a terminating string and the first enclosure string is

12-14 Oracle9i Database Utilities

field_definitions Clause

ignored, as is all whitespace between a second enclosing delimiter and the
terminator. The example is followed by a sample of the datafile that can be used to
load it.

CREATE TABLE (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
ORGANIZATION EXTERNAL (TYPE ORACLE LOADER DEFAULT DIRECTORY ext tab_dir
ACCESS PARAMETERS (FIELDS TERMINATED BY “” ENCLOSED BY “(* AND“)))
LOCATION (foo.dat));

(Avin), (Toliver),(1976)
(Kenneth), (Baer) ,(1963)
(Mary),(Dube), (1973)

The following example uses optional enclosure delimiters. Note that LRTRIMis
used to trim leading and trailing blanks from fields. The example is followed by a
sample of the datafile that can be used to load it.

CREATE TABLE (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
ORGANIZATION EXTERNAL (TYPE ORACLE LOADER DEFAULT DIRECTORY ext tab_dir
ACCESS PARAMETERS (FIELDS TERMINATED BY *”
OPTIONALLY ENCLOSED BY “(* and)’
LRTRIM)
LOCATION (foo.dat);

Alvin, Toliver, 1976

(Kenneth), (Baer), (1963)
(Mary), Dube, (1973)

trim_spec

The trim_spec clause is used to specify which characters should be trimmed from
the beginning and end of a text field.

NOTRIMindicates that no characters will be trimmed from the field.

External Tables Access Parameters 12-15

field_definitions Clause

LRTRIM, LTRIM, and RTRIMare used to indicate that characters should be trimmed
from the field. LTRIM means that leading blanks will be trimmed. RTRIMmeans
trailing blanks are trimmed.

LDRTRIMis used to provide compatibility with SQL*Loader trim features. It is the
same as NOTRIMexcept in the following cases:

« Ifthe field is not a delimited field, then blanks will be trimmed from the right.

« If the field is a delimited field with OPTIONALLY ENCLOSED Bspecified, and
the optional enclosures are missing for a particular instance, then blanks will be
trimmed from the left.

The default is LDRTRIM Specifying NOTRIMyields the fastest performance.

The trim_spec clause can be specified before the field list to set the default
trimming done for all fields. If trim_spec is omitted before the field list, then
LDRTRIMis the default trim setting. The default trimming can be overridden for an
individual field as part of the datatype_spec

If trimming is specified for a field that is all blanks, then the field will be set to
NULL

In the following example, all data is fixed-length; however, the character data will
not be loaded with leading blanks. The example is followed by a sample of the
datafile that can be used to load it.

CREATE TABLE (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
ORGANIZATION EXTERNAL (TYPE ORACLE LOADER DEFAULT DIRECTORY ext tab_dir
ACCESS PARAMETERS (FIELDS LTRIMY))

LOCATION (foo.dat));
Alvin Toliver1976
Kenneth Baer1963
Mary Dube1973

MISSING FIELD VALUES ARE NULL

MISSING FIELD VALUES ARE NULL indicates that if there is not enough data in
a record for all fields, then those fields with missing data values are set to NULL If
MISSING FIELD VALUES ARE NULL is not specified, and there is hot enough
data in the record for all fields, then the row is rejected

In the following example, the second record is stored with a NULL set for the year
of_birth column, even though the data for the year of birth is missing from the
datafile. If the MISSING FIELD VALUES ARE NULL clause was omitted from the

12-16 Oracle9i Database Utilities

field_definitions Clause

access parameters, then the second row would be rejected because it did not have a
value for the year_of birth column. The example is followed by a sample of the
datafile that can be used to load it.

CREATE TABLE (first_name CHAR(15), last name CHAR(20), year_of birth INT)
ORGANIZATION EXTERNAL (TYPE ORACLE LOADER DEFAULT DIRECTORY ext tab_dir
ACCESS PARAMETERS (FIELDS TERMINATED BY ¢/
MISSING FIELD VALUES ARE NULL)

LOCATION (foo.dat));
Alvin,Tolliver,1976
Baer,Kenneth
Mary,Dube, 1973
field_list
The field_list clause identifies the fields in the datafile and their datatypes.
Evaluation criteria for the field_list clause are as follows:

« If no datatype is specified for a field, it is assumed to be CHAR(255).

« Ifnofield list is specified, then the fields in the data file are assumed to be in the
same order as the fields in the external table. The datatype for all fields is
CHAR(255) .

« If nofield list is specified and no delim_spec clause is specified, then the
fields in the data file are assumed to be in the same order as fields in the
external table. All fields are assumed to be CHAR(255) and terminated by a
comma.

This example shows the definition for an external table with no field_list and a
delim_spec . Itis followed by a sample of the datafile that can be used to load it.

CREATE TABLE (first_name CHAR(15), last_name CHAR(20), year_of birth INT)
ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab _dir
ACCESS PARAMETERS (FIELDS TERMINATED BY 1)

LOCATION (foo.dat));
Alvin|Tolliver|1976
Kenneth|Baer|1963
Mary|Dube|1973
The syntax for the field_list clause is as follows:

External Tables Access Parameters 12-17

field_definitions Clause

M\
)
field_name @-)

field_name

The field_name is a string identifying the name of a field in the data source. If the
string is not within quotation marks, the name is uppercased when matching field
names with column names in the external table.

If field_name matches the name of a column in the external table, then the field is
loaded into that column. If the name does not match any name in the external table,
then the field is not loaded, but it can be used for clause evaluation (for example
WHENTr NULLIF).

pos_spec
The pos_spec clause indicates the position of the column within the record. For a
full description of the syntax, see pos_spec Clause on page 12-18.

datatype_spec
The datatype_spec clause indicates the datatype of the field. If datatype_spec

is omitted, the access driver assumes the datatype is CHAR(255) . For a full
description of the syntax, see datatype_spec Clause on page 12-20.

init_spec
The init_spec clause indicates when a field is NULL or has a default value. For a
full description of the syntax, see init_spec Clause on page 12-27.

pos_spec Clause

The pos_spec clause indicates the position of the column within the record. The
setting of the STRING SIZES ARE IN clause determines whether pos_spec refers
to either byte or character positions. Using character positions with varying-width
character sets takes significantly longer than using character positions with
fixed-width character sets. Binary and multibyte character data should not be
present in the same datafile when pos_spec is used for character positions. If they
are, then the results are unpredictable. The syntax for the pos_spec clause is as
follows:

12-18 Oracle9i Database Utilities

field_definitions Clause

start_offset

The start parameter is the number of bytes or characters from the beginning of
the record to where the field begins. It positions the start of the field at an absolute
spot in the record rather than relative to the position of the previous field.

*

The * parameter indicates that the field begins at the first byte or character after the
end of the previous field. This is useful if you have a varying-length field followed
by a fixed-length field. This option cannot be used for the first field in the record.

increment

The increment parameter positions the start of the field at a fixed number of bytes
or characters from the end of the previous field. Use *-increment to indicate that
the start of the field starts before the current position in the record (this is a costly
operation for multibyte character sets). Use *+increment to move the start after
the current position.

end

The end parameter indicates the absolute byte or character offset into the record for
the last byte of the field. If start is specified along with end, then end cannot be
less than start . If * orincrement s specified along with end, and the start
evaluates to an offset larger than the end for a particular record, then that record
will be rejected.

length

The length parameter indicates that the end of the field is a fixed number of bytes or
characters from the start. It is useful for fixed-length fields when the start is
specified with *.

The following example shows various ways of using pos_spec . It is followed by a
sample of the datafile that can be used to load it.

External Tables Access Parameters 12-19

field_definitions Clause

CREATE TABLE (first name CHAR(15),
last name CHAR(20),
year_of birth INT,
phone CHAR(12),
area_code CHAR(3),
exchange CHAR(Q3),
extension CHAR(4)
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_LOADER
DEFAULT DIRECTORY extemal_table_dir
ACCESS PARAMETERS
(FIELDS RTRIM
(first_name (1,15) CHAR(15),
last_name (*+20),
year_of hirth (36,39),
phone (40:52),
area_code (*-12, +3),
exchange (*+1, +3),
extension (*+1, +4)

)

)
LOCATION (foo.dat)
)
Alvin Tolliver 1976415-922-1982
Kenneth Baer 1963212-341-7912
Mary Dube 1973309-672-2341

datatype_spec Clause

The datatype_spec clause is used to describe the datatype of a field in the
datafile if the datatype is different than the default. The datatype of the field can be
different than the datatype of a corresponding column in the external table. The
access driver handles the necessary conversions. The syntax for the datatype__
spec clause is as follows:

12-20 Oracle9i Database Utilities

field_definitions Clause

UNSIGNED EXTERNAL

i INTEGER { Ien)

[DECIVAL | [EXTERNAL | m
(()=(precision) O—
ZONED

—| ORACLE_DATE
COUNTED
—| ORACLE_NUMBER

s DOUBLE EXTERNAL L
FLOAT

—| RAW
deIim_spec)e(trim_spec)—(date_format_spec)

VARCHAR

I VARRAW . length_of_length ‘
VARCHARC
VARRAWC

If the number of bytes or characters in any field is 0, then the field is assumed to be
NULL The optional DEFAULTIF clause specifies when the field is set to its default
value. Also, the optional NULLIF clause specifies other conditions for when the
column associated with the field is set to NULL If the DEFAULTIF or NULLIF clause
is true, then the actions of those clauses override whatever values are read from the
datafile.

Ui

See Also: init_spec Clause on page 12-27 for more information
about NULLIF and DEFAULTIF

[UNSIGNED] INTEGER [EXTERNAL] [(len)]

This clause defines a field as an integer. If EXTERNALis specified, the number is a
character string. If EXTERNALs not specified, the number is a binary field. The
valid values for len in binary integer fields are 1, 2, 4, and 8. If len is omitted for
binary integers, the default value is whatever the value of sizeof(int) is on the

External Tables Access Parameters 12-21

field_definitions Clause

platform where the access driver is running. Use of the DATA IS {BIG | LITTLE}
ENDIANclause may cause the data to be byte-swapped before it is stored.

If EXTERNALs specified, then the value of len is the number of bytes or characters
in the number (depending on the setting of the STRING SIZES ARE IN BYTESor
CHARACTERSause). If no length is specified, the default value is 255.

DECIMAL [EXTERNAL] and ZONED [EXTERNAL]

The DECIMALclause is used to indicate the field is a packed decimal number. The
ZONEDxlause is used to indicate the field is a zoned decimal number. The

precision field indicates the number of digits in the number. The scale field is
used to specify the location of the decimal point in the number. It is the number of
digits to the right of the decimal point. If scale is omitted, a value of 0 is assumed.

Note that there are different encoding formats of zoned decimal numbers
depending on whether the character set being used is EBCDIC-based or
ASCIlI-based. If the language of the source data is EBCDIC, then the zoned decimal
numbers in that file must match the EBCDIC encoding. If the language is
ASCIlI-based, then the numbers must match the ASCII encoding.

If the EXTERNALparameter is specified, then the data field is a character string
whose length matches the precision of the field.

ORACLE_DATE

ORACLE_DATEs a field containing a date in the Oracle binary date format. This is
the format used by the DTYDATdatatype in OCI programs. The field is a fixed
length of 7.

ORACLE_NUMBER

ORACLE_NUMBHRa field containing a number in the Oracle number format. The
field is a fixed length (the maximum size of an Oracle number field) unless
COUNTETIs specified, in which case the first byte of the field contains the number of
bytes in the rest of the field.

ORACLE_NUMBERa fixed-length 22-byte field. ORACLE_NUMBER COUNT&Bthe
number of bytes indicated by the count byte.

DOUBLE [EXTERNAL]

The DOUBLElause indicates the field is the same format as the C language DOUBLE
datatype on the platform where the access driver is executing. Use of the DATA IS

12-22 Oracle9i Database Utilities

field_definitions Clause

{BIG | LITTLE} ENDIAN clause may cause the data to be byte-swapped before it is
stored. This datatype may not be portable between certain platforms.

If the EXTERNALparameter is specified, then the field is a character string whose
maximum length is 255.

FLOAT [EXTERNAL]

The FLOATCclause indicates the field is the same format as the C language FLOAT
datatype on the platform where the access driver is executing. Use of the DATA IS
{BIG | LITTLE} ENDIAN clause may cause the data to be byte-swapped before it is
stored. This datatype may not be portable between certain platforms.

If the EXTERNALparameter is specified, then the field is a character string whose
maximum length is 255.

RAW

The RAWlause is used to indicate the source data is binary data. The len for RAW
fields is always in number of bytes. When a RAWfield is loaded in a character
column, the data that is written into the column is the hexadecimal representation
of the bytes in the RAWfield.

CHAR

The CHARclause is used to indicate a field is a character datatype. The length (len)
for CHARfields specifies the largest number of bytes or characters in the field. The
len is in bytes or characters, depending on the setting of the STRING SIZES ARE
IN clause.

If no length is specified for a field of datatype CHARthen the size of the field is
assumed to be 1.

The date_format_spec clause is used to indicate that the field contains a date or
time in the specified format.

The following example shows the use of the CHARclause. It is followed by a sample
of the datafile that can be used to load it.

CREATE TABLE (first name CHAR(15),
last name CHAR(20),
hire_date CHAR DATE MASK “mmvddiyyyy’,
resume_fle CHAR(500))
ORGANIZATION EXTERNAL
(TYPE ORACLE_LOADER
DEFAULT DIRECTORY data file_dir

External Tables Access Parameters 12-23

field_definitions Clause

ACCESS PARAMETERS
(FIELDS TERMINATED BY ","
(first_name,
last_name,
hire_date,
resume_file

)

)
LOCATION (foo.dat)
)

Alin, Talliver,12/2/1995 tolliver_resume.ps
Kenneth,Baer,6/6/1997,KB_resume.ps
Mary,Dube,1/18/2000,dube_resume.ps

VARCHAR and VARRAW

The VARCHARIatatype has a binary count field followed by character data. The
value in the binary count field is either the number of bytes in the field or the
number of characters. See STRING SIZES ARE IN on page 12-6 for information on
how to specify whether the count is interpreted as a count of characters or count of
bytes.

The VARRAW atatype has a binary count field followed by binary data. The value in
the binary count field is the number of bytes of binary data. The data in the VARRAW
field is not affected by the DATA IS...ENDIANCclause.

The optional length_of length field in the specification is the number of bytes
in the count field. Valid values for length_of length for VARCHARIre 1, 2, 4,
and 8. If length_of length is not specified, a value of 2 is used. The count field
has the same endianness as specified by the DATA IS...ENDIANclause.

The max_len field is used to indicate the largest size of any instance of the field in
the data source. For VARRAMWields, max_len is number of bytes. For VARCHAR
fields, max_len is either number of characters or number of bytes depending on the
STRING SIZES ARE INclause.

The following example shows various uses of VARCHARNd VARRAW.TFie binary
values for the count bytes and value for raw data are shown in the datafile in italics,
with 2 characters per binary byte.

CREATE TABLE (first name CHAR(15),
last name CHAR(20),
resume CHAR(2000),
picture RAW(2000))
ORGANIZATION EXTERNAL

12-24 Oracle9i Database Utilities

field_definitions Clause

(TYPE ORACLE_LOADER

DEFAULT DIRECTORY file_source_dir

ACCESS PARAMETERS

(FIELDS (first_ name VARCHAR(12),
last name VARCHAR(2,20),
resume VARCHAR(4,10000),
picture VARRAW(4,100000)
)

)

LOCATION (foo.dat)

)

0005ANIn 0008Toliver 0000001DANIN Toliver's Resume
etc. 0000001013f4690a30bc29d7e40023ab4599ffF

VARCHARC and VARRAWC

The VARCHARG@atatype has a character count field followed by character data. The
value in the count field is either the number of bytes in the field or the number of
characters. See STRING SIZES ARE IN on page 12-6 for information on how to
specify whether the count is interpreted as a count of characters or count of bytes.
The optional length_of length is either the number of bytes or the number of
characters in the count field for VARCHARQepending on whether lengths are
being interpreted as characters or lengths.

The VARRAW@atatype has a character count field followed by binary data. The
value in the count field is the number of bytes of binary data. The length_of
length is the number of bytes in the count field.

The maximum value for length_of lengths for VARCHARG 10 if string sizes
are in characters, and 20 if string sizes are in bytes. The default value for length_
of length isb.

The max_len field is used to indicate the largest size of any instance of the field in
the data source. For VARRAWGelds, max_len is number of bytes. For VARCHARC
fields, max_len is either number of characters or number of bytes depending on the
STRING SIZES ARE INclause.

The following example shows various uses of VARCHAR@nd VARRAWO he length
of the picture field is 0, which means the field is set to NULL

CREATE TABLE (first name CHAR(15),
last name CHAR(20),
resume CHAR(2000),
picture RAW (2000))
ORGANIZATION EXTERNAL

External Tables Access Parameters 12-25

field_definitions Clause

(
TYPE ORACLE LOADER

DEFAULT DIRECTORY data file_dir
ACCESS PARAMETERS
(FIELDS (first_name VARCHARC(12),
last name VARCHARC(2,20),
resume VARCHARC(4,10000),
picture VARRAWC(4,100000)
)
)
LOCATION (foo.dat)
)

00007WiliamO5Ricca0035Resume for William Ricca is missing.0000

dateformat_spec

The dateformat_spec clause is used to indicate a character string field contains
date and/or time data in a specific format. This information is used only when a
character field is converted to a date or time datatype and only when a character
string field is mapped into a date column. The syntax for the dateformat_spec
clause is as follows:

f—)| Wit | TIMEZONE h]—){ MASK F@-)Cdate/time mask

TIMESTAMP
YEAR_TO_MONTH
INTERVAL
DAY_TO_SECOND

DATEFORMAT

DATE The DATEclause indicates the string contains a date.

MASK The MASKclause is used to override the default globalization format mask
for the datatype. If a date mask is not specified, then the session’s setting for the
appropriate globalization parameter for the datatype is used.

« NLS_DATE_FORMAfr DATEdatatypes
« NLS_TIME_FORMATor TIME datatypes
« NLS_TIMESTAMP_FORMA®r TIMESTAMPdatatypes

12-26 Oracle9i Database Utilities

field_definitions Clause

« NLS_TIME_WITH_TIMEZONE_FORMA®r TIME WITH TIME ZONElatatypes
« NLS_TIMESTAMP_WITH_TIMEZONE_FORMfF TIMESTAMP WITH TIME
ZONEdatatypes

TIME The TIME clause indicates that a field contains a formatted time string.

TIMESTAMP The TIMESTAMRPRclause indicates that a field contains a formatted time
stamp.

INTERVAL The INTERVAL clause indicates that a field contains a formatted interval.
The type of interval can be either YEAR TO MONTét DAY TO SECOND

init_spec Clause

The init_spec clause is used to specify when a field should be set to NULL or
when it should be set to a default value. The syntax for the init_spec clause is as
follows:

e

Only one NULLIF clause and only one DEFAULTIF clause can be specified for any
field. These clauses behave as follows:

« If NULLIF condition_spec is specified and it evaluates to true , the field is
set to NULL

« If DEFAULTIF condition_spec is specified and it evaluates to true , the
value of the field is set to a default value. The default value depends on the
datatype of the field, as follows:

— For a character datatype, the default value is an empty string.
— For a numeric datatype, the default value is a 0.
— For a date datatype, the default value is NULL

« IfaNULLIF clause and a DEFAULTIF clause are both specified for a field, then
the NULLIF clause is evaluated first and the DEFAULTIF clause is evaluated
only if the NULLIF clause evaluates to false

External Tables Access Parameters 12-27

field_definitions Clause

12-28 Oracle9i Database Utilities

Part |V

DBVERIFY

This section contains the following chapter, which describes how to use the offline
database verification utility:

Chapter 13, "DBVERIFY: Offline Database Verification Utility"

13

DBVERIFY: Offline Database Verification
Utility

DBVERIFY is an external command-line utility that performs a physical data
structure integrity check on an offline database. It can be used against backup files
and online files (or pieces of files). You use DBVERIFY primarily when you need to
ensure that a backup database (or datafile) is valid before it is restored or as a
diagnostic aid when you have encountered data corruption problems.

Because DBVERIFY can be run against an offline database, integrity checks are
significantly faster.

DBVERIFY checks are limited to cache-managed blocks (that is, data blocks).
Because DBVERIFY is only for use with datafiles, it will not work against control
files or redo logs.

There are two command-line interfaces to DBVERIFY. With the first interface, you
specify disk blocks of a single datafile for checking. With the second interface, you
specify a segment for checking. The following sections provide descriptions of these
interfaces:

« Using DBVERIFY to Validate Disk Blocks of a Single Datafile
« Using DBVERIFY to Validate a Segment

Note: The name and location of DBVERIFY is dependent on your
operating system (for example, dbv on Sun/Sequent systems). See
your operating system-specific Oracle documentation for the
location of DBVERIFY for your system.

DBVERIFY: Offline Database Verification Utility 13-1

Using DBVERIFY to Validate Disk Blocks of a Single Datafile

Using DBVERIFY to Validate Disk Blocks of a Single Datafile

In this mode, DBVERIFY scans one or more disk blocks of a single datafile and
performs page checks.

Syntax

EelGD

START
Yo

END

H BLOCKSIZE |->@{imeger)—

- FEEDBACK F@e(imegeoi

Y]
HELP
-9

Y

\| PARFILE F@»Cfilename)—

Parameters

FILE
START

END

BLOCKSIZE

LOGFILE

FEEDBACK

HELP

13-2 Oracle9i Database Utilities

The name of the database file to verify.

The starting block address to verify. Specify block addresses in
Oracle blocks (as opposed to operating system blocks). If you do not
specify START DBVERIFY defaults to the first block in the file.

The ending block address to verify. If you do not specify END
DBVERIFY defaults to the last block in the file.

BLOCKSIZHs required only if the file to be verified does not have a
block size of 2 KB. If the file does not have block size of 2 KB and you
do not specify BLOCKSIZE you will receive the error DBV-00103.

Specifies the file to which logging information should be written. The
default sends output to the terminal display.

Causes DBVERIFY to send a progress display to the terminal in the
form of a single period (.) for n number of pages verified during the
DBVERIFY run. If n =0, there is no progress display.

Provides online help.

Using DBVERIFY to Validate Disk Blocks of a Single Datafile

PARFILE Specifies the name of the parameter file to use. You can store various
values for DBVERIFY parameters in flat files. This allows you to
customize parameter files to handle different types of datafiles and to
perform specific types of integrity checks on datafiles.

Command-Line Interface

The following example shows a sample use of the command-line interface to this
mode of DBVERIFY.

% dbv FILE=t_db1.dbf FEEDBACK=100

Sample DBVERIFY Output

The following example is sample output of verification for the file t_db1.dbf.
The feedback parameter has been given the value 100 to display one period (.) for
every 100 pages processed:

% dbv FILE=t_db1.dbf FEEDBACK=100

DBVERIFY: Release 9.0.1.0.0 - Production on Mon Apr 4 14:27:20 2001
() Copyright 2001 Oracle Corporation. All rights reserved.

DBVERIFY - Verification starting : FILE =t_db1.dbf

DBVERIFY - Verification complete

Total Pages Examined :9216
Total Pages Processed (Data) : 2044
Total Pages Failing (Data) : 0

Total Pages Processed (Index): 733
Total Pages Failing (Index): 0

Total Pages Empty 5686
Total Pages Marked Corrupt : 0

Total Pages Influx :0

Notes:
« Pages = Blocks

« Total Pages Examined = number of blocks in the file

DBVERIFY: Offline Database Verification Utility 13-3

Using DBVERIFY to Validate a Segment

« Total Pages Processed = number of blocks that were verified (formatted
blocks)

« Total Pages Failing (Data) = number of blocks that failed the data block
checking routine

« Total Pages Failing (Index) = number of blocks that failed the index block
checking routine

« Total Pages Marked Corrupt = number of blocks for which the cache header
is invalid, thereby making it impossible for DBVERIFY to identify the block

type

« Total Pages Influx = number of blocks that are being read and written to at
the same time. If the database is open when DBVERIFY is run, DBVERIFY
reads blocks multiple times to get a consistent image. But because the
database is open, there may be blocks that are being read and written to at
the same time (INFLUX). DBVERIFY cannot get a consistent image of pages
that are in flux.

Using DBVERIFY to Validate a Segment

In this mode, DBVERIFY allows you to specify a table segment or index segment for
verification. It checks to make sure that a row chain pointer is within the segment
being verified.

This mode requires that you specify a segment (data or index) to be validated. It
also requires that you log on to the database with SYSDBAprivileges, because
information about the segment must be retrieved from the database.

During this mode, the segment is locked. If the specified segment is an index, the
parent table is locked. Note that some indexes, such as IOTs, do not have parent
tables.

13-4 Oracle9i Database Utilities

Using DBVERIFY to Validate a Segment

Syntax

e

- SEGMENT_ID P@{tsn.segfile.segblock}—

—| LOGFILE |—>®{filename>7

—| FEEDBACK |—>®a(integer>7—>
HELP

| HELP (=)

\ PARFILE F@»(filename)—/

Parameters

USERID Specifies your username and password.

SEGMENT_ID Specifies the segment that you want to verify. You can identify the
tsn , sedfile , and segblock by joining and querying the
appropriate data dictionary tables, for example, USER_TABLESnd
USER_SEGMENTS.

LOGFILE Specifies the file to which logging information should be written. The
default sends output to the terminal display.

FEEDBACK Causes DBVERIFY to send a progress display to the terminal in the
form of a single period (.) for n number of pages verified during the
DBVERIFY run. If n =0, there is no progress display.

HELP Provides online help.

PARFILE Specifies the name of the parameter file to use. You can store various
values for DBVERIFY parameters in flat files. This allows you to
customize parameter files to handle different types of datafiles and to
perform specific types of integrity checks on datafiles.

Command-Line Interface

The following example shows a sample use of the command-line interface to this
mode of DBVERIFY.

dbv USERID= usemame | password SEGMENT _ID=tsn . segfle . segblock

DBVERIFY: Offline Database Verification Utility 13-5

Using DBVERIFY to Validate a Segment

13-6 Oracle9i Database Utilities

PartVV

Appendixes

This section contains the following appendixes:

Appendix A, "SQL*Loader Syntax Diagrams”

This appendix provides diagrams of the SQL*Loader syntax.
Appendix B, "DB2/DXT User Notes"

This appendix describes differences between the data definition language syntax of
SQL*Loader and DB2 Load Utility control files.

A

SQL*Loader Syntax Diagrams

The SQL*Loader DDL diagrams (sometimes called railroad diagrams) use standard
SQL syntax notation. For more information about the syntax notation used in this
chapter, see the PL/SQL User’s Guide and Reference and the Oracle9i SQL Reference.

The following diagrams of DDL syntax are shown with certain clauses collapsed
(such as pos_spec). These diagrams are expanded and explained further along in
the appendix.

Options Clause

—>| OPTIONS F@»{options}a@»

Load Statement

| UNRECOVERABLE I
RECOVERABLE

LOAD DATA [—>| CHARACTERSET |—>Cchar_set_nameh

CONTINUE_LOAD

SEMANTICS
LENGTH
BYTEORDER

CHARACTER

|

SQL*Loader Syntax Diagrams A-1

BYTEORDERMARK

=y

| | READSIZE @ f_)l READBUFFERS Mntegerh

f_)l PRESERVE |—>| BLANKS |-\ (—ﬁ BEGINDATA
('into_table_clause)

infile_clause

BADFILE |->(fi|ename

INFILE os_file_proc_clause

input_filenamey

DISCARDFILE
H .filename .integer
DISCARDDN

| DISCARDS q
DISCARDMAX

A-2 Oracle9/ Database Utilities

os_file_proc_clause

var

-

'string’

X'hex_string

'Il

fix
N integer)

concatenate_clause

0l&D0

CONCATENATE

)| 0
R 0

pos_spec

CONTINUEIF

®
Gy

into_table_clause

]

SQL*Loader Syntax Diagrams A-3

INDEXES
~{ SORTED SINGLEROW

f_)| OPTIONS F@{FILE:database_filenamem
f_)l EVALUATE_CHECK_CONSTRAINTS |-\ f->| REENABLE |—\ f_)| DISABLED_CONSTRAINTS |-\
\

[

EXCEPTIONS f_)| WHEN |—>(fie|d_conditionh

0]

ID
,>| FIELDS \ ,>| TRAILING

1

f_)| TREAT |->| AS |—>(typenameh
(field_lst)

A-4 Oracle9i Database Utilities

field_condition

‘char_string’

fi

ull_fieldname

operator

pos_spec

|

BLANKS

delim_spec

enclosure_spec

/

termination_spec

full_fieldname
full_fieldname

termination_spec

WHITESPACE

X'hexstr’

TERMINATED

enclosure_spec

G
X'hexstr’

=2
X'hexstr

S
ENCLOSED

SQL*Loader Syntax Diagrams A-5

oid_spec

—>| OID @{fieldname)@

sid_spec

field_list

%
d_gen_fld_spec
' scalar_fld_spec .
column_name

col_obj_fld_spec

collection_fld_spec
' filler_fld_spec ‘

A-6 Oracle9i Database Utilities

d_gen_fld_spec

f| RECNUM

—| SYSDATE
CONSTANT val

init_spe

)

J

\] EXPRESSION |e®—><sql string)@

ref_spec

init_spec

=

(M
N\

AND

l field_condition '

SQL*Loader Syntax Diagrams A-7

bfile_spec

@

o)
filler_fld_spec

FILLER
BOUNDFILLER

f—)| datatype_spec |—\ f—)| PIECED |—\

scalar_fld_spec

LOBFILE_spec
datatype_spec PIECED
~>—| [al POSITION |—><pos_spec I

lobfile_spec

CHARACTERSET

fieldname

CONSTANT F(ﬁmnamé)J

BYTE
[CHAR |
LENGTH CHAR

ENDIAN
CHARACTER w

BYTEORDER
LITTLE

|

A-8 Oracle9i Database Utilities

()

datatype_spec
The syntax for datatype_spec s as follows:

SQL*Loader Syntax Diagrams A-9

A delim_spec }
==
length m
PEEm (delm_spec) .
,—)l EXTERNAL \

FLOAT
EXTERNAL | \

, scale }
Lo

| DECIMAL I
ZONED

DOUBLE

BYTEINT

ﬁ
=)
SMALLINT
-
RAW

-
GRAPHIC

iy LOTEHO Gy
CHAR
~ Oz

H vARCHARC F@»(Iength_of_\ength) @
O
—I VARRAWC P@{\engthfofjength) @

LONG g
o
—| DATE

[— TIME B ZONE |—\ f{"mask"h

TIMESTAMP

INTERVAL

A-10 Oracle9/ Database Utilities

col_obj_fld_spec

[a| TREAT H AS Ktypenameh sql_string_spec
—>| COLUMN |->| OBJECT } (field_list)

collection_fld_spec

nested_table_spec

i

varray_spec

nested_table_spec

-SDF_spec
—>| NESTED |->| TABLE | A

count_spec

field_st

varray_spec

oD
—>| VARRAY e field_list

sdf_spec

CONSTANT |->(ﬁ|ename

os_file_proc_clause READSIZE @

SDF ((

BYTE
SEMANTICS
LENGTH CHAR
CHARACTERSET CHARACTER ‘

SQL*Loader Syntax Diagrams A-11

BYTEORDER

ENDIAN
BYTEORDERMARK
LITTLE 1

count_spec

CONSTANT Kpositive_integer

A-12 Oracle9/ Database Utilities

B

DB2/DXT User Notes

This appendix describes differences between SQL*Loader DDL syntax and DB2
Load Utility/DXT control file syntax. The topics discussed include:

« Using the DB2 RESUME Option
« Inclusions for Compatibility
« Restrictions

« SQL*Loader Syntax with DB2-Compatible Statements

Using the DB2 RESUME Option

If the tables you are loading already contain data, you have three choices (shown in
Table B-1) for the disposition of that data.

Table B-1 DBZ2 Functions and Equivalent SQL*Loader Options

DB2 SQL*Loader Options Result

RESUME N@r no INSERT Data is loaded only if the table is

RESUMElause empty. Otherwise an error is
returned.

RESUME YES APPEND New data is appended to
existing data in the table, if any.

RESUME NO REPLACE REPLACE New data replaces existing table
data, if any.

The DB2 syntax for the RESUMIElause is as follows:
RESUME { YES |NO[REPLACE]}

DB2/DXT User Notes B-1

Inclusions for Compatibility

Instead of the DB2 syntax for RESUMEyou may prefer to use the equivalent
SQL*Loader options.

In SQL*Loader, you can use one RESUMEElause to apply to all loaded tables by
placing the RESUMIElause before any INTO TABLE clauses. Alternatively, you can
specify your RESUMBptions on a table-by-table basis by putting a RESUMElause
after the INTO TABLEspecification. The RESUMIBption following a table name will
override one placed earlier in the file. The earlier RESUMHRpplies to all tables that
do not have their own RESUMIEElause.

Inclusions for Compatibility

The IBM DB2 Load Utility contains certain elements that SQL*Loader does not use.
In DB2, sorted indexes are created using external files, and specifications for these
external files may be included in the load statement. For compatibility with the DB2
loader, SQL*Loader parses these options, but ignores them if they have no meaning
for the Oracle database server. The syntactical elements described in the following
section are allowed, but ignored, by SQL*Loader.

LOG Statement

This statement is included for compatibility with DB2. It is parsed but ignored by
SQL*Loader. (This LOGoption has nothing to do with the log file that SQL*Loader
writes.) DB2 uses the log file for error recovery, and it may or may not be written.

SQL*Loader relies on Oracle’s automatic logging, which may or may not be enabled
as a warm start option.

[LOG{YES|NO}]

WORKDDN Statement

This statement is included for compatibility with DB2. It is parsed but ignored by
SQL*Loader. In DB2, this statement specifies a temporary file for sorting.

[WORKDDN filename]

SORTDEVT and SORTNUM Statements

SORTDEVHENnd SORTNUMre included for compatibility with DB2. These statements
are parsed but ignored by SQL*Loader. In DB2, these statements specify the number
and type of temporary data sets for sorting.

[SORTDEVT device type |

B-2 Oracle9/ Database Utilities

Restrictions

[SORTNUM n]

DISCARD Specification

Restrictions

Multiple file handling requires that the discard clauses (DISCARDDNind
DISCARDS be in a different place in the control file—next to the datafile
specification. However, when you are loading a single DB2-compatible file, these
clauses can be in their old position—between the RESUMEBNd RECLENlauses.
Note that while the DB2 Load Utility DISCARDSoption zero (0) means no
maximum number of discards, for SQL*Loader, option zero means to stop on the
first discard.

Some aspects of the DB2 loader are not duplicated by SQL*Loader. For example,
SQL*Loader does not load data from SQL/DS files or from DB2 UNLOAUiles.
SQL*Loader gives an error upon encountering the DB2 Load Utility commands
described in the following sections.

FORMAT Statement

The DB2 FORMABtatement must not be present in a control file to be processed by
SQL*Loader. The DB2 loader will load DB2 UNLOADormat, SQL/DS format, and
DB2 Load Utility format files. SQL*Loader does not support these formats. If the
FORMATBtatement is present in the command file, SQL*Loader will stop with an
error. (IBM does not document the format of these files, so SQL*Loader cannot read
them.)

FORMAT { UNLOAD | SQLDS }

PART Statement

The PARTstatement is included for compatibility with DB2. There is no Oracle
concept that corresponds to a DB2 partitioned table.

In SQL*Loader, the entire table is read. A warning indicates that partitioned tables
are not supported, and that the entire table has been loaded.

[PART n]

DB2/DXT User Notes B-3

SQL*Loader Syntax with DB2-Compatible Statements

SQL/DS Option

The option SQL/DS=tablename must not be used in the WHENIause. SQL*Loader does
not support the SQL/DS internal format. If the SQL/DS option appears in this statement,
SQL*Loader will terminate with an error.

DBCS Graphic Strings

Because the Oracle database server does not support the double-byte character set
(DBCS), graphic strings of the form G™** are not permitted.

SQL*Loader Syntax with DB2-Compatible Statements

In the following listing, DB2-compatible statements are in bold type:

OPTIONS (options)
{LOAD | CONTINUE_LOAD }[DATA]
[CHARACTERSET character_set name]

[{INFILE | INDDN }{ filename |*}]
[" OS-dependent file processing options string "]
[{ BADFILE | BADDN } filename]

[{ DISCARDFILE | DISCARDDN } flename]
[{DISCARDS | DISCARDMAX} n]]

[{INFILE | INDDN}]...

[APPEND | REPLACE | INSERT |

RESUME [(] { YES | NO [REPLACE] }])]]
[LOG{YES|NO}]

[WORKDDN fiename |

[SORTDEVT device e |

[SORTNUM n]

[{CONCATENATE[] n[]|

CONTINUEIF {[THIS | NEXT]

aC st [{:]-} end])|LAST}
operator {* char s '|X hex.str '}DI}
[PRESERVE BLANKS]

INTO TABLE tablename
[CHARACTERSET character_set name |
[SORTED [INDEXES] (index_name [, index_name ...])]

[PART n]

[APPEND | REPLACE | INSERT |

RESUME [(] { YES | NO [REPLACE] } [)]]

[REENABLE [DISABLED _CONSTRAINTS] [EXCEPTIONS table_name]]
[WHEN field_condition [AND field_condition 1]

[FIELDS [delimiter_spec 11

B-4 Oracle9/ Database Utilities

SQL*Loader Syntax with DB2-Compatible Statements

[TRAILING [NULLCOLS]]

[SKIP n]

(. column_name

{[RECNUM

| SYSDATE | CONSTANT value

|SEQUENCE ({ n|MAX|COUNT}[, increment 1)
| [POSITION ({ start [{|} end]|*[+ nil
| datatype spec]

[NULLIF field_condition]

[DEFAULTIF field_condition]
[" sqlsting "]]1]}

[, column_name 1]..)

[INTO TABLE]...[BEGINDATA]

[BEGINDATA]

DB2/DXT User Notes B-5

SQL*Loader Syntax with DB2-Compatible Statements

B-6 Oracle9/ Database Utilities

A

access privileges
Export, 1-5
Import, 2-5

Advanced Queuing
exporting advanced queue tables, 1-55
importing advanced queue tables, 2-60
aliases
directory
exporting, 1-54
importing, 2-58
analyzer statistics, 2-67
APPEND parameter
for SQL*Loader utility, 5-37
append to table
example, 10-11
SQL*Loader, 5-32
archiving
disabling
effect on direct path loads, 9-18
arrays
committing after insert, 2-19
atomic null, 7-7

attributes
null, 7-6
B
backslash escape character, 5-6
backups
restoring dropped snapshots
Import, 2-63
bad files

Index

specifying for SQL*Loader, 5-11
BAD parameter
for SQL*Loader command line, 4-3
BADDN parameter
for SQL*Loader utility, 5-11
BADFILE parameter
for SQL*Loader utility, 5-11
BEGINDATA parameter
for SQL*Loader control file, 5-10
BFILE columns
exporting, 1-54
importing, 2-58
BFILE datatype, 7-17
big endian data
external tables, 12-6
bind arrays
determining size of for SQL*Loader, 5-44
minimizing SQL*Loader memory
requirements, 5-47
minimum requirements, 5-43
size with multiple SQL*Loader INTO TABLE
statements, 5-48
specifying maximum size, 4-4
specifying number of rows, 4-10
SQL*Loader performance implications, 5-43
BINDSIZE parameter
for SQL*Loader command line, 4-4,5-43
blanks
loading fields consisting of blanks, 6-41
SQL*Loader BLANKS parameter for field
comparison, 6-30
trailing, 6-27
trimming, 6-41
external tables, 12-15

Index-1

whitespace, 6-41
BLANKS parameter
for SQL*Loader utility, 6-30
bound fillers, 6-6
BUFFER parameter
for Export utility, 1-15
for Import utility, 2-18
buffers
calculating for export, 1-15
space required by
VARCHAR data in SQL*Loader, 6-13
specifying with SQL*Loader BINDSIZE
parameter, 5-44
byte order, 6-36
big endian, 6-36
little endian, 6-36
specifying in SQL*Loader control file, 6-37
byte order marks, 6-38
precedence
for first primary datafile, 6-38
for LOBFILEs and SDFs, 6-40
suppressing checks for, 6-40
BYTEINT datatype, 6-8to 6-10
BYTEORDER parameter
for SQL*Loader utility, 6-38
BYTEORDERMARK parameter
for SQL*Loader utility, 6-40

C

cached sequence numbers
Export, 1-53
case studies
SQL*Loader, 10-1
SQL*Loader filenames, 10-4
See also SQL*Loader
catalog.sql script
preparing database for Export, 1-3
preparing database for Import, 2-5
catexp.sql script
preparing database for Export, 1-3
preparing database for Import, 2-5
catldr.sql script
preparing for direct path loads, 9-9
CHAR columns

Index-2

Version 6 export files, 2-70
CHAR datatype
delimited form and SQL*Loader, 6-23
reference
SQL*Loader, 6-15
character datatypes
conflicting fields, 6-27
character fields
delimiters and SQL*Loader, 6-15, 6-23
determining length for SQL*Loader, 6-27
SQL*Loader datatypes, 6-15
character sets
conversion
during Export/Import, 1-51,2-54
eight-bit to seven-bit conversions
Export/Import, 1-51, 2-55
identifying for external tables, 12-5
multibyte
Export/Import, 1-52, 2-55
SQL*Loader, 5-17
single-byte
Export/Import, 1-51, 2-55
SQL*Loader control file, 5-21
SQL*Loader conversion between, 5-16
Unicode, 5-17,10-47
Version 6 conversions
Import/Export, 2-55
character strings
external tables
specifying bytes or characters, 12-6
SQL*Loader, 6-31
character-length semantics, 5-22
CHARACTERSET parameter
for SQL*Loader utility, 5-20
CHARSET parameter
for Import utility, 2-18
check constraints
overriding disabling of, 9-23
CLOBs
example, 10-38
collections, 3-13
loading, 7-24
column array rows
specifying number of, 9-19
column objects

loading, 7-1
COLUMNARRAYROWS parameter

for SQL*Loader command line, 4-4
columns

exporting LONG datatypes, 1-53

loading REF columns, 7-11

naming

SQL*Loader, 6-6
objects

loading nested column objects, 7-4

stream record format, 7-2
variable record format, 7-3
reordering before Import, 2-8
setting to a constant value with
SQL*Loader, 6-54

setting to a unique sequence number with

SQL*Loader, 6-56
setting to an expression value with
SQL*Loader, 6-55

setting to null with SQL*Loader, 6-54

setting to the current date with
SQL*Loader, 6-55

setting to the datafile record number with

SQL*Loader, 6-55
specifying
SQL*Loader, 6-5
specifying as PIECED
SQL*Loader, 9-15

using SQL*Loader, 6-55
command-line parameters

Export, 1-13

Import, 2-14

specifying in SQL*Loader control file,

SQL*Loader, 4-1
comments

in Export parameter file, 1-7

in Import parameter file, 2-12

in SQL*Loader control file, 10-12

with external tables, 12-2
COMMIT parameter

for Import utility, 2-19
COMPILE parameter

for Import utility, 2-19
completion messages

Export, 1-46

5-4

Import, 2-46
COMPRESS parameter
for Export utility, 1-16
CONCATENATE parameter
for SQL*Loader utility, 5-26
concurrent conventional path loads,
connect strings
Oracle Net, 1-50
CONSISTENT parameter
for Export utility, 1-16
nested tables and, 1-17
partitioned table and, 1-17
consolidating
extents, 1-16
CONSTANT parameter
SQL*Loader, 6-54
constraints
automatic integrity and SQL*Load
direct path load, 9-22
disabling referential constraints,
enabling
after a parallel direct path load,
enforced on a direct load, 9-22
failed
Import, 2-47
load method, 9-8

preventing Import errors due to uniqueness

constraints, 2-19
CONSTRAINTS parameter
for Export utility, 1-18
for Import utility, 2-20
CONTINUE_LOAD parameter
for SQL*Loader utility, 5-25
CONTINUEIF parameter
example, 10-15
for SQL*Loader utility, 5-26
continuing
interrupted loads
SQL*Loader, 5-24
control files
character sets, 5-21
creating
guidelines, 3-3
data definition language syntax,
specifying data, 5-10

9-27

er,

2-9

9-31

5-2

specifying SQL*Loader discard file, 5-14

CONTROL parameter
for SQL*Loader command line, 4-4
conventional path Export
compared to direct path, 1-47
conventional path loads
compared to direct path loads, 9-8
concurrent, 9-28
of a single partition, 9-2
SQL*Loader bind array, 5-43
when to use, 9-3
conversion of character sets
during Export/Import, 1-51
effect of character set sorting on, 1-51
conversion of input characters, 5-19
CREATE SESSION privilege

Export, 1-4

Import, 2-5
CREATE USER command

Import, 2-70
creating

tables

manually, 2-8

D

data

delimiter marks in data and SQL*Loader,
distinguishing different input formats for

SQL*Loader, 5-37

distinguishing different input row object

subtypes, 5-37,5-40
exporting, 1-25
formatted data and SQL*Loader, 10-28
generating unique values with
SQL*Loader, 6-56
including in control files, 5-10

loading data contained in the SQL*Loader

control file, 6-54
loading in sections
SQL*Loader, 9-14
loading into more than one table
SQL*Loader, 5-37
loading LONG
SQL*Loader, 6-15

Index-4

maximum length of delimited data for

SQL*Loader, 6-27

moving between operating systems using

SQL*Loader, 6-35
saving in a direct path load, 9-12
saving rows
SQL*Loader, 9-18
unsorted
SQL*Loader, 9-17
values optimized for SQL*Loader
performance, 6-54
data fields
specifying the SQL*Loader datatype,
DATA parameter
for SQL*Loader command line, 4-4
data path loads
direct and conventional, 9-1
data recovery
direct path load
SQL*Loader, 9-13
database migration
partitioning of, 1-57
database objects
exporting LONG columns, 1-53
databases
exporting entire, 1-21
full import, 2-22
privileges for exporting, 1-4
reducing fragmentation, 2-53
reusing existing data files
Import, 2-20
datafiles
preventing overwrite during import,
reusing during import, 2-20
specifying, 4-4
specifying buffering for SQL*Loader,
specifying for SQL*Loader, 5-7

6-7

2-20

5-11

specifying format for SQL*Loader, 5-11

DATAFILES parameter
for Import utility, 2-20

datatypes

BFILE
Export, 1-54
Import, 2-58

BYTEINT, 6-10

CHAR, 6-15 mask

conflicting character datatype fields, 6-27 SQL*Loader, 6-28
converting SQL*Loader, 6-22 SQL*Loader, 6-16
DATE, 6-16 datetime datatypes, 6-15
datetime, 6-15 DB2 load utility
DECIMAL, 6-11 placement of statements
default in SQL*Loader, 6-7 DISCARDDN, B-3
describing for external table fields, 12-20 DISCARDS, B-3
determining character field lengths for restricted capabilities of SQL*Loader, B-3
SQL*Loader, 6-27 RESUME parameter, 5-32
determining DATE length, 6-28 SQL*Loader compatibility
DOUBLE, 6-10 ignored statements, B-2
FLOAT, 6-9 DBA role
GRAPHIC, 6-18 EXP_FULL_DATABASE role, 1-4
GRAPHIC EXTERNAL, 6-18 IMP_FULL_DATABASE role, 2-5
identifying for external tables, 12-17 DBCS (DB2 double-byte character set)
interval, 6-15 not supported by Oracle, B-4
LONG DBVERIFY utility
Export, 1-53 output, 13-3
Import, 2-60 restrictions, 13-1
LONG VARRAW, 6-14 syntax, 13-2
native validating a segment, 13-4
conflicting length specifications in validating disk blocks, 13-2
SQL*Loader, 6-21 DECIMAL datatype, 6-11
nonportable, 6-8 (packed), 6-8
nonscalar, 7-6 EXTERNAL format
NUMBER SQL*Loader, 6-19
SQL*Loader, 6-22,6-23 DEFAULT column values
numeric EXTERNAL, 6-19 Oracle Version 6 export files, 2-70
portable, 6-14 DEFAULTIF parameter
RAW, 6-20 SQL*Loader, 6-28
SMALLINT, 6-9 DELETE ANY TABLE privilege
specifying the SQL*Loader datatype of a data SQL*Loader, 5-32
field, 6-7 DELETE CASCADE
VARCHAR, 6-13 effect on loading nonempty tables, 5-32
VARCHAR?2 SQL*Loader, 5-32
SQL*Loader, 6-22 DELETE privilege
VARCHARC, 6-20 SQL*Loader, 5-32
VARGRAPHIC, 6-11 delimited data
VARRAVW, 6-14 maximum length for SQL*Loader, 6-27
VARRAWC, 6-21 delimited fields
ZONED, 6-10 field length, 6-28
DATE datatype delimited LOBs, 7-21
delimited form and SQL*Loader, 6-23 delimiters
determining length, 6-28 in external tables, 12-4

Index-5

initial and trailing example, 10-28
loading trailing blanks, 6-27
marks in data and SQL*Loader, 6-26
specifying for external tables, 12-12
specifying for SQL*Loader, 5-34, 6-23
SQL*Loader enclosure, 6-44
SQL*Loader field specifications, 6-44
termination, 6-45
DESTROY parameter
for Import utility, 2-20
DIRECT parameter
for Export utility, 1-18
for SQL*Loader command line, 4-5
direct path Export, 1-47,1-49
compared to conventional path, 1-47
effect of EXEMPT ACCESS POLICY
privilege, 1-49
performance issues, 1-50
security considerations, 1-49
direct path load, 9-10
advantages, 9-6
choosing sort order
SQL*Loader, 9-17

compared to conventional path load, 9-8

concurrent, 9-28

conditions for use, 9-7

data saves, 9-12,9-18

DIRECT command-line parameter
SQL*Loader, 4-5,9-9

dropping indexes, 9-21

effect of disabling archiving, 9-18

effect of PRIMARY KEY constraints, 9-32

effect of UNIQUE KEY constraints, 9-32
example, 10-24
field defaults, 9-9
improper sorting

SQL*Loader, 9-17
indexes, 9-10
instance recovery, 9-13
intersegment concurrency, 9-28
intrasegment concurrency, 9-28
loading into synonyms, 9-9
media recovery, 9-13

optimizing on multiple-CPU systems, 9-20

partitioned load

Index-6

SQL*Loader, 9-27
performance, 9-10, 9-15
preallocating storage, 9-16
presorting data, 9-16
recovery, 9-13
ROWS command-line parameter, 9-12
setting up, 9-9
specifying, 9-9
specifying number of rows to be read, 4-10
SQL*Loader data loading method, 3-12
table insert triggers, 9-24

temporary segment storage requirements, 9-10

triggers, 9-22
using, 9-8,9-9
version requirements, 9-7

directory aliases

exporting, 1-54
importing, 2-58

discard files

DB2 load utility, B-3
SQL*Loader, 5-14

example, 10-15

specifying a maximum, 5-15

DISCARD parameter

for SQL*Loader command-line, 4-5

DISCARDDN parameter

in DB2 control file, B-3

discarded SQL*Loader records, 3-10

causes, 5-15
discard file, 5-14
limiting, 5-16

DISCARDMAX parameter

for SQL*Loader command-line, 4-5

DISCARDS parameter

in DB2 control file, B-3
in SQL*Loader control file, 5-14

discontinued loads

continuing with SQL*Loader, 5-24

DOUBLE datatype, 6-8, 6-10
dropped snapshots

Import, 2-63

dump files

maximum size, 1-20

E

EBCDIC character set
Import, 2-55
eight-bit character set support, 1-51, 2-55
enclosed fields
specified with enclosure delimiters and
SQL*Loader, 6-24
whitespace, 6-48
enclosure delimiters, 6-23
SQL*Loader, 6-24,6-44
errors
caused by tab characters in SQL*Loader
data, 6-4
export log file, 1-22
generated by DB2 load utility, B-3
Import, 2-45
Import resource errors, 2-48
LONG data, 2-47
nonrecoverable
Export, 1-46
Import, 2-45
object creation, 2-48
Import parameter IGNORE, 2-23
recoverable
Export, 1-46
Import, 2-45
row errors during import, 2-47
warning
Export, 1-46
Import, 2-45
ERRORS parameter
for SQL*Loader command line, 4-5
escape character
quoted strings, 5-6
usage in Export, 1-27
usage in Import, 2-29
EVALUATE_CHECK_CONSTRAINTS
clause, 9-23

exit codes
Export, 1-46
Import, 2-46

SQL*Loader, 4-14
EXP_FULL_DATABASE role
assigning in Export, 1-4

expdat.dmp
Export output file, 1-19
Export
BUFFER parameter, 1-15
COMPRESS parameter, 1-16
CONSISTENT parameter, 1-16
CONSTRAINTS parameter, 1-18
conventional path, 1-47
conversion of character sets, 1-51
creating
necessary privileges, 1-4
necessary views, 1-4
creating Version 7 export files, 1-58
database optimizer statistics, 1-25
DIRECT parameter, 1-18
direct path, 1-47
displaying online help, 1-21
eight-bit versus seven-bit character sets,
example sessions, 1-30
full database mode, 1-31
partition-level, 1-38
table mode, 1-35
user mode, 1-34
exit codes, 1-46
exporting an entire database, 1-21
exporting indexes, 1-21
exporting sequence numbers, 1-53
exporting synonyms, 1-55
exporting to another operating system,
2-25
FEEDBACK parameter, 1-18
FILE parameter, 1-19
FILESIZE parameter, 1-19
FLASHBACK_SCN parameter, 1-20
FLASHBACK_TIME parameter, 1-21
full database mode
example, 1-31
FULL parameter, 1-21
GRANTS parameter, 1-21
HELP parameter, 1-21
INDEXES parameter, 1-21
interactive method, 1-41
invoking, 1-5
log files
specifying, 1-21

1-51

1-24,

Index-7

LOG parameter, 1-21
logging error messages, 1-22
LONG columns, 1-53
modes
objects exported by each, 1-8
multibyte character sets, 1-52
network issues, 1-50
online help, 1-12
OWNER parameter, 1-22
parameter conflicts, 1-30
parameter file, 1-22
maximum size, 1-7
parameters, 1-13
PARFILE parameter, 1-22

partitioning a database migration,

QUERY parameter, 1-22

1-57

RECORDLENGTH parameter, 1-24
redirecting output to a log file, 1-45

remote operation, 1-50, 2-53
restrictions based on privileges,
RESUMABLE parameter, 1-24
RESUMABLE_NAME parameter,

1-4

1-24

RESUMABLE_TIMEOUT parameter,

ROWS parameter, 1-25
sequence numbers, 1-53
STATISTICS parameter, 1-25
storage requirements, 1-4
table mode

example session, 1-35
table name restrictions, 1-28
TABLES parameter, 1-26
TABLESPACES parameter, 1-28

transferring export files across a network,
TRANSPORT_TABLESPACE parameter,

TRIGGERS parameter, 1-29
TTS_FULL_CHECK parameter,
user access privileges, 1-4
user mode
example session, 1-34
specifying, 1-22
USERID parameter, 1-29
using different versions, 1-58
VOLSIZE parameter, 1-30
export file
importing the entire file, 2-22

Index-8

1-29

listing contents before importing, 2-27

specifying, 1-19
Export messages
completion, 1-46
nonrecoverable, 1-46
warning, 1-46
exporting
from read-only databases, 1-57
EXPRESSION parameter
SQL*Loader, 6-55
extents
consolidating, 1-16
importing consolidated, 2-65
external files
exporting, 1-54
external LOBs (BFILEs), 7-17
EXTERNAL parameter
SQL*Loader, 6-20
EXTERNAL SQL*Loader datatypes, 6-19
DECIMAL, 6-19
FLOAT, 6-19
GRAPHIC, 6-18
numeric, 6-19
determining length, 6-27
ZONED, 6-19
external tables
access driver, 11-2
access parameters, 12-1
big endian data, 12-6
datatypes, 12-20
delimiters, 12-4
describing datatype of a field, 12-20
field_definitions clause, 12-2,12-11
fixed-length records, 12-3
identifying character sets, 12-5
identifying datatypes, 12-17
improving performance when using,
little endian data, 12-6
record_format_info clause, 12-2
restrictions, 11-3

setting a field to a default value, 12-27

setting a field to null, 12-27
skipping records when loading data,
specifying delimiters, 12-12
specifying load conditions, 12-6

support for parallel processing, 11-5
trimming blanks, 12-15

using comments, 12-2

using constructor functions with, 11-4
using to load data, 11-4
variable-length records, 12-4

F

fatal errors

See nonrecoverable errors
features, new, xxxvii
FEEDBACK

Export parameter

for Export utility, 1-18

FEEDBACK parameter

for Import utility, 2-21
field conditions

specifying for SQL*Loader, 6-28

field length

SQL*Loader specifications, 6-44
field location

SQL*Loader, 6-3
fields

character data length and SQL*Loader, 6-27
comparing to literals with SQL*Loader, 6-31
delimited
determining length, 6-28
SQL*Loader, 6-23
enclosed and SQL*Loader, 6-24
loading all blanks, 6-41
predetermined size
length, 6-27
SQL*Loader, 6-44
relative positioning and SQL*Loader, 6-45
specified with a termination delimiter and
SQL*Loader, 6-24
specified with enclosure delimiters and
SQL*Loader, 6-24
specifying default delimiters for
SQL*Loader, 5-34
specifying for SQL*Loader, 6-5
SQL*Loader delimited
specifications, 6-44
terminated and SQL*Loader, 6-24

FIELDS clause

SQL*Loader, 5-34

terminated by whitespace, 6-47
FILE parameter

for Export utility, 1-19

for Import utility, 2-21

for SQL*Loader utility, 9-30
filenames

guotation marks, 5-6

specifying multiple SQL*Loader, 5-9

SQL*Loader, 5-5

SQL*Loader bad file, 5-11
FILESIZE parameter

for Export utility, 1-19

for Import utility, 2-21
FILLER field

example, 10-39

using as argument to init_spec, 6-6
fine-grained access support

Export, 1-56

Import, 2-55
fixed record length

example, 10-34
fixed-format records, 3-4
fixed-length records

external tables, 12-3
FLASHBACK_SCN parameter

for Export utility, 1-20
FLASHBACK_TIME parameter

for Export utility, 1-21
FLOAT datatype, 6-8, 6-9

EXTERNAL format

SQL*Loader, 6-19

FLOAT EXTERNAL data values

SQL*Loader, 6-20
foreign function libraries

exporting, 1-53

importing, 2-59, 2-60
FORMAT statement in DB2

not allowed by SQL*Loader, B-3
formats

SQL*Loader input records and, 5-39
formatting errors

SQL*Loader, 5-11
fragmentation

Index-9

reducing, 2-53
FROMUSER parameter

for Import utility, 2-22
FTP

using to transport Export files, 1-50
full database mode

Export, 1-8

Import, 2-22

specifying with FULL, 1-21
FULL parameter

for Export utility, 1-21

for Import utility, 2-22

G

globalization
SQL*Loader, 5-16
grants
exporting, 1-21
importing, 2-7,2-22
GRANTS parameter
for Export utility, 1-21
for Import utility, 2-22
GRAPHIC datatype
EXTERNAL format in SQL*Loader, 6-18

H

HELP parameter
for Export utility, 1-12,1-21
for Import utility, 2-23
hexadecimal strings
SQL*Loader, 6-31

IGNORE parameter
for Import utility, 2-23
IMP_FULL_DATABASE role, 2-5
Import
BUFFER parameter, 2-18
catexp.sql script
preparing the database, 2-5
character set conversion, 2-55
character sets, 2-54

Index-10

CHARSET parameter, 2-18
COMMIT parameter, 2-19
committing after array insert, 2-19
compatibility with other versions, 2-3
COMPILE parameter, 2-19
consolidated extents, 2-65
CONSTRAINTS parameter, 2-20
controlling size of rollback segments, 2-19
conversion of Version 6 CHAR columns to
VARCHAR2, 2-70
creating an index-creation SQL script, 2-24
database optimizer statistics, 2-27
DATAFILES parameter, 2-20
DESTROY parameter, 2-20
disabling referential constraints, 2-9
displaying online help, 2-23
dropping a tablespace, 2-66
errors importing database objects, 2-47
example sessions, 2-34
all tables from one user to another, 2-36
selected tables for specific user, 2-34
tables exported by another user, 2-35
using partition-level import, 2-37
exit codes, 2-46
export file
importing the entire file, 2-22
listing contents before import, 2-27
failed integrity constraints, 2-47
FEEDBACK parameter, 2-21
FILE parameter, 2-21
FILESIZE parameter, 2-21
FROMUSER parameter, 2-22
FULL parameter, 2-22
globalization considerations, 2-54
grants
specifying for import, 2-22
GRANTS parameter, 2-22
HELP parameter, 2-23
IGNORE parameter, 2-23
importing grants, 2-22
importing objects into other schemas, 2-7
importing rows, 2-26
importing tables, 2-28
INDEXES parameter, 2-24
INDEXFILE parameter, 2-24

INSERT errors, 2-47
interactive method, 2-43
invalid data, 2-47
invoking, 2-10
at the command line, 2-10
interactively, 2-11
with a parameter file, 2-11
length of Oracle Version 6 export file DEFAULT
columns, 2-70
LOG parameter, 2-25
LONG columns, 2-60
manually creating tables before import, 2-8
manually ordering tables, 2-9
message log file, 2-45
modes, 2-13
NLS_LANG environment variable, 2-55
object creation errors, 2-23
OPTIMAL storage parameter, 2-65
parameter file, 2-25
maximum size, 2-12
parameters, 2-14
PARFILE parameter, 2-25
partition-level, 2-49
pattern matching of table names, 2-28
preparing the database, 2-5
preserving size of initial extent, 2-65
read-only tablespaces, 2-66
RECORDLENGTH parameter, 2-25
records
specifying length, 2-25
redirecting output to a log file, 2-45
reducing database fragmentation, 2-53
refresh error, 2-62
reorganizing tablespace during, 2-66
resource errors, 2-48
restrictions
importing into own schema, 2-5
RESUMABLE parameter, 2-26
RESUMABLE_NAME parameter, 2-26
RESUMABLE_TIMEOUT parameter, 2-26
reusing existing data files, 2-20
rows
specifying for import, 2-26
ROWS parameter, 2-26
schema objects, 2-7

sequences, 2-48
SHOW parameter, 2-27
single-byte character sets, 2-55
SKIP_UNUSABLE_INDEXES parameter, 2-27
snapshot master table, 2-62
snapshots, 2-62

restoring dropped, 2-63
specifying by user, 2-22
specifying index creation commands, 2-24
specifying the export file, 2-21
STATISTICS parameter, 2-27
storage parameters

overriding, 2-65
stored functions, 2-59
stored packages, 2-59
stored procedures, 2-59
system objects, 2-7
table name restrictions, 2-30
table objects

import order, 2-3
table-level, 2-49
TABLES parameter, 2-28
TABLESPACES parameter, 2-31
TOID_NOVALIDATE parameter, 2-31
TOUSER parameter, 2-32
TRANSPORT_TABLESPACE parameter, 2-32
TTS_OWNER parameter, 2-32
types of errors during, 2-46
uniqueness constraints

preventing import errors, 2-19
user definitions, 2-70
USERID parameter, 2-33
using Oracle Version 6 files, 2-70
VOLSIZE parameter, 2-33
warning messages, 2-45

index options

SORTED INDEXES with SQL*Loader, 5-37
SQL*Loader SINGLEROW parameter, 5-37

Index Unusable state

indexes left in Index Unusable state, 5-24, 9-11

indexes

creating manually, 2-24
direct path load

left in direct load state, 9-11
dropping

Index-11

SQL*Loader, 9-21
exporting, 1-21
importing, 2-24
index-creation commands
Import, 2-24
left in unusable state, 5-24,9-17
multiple-column
SQL*Loader, 9-17
presorting data
SQL*Loader, 9-16
skipping maintenance, 4-12,9-21
skipping unusable, 2-27,4-12,9-21
SQL*Loader, 5-36
state after discontinued load, 5-24
unique, 2-24
INDEXES parameter
for Export utility, 1-21
for Import utility, 2-24
INDEXFILE parameter
for Import utility, 2-24
INFILE parameter
for SQL*Loader utility, 5-8
insert errors
Import, 2-47
specifying, 4-5
INSERT into table
SQL*Loader, 5-31
instance affinity
Export, 1-52
instance recovery, 9-14
INTEGER datatype, 6-8
EXTERNAL format, 6-19
integrity constraints
disabled during direct path load, 9-22
enabled during direct path load, 9-22
failed on Import, 2-47
load method, 9-8
interactive method
Export, 1-41
Import, 2-43
internal LOBs
loading, 7-13
interrupted loads
continuing with SQL*Loader, 5-24
interval datatypes, 6-15

Index-12

INTO TABLE statement
effect on bind array size, 5-48
multiple statements with SQL*Loader, 5-37
SQL*Loader, 5-30
column names, 6-5
discards, 5-15
invalid data
Import, 2-47
invalid objects
warning messages during import, 2-45
invoking
Export, 1-5
as SYSDBA, 1-7
at the command line, 1-5
direct path, 1-49
interactively, 1-5
with a parameter file, 1-6
Import, 2-10
as SYSDBA, 2-12
at the command line, 2-10
interactively, 2-11
with a parameter file, 2-11

K

key values
generating with SQL*Loader, 6-56

L

leading whitespace
definition, 6-43
trimming and SQL*Loader, 6-46
length indicator
determining size, 5-45
length subfield
VARCHAR DATA
SQL*Loader, 6-13
length-value pair specified LOBs, 7-22
libraries
foreign function
exporting, 1-53
importing, 2-59, 2-60
little endian data
external tables, 12-6

LOAD parameter
for SQL*Loader command line, 4-7
loading

collections, 7-24

column objects, 7-1
in variable record format, 7-3
with a derived subtype, 7-4

combined physical records, 10-14

datafiles containing tabs
SQL*Loader, 6-4

delimited, free-format files, 10-11

external table data
skipping records, 12-8
specifying conditions, 12-6, 12-8

fixed-length data, 10-8

LOBs, 7-13

negative numbers, 10-15

nested column objects, 7-4

object tables, 7-8

object tables with a subtype, 7-10

REF columns, 7-11

subpartitioned tables, 9-6

tables, 9-6

variable-length data, 10-5

XML columns, 7-13

LOB data, 3-9
compression during export, 1-16
Export, 1-53

in delimited fields, 7-14
in length-value pair fields, 7-16
in predetermined size fields, 7-14
LOBFILEs, 3-9,7-13,7-18
example, 10-38
LOBs
loading, 7-13
log files
after a discontinued load, 5-24
example, 10-26, 10-32
Export, 1-22,1-45
Import, 2-25, 2-45
specifying for SQL*Loader, 4-7
SQL*Loader, 3-11

SQL*Loader datafile information, 8-4

SQL*Loader global information, 8-2

SQL*Loader header Information, 8-1

SQL*Loader summary statistics, 8-5
SQL*Loader table information, 8-2
SQL*Loader table load information, 8-5
LOG parameter
for Export utility, 1-21
for Import utility, 2-25
for SQL*Loader command line, 4-7
logical records
consolidating multiple physical records using
SQL*Loader, 5-26
LONG data
C language datatype LONG FLOAT, 6-10
exporting, 1-53
importing, 2-60
LONG VARRAW datatype, 6-14

M

master table
snapshots
Import, 2-62
materialized views, 2-62
media recovery
direct path load, 9-13
messages
Export
completion, 1-46
nonrecoverable, 1-46
warning, 1-46
Import
completion, 2-46
nonrecoverable, 2-45
warning, 2-45
missing data columns
SQL*Loader, 5-35
multibyte character sets
blanks with SQL*Loader, 6-31
Export and Import issues, 1-52, 2-55
SQL*Loader, 5-17
multiple-column indexes
SQL*Loader, 9-17
multiple-CPU systems
optimizing direct path loads, 9-20
multiple-table load
discontinued, 5-24

Index-13

generating unique sequence numbers using

SQL*Loader, 6-57
SQL*Loader control file specification,
multithreading
on multiple-CPU systems, 9-20
MULTITHREADING parameter
for SQL*Loader command line, 4-8

N

5-37

native datatypes
conflicting length specifications
SQL*Loader, 6-21
negative numbers

loading, 10-15
nested column objects
loading, 7-4

nested tables
exporting, 1-55
consistency and, 1-17
importing, 2-57
networks
Importand, 2-53
transporting export files across, 1-50
new features, Xxxvii
NLS_LANG environment variable, 2-54
Export, 1-51
Import, 2-55
NOLOG attribute, 9-19
nonrecoverable errors
Export, 1-46
Import, 2-45
nonscalar datatypes, 7-6
normalizing data during a load
SQL*Loader, 10-19
NOT NULL constraint
load method, 9-8
null data

missing columns at end of record during

load, 5-35
unspecified columns and SQL*Loader,
NULL values
objects, 7-6
NULLIF clause
SQL*Loader, 6-28,6-41

Index-14

6-5

NULLIF...BLANKS clause
example, 10-25
SQL*Loader, 6-30

nulls
atomic, 7-7
attribute, 7-6

NUMBER datatype
SQL*Loader, 6-22,6-23

numeric EXTERNAL datatypes
delimited form and SQL*Loader, 6-23
determining length, 6-27
SQL*Loader, 6-19

o

object identifiers, 7-8
importing, 2-55

object names
SQL*Loader, 5-5

object support, 3-15

object tables
loading, 7-8
with a subtype

loading, 7-10

object type definitions
exporting, 1-54

objects, 3-13
considerations for importing, 2-55
creation errors, 2-48
ignoring existing objects during import,
import creation errors, 2-23
loading nested column objects, 7-4
NULL values, 7-6
stream record format, 7-2
variable record format, 7-3

offline bitmapped tablespaces
exporting, 1-54

OID. See object identifiers

online help
Export, 1-12
Import, 2-14

operating systems
moving data to different systems using
SQL*Loader, 6-35
OPTIMAL storage parameter

2-23

for Import utility, 2-65
optimizer statistics, 2-67
optimizing

direct path loads, 9-15

SQL*Loader input file processing, 5-11
OPTIONALLY ENCLOSED BY clause

SQL*Loader, 6-45
OPTIONS parameter

for parallel loads, 5-33

for SQL*Loader utility, 5-4
Oracle Advanced Queuing. See Advanced Queuing
Oracle Net

using to export over a network, 1-50
Oracle Version 6

exporting database objects, 2-70
OWNER parameter

for Export utility, 1-22

P

padding of literal strings
SQL*Loader, 6-31
parallel loads, 9-27
restrictions on direct path, 9-29
PARALLEL parameter, 9-29
for SQL*Loader command line, 4-8
parameter files
Export, 1-22
comments in, 1-7
maximum size, 1-7
Import, 2-25
commentsin, 2-12
maximum size, 2-12
SQL*Loader, 4-8
PARFILE parameter
for Export command line, 1-22
for Import command line, 2-25
for SQL*Loader command line, 4-8
PART statement in DB2
not allowed by SQL*Loader, B-3
partitioned loads
concurrent conventional path loads, 9-27
SQL*Loader, 9-27
partitioned tables
example, 10-34

export consistency and, 1-17
exporting, 1-12
importing, 2-34, 2-49

in DB2
no Oracle equivalent, B-3
loading, 9-6

partitioning a database migration, 1-57
advantages of, 1-57, 2-68
disadvantages of, 1-57, 2-68
procedure during export, 1-58
procedure during import, 2-69

partition-level Export, 1-12
example session, 1-38

partition-level Import, 2-49
specifying, 1-26

pattern matching
table names during import, 2-28

performance
Import, 2-19
improving when using integrity

constraints, 9-27
issues when using external tables, 11-6
optimizing for direct path loads, 9-15
optimizing reading of SQL*Loader data
files, 5-11

PIECED parameter
SQL*Loader, 9-14

POSITION parameter
using with data containing tabs, 6-4
with multiple SQL*Loader INTO TABLE

clauses, 5-39, 6-3, 6-4
predetermined size fields
SQL*Loader, 6-44

predetermined size LOBs, 7-20

prerequisites
SQL*Loader, 9-2

PRESERVE BLANKS option
SQL*Loader, 6-48

PRESERVE parameter, 5-28

preserving
whitespace, 6-48

presorting
data for a direct path load

example, 10-25

PRIMARY KEY constraints

Index-15

effect on direct path load, 9-32
primary key OIDs

example, 7-8,10-43
primary key REF columns, 7-12
privileges

EXEMPT ACCESS POLICY

effect on direct path export, 1-49

required for Export, 1-4

required for Import, 2-5

required for SQL*Loader, 9-2

Q

QUERY parameter
for Export utility, 1-22
restrictions, 1-23
guotation marks
escaping, 5-6
filenames, 5-6
SQL string, 5-5
table names and, 1-27, 2-30
use with database object names, 5-5

R

RAW datatype, 6-14
SQL*Loader, 6-20
read-consistent export, 1-16
read-only databases
exporting from, 1-57
read-only tablespaces
Import, 2-66
READSIZE parameter
for SQL*Loader command line, 4-9
real REF columns, 7-11
RECNUM parameter
use with SQL*Loader SKIP parameter, 6-55
RECORDLENGTH parameter
for Export utility, 1-24
for Import utility, 2-25
records
consolidating into a single logical record
SQL*Loader, 5-26
discarded by SQL*Loader, 3-10,5-14
DISCARDMAX command-line parameter, 4-5

Index-16

distinguishing different formats for
SQL*Loader, 5-39
extracting multiple logical records using
SQL*Loader, 5-37
fixed format, 3-4
missing data columns during load, 5-35
rejected by SQL*Loader, 3-10, 5-11
setting column to record number with
SQL*Loader, 6-55
specifying how to load, 4-7
specifying length for export, 1-24
specifying length for import, 2-25
stream record format, 3-6
recoverable errors
flagged as warnings in Export, 1-46
flagged as warnings in Import, 2-45
recovery
direct path load
SQL*Loader, 9-13
replacing rows, 5-31
redo logs
direct path load, 9-13
instance and media recovery
SQL*Loader, 9-13
minimizing use during direct path loads,
saving space
direct path load, 9-19
REF columns, 7-11
loading, 7-11
primary key, 7-12
real, 7-11
REF data
importing, 2-58
REF fields
example, 10-43
referential integrity constraints
disabling for import, 2-9
SQL*Loader, 9-22
refresh error
snapshots
Import, 2-62
reject files
specifying for SQL*Loader, 5-11
rejected records
SQL*Loader, 3-10,5-11

9-18

relative field positioning
where a field starts and SQL*Loader, 6-45
with multiple SQL*Loader INTO TABLE
clauses, 5-38
remote operation
Export/Import, 1-50, 2-53
REPLACE table
example, 10-15
replacing a table using SQL*Loader, 5-32
resource errors
Import, 2-48
RESOURCE role, 2-5
restrictions
DB2 load utility, B-3
importing into another user’s schema, 2-7
table names in Export parameter file, 1-28
table names in Import parameter file, 2-30
RESUMABLE parameter
for Export utility, 1-24
for Import utility, 2-26
for SQL*Loader utility, 4-9
resumable space allocation
enabling and disabling, 1-24, 2-26, 4-9
RESUMABLE_NAME parameter
for Export utility, 1-24
for Import utility, 2-26
for SQL*Loader utility, 4-10
RESUMABLE_TIMEOUT parameter
for Export utility, 1-25
for Import utility, 2-26
for SQL*Loader utility, 4-10
RESUME parameter
for DB2, 5-32,B-1
roles
EXP_FULL_DATABASE, 1-4
IMP_FULL_DATABASE, 2-5
RESOURCE, 2-5
rollback segments
controlling size during import, 2-19
effects of CONSISTENT Export parameter, 1-16
row errors
Import, 2-47
rows
choosing which to load using SQL*Loader, 5-33
exporting, 1-25

specifying for import, 2-26

specifying number to insert before save
SQL*Loader, 9-12

updates to existing rows with SQL*Loader, 5-32

ROWS parameter

for Export utility, 1-25

for Import utility, 2-26

for SQL*Loader command line, 4-10

performance issues
SQL*Loader, 9-18

using to specify when data saves occur, 9-12

S

schemas
specifying for Export, 1-26
scientific notation for FLOAT EXTERNAL, 6-20
script files
running before Export, 1-3
running before Import, 2-5
SDFs. See secondary data files
secondary data files, 3-9, 7-26
security considerations
direct path export, 1-49
segments
temporary
FILE parameter in SQL*Loader, 9-30
sequence numbers
cached, 1-53
exporting, 1-53
for multiple tables and SQL*Loader, 6-57
generated by SQL*Loader SEQUENCE
clause, 6-56, 10-11
generated, not read and SQL*Loader, 6-5
setting column to a unique number with
SQL*Loader, 6-56
SEQUENCE parameter
SQL*Loader, 6-56
short records with missing data
SQL*Loader, 5-35
SHORTINT datatype
C language, 6-9
SHOW parameter
for Import utility, 2-27
SILENT parameter

Index-17

for SQL*Loader command line, 4-11
single-byte character sets
Import, 2-55
SINGLEROW parameter, 5-37,9-22
single-table load
discontinued, 5-24
SKIP parameter
effect on SQL*Loader RECNUM
specification, 6-55
for SQL*Loader command line, 4-12
SQL*Loader, 5-25
SKIP_INDEX_MAINTENANCE parameter
for SQL*Loader command line, 4-12,9-21
SKIP_UNUSABLE_INDEXES parameter
for Import utility, 2-27
for SQL*Loader command line, 4-12,9-21
skipping index maintenance, 4-12,9-21
skipping unusable indexes, 4-12,9-21
SMALLINT datatype, 6-8, 6-9
snapshot log
Import, 2-62
snapshots, 2-63
importing, 2-62
master table
Import, 2-62
restoring dropped
Import, 2-63
SORTED INDEXES clause
direct path loads, 5-37
example, 10-25
SQL*Loader, 9-16
sorting
multiple-column indexes
SQL*Loader, 9-17
optimum sort order
SQL*Loader, 9-17
presorting in direct path load, 9-16
SORTED INDEXES clause
SQL*Loader, 9-16
SQL operators
applying to fields, 6-49
SQL strings
applying SQL operators to fields, 6-49
example, 10-28
guotation marks, 5-5

Index-18

SQL*Loader

appending rows to tables, 5-32
BAD command-line parameter, 4-3
bad file, 4-3
BADDN parameter, 5-11
BADFILE parameter, 5-11
bind arrays and performance, 5-43
BINDSIZE command-line parameter, 4-4,5-43
case studies, 10-2
direct path load, 10-24
extracting data from a formatted
report, 10-28
loading combined physical records, 10-14
loading data in Unicode character set, 10-47
loading data into multiple tables, 10-18
loading delimited, free-format files, 10-11
loading fixed-length data, 10-8
loading LOBFILEs (CLOBs), 10-38
loading partitioned tables, 10-34
loading REF fields, 10-43
loading variable-length data, 10-5
loading VARRAYs, 10-43
choosing which rows to load, 5-33
COLUMNARRAYROWS command-line
parameter, 4-4
command-line parameters, 4-1
CONCATENATE parameter, 5-26
CONTINUE_LOAD parameter, 5-25
CONTINUEIF parameter, 5-26
CONTROL command-line parameter, 4-4
conventional path loads, 9-2
DATA command-line parameter, 4-4
data conversion, 3-10
data definition language
syntax diagrams, A-1
datatype specifications, 3-10
DIRECT command-line parameter, 4-5,9-9
direct path method, 3-12
DISCARD command-line parameter, 4-5
discarded records, 3-10
DISCARDFILE parameter, 5-14
DISCARDMAX command-line parameter, 4-5
DISCARDMAX parameter, 5-16
DISCARDS parameter, 5-16
errors caused by tabs, 6-4

ERRORS command-line parameter, 4-5
example sessions, 10-2

exclusive access, 9-27

FILE command-line parameter, 4-7
filenames, 5-5

globalization technology, 5-16

index options, 5-36

inserting rows into tables, 5-31

INTO TABLE statement, 5-30

SKIP_UNUSABLE_INDEXES command-line
parameter, 4-12

SORTED INDEXES during direct path
loads, 5-37

specifying columns, 6-5

specifying datafiles, 5-7

specifying field conditions, 6-28

specifying fields, 6-5

specifying more than one data file, 5-9

LOAD command-line parameter, 4-7 STREAMSIZE command-line parameter, 4-13
load methods, 9-1 suppressing messages, 4-11

loading column objects, 7-1 updating rows, 5-32

loading data across different platforms, 6-35 USERID command-line parameter, 4-13
loading data contained in the control file, 6-54 SQL/DS option (DB2 file format)

loading LONG data, 6-15 not supported by SQL*Loader, B-4
loading object tables, 7-8 statistics

LOG command-line parameter, 4-7 analyzer, 2-67

log file datafile information, 8-4 database optimizer

log file entries, 8-1 specifying for Export, 1-25

log file global information, 8-2 optimizer, 2-67

log file header information, 8-1 specifying for Import, 2-27

log file summary statistics, 8-5 STATISTICS parameter

log file table information, 8-2 for Export utility, 1-25

log file table load information, 8-5 for Import utility, 2-27

log files, 3-11 STORAGE parameter, 9-31

methods of loading data, 3-11 storage parameters, 2-64

multiple INTO TABLE statements, 5-37 estimating export requirements, 1-4
MULTITHREADING command-line OPTIMAL parameter, 2-65

parameter, 4-8 overriding
object names, 5-5 Import, 2-65
parallel data loading, 9-27, 9-28, 9-32 preallocating
PARFILE command-line parameter, 4-8 direct path load, 9-16
READSIZE command-line parameter, 4-9 temporary for a direct path load, 9-10
rejected records, 3-10 stored functions
replacing rows in tables, 5-32 importing, 2-59
required privileges, 9-2 effect of COMPILE parameter, 2-59
RESUMABLE parameter, 4-9 stored packages
RESUMABLE_NAME parameter, 4-10 importing, 2-59

RESUMABLE_TIMEOUT parameter, 4-10
ROWS command-line parameter, 4-10 stored procedures
SILENT command-line parameter, 4-11 direct path load, 9-26
SINGLEROW parameter, 5-37 importing, 2-59
SKIP parameter, 5-25 effect of COMPILE parameter, 2-59
SKIP_INDEX_MAINTENANCE command-line stream buffer

parameter, 4-12 specifying size for direct path, 9-19

effect of COMPILE parameter, 2-59

Index-19

stream record format, 3-6
loading column objects in, 7-2
STREAMSIZE parameter
for SQL*Loader command line, 4-13
string comparisons
SQL*Loader, 6-31
subpartitioned tables
loading, 9-6
synonyms
direct path load, 9-9
exporting, 1-55
syntax diagrams
SQL*Loader, A-1
SYSDATE datatype
example, 10-28
SYSDATE parameter
SQL*Loader, 6-55
system objects
importing, 2-7
system triggers
effect on import, 2-9
testing, 2-10

T

table mode export, 1-8
table names
preserving case sensitivity, 1-27
table-level Export, 1-12
table-level Import, 2-49
table-mode Export
specifying, 1-26
table-mode Import
examples, 2-34
tables
Advanced Queuing
exporting, 1-55
importing, 2-60
appending rows with SQL*Loader, 5-32
continuing a multiple-table load, 5-24
continuing a single-table load, 5-24
defining before Import, 2-8
definitions
creating before Import, 2-8
exclusive access during direct path loads

Index-20

SQL*Loader, 9-27
external, 11-1
importing, 2-28
insert triggers

direct path load in SQL*Loader, 9-24

inserting rows using SQL*Loader, 5-31

loading data into more than one table using

SQL*Loader, 5-37
loading object tables, 7-8

maintaining consistency during Export,

manually ordering for Import, 2-9
master table

Import, 2-62
name restrictions

Export, 1-28

Import, 2-28, 2-30
nested

exporting, 1-55

importing, 2-57
objects

order of import, 2-3
partitioned, 1-12
partitioned in DB2

no Oracle equivalent, B-3

1-16

replacing rows using SQL*Loader, 5-32

specifying for export, 1-26
specifying table-mode Export, 1-26

SQL*Loader method for individual tables,

truncating
SQL*Loader, 5-32

updating existing rows using SQL*Loader,

See also external tables
TABLES parameter
for Export utility, 1-26
for Import utility, 2-28
tablespace mode export, 1-8
tablespaces
dropping during import, 2-66
exporting a set of, 1-56
metadata
transporting, 2-32
moving from one database to another,
read-only
Import, 2-66
reorganizing

2-64

5-31

Import, 2-66
TABLESPACES parameter
for Export utility, 1-28
for Import utility, 2-31
tabs
loading data files containing tabs, 6-4
trimming, 6-41
whitespace, 6-41
temporary segments, 9-30
FILE parameter
SQL*Loader, 9-30
temporary storage in a direct path load, 9-10
TERMINATED BY
SQL*Loader, 6-24
WHITESPACE
SQL*Loader, 6-24
TERMINATED BY clause
with OPTIONALLY ENCLOSED BY, 6-45
terminated fields
specified with a delimiter, 6-45
specified with delimiters and SQL*Loader, 6-24
TOID_NOVALIDATE parameter
for Import utility, 2-31
TOUSER parameter
for Import utility, 2-32
trailing blanks
loading with delimiters, 6-27
TRAILING NULLCOLS parameter
example, 10-28
for SQL*Loader utility,
trailing whitespace
trimming, 6-48
TRANSPORT_TABLESPACE parameter
for Export utility, 1-29
for Import utility, 2-32
transportable tablespaces,
triggers
database insert, 9-24
permanently disabled, 9-27
replacing with integrity constraints, 9-24
schema and database
effect on Import, 2-9
system
testing, 2-10
update

5-4,5-36

1-56, 2-64

SQL*Loader, 9-25
TRIGGERS parameter
for Export utility, 1-29
trimming
summary, 6-42
trailing whitespace
SQL*Loader, 6-48
VARCHAR fields, 6-44
TTS_FULL_CHECK parameter
for Export utility, 1-29
TTS_OWNERS parameter
for Import utility, 2-32

U

UNIQUE KEY constraints

effect on direct path load, 9-32
unique values

generating with SQL*Loader, 6-56
unigueness constraints

preventing errors during import, 2-19
UNLOAD statement (DB2 file format)

not supported by SQL*Loader, B-3
UNRECOVERABLE parameter

SQL*Loader, 9-19
unsorted data

direct path load

SQL*Loader, 9-17

updating

rows in a table

SQL*Loader, 5-32

user definitions

importing, 2-70
user mode export, 1-8

specifying, 1-22
USER_SEGMENTS view

Exportand, 1-4
USERID parameter

for Export utility, 1-29

for Import utility, 2-33

for SQL*Loader command line, 4-13

Vv

VARCHAR datatype, 6-8

Index-21

SQL*Loader, 6-13
VARCHAR?2 datatype, 2-70
SQL*Loader, 6-22

VARCHARC datatype
SQL*Loader, 6-20
VARGRAPHIC datatype
SQL*Loader, 6-11
variable records, 3-5
format, 7-3
variable-length records
external tables, 12-4
VARRAW datatype, 6-14
VARRAWC datatype, 6-21
VARRAY columns
memory issues when loading, 7-29
VOLSIZE parameter
for Export utility, 1-30
for Import utility, 2-33

w

WHEN clause
example, 10-19
SQL*Loader, 5-33,6-28
SQL*Loader discards resulting from,
whitespace
included in a field, 6-46
leading, 6-43
preserving, 6-48
terminating a field, 6-24, 6-46
trimming, 6-41
WHITESPACE parameter
SQL*Loader, 6-24

5-15

X
XML columns
loading, 7-13
treatment by SQL*Loader, 7-13
Z
ZONED datatype, 6-10

EXTERNAL format
SQL*Loader, 6-19

Index-22

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility
	Accessibility of Code Examples in Documentation

	What’s New in Database Utilities?
	Oracle9i Utilities New Features
	Oracle8i Utilities New Features

	Part I� Export and Import
	1 Export
	What Is the Export Utility?
	Before Using Export
	Running catexp.sql or catalog.sql
	Ensuring Sufficient Disk Space
	Verifying Access Privileges

	Invoking Export
	Command-Line Entries
	Interactive Export Prompts
	Parameter Files
	Invoking Export As SYSDBA

	Export Modes
	Table-Level and Partition-Level Export
	Table-Level Export
	Partition-Level Export

	Getting Online Help
	Export Parameters
	BUFFER
	Example: Calculating Buffer Size

	COMPRESS
	CONSISTENT
	CONSTRAINTS
	DIRECT
	FEEDBACK
	FILE
	FILESIZE
	FLASHBACK_SCN
	FLASHBACK_TIME
	FULL
	GRANTS
	HELP
	INDEXES
	LOG
	OWNER
	PARFILE
	QUERY
	Restrictions

	RECORDLENGTH
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS
	STATISTICS
	TABLES
	Table Name Restrictions

	TABLESPACES
	TRANSPORT_TABLESPACE
	TRIGGERS
	TTS_FULL_CHECK
	USERID (username/password)
	VOLSIZE
	Parameter Interactions

	Example Export Sessions
	Example Export Session in Full Database Mode
	Example Export Session in User Mode
	Example Export Sessions in Table Mode
	Example 1: DBA Exporting Tables for Two Users
	Example 2: User Exports Tables That He Owns
	Example 3: Using Pattern Matching to Export Various Tables

	Example Export Session Using Partition-Level Export
	Example 1: Exporting a Table Without Specifying a Partition
	Example 2: Exporting a Table with a Specified Partition
	Example 3: Exporting a Composite Partition

	Using the Interactive Method
	Restrictions

	Warning, Error, and Completion Messages
	Log File
	Warning Messages
	Nonrecoverable Error Messages
	Completion Messages

	Exit Codes for Inspection and Display
	Conventional Path Export Versus Direct Path Export
	Invoking a Direct Path Export
	Security Considerations for Direct Path Exports
	Performance Issues for Direct Path Exports

	Network Considerations
	Transporting Export Files Across a Network
	Exporting and Importing with Oracle Net

	Character Set and Globalization Support Considerations
	Character Set Conversion
	Effect of Character Set Sorting Order on Conversions
	Multibyte Character Sets and Export and Import

	Instance Affinity and Export
	Considerations When Exporting Database Objects
	Exporting Sequences
	Exporting LONG and LOB Datatypes
	Exporting Foreign Function Libraries
	Exporting Offline Bitmapped Tablespaces
	Exporting Directory Aliases
	Exporting BFILE Columns and Attributes
	External Tables
	Exporting Object Type Definitions
	Exporting Nested Tables
	Exporting Advanced Queue (AQ) Tables
	Exporting Synonyms
	Support for Fine-Grained Access Control

	Transportable Tablespaces
	Exporting from a Read-Only Database
	Using Export and Import to Partition a Database Migration
	Advantages of Partitioning a Migration
	Disadvantages of Partitioning a Migration
	How to Use Export and Import to Partition a Database Migration

	Using Different Versions of Export
	Using a Previous Version of Export
	Using a Higher Version of Export

	Creating Oracle Release 8.0 Export Files from an Oracle9i Database

	2 Import
	What Is the Import Utility?
	Table Objects: Order of Import

	Before Using Import
	Running catexp.sql or catalog.sql
	Verifying Access Privileges
	Importing Objects into Your Own Schema
	Importing Grants
	Importing Objects into Other Schemas
	Importing System Objects

	Importing into Existing Tables
	Manually Creating Tables Before Importing Data
	Disabling Referential Constraints
	Manually Ordering the Import

	Effect of Schema and Database Triggers on Import Operations
	Invoking Import
	Command-Line Entries
	Interactive Import Prompts
	Parameter Files
	Invoking Import As SYSDBA

	Import Modes
	Getting Online Help
	Import Parameters
	BUFFER
	CHARSET
	COMMIT
	COMPILE
	CONSTRAINTS
	DATAFILES
	DESTROY
	FEEDBACK
	FILE
	FILESIZE
	FROMUSER
	FULL
	GRANTS
	HELP
	IGNORE
	 INDEXES
	INDEXFILE
	LOG
	PARFILE
	RECORDLENGTH
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS
	SHOW
	SKIP_UNUSABLE_INDEXES
	STATISTICS
	TABLES
	Table Name Restrictions

	TABLESPACES
	TOID_NOVALIDATE
	TOUSER
	TRANSPORT_TABLESPACE
	TTS_OWNERS
	USERID (username/password)
	VOLSIZE

	Example Import Sessions
	Example Import of Selected Tables for a Specific User
	Example Import of Tables Exported by Another User
	Example Import of Tables from One User to Another
	Example Import Session Using Partition-Level Import
	Example 1: A Partition-Level Import
	Example 2: A Partition-Level Import of a Composite Partitioned Table
	Example 3: Repartitioning a Table on a Different Column

	Example Import of Using Pattern Matching to Import Various Tables
	Parameter File Method
	Command-Line Method
	Import Messages

	Using the Interactive Method
	Warning, Error, and Completion Messages
	Log File
	Warning Messages
	Nonrecoverable Error Messages
	Completion Messages

	Exit Codes for Inspection and Display
	Error Handling During an Import
	Row Errors
	Failed Integrity Constraints
	Invalid Data

	Errors Importing Database Objects
	Object Already Exists
	Sequences
	Resource Errors
	Domain Index Metadata

	Table-Level and Partition-Level Import
	Guidelines for Using Table-Level Import
	Guidelines for Using Partition-Level Import
	Migrating Data Across Partitions and Tables

	Controlling Index Creation and Maintenance
	Delaying Index Creation
	Index Creation and Maintenance Controls
	Example of Postponing Index Maintenance

	Reducing Database Fragmentation
	Network Considerations
	Transporting Export Files Across a Network
	Exporting and Importing with Oracle Net

	Character Set and Globalization Support Considerations
	Character Set Conversion
	User Data
	Data Definition Language (DDL)

	Import and Single-Byte Character Sets
	Import and Multibyte Character Sets

	Considerations When Importing Database Objects
	Importing Object Identifiers
	Importing Existing Object Tables and Tables That Contain Object Types
	Importing Nested Tables
	Importing REF Data
	Importing BFILE Columns and Directory Aliases
	Importing Foreign Function Libraries
	Importing Stored Procedures, Functions, and Packages
	Importing Java Objects
	Importing External Tables
	Importing Advanced Queue (AQ) Tables
	Importing LONG Columns
	Importing Views
	Importing Partitioned Tables
	Support for Fine-Grained Access Control

	Materialized Views and Snapshots
	Snapshot Log
	Snapshots
	Importing a Snapshot
	Importing a Snapshot into a Different Schema

	Transportable Tablespaces
	Storage Parameters
	The OPTIMAL Parameter
	Storage Parameters for OID Indexes and LOB Columns
	Overriding Storage Parameters
	The Export COMPRESS Parameter
	Read-Only Tablespaces

	Dropping a Tablespace
	Reorganizing Tablespaces
	Importing Statistics
	Using Export and Import to Partition a Database Migration
	Advantages of Partitioning a Migration
	Disadvantages of Partitioning a Migration
	How to Use Export and Import to Partition a Database Migration

	Using Export Files from a Previous Oracle Release
	Using Oracle Version 7 Export Files
	Check Constraints on DATE Columns

	Using Oracle Version 6 Export Files
	User Privileges
	CHAR columns
	Status of Integrity Constraints
	Length of Default Column Values

	Using Oracle Version 5 Export Files
	The CHARSET Parameter

	Part II� SQL*Loader
	3 SQL*Loader Concepts
	SQL*Loader Features
	SQL*Loader Control File
	Input Data and Datafiles
	Fixed Record Format
	Variable Record Format
	Stream Record Format
	Logical Records
	Data Fields

	LOBFILEs and Secondary Data Files (SDFs)
	Data Conversion and Datatype Specification
	Discarded and Rejected Records
	The Bad File
	SQL*Loader Rejects
	Oracle Rejects

	The Discard File

	Log File and Logging Information
	Conventional Path Loads, Direct Path Loads, and External Table Loads
	Conventional Path Loads
	Direct Path Loads
	Parallel Direct Path

	External Table Loads

	Loading Objects, Collections, and LOBs
	Supported Object Types
	column-objects
	row objects

	Supported Collection Types
	Nested Tables
	VARRAYs

	Supported LOB Types

	Partitioned Object Support
	Application Development: Direct Path Load API

	4 SQL*Loader Command-Line Reference
	Invoking SQL*Loader
	Specifying Parameters in the Control File

	Command-Line Parameters
	BAD (bad file)
	BINDSIZE (maximum size)
	COLUMNARRAYROWS
	CONTROL (control file)
	DATA (datafile)
	DIRECT (data path)
	DISCARD (filename)
	DISCARDMAX (integer)
	ERRORS (errors to allow)
	EXTERNAL_TABLE
	FILE (file to load into)
	LOAD (records to load)
	LOG (log file)
	MULTITHREADING
	PARALLEL (parallel load)
	PARFILE (parameter file)
	READSIZE (read buffer size)
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS (rows per commit)
	SILENT (feedback mode)
	SKIP (records to skip)
	SKIP_INDEX_MAINTENANCE
	SKIP_UNUSABLE_INDEXES
	STREAMSIZE
	USERID (username/password)

	Exit Codes for Inspection and Display

	5 SQL*Loader Control File Reference
	Control File Contents
	Comments in the Control File

	Specifying Command-Line Parameters in the Control File
	OPTIONS Clause

	Specifying Filenames and Object Names
	Filenames That Conflict with SQL and SQL*Loader Reserved Words
	Specifying SQL Strings
	Operating System Considerations
	Specifying a Complete Path
	Backslash Escape Character
	Nonportable Strings
	Escaping the Backslash
	Escape Character Is Sometimes Disallowed

	Specifying Datafiles
	Examples of INFILE Syntax
	Specifying Multiple Datafiles

	Identifying Data in the Control File with BEGINDATA
	Specifying Datafile Format and Buffering
	Specifying the Bad File
	Examples of Specifying a Bad File Name
	How Bad Files Are Handled with LOBFILEs and SDFs
	Criteria for Rejected Records

	Specifying the Discard File
	Specifying the Discard File in the Control File
	Specifying the Discard File from the Command Line
	Examples of Specifying a Discard File Name
	Criteria for Discarded Records
	How Discard Files Are Handled with LOBFILEs and SDFs
	Limiting the Number of Discarded Records

	Handling Different Character Encoding Schemes
	Multibyte (Asian) Character Sets
	Unicode Character Sets
	Database Character Sets
	Datafile Character Sets
	Input Character Conversion
	CHARACTERSET Parameter
	Control File Character Set
	Character-Length Semantics

	Continuing an Interrupted Load
	Status of Tables and Indexes After an Interrupted Load
	Using the Log File to Determine Load Status
	Continuing Single-Table Loads
	Continuing Multiple-Table Conventional Loads
	Continuing Multiple-Table Direct Loads
	Combining SKIP and CONTINUE_LOAD

	Assembling Logical Records from Physical Records
	Using CONCATENATE to Assemble Logical Records
	Using CONTINUEIF to Assemble Logical Records

	Loading Logical Records into Tables
	Specifying Table Names
	INTO TABLE Clause

	Table-Specific Loading Method
	Loading Data into Empty Tables
	Loading Data into Nonempty Tables

	Table-Specific OPTIONS Parameter
	Loading Records Based on a Condition
	Using the WHEN Clause with LOBFILEs and SDFs

	Specifying Default Data Delimiters
	fields_spec
	termination_spec
	enclosure_spec

	Handling Short Records with Missing Data
	TRAILING NULLCOLS Clause

	Index Options
	SORTED INDEXES Clause
	SINGLEROW Option

	Benefits of Using Multiple INTO TABLE Clauses
	Extracting Multiple Logical Records
	Relative Positioning Based on Delimiters

	Distinguishing Different Input Record Formats
	Relative Positioning Based on the POSITION Parameter

	Distinguishing Different Input Row Object Subtypes
	Loading Data into Multiple Tables
	Summary

	Bind Arrays and Conventional Path Loads
	Size Requirements for Bind Arrays
	Performance Implications of Bind Arrays
	Specifying Number of Rows Versus Size of Bind Array
	Calculations to Determine Bind Array Size
	Determining the Size of the Length Indicator
	Calculating the Size of Field Buffers

	Minimizing Memory Requirements for Bind Arrays
	Calculating Bind Array Size for Multiple INTO TABLE Clauses

	6 Field List Reference
	Field List Contents
	Specifying the Position of a Data Field
	Using POSITION with Data Containing Tabs
	Using POSITION with Multiple Table Loads
	Examples of Using POSITION

	Specifying Columns and Fields
	Specifying Filler Fields
	Specifying the Datatype of a Data Field

	SQL*Loader Datatypes
	Nonportable Datatypes
	INTEGER(n)
	SMALLINT
	FLOAT
	DOUBLE
	BYTEINT
	ZONED
	DECIMAL
	VARGRAPHIC
	VARCHAR
	VARRAW
	LONG VARRAW

	Portable Datatypes
	CHAR
	Datetime and Interval Datatypes
	GRAPHIC
	GRAPHIC EXTERNAL
	Numeric EXTERNAL
	RAW
	VARCHARC
	VARRAWC
	Conflicting Native Datatype Field Lengths
	Field Lengths for Length-Value Datatypes

	Datatype Conversions
	Datatype Conversions for Datetime and Interval Datatypes
	Specifying Delimiters
	TERMINATED Fields
	ENCLOSED Fields
	Delimiter Marks in the Data
	Maximum Length of Delimited Data
	Loading Trailing Blanks with Delimiters

	Conflicting Field Lengths for Character Datatypes
	Predetermined Size Fields
	Delimited Fields
	Date Field Masks

	Specifying Field Conditions
	Comparing Fields to BLANKS
	Comparing Fields to Literals

	Using the WHEN, NULLIF, and DEFAULTIF Clauses
	Loading Data Across Different Platforms
	Byte Ordering
	Specifying Byte Order
	Using Byte Order Marks (BOMs)
	Suppressing Checks for BOMs

	Loading All-Blank Fields
	Trimming Whitespace
	Datatypes for Which Whitespace Can Be Trimmed
	Field Length Specifications for Datatypes for Which Whitespace Can Be Trimmed
	Predetermined Size Fields
	Delimited Fields

	Relative Positioning of Fields
	No Start Position Specified for a Field
	Previous Field Terminated by a Delimiter
	Previous Field Has Both Enclosure and Termination Delimiters

	Leading Whitespace
	Previous Field Terminated by Whitespace�
	Optional Enclosure Delimiters

	Trailing Whitespace
	Enclosed Fields

	Preserving Whitespace
	PRESERVE BLANKS Option
	Terminated by Whitespace

	Applying SQL Operators to Fields
	Referencing Fields
	Common Uses of SQL Operators in Field Specifications
	Combinations of SQL Operators
	Using SQL Strings with a Date Mask
	Interpreting Formatted Fields

	Using SQL*Loader to Generate Data for Input
	Loading Data Without Files
	Setting a Column to a Constant Value
	CONSTANT Parameter

	Setting a Column to an Expression Value
	EXPRESSION Parameter

	Setting a Column to the Datafile Record Number
	RECNUM Parameter

	Setting a Column to the Current Date
	SYSDATE Parameter

	Setting a Column to a Unique Sequence Number
	SEQUENCE Parameter

	Generating Sequence Numbers for Multiple Tables
	Example: Generating Sequence Numbers

	7 Loading Objects, LOBs, and Collections
	Loading Column Objects
	Loading Column Objects in Stream Record Format
	Loading Column Objects in Variable Record Format
	Loading Nested Column Objects
	Loading Column Objects with a Derived Subtype
	Specifying Null Values for Objects
	Specifying Attribute Nulls
	Specifying Atomic Nulls

	Loading Object Tables
	Loading Object Tables with a Subtype

	Loading REF Columns
	Real REF Columns
	Primary Key REF Columns

	Loading LOBs
	Loading LOB Data from a Primary Datafile
	LOB Data in Predetermined Size Fields
	LOB Data in Delimited Fields
	LOB Data in Length-Value Pair Fields

	Loading LOB Data from an External LOBFILE (BFILE)
	Loading LOB Data from LOBFILEs
	Dynamic Versus Static LOBFILE Specifications
	Examples of Loading LOB Data from LOBFILEs
	Considerations When Loading LOBs from LOBFILEs

	Loading Collections (Nested Tables and VARRAYs)
	Restrictions in Nested Tables and VARRAYs
	Secondary Datafiles (SDFs)

	Dynamic Versus Static SDF Specifications
	Loading a Parent Table Separately from Its Child Table
	Memory Issues When Loading VARRAY Columns

	8 SQL*Loader Log File Reference
	Header Information
	Global Information
	Table Information
	Column Information
	Position
	Length
	Delimiter
	Datatype

	Datafile Information
	Table Load Information
	Summary Statistics
	Oracle Statistics That Are Logged
	Information About Single-Partition Loads
	Statistics for Loading a Table

	Additional Summary Statistics for Direct Path Loads and Multithreading
	Log File Created When EXTERNAL_TABLE=GENERATE_ONLY

	9 Conventional and Direct Path Loads
	Data Loading Methods
	Conventional Path Load
	Conventional Path Load of a Single Partition
	When to Use a Conventional Path Load

	Direct Path Load
	Direct Path Load of a Partitioned or Subpartitioned Table
	Direct Path Load of a Single Partition or Subpartition
	Advantages of a Direct Path Load
	Restrictions on Using Direct Path Loads
	Restrictions on a Direct Path Load of a Single Partition
	When to Use a Direct Path Load
	Integrity Constraints
	Field Defaults on the Direct Path
	Loading into Synonyms

	Using Direct Path Load
	Setting Up for Direct Path Loads
	Specifying a Direct Path Load
	Building Indexes
	Improving Performance
	Index Storage Requirements
	Temporary Segment Storage Requirements

	Indexes Left in Unusable State
	Using Data Saves to Protect Against Data Loss
	Using the ROWS Parameter
	Data Save Versus Commit

	Data Recovery During Direct Path Loads
	Media Recovery and Direct Path Loads
	Instance Recovery and Direct Path Loads

	Loading LONG Data Fields
	Loading Data As PIECED

	Optimizing Performance of Direct Path Loads
	Preallocating Storage for Faster Loading
	Presorting Data for Faster Indexing
	SORTED INDEXES Clause
	Unsorted Data
	Multiple-Column Indexes
	Choosing the Best Sort Order

	Infrequent Data Saves
	Minimizing Use of the Redo Log
	Disabling Archiving
	Specifying UNRECOVERABLE
	Setting the NOLOG Attribute

	Specifying the Number of Column Array Rows and Size of Stream Buffers

	Optimizing Direct Path Loads on Multiple-CPU Systems
	Avoiding Index Maintenance
	Direct Loads, Integrity Constraints, and Triggers
	Integrity Constraints
	Enabled Constraints
	Disabled Constraints
	Reenable Constraints

	Database Insert Triggers
	Replacing Insert Triggers with Integrity Constraints
	When Automatic Constraints Cannot Be Used
	Preparation
	Using an Update Trigger
	Duplicating the Effects of Exception Conditions
	Using a Stored Procedure

	Permanently Disabled Triggers and Constraints
	Increasing Performance with Concurrent Conventional Path Loads

	Parallel Data Loading Models
	Concurrent Conventional Path Loads
	Intersegment Concurrency with Direct Path
	Intrasegment Concurrency with Direct Path
	Restrictions on Parallel Direct Path Loads
	Initiating Multiple SQL*Loader Sessions
	Parameters for Parallel Direct Path Loads
	Specifying Temporary Segments

	Enabling Constraints After a Parallel Direct Path Load
	PRIMARY KEY and UNIQUE KEY Constraints

	General Performance Improvement Hints

	10 SQL*Loader Case Studies
	The Case Studies
	Case Study Files
	Tables Used in the Case Studies
	Contents of Table emp
	Contents of Table dept

	Checking the Results of a Load
	References and Notes
	Case Study 1: Loading Variable-Length Data
	Control File for Case Study 1
	Running Case Study 1
	Log File for Case Study 1

	Case Study 2: Loading Fixed-Format Fields
	Control File for Case Study 2
	Datafile for Case Study 2
	Running Case Study 2
	Log File for Case Study 2

	Case Study 3: Loading a Delimited, Free-Format File
	Control File for Case Study 3
	Running Case Study 3
	Log File for Case Study 3

	Case Study 4: Loading Combined Physical Records
	Control File for Case Study 4
	Datafile for Case Study 4
	Rejected Records

	Running Case Study 4
	Log File for Case Study 4
	Bad File for Case Study 4

	Case Study 5: Loading Data into Multiple Tables
	Control File for Case Study 5
	Datafile for Case Study 5
	Running Case Study 5
	Log File for Case Study 5
	Loaded Tables for Case Study 5

	Case Study 6: Loading Data Using the Direct Path Load Method
	Control File for Case Study 6
	Datafile for Case Study 6
	Running Case Study 6
	Log File for Case Study 6

	Case Study 7: Extracting Data from a Formatted Report
	Creating a BEFORE INSERT Trigger
	Control File for Case Study 7
	Datafile for Case Study 7
	Running Case Study 7
	Log File for Case Study 7

	Case Study 8: Loading Partitioned Tables
	Control File for Case Study 8
	Table Creation
	Datafile for Case Study 8
	Running Case Study 8
	Log File for Case Study 8

	Case Study 9: Loading LOBFILEs (CLOBs)
	Control File for Case Study 9
	Datafiles for Case Study 9
	Running Case Study 9
	Log File for Case Study 9

	Case Study 10: Loading REF Fields and VARRAYs
	Control File for Case Study 10
	Running Case Study 10
	Log File for Case Study 10

	Case Study 11: Loading Data in the Unicode Character Set
	Control File for Case Study 11
	Data File for Case Study 11
	Running Case Study 11
	Log File for Case Study 11
	Loaded Tables for Case Study 11

	Part III� External Tables
	11 External Tables Concepts
	The Access Driver
	External Table Restrictions
	Location of Datafiles and Output Files
	Using External Tables to Load Data
	Parallel Access to External Tables
	Performance Hints When Using External Tables

	12 External Tables Access Parameters
	record_format_info Clause
	FIXED length
	VARIABLE size
	DELIMITED BY
	CHARACTERSET
	DATA IS...ENDIAN
	STRING SIZES ARE IN
	LOAD WHEN
	BADFILE | NOBADFILE
	DISCARDFILE | NODISCARDFILE
	LOG FILE | NOLOGFILE
	SKIP n
	string
	condition_spec
	[directory object name:] filename
	condition
	range start : range end

	field_definitions Clause
	delim_spec
	trim_spec
	MISSING FIELD VALUES ARE NULL
	field_list
	pos_spec Clause
	start_offset
	*
	increment
	end
	length

	datatype_spec Clause
	[UNSIGNED] INTEGER [EXTERNAL] [(len)]
	DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
	ORACLE_DATE
	ORACLE_NUMBER
	DOUBLE [EXTERNAL]
	FLOAT [EXTERNAL]
	RAW
	CHAR
	VARCHAR and VARRAW
	VARCHARC and VARRAWC
	dateformat_spec

	init_spec Clause

	Part IV� DBVERIFY
	13 DBVERIFY: Offline Database Verification Utility
	Using DBVERIFY to Validate Disk Blocks of a Single Datafile
	Syntax
	Parameters
	Command-Line Interface
	Sample DBVERIFY Output

	Using DBVERIFY to Validate a Segment
	Syntax
	Parameters
	Command-Line Interface

	Part V� Appendixes
	A SQL*Loader Syntax Diagrams
	B DB2/DXT User Notes
	Using the DB2 RESUME Option
	Inclusions for Compatibility
	LOG Statement
	WORKDDN Statement
	SORTDEVT and SORTNUM Statements
	DISCARD Specification

	Restrictions
	FORMAT Statement
	PART Statement
	SQL/DS Option
	DBCS Graphic Strings

	SQL*Loader Syntax with DB2-Compatible Statements

	Index

