
Formalizing a Broader Recursion
Coverage in SQL

Gabriel Aranda1, Susana Nieva1, Fernando Sáenz-Pérez2, and
Jaime Sánchez-Hernández1 ?

1 Dept. Sistemas Informáticos y Computación, UCM, Spain
2 Dept. Ingenieŕıa del Software e Inteligencia Artificial, UCM, Spain

garanda@fdi.ucm.es, {nieva,fernan,jaime}@sip.ucm.es

Abstract. SQL is the de facto standard language for relational data-
bases and has evolved by introducing new resources and expressive capa-
bilities, such as recursive definitions in queries and views. Recursion was
included in the SQL-99 standard, but this approach is limited as only
linear recursion is allowed, mutual recursion is not supported, and nega-
tion cannot be combined with recursion. In this work, we propose a new
approach, called R-SQL, aimed to overcome these limitations and oth-
ers, allowing in particular cycles in recursive definitions of graphs and
mutually recursive relation definitions. In order to combine recursion
and negation, we import ideas from the deductive database field, such
as stratified negation, based on the definition of a dependency graph be-
tween relations involved in the database. We develop a formal framework
using a stratified fixpoint semantics and introduce a proof-of-concept im-
plementation.

Keywords: Databases, SQL, Recursion, Fixpoint Semantics

1 Introduction

Codd’s famous paper on relational model [2] sowed the seeds for current rela-
tional database management systems (RDBMS’s), such as DB2, Oracle, MySQL,
SQL Server and others. Formal query languages were proposed for the relational
model: Relational algebra (RA) and relational calculus, which are syntactically
different but semantically equivalent w.r.t. safe formulas [16]. Such RDBMS’s
rather rely on the SQL query language (current standard SQL:2008 [7]) that
departs from the relational model and goes beyond. Its acknowledged success
builds upon an elegant and yet simple formulation of a data model with rela-
tions which can be queried with a language including some basic RA-operators,
which are all about relations. Original operators became a limitation for practi-
cal applications of the model, and others emerged to fill some gaps, including, for
instance, aggregate operators for, e.g., computing running sums and averages.
? This work has been partially supported by the Spanish projects TIN2008-06622-C03-

01 (FAST-STAMP), S2009/TIC-1465 (PROMETIDOS), and GPD-UCM-A-910502.

Other additions include representing absent or unknown information, which de-
livered the introduction of null values and outer join operators ranging over such
values. Also, duplicates were introduced to account for bags (multisets) instead
of sets. Finally, we mention the inclusion of recursion (Starburst [10] was the
first non-commercial RDBMS to implement this whereas IBM DB2 was the first
commercial one), a powerful feature to cope with queries that must be other-
wise solved by the intermixing with a host language. However, as pointed out
by many (see, e.g., [9],[13]), the relational model has several limitations. Thus,
such current RDBMS’s include that extended “relational” model, which is far
from the original one and it is even heavily criticized [3] because of nulls and
duplicates.

In this work, we focus on the inclusion of recursion in SQL as current
RDBMS’s lack both a formal support and suffer a narrow coverage of recur-
sion. Regarding formalization, an extension of the RA is presented in [1], with a
looping construct and assignment in order to deal with the integration of recur-
sion and negation. [5] is the source of the original SQL-99 proposal for recursion,
which is based on the research in the areas of logic programming and deductive
databases [16], as explained in [4]. Another example of an approach built on an
extension of RA with a fixpoint construct is in [6]. However, as far as we know,
these formalizations do not lead to concrete implementations, while our proposal
provides an operational mechanism allowing a straightforward implementation.

Regarding recursion coverage, there are several main drawbacks in current
implementations of recursion: Linearity is required, so that relation definitions
with calls to more than one recursive relation are not allowed. Some other fea-
tures are not supported: Mutual recursion, and query solving involving an ex-
cept clause. In general, termination is manually controlled by limiting the num-
ber of iterations instead of detecting that there are no further opportunities to
develop new tuples.

Here, we propose R-SQL, a subset of the SQL standard to cope with recursive
definitions which are not restricted as current RDBMS’s do, and also allowing
neater formulations by allowing concise relation definitions (much following the
assignment RA-operator) and avoiding extensive writings (cf. Section 2). For
this language, first we develop a novel formalization based on stratified inter-
pretations and a fixpoint operator to support theoretical results (cf. Section 3).
And, second, we propose a proof-of-concept implementation which takes a set of
database relation (in general, recursive) definitions and computes their meanings
(cf. Section 4). This implementation uses the underlying host SQL system and
Python to compute the outcome, and can be easily adapted to be integrated as
a part of any state-of-the-art RDBMS. Section 5 concludes and presents some
further work.

2 Introducing R-SQL

In this section, we present the language R-SQL by using a minimal syntax that
allows to capture the core expressiveness of standard SQL. Namely, we consider

2

basic SQL constructs to cover relational algebra. Nevertheless, this language is
conceived to be able to be extended in order to incorporate other usual features.
R-SQL is focused on the incorporation of recursive relation definitions. The idea
is simple and effective: A relation is defined with an assignment operation as
a named query (view) that can contain a self reference, i.e., a relation R can
be defined as R sch := select . . . from . . . R . . ., where sch is the relation
schema. Next, we introduce the formal grammar of this language, then we show
by means of examples the benefits of R-SQL w.r.t. current RDBMS systems.

2.1 Syntax of R-SQL

The formal syntax of R-SQL is defined by the grammar in Figure 1. In this
grammar, productions start with lowercase letters whereas terminals start with
uppercase (SQL terminal symbols use small caps). Optional statements are de-
limited by square brackets and alternative sentences are separated by pipes. The
grammar defines the following syntactic categories:

– A database sql db is a (non-empty) sequence of relation definitions sepa-
rated by semicolons (“;”). A relation definition assigns a select statement to
the relation, that is identified by its name R and its schema.

– A schema sch is a tuple of attribute names with their corresponding types.
– A select statement sel stm is defined in the usual way. The clauses from and

where are optional. We also allow union and except, but notice that the
syntax for except allows only a relation name instead of a select statement

sql db ::= R sch := sel stm;

...
R sch := sel stm;

sch ::= (A T,...,A T)

sel stm ::= select exp,...,exp [from R,...,R [where wcond]]

| sel stm union sel stm

| sel stm except R

exp ::= C | R.A | exp opm exp | - exp

wcond ::= true | false | exp opc exp | not (wcond)

| wcond [and | or] wcond

opm ::= + | - | / | *

opc ::= = | <> | < | > | >= | <=

R stands for relation names, A for attribute names, T for standard SQL types (as
integer, float, varchar(n)), and C for constants belonging to a valid SQL type.

Fig. 1. A Grammar for the R-SQL Language

3

as usual in SQL. This is done in order to keep simple the syntax and does
not imply expressivity losses, because a relation name can be identified with
the select statement that defines it.

– An expression exp can be either a constant value C, an attribute of a relation
(denoted by R.A), or an arithmetic expression.

– A Boolean condition wcond in the where clause of a select statement is
built up in the usual way, using also the standard comparison operators.

Below, we show a syntactic transformation []RA that maps every select state-
ment to an equivalent RA-expression in the usual way3.

– [select exp1, . . . , expk from R1, . . . , Rm where wcond]RA =
πexp1,...,expk

(σwcond(R1 × . . .× Rm))
– [sel stm1 union sel stm2]RA = [sel stm1]RA

⋃
[sel stm2]RA

– [sel stm except R]RA = [sel stm]RA − R

The formal meaning of every sel stm w.r.t. an interpretation I, stated in
Definition 5 (Section 3), evinces the idea that the expected interpretation of a
select statement [[sel stm]]I should be the set of tuples associated to the corre-
sponding equivalent RA-expression [sel stm]RA.

2.2 Expressiveness of R-SQL

Next, we illustrate that R-SQL overcomes some limitations present in current
RDBMS’s following SQL-99. These languages use not exits and except clauses
to deal with negation, and with recursive to engage recursion. As it is pointed
out in [5], SQL-99 does not allow an arbitrary collection of mutually recursive
relations to be written in the with recursive clause. Although any mutual
recursion can be converted to direct recursion by inlining [8], our proposal allows
to explicitly define mutual recursive relations, which is an advantage in terms of
program readability and maintenance. For instance, using R-SQL, it is easy to
write the classical example for computing even and odd numbers up to a bound
(100 in the example) as follows:

even(x float) := SELECT 0 UNION

SELECT odd.x+1 FROM odd WHERE odd.x<100;

odd(x float) := SELECT even.x+1 FROM even WHERE even.x<100;

Further, linear recursion in standard SQL restricts the number of allowed
recursive calls to be only one, i.e., Fibonacci numbers cannot be specified as
follows4:
3 Notice that arithmetic expressions are allowed as arguments in projection (π) and

select (σ) operations.
4 The relations fib1 and fib2 simply represent two aliases for fib, which are necessary

because, for simplicity, we have not added support for renamings in R-SQL from
clauses.

4

fib1(n float, f float) := SELECT fib.n, fib.f FROM fib;

fib2(n float, f float) := SELECT fib.n, fib.f FROM fib;

fib(n float, f float) := SELECT 0,1 UNION SELECT 1,1 UNION

SELECT fib1.n+1,fib1.f+fib2.f FROM fib1,fib2

WHERE fib1.n=fib2.n+1 AND fib1.n<10;

This means that several graph algorithms specified using non-linear recursion
cannot be directly expressed in current recursive SQL systems [17].

Non-termination is another problem that arises associated to recursion. For
instance, the basic transitive closure over a graph that includes a cycle makes
current SQL systems (such as PostgreSQL and MySQL) either to reject the
query or to go into an infinite loop (some systems allow to impose a maximum
number of iterations as a simple termination condition). Nevertheless, the fix-
point computation used by R-SQL guarantees termination when dealing with
finite relations. The following example written in R-SQL defines the relations
arc (a graph with a cycle) and path (its transitive closure). The computation is
terminating since both relations are finite.

arc(ori varchar(1), des varchar(1)) :=

SELECT a,b UNION SELECT b,c UNION SELECT c,a;

path(ori varchar(1), des varchar(1)) :=

SELECT arc.ori, arc.des FROM arc UNION

SELECT arc.ori, path.des FROM arc,path WHERE arc.des=path.ori

The following running example contains a concrete relation defined using the
classical transitive closure technique mentioned above.

Example 1. A database for flights. As usual, the information about direct flights
can be composed of the city of origin, the city of destination, and the length of
the flight. Cities (Lisboa, Madrid, Paris, London, New York) will be represented
with constants (lis, mad, par, lon, ny, resp.)

flight(frm varchar(10), to varchar(10), time float) :=

SELECT ’lis’,’mad’,1.0 UNION SELECT ’mad’,’par’,1.5 UNION

SELECT ’par’,’lon’,2.0 UNION SELECT ’lon’,’ny’,7.0 UNION

SELECT ’par’,’ny’,8.0;

The relation reachable consists of all the possible trips between the cities of
the database, maybe concatenating more than one flight.

reachable(frm varchar(10), to varchar(10)) :=

SELECT flight.frm, flight.to FROM flight UNION

SELECT reachable.frm, flight.to FROM reachable,flight

WHERE reachable.to = flight.frm;

The relation travel also gives time information about alternative trips.

5

travel(frm varchar(10), to varchar(10), time float) :=

SELECT flight.frm, flight.to, flight.time

FROM flight UNION

SELECT flight.frm, travel.to, flight.time+travel.time

FROM flight, travel WHERE flight.to = travel.frm;

Both reachable and travel represent transitive closures of the relation
flight. Notice that if flight has a cycle, then the relation travel that in-
cludes times for each trip is infinite, while reachable is not. As pointed before,
reachable can be finitely computed in our system. But, as travel would pro-
duce an infinite set of different tuples, some computation limitation would have
to be imposed (as the maximum time for a travel, for example). However, this
is not a drawback of our approach, but an issue due to using infinite relations
(built with arithmetic expressions).

The relation madAirport contains travels departing or arriving in Madrid,
while avoidMad contains possible travels that neither begin, nor end in Madrid.

madAirport(frm varchar(10), to varchar(10)) :=

SELECT reachable.frm, reachable.to FROM reachable

WHERE (reachable.frm = ’mad’ OR reachable.to = ’mad’);

avoidMad(frm varchar(10), to varchar(10)) :=

SELECT reachable.frm, reachable.to FROM reachable

EXCEPT madAirport;

This definition includes negation together with recursive relations. This com-
bination can not be expressed in SQL-99 as it is shown in [4].

3 A Stratified Fixpoint Semantics for R-SQL

It is well-known that the combination of negation and recursion in database
languages is a difficult task [1]. This problem has been tackled with stratified
fixpoint semantics in several works [12, 11, 14], and we have found that these
techniques can be also applied to our proposal to obtain an operational seman-
tics for R-SQL. In this section we present a novel formalization of recursive
SQL relations by means of a stratified fixpoint interpretation that formalizes
the meaning of R-SQL-databases, and we show how to compute such fixpoint.

Next, we introduce the notions of dependency graph and stratification that
provide the basis for the stratified negation formalization we are looking for.
Then, we define the concept of stratified interpretations, and prove the exis-
tence of the fixpoint of a continuous operator as the required interpretation of a
database. The obtained semantics will be the basis of the implementation of a
concrete R-SQL database system.

3.1 Dependency Graph and Stratification

Stratification is based on the definition of a dependency graph for a database. In
the following, we consider a database sql db defined as R1sch1:= sel stm1 ; . . . ;

6

Rnschn:= sel stmn. We denote by RN the set {R1,...,Rn} of relation names
of sql db. We assume that relations are well defined, in the sense that the
relation names used inside sel stm1 . . . sel stmn are in RN. The dependency
graph associated to sql db, denoted by DGsql db, is a directed graph whose
nodes are the elements of RN, and the edges, that can be negatively labelled, are
determined by the dependencies between the database relations, that are defined
as follows. A relation definition of the form R sch := sel stm produces edges in
the graph from every relation name inside sel stm to R. Those edges produced by
the relation name that is just to the right of an except are negatively labelled.

Definition 1. For every two relations R1, R2 ∈ RN, we say:

– R2 depends on R1 if there is a path from R1 to R2 in DGsql db.
– R2 negatively depends on R1 if there is a path from R1 to R2 in DGsql db with

at least one negatively labelled edge.

Example 2. Consider the database of Example 1. Its corresponding set of re-
lation names is RN = {flight, reachable, travel, madAirport, avoidMad}. Its
dependency graph is depicted in Figure 2, where negatively labelled edges are
annotated with ¬.

Definition 2. A stratification of sql db is a mapping str : RN → {1, . . . , n},
such that:

– str(Ri) ≤ str(Rj), if Rj depends on Ri,
– str(Ri) < str(Rj) if Rj negatively depends on Ri.

sql db is stratifiable if there exists a stratification for it. In this case, for every
R ∈ RN, we say that str(R) is the stratum of R. We denote by numstr the maxi-
mum stratum of the elements of RN. And str(sel stm) represents the maximum
stratum of the relations included in sel stm.

Intuitively, a relation name preceded by an except plays the role of a negated
predicate (relation) in the deductive database field. A stratification-based solving
procedure ensures that when a relation that contains an except in its definition
is going to be calculated, the meaning of the inner negated relation has been
completely evaluated, avoiding nonmonotonicity, as it is widely studied in Data-
log [16]. The novelty lies on introducing these ideas into the field of the relational
model.

Fig. 2. DGsql db of Example 1

7

3.2 Stratified Interpretations and Fixpoint Operator

From now on, we consider a stratifiable sql db, and that str is a stratification
for it. In the previous section, we established that in a relation definition for R
sch, the schema sch is a sequence of type declarations for the attributes of R. In
order to give meaning to this relation, we assume that every type T included in
sch denotes a domain D. In previous examples we have used two types: varchar,
denoting the domain of strings, and float, denoting a numeric domain. We will
consider a universal domain D which is the union of the family of the considered
domains. Relations of arity k will denote a set of k-tuples included in Dk. In
general, every relation denotes a subset of T =

⋃
n≥1Dn.

Interpretations are functions that associate an element of P(T) to each el-
ement of RN. So, considering the usual relational model terminology of schema
and instance of a relation, the interpretation of a relation in our model can be
seen as the relationship between the schema and the instance of the relation.
Interpretations are classified by strata. An interpretation of a stratum i gives
meaning to the relations of strata less or qual to i. Next, we formalize the concept
of interpretation over a stratum.

Definition 3. An interpretation I for sql db, over the stratum i, 1 ≤ i ≤
numstr is a function from RN to P(T), such that, for each R ∈ RN:

– If R has schema (A1T1, . . . , ArTr), and D1, . . . , Dr are, respectively, the do-
mains denoted by T1, . . . , Tr, then I(R) ⊆ D1 × . . .×Dr.

– I(R) = ∅, if str(R) > i.

The set of interpretations for sql db over the stratum i, 1 ≤ i ≤ numstr is
denoted by Isql db

i . The following definition provides an order on Isql db
i .

Definition 4. Let i ≥ 1, and I1, I2 ∈ Isql db
i . I1 is less or equal than I2 at

stratum i, denoted by I1 vi I2, if the following conditions are satisfied for every
R ∈ RN:

– I1(R) = I2(R), if str(R) < i.
– I1(R) ⊆ I2(R), if str(R) = i.

It is straightforward to check that for any i, 1 ≤ i ≤ numstr, (Isql db
i ,vi)

is a poset. The main question is that when an interpretation over a stratum i
increases, the set of tuples associated to the relations whose stratum is i can
increase, but the sets associated to relations of smaller strata remain invariable.
In addition, this poset is a cpo, as it is proved in the following lemma.

Lemma 1. For any i ≥ 1, the pair (Isql db
i ,vi) is a complete partially ordered

set. Moreover, if {In}n≥0 is a chain of interpretations in (Isql db
i ,vi), then Î,

defined as Î(R) =
⋃

n≥0 In(R), is the least upper bound of {In}n≥0.

Proof. It is easy to prove that Î ∈ Isql db
i , and that it is an upper bound. In

addition, if I is another upper bound, that implies: If str(R) < i, I(R) = In(R)
for every n ≥ 0, and hence Î(R) = I(R). If str(R) = i, In(R) ⊆ I(R) for every
n ≥ 0, then

⋃
n≥0 In(R) ⊆ I(R). Therefore Î vi I, by the definition of vi. �

8

The following definition formalizes the meaning of a select statement sel stm
in the context of a concrete interpretation I, both associated to a concrete sql db
database. As we pointed out before, the interpretation of a sel stm will be the
set of tuples associated to its corresponding RA-expression, [sel stm]RA, when
the value of the involved relation names is given by I.

Definition 5. Let i ≥ 1, and I ∈ Isql db
i . Let sel stm be a select statement

including only relation names of RN, such that str(sel stm) ≤ i. We recursively
define the interpretation of sel stm w.r.t. I, denoted by [[sel stm]]I , as:

– [[sel stm1 union sel stm2]]I = [[sel stm1]]I
⋃

[[sel stm2]]I , where
⋃

stands
for the set union.

– [[sel stm except R]]I = [[sel stm]]I \ I(R), where \ represents set difference.
– [[select exp1, . . . , expk]]I = {(exp1, . . . , expk)}, where expi is the mathe-

matical evaluation of expi.
– [[select exp1, . . . , expk from R1, . . . , Rm where wcond]]I=
{(exp1[a/A], . . . , expk[a/A])|a∈I(R1)×. . .×I(Rm) and wcond[a/A] is satisfied}.

A is a sequence of attributes labelled with their corresponding relation names.
More precisely, if Aj

1, . . . , A
j
rj

are the attributes of Rj , 1 ≤ j ≤ m, then A represents
the complete sequence R1.A1

1, . . . , R1.A1
r1
, . . . , Rm.Am

1 . . . Rm.Am
rm

. expj [a/A], 1 ≤
j ≤ k, is the mathematical evaluation of expj , after replacing the tuple a by
A. And wcond[a/A] is the evaluation of the Boolean expression wcond, with the
previous substitution.

Example 3. Consider the definitions of the relations odd and even of Section
2.2. Let us assume a concrete interpretation I such that I(even) = {(0), (2)}
and I(odd) = ∅. Hence, the interpretation of the select statement that defines
the relation odd w.r.t. I is:
[[SELECT even.x+1 FROM even WHERE even.x<100]]I = {(even.x+1)[a/even.x]
|(a) ∈ I(even) and (even.x<100) [a/even.x]is satisfied} = {(1), (3)}.

The case of the relation even is analogous:
[[SELECT 0 UNION SELECT odd.x+1 FROM odd WHERE odd.x<100]]I =
[[SELECT 0]]I

⋃
[[SELECT odd.x+1 FROM odd WHERE odd.x<100]]I = {(0)}

⋃
{(odd.x+1)[a/odd.x] |(a) ∈ I(odd), (odd.x<100)[a/odd.x] is satisfied} = {(0)}.

Notice that the interpretation Î defined by Î(even) = {(0), (2), . . . , (100)}
and Î(odd) = {(1), (3), . . . , (99)} satisfies:
Î(even) = [[SELECT 0 UNION SELECT odd.x+1 FROM odd WHERE odd.x<100]]Î .
Î(odd) = [[SELECT even.x+1 FROM even WHERE even.x<100]]Î .

The semantics of sql db will be formalized by means of an interpretation I
over numstr, such that for every R ∈ RN, if R sch := sel stm is the definition
of R in sql db, then I maps the set [[sel stm]]I to R, as the interpretation Î
of Example 3 does. For every stratum i, the appropriate interpretation that
gives the complete meaning to each relation of stratum i is the least fixpoint
of a continuous operator over the set of interpretations of stratum i. These
fixpoint interpretations are constructed sequentially from stratum 1 to numstr.

9

The fixpoint of the last stratum numstr provides the semantics for the whole
database. Some technical lemmas are shown in order to ensure the existence of
such fixpoint interpretations.

The following lemma states that the sets of tuples denoted by a select state-
ment of a stratum i, w.r.t. two ordered interpretations, satisfy an inclusion re-
lation that is in accordance with the order vi between the two interpretations.

Lemma 2. Let i ≥ 1, R ∈ RN, with str(R) ≤ i, and I1, I2 ∈ Isql db
i , such that

I1 vi I2. Then, every sel stm included in the select statement that defines R
holds:

– If str(sel stm) < i, then [[sel stm]]I1 = [[sel stm]]I2 .
– If str(sel stm) = i, then [[sel stm]]I1 ⊆ [[sel stm]]I2 .

Proof. The proof is inductive on the structure of sel stm. Here, we only show
the most critical case. The others are similar.

[[sel stm except R′]]I1 = [[sel stm]]I1 \ I1(R′). According to the definition
of stratification, str(R′) < i, because we are assuming that sel stm except
R′ occurs in the definition of R and str(R) ≤ i. Hence I1(R′) = I2(R′). Now,
if str(sel stm except R′) ≤ i, then [[sel stm]]I1 ⊆ [[sel stm]]I2 , applying the
induction hypothesis. Therefore [[sel stm except R′]]I1 ⊆ [[sel stm except
R′]]I2 , with equality for the case str(sel stm except R′) < i. �

The following lemma underlies the proof of the continuity of the operator
whose fixpoint provides the semantics of a database (it can be proved by induc-
tion on the structure of sel stm).

Lemma 3. Let i ≥ 1, R ∈ RN, with str(R) ≤ i, and {In}n≥0 be a chain in Isql db
i .

Then, for every sel stm included in the definitions of R, if Î =
⊔

n≥0 In, there

exists n ≥ 0, such that [[sel stm]]Î = [[sel stm]]In .

Next, for every i, a continuous operator Ti over the set Isql db
i of interpre-

tations of stratum i is defined. Analogously to the theoretical foundations that
support Datalog [16], we choose the least fixpoint of Ti, as the interpretation over
i that will give meaning to the relations of stratum i. In accordance with the
Knaster-Tarski theorem, this fixpoint can be obtained as the least upper bound
of the chain of interpretations resulting by successively applying this operator
to a minimal interpretation.

Definition 6. Let 1 ≤ i ≤ numstr. The operator Ti : Isql db
i −→ Isql db

i trans-
forms interpretations over i as follows. For every I ∈ Isql db

i , R ∈ RN:

– Ti(I)(R) = I(R), if str(R) < i.
– Ti(I)(R) = [[sel stm]]I , if str(R) = i and R sch := sel stm is the definition

of R in sql db.
– Ti(I)(R) = ∅, if str(R) > i.

This operator is proved to be monotone (it is a consequence of Lemma 2)
and continuous for every i.

10

Lemma 4. [Monotonicity of Ti] Let i ≥ 1 and I1, I2 ∈ Isql db
i , such that I1 vi

I2. Then, Ti(I1) vi Ti(I2).

Proposition 1. [Continuity of Ti] Let i ≥ 1 and {In}n≥0 be a chain of inter-
pretations in Isql db

i (I0vi I1 vi I2 vi . . .). Then, Ti(
⊔

n≥0 In) =i

⊔
n≥0 Ti(In).

Proof. The proof of
⊔

n≥0 Ti(In) vi Ti(
⊔

n≥0 In) is a direct consequence of the
monotonicity of Ti (Lemma 4). Let us prove Ti(

⊔
n≥0 In) vi

⊔
n≥0 Ti(In):

– If str(R) < i, then Ti(
⊔

n≥0 In)(R) =
⊔

n≥0 In(R), by the definition of Ti.
Now, for every n ≥ 0, In(R) = Ti(In)(R), also by definition of Ti. Therefore,
(Ti(

⊔
n≥0 In))(R) = (

⊔
n≥0 Ti(In))(R).

– If str(R) = i, then Ti(
⊔

n≥0 In)(R) = [[sel stm]]
F

n≥0 In , by definition of Ti.
And, in accordance with Lemma 3, for some n ≥ 0: [[sel stm]]

F
n≥0 In ⊆

[[sel stm]]In . Now [[sel stm]]In = Ti(In)(R), by definition of Ti, and obvi-
ously Ti(In)(R) ⊆

⋃
n≥0 Ti(In)(R), but

⋃
n≥0 Ti(In)(R) = (

⊔
n≥0 Ti(In))(R),

by Lemma 1. Hence, we conclude Ti(
⊔

n≥0 In)(R) ⊆ (
⊔

n≥0 Ti(In))(R). �

Next, the expected result corresponding to the existence of least fixpoint
stratum by stratum is shown.

Lemma 5. The operator T1 has a least fixpoint, which is
⊔

n≥0 T
n
1 (∅), where

∅ : RN→ P(T) is the interpretation such that ∅(R) = ∅ for every R ∈ RN.

Proof. By the Knaster-Tarski fixpoint theorem [15], using Proposition 1. �

We will denote
⊔

n≥0 T
n
1 (∅) by fix1, i.e., fix1 represents the least fixpoint

at stratum 1. Using Example 1, Figure 3 shows the tuples corresponding to the
successive applications of the operator T1 until fix1(travel) is obtained.

Consider now the sequence {Tn
2 (fix1)}n≥0 of interpretations in (Isql db

2 ,v2)
greater than fix1. Using the definition of Ti and the fact that fix1(R) = ∅ for
every R such that str(R) ≥ 2, it is easy to prove, by induction on n ≥ 0, that
this sequence is a chain:

fix1 v2 T2(fix1) v2 T2(T2(fix1)) v2 . . . ,v2 T
n
2 (fix1), . . .

Tn
1 (∅)(travel) Set of tuples

T 1
1 (∅)(travel)

{(lon,ny,7.0), (par,lon,2.0), (par,ny,8.0),
(mad,par,1.5), (lis,mad,1.0)}

T 2
1 (∅)(travel) {(lis,par,2.5), (par,ny,9.0), (mad,ny,9.5), (mad,lon,3.5)}
T 3

1 (∅)(travel) {(lis,ny,10.5), (lis,lon,4.5), (mad,ny,10.5)}
T 4

1 (∅)(travel) {(lis,lon,4.5), (mad,ny,10.5), (lis,ny,11.5)}

Fig. 3. Obtaining fix1(travel)

11

As before, in accordance with Proposition 1, {Tn
2 (fix1)}n≥0 has a least upper

bound,
⊔

n≥0 T
n
2 (fix1), in (Isql db

2 ,v2) that is the least fixpoint of T2 containing
fix1. We denote this interpretation by fix2.

By proceeding successively, for every i, 1 < i ≤ numstr, a chain:

fixi−1 vi Ti(fixi−1) vi Ti(Ti(fixi−1)) vi . . . vi T
n
i (fixi−1) . . .

can be defined, and a fixpoint of Ti, fixi =
⊔

n≥0 T
n
i (fixi−1), can be found.

Theorem 1. There is a fixpoint interpretation fix : RN −→ P(T), such that
for every R ∈ RN, if sel stm is the definition of R, then fix(R) = [[sel stm]]fix.

Proof. The interpretation fix we are looking for is fixnumstr , the least fixpoint
of the operator Tnumstr , applied to fixnumstr−1. As it has been pointed out, this
fixpoint exists and verifies fix1 vnumstr fix2 vnumstr . . . vnumstr fixnumstr .
Moreover, if str(R) = i, 1 ≤ i ≤ numstr, and it is defined by the statement
sel stm, then fix(R) = fixi(R) = Ti(fixi)(R), because fixi is the fixpoint
of Ti. Now, Ti(fixi)(R) = [[sel stm]]fixi , by definition of Ti. We can conclude
fix(R) = [[sel stm]]fix, trivially if i = numstr, or using Lemma 2, if i < numstr,
because fixi vnumstr fix. �

Therefore, the interpretation fix defines the fixpoint semantics of sql db.
This semantics is the support of the database system prototype we have imple-
mented, which is described next.

4 Implementing R-SQL

In this section we introduce a working proof-of-concept implementation for
the R-SQL language that takes a set of relation definitions and outputs their
meanings if a stratification can be found. More specifically, taking a stratifiable
database definition in the R-SQL syntax as input, we get a SQL database (for
a concrete SQL database system), that corresponds to the fixpoint semantics
of the input database. If the database is not stratifiable, the system throws an
error message and stops.

4.1 An Algorithm to Compute the Database Fixpoint

Let sql db be the definition of a R-SQL database. In order to create the corre-
sponding SQL database we have to generate the appropriate SQL sentences for
building the expected relations, that will be eventually processed by a RDBMS.
The algorithm takes sql db as input, i.e., a sequence of relation definitions,
R1sch1 := sel stm1; . . . ; Rnschn := sel stmn. The computation builds the
dependency graph for sql db, as shown in Section 3.1, then calculates a strati-
fication for it obtaining the sets R1, . . . ,Rnumstr , where Ri is the set of relations
of stratum i, and finally the fixpoint is computed with the following algorithm:

12

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)

str:=1
while str ≤ numstr do

for each Ri ∈ Rstr do create table Ri schi

change := true
while change do

size := rel size sum(Rstr)
for each Ri ∈ Rstr do

insert into Ri select * from sel stmi

except select * from Ri;
change = (size 6= rel size sum(Rstr))

end while
str:=str+1

end while

This algorithm generates for each Ri of sql db a SQL table with the elements
of fix(Ri). Each iteration of the external while at line 2 corresponds to a stratum
str, and builds the tables of the relations of this stratum, by calculating fixstr.
To do that, first of all an empty table with the corresponding attributes is
created for every relation in the stratum str (line 3). Then, the iteration n
of the innermost while at line 5 computes Tn

str(fixstr−1), as we will explain.
For every relation Ri of str, it submits the insert statement at line 8. The
sentence select * from sel stmi selects all tuples as defined by the relation
Ri (notice that sel stmi is a valid SQL statement). Assuming that the current
database instance coincides with the value of the interpretation Tn−1

str (fixstr−1),
then in accordance with Definition 5, the set of tuples that satisfy that SQL
statement coincides with [[sel stmi]]T

n−1
str (fixstr−1). And this is Tn

str(fixstr−1)(Ri),
by Definition 6. The tuples already present in the table are excluded to avoid
repetitions (with the except clause at line 9). In this way, Tn

str(fixstr−1)(Ri)
is obtained for every Ri of stratum str. The expression rel size sum(Rstr) at
line 10 is equal to

∑
R∈Rstr

|R|, where |R| is the current number of tuples of the
table corresponding to R. Therefore, the variable change controls changes on
the table sizes in order to stop the process, since change = false means that
Tn

str(fixstr−1) = Tn−1
str (fixstr−1), so that fixstr has been reached. Then, the

last iteration of the external while calculates fixnumstr , the fixpoint of sql db.

4.2 A Concrete Implementation

The concrete implementation of this algorithm can be done in a number of ways.
We have developed a Prolog program that processes the R-SQL input file, builds
the dependency graph and the stratification (if exists), and finally produces a
Python module with the code of the previous section. In fact, the external while
at line 2 is expanded according to the number of strata, writing explicitly the
corresponding code for each stratum. The for loop at line 7 is also expanded as
we will see in Example 4. We have chosen Python as the host language mainly be-
cause is multiplatform and it provides easy connections with different database

13

systems such as PostgreSQL, MySQL, or even via ODBC, which allows con-
nectivity to almost any RDBMS. The additional features required for the host
language are basic: Loops, assignment and basic arithmetic.

Example 4. Below, we show the result of executing our proposed algorithm for
the sql db of Example 1. The system assigns stratum 1 to flight, reachable,
travel, madAirport, and stratum 2 to avoidMad. Next, we detail some parts
of the code generated stratum by stratum. Firstly, for stratum 1, we have:

while change do
size := rel size sum(Rstr)
INSERT INTO flight SELECT ’lis’,’mad’,1 UNION SELECT ’mad’,’par’,1

UNION SELECT ’par’,’lon’,2 UNION SELECT ’lon’,’ny’,7

UNION SELECT ’par’,’ny’,8 EXCEPT SELECT * FROM flight;

INSERT INTO reachable SELECT flight.frm, flight.to

FROM flight UNION SELECT reachable.frm, flight.to

WHERE reachable.to = flight.frm

EXCEPT SELECT * FROM reachable;

INSERT INTO travel SELECT * FROM flight UNION

SELECT flight.frm, travel.to, flight.time+travel.time

FROM flight, travel WHERE flight.to = travel.frm

EXCEPT SELECT * FROM travel;

INSERT INTO madAirport SELECT travel.frm,travel.to

FROM travel EXCEPT SELECT * FROM madAirport;

change = (size 6= rel size sum(Rstr))
end while

In the first iteration of this loop, we obtain all the tuples for flight and
madAirport relations. But the recursive definitions for reachable and travel
need more iterations. As mentioned before, those iterations correspond to the
successive applications of T1. The tuples added for travel at each iteration are
shown in Figure 3 (Section 3.2). After five iterations, the loop stops and the first
stratum is completed. In the second stratum we consider the avoidMad relation:

INSERT INTO avoidMad SELECT travel.frm,travel.to FROM travel

EXCEPT SELECT * FROM madAirport EXCEPT SELECT * FROM avoidMad;

This second loop ends after two iterations. This completes fix2 for our sql db,
i.e., it obtains the semantics of the working example database.

4.3 Integrating R-SQL into a RDBMS

Our proposal establishes the core for introducing a novel approach for recursion
in SQL. The current implementation of R-SQL has been conceived as a proof-of-
concept of the theoretical foundations of the language. As we have stated, this
leads to compute the semantics of the whole database from scratch. Nevertheless,
the main goal of the proposal is not to introduce a new database language, but

14

to allow less-restricted recursive relation definitions in existing SQL engines.
In that sense, our proposal can be understood as the foundation of an existing
SQL RDBMS that supports extended forms of recursion, allowing users to define
recursive relations as regular views using the R-SQL techniques, developed in
this work. Once an R-SQL database definition has been processed, the tables
obtained can be stored as a database instance in a concrete RDBMS. On the
one hand, the user can formulate queries that will be solved using those tables
(without performing any further fixpoint computation). On the other hand, as
we pointed out before, the user can define new recursive relations using views.
Those views can be readily used in conjunction with other regular views, and
they can be either computed on demand or can be materialized.

In order to compute the answer of new recursive relations, the current (re-
lation) instance can be considered as a stratified R-SQL database. It is correct
to assign higher strata to the new relations, because none of the existing re-
lations depend on the new ones, and a relation definition does not introduce
dependencies between the relations that appear in its select statement. Then,
their tuples can be obtained by executing the algorithm in Section 4.1 to com-
pute the fixpoint of their corresponding strata, therefore saving recalculating the
previous ones. Moreover, it is straightforward to modify the algorithm to get a
lazy evaluation of such relations, performing iterations only when new values are
demanded. To seamlessly integrate this into a RDBMS, we can profit from the
fourth-generation languages (e.g., SQL PL in IBM DB2 and PL/SQL in Oracle).

5 Conclusions

In this paper, we have introduced the R-SQL language as a new approach for in-
corporating recursion in SQL. This is not a trivial task, and it was not addressed
in the initial proposals of SQL. It was firstly introduced in the 1999 standard,
allowing only a limited form of recursion, namely linear recursion, which does
not allow neither multiple recursive calls nor mutually recursive definitions. The
difficulties increase when recursion is combined with negation.

We have developed a theoretical framework and a suitable implementation for
R-SQL, inspired on the stratification techniques and fixpoint computations used
for instance in Datalog. The stratification mechanism implies to impose some
syntactic conditions on the database definitions, that guarantee that the fixpoint
for such a database can be computed in a finite number of steps. This condition is
less restrictive than the linearity conditions required by the standard SQL. This
means that our approach is more expressive than the one adopted in SQL; in
addition our language is supported by a solid computational semantics. We have
presented a proof-of-concept implementation of the R-SQL database definition
language based on this semantics. This implementation produces as output a
set of standard SQL statements embedded in a Python program that builds the
relational tables corresponding to the fixpoint of the input database definition.
This implementation has been tested with PostgreSQL, but the architecture can

15

be easily ported to any RDBMS. The system is available at https://gpd.sip.
ucm.es/trac/gpd/wiki/GpdSystems/RSQL.

As already suggested, our approach can be integrated into a state-of-the-art
RDBMS. This can be dealt by resorting to database function definitions, which
allow cursor-returning functions. In addition for this integration to be practi-
cal, performance improvements play a key role as, e.g., indexing of temporary
relations during fixpoint computations and identifying tuple seeds in relation
definitions that do not need to be recomputed.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. E. Codd. A Relational Model for Large Shared Databanks. Communications of
the ACM, 13(6):377–390, June 1970.

3. C. J. Date. SQL and relational theory: how to write accurate SQL code. O’Reilly,
Sebastopol, CA, 2009.

4. S. J. Finkelstein, N. Mattos, I. S. Mumick, and H. Pirahesh. Expressing recursive
queries in SQL. Technical report, ISO, 1996.

5. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems - the complete
book (2. ed.). Pearson Education, 2009.

6. M. A. W. Houtsma and P. M. G. Apers. Algebraic optimization of recursive queries.
Data Knowl. Eng., 7:299–325, 1991.

7. ISO/IEC. SQL:2008 ISO/IEC 9075(1-4,9-11,13,14):2008 Standard, 2008.
8. O. Kaser, C. R. Ramakrishnan, and S. Pawagi. On the conversion of indirect to

direct recursion. ACM Lett. Program. Lang. Syst., 2(1-4):151–164, Mar. 1993.
9. R. A. Kowalski. Logic for data description. In Logic and Data Bases, pages 77–103,

1977.
10. I. S. Mumick and H. Pirahesh. Implementation of magic-sets in a relational

database system. SIGMOD Rec., 23:103–114, May 1994.
11. S. Nieva, F. Sáenz-Pérez, and J. Sánchez. Formalizing a Constraint Deductive

Database Language based on Hereditary Harrop Formulas with Negation. In
FLOPS’08, volume 4989 of LNCS, pages 289–304. Springer-Verlag, 2008.

12. K. Ramamohanarao and J. Harland. An introduction to deductive database lan-
guages and systems. The VLDB Journal, 3(2):107–122, 1994.

13. R. Reiter. Towards a logical reconstruction of relational database theory. In On
Conceptual Modelling (Intervale), pages 191–233, 1982.

14. J. Shepherdson. Negation in logic programming. In J. Minker, editor, Founda-
tions of Deductive Databases and Logic Programming, pages 19–88. Kaufmann,
Los Altos, CA, 1988.

15. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

16. J. Ullman. Database and Knowledge-Base Systems Vols. I (Classical Database
Systems) and II (The New Technologies). Computer Science Press, 1995.

17. C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian, and R. Zi-
cari. Advanced Database Systems. Morgan Kaufmann Publishers Inc., 1997.

16

