
R-SQL: An SQL Database System with Extended Recursion∗

Gabriel Aranda1, Susana Nieva1, Fernando Sáenz-Pérez2 and
Jaime Sánchez-Hernández1

1 Dept. Sistemas Informáticos y Computación, UCM, Spain
2 Dept. Ingenierı́a del Software e Inteligencia Artificial, UCM, Spain

garanda@fdi.ucm.es, nieva@sip.ucm.es, fernan@sip.ucm.es, jaime@sip.ucm.es

Abstract:

The relational database language SQL:1999 standard supports recursion, but this ap-
proach is limited to the linear case. Moreover, mutual recursion is not supported, and
negation cannot be combined with recursion. The language R-SQL was designed to
overcome these limitations. In addition, it improves termination properties in re-
cursive definitions. We have developed an implementation of R-SQL, that can be
integrated into existing commercial SQL database systems, extending such systems
with the aforementioned benefits of R-SQL. In this paper we describe a concrete
instance, implemented using Python as host language and PostgreSQL as database
system.

Keywords: Databases, SQL, Recursion, Fixpoint Semantics

1 Introduction

Recursion is a powerful tool nowadays included in almost all programming systems. However,
for current implementations of the declarative programming language SQL, this tool is heavily
compromised or even not supported at all (MySQL, MS Access, . . .) Those systems including
recursion suffer from several drawbacks. Linearity is required, so that relation definitions with
calls to more than one recursive relation are not allowed. Mutual recursion, and query solving
involving an EXCEPT clause are not supported. In general, termination is manually controlled
by limiting the number of iterations instead of detecting that there are no further opportunities
to develop new tuples. Duplicate discarding is not supported and, so, queries that are actually
terminating are not detected as such.

Starburst [MP94] was the first non-commercial RDBMS to implement recursion whereas IBM
DB2 was the first commercial one. ANSI/ISO Standard SQL:1999 included for the first time re-
cursion in SQL. Today, we can find recursion in several systems: IBM DB2, Oracle, MS SQL
Server, HyperSQL and others with the aforementioned limitations. In [ANSS13] we proposed a
new approach, called R-SQL, aimed to overcome these limitations and others, allowing in partic-
ular cycles in recursive definitions of graphs and mutually recursive relation definitions. In order
to combine recursion and negation, we applied ideas from the deductive database field, such as
stratified negation, based on the definition of a dependency graph between the relations involved

∗ This work has been partially supported by the Spanish projects TIN2008-06622-C03-01 (FAST-STAMP),
S2009/TIC-1465 (PROMETIDOS), and GPD-UCM-A-910502.

R-SQL: An SQL Database System with Extended Recursion 1 / 13

db ::= R sch := sel stm; ... ;R sch := sel stm;
sch ::= (A T, ...,A T)

sel stm ::= SELECT exp, ...,exp [FROM R, ...,R [WHERE wcond]]
| sel stm UNION sel stm | sel stm EXCEPT R

exp ::= C | R.A | exp opm exp | −exp

wcond ::= TRUE | FALSE | exp opc exp | NOT(wcond) | wcond [AND | OR] wcond
opm ::= + | − | / | ∗
opc ::= = | <> | < | > | >= | <=

R stands for relation names, A for attribute names, T for standard SQL types
and C for constants belonging to a valid SQL type.

Figure 1: A Grammar for the R-SQL Language

in the database [Ull95]. We developed a formal framework following the original relational data
model [Cod70], so avoiding both duplicates and nulls (as encouraged by [Dat09]). We used a
stratified fixpoint semantics and introduced a proof-of-concept implementation.

In this work, we present the R-SQL database system, a prototype implementing such formal
framework, in further detail. Also, we recall the syntax, and the meaning of database definitions.
The system can be downloaded from https://gpd.sip.ucm.es/trac/gpd/wiki/GpdSystems/RSQL.

Related academic approaches include DLV DB [TLLP08], LDL++ [AOT+03] (now abandoned
and replaced by DeAL, which does not refer to SQL queries up to now), and DES [SP13]. The
first one, resulting of a spin-off at Calabria University, is the closer to our work as it produces
SQL code to be executed in the external database with a semi-naı̈ve strategy, but lacks formal
support for its proposal, and it does not describe non-linear recursion. Last two ones also allow
connecting to external databases, but processing of recursive SQL queries are in-memory.

2 Introducing R-SQL

In this section, we present an overview of the language R-SQL, which is focused on the incor-
poration of recursive relation definitions. The idea is simple and effective: A relation is defined
with an assignment operation as a named query (view) that can contain a self reference, i.e., a
relation R can be defined as R sch := SELECT. . .FROM . . . R . . ., where sch is the relation schema.

2.1 The Definition Language of R-SQL

The formal syntax of R-SQL is defined by the grammar in Figure 1. In this grammar, productions
start with lowercase letters whereas terminals start with uppercase (SQL terminal symbols use
small caps). Optional statements are delimited by square brackets and alternative sentences are
separated by pipes.

The language R-SQL overcomes some limitations present in current RDBMS’s following

R-SQL: An SQL Database System with Extended Recursion 2 / 13

SQL:1999. These languages use NOT IN and EXCEPT clauses to deal with negation, and WITH

RECURSIVE to engage recursion. As it is pointed out in [GUW09], SQL:1999 does not allow an
arbitrary collection of mutually recursive relations to be written in the WITH RECURSIVE clause.

A bundle of R-SQL database examples can be found with the system distribution. Next, we
present some of them, to show the expressiveness of the definition language.

Mutual Recursion Although any mutual recursion can be converted to direct recursion by
inlining [KRP93], our proposal allows to explicitly define mutual recursive relations, which is
an advantage in terms of program readability and maintenance. For instance, the following R-
SQL database defines the relations even and odd, as the classical specification of even and odd
numbers up to a bound (100 in the example):

even(x float) := SELECT 0 UNION SELECT odd.x+1 FROM odd WHERE odd.x<100;

odd(x float) := SELECT even.x+1 FROM even WHERE even.x<100;

Nonlinear Recursion The standard SQL restricts the number of allowed recursive calls to be
only one. Here we show how to specify Fibonacci numbers in R-SQL1:

fib1(n float, f float) := SELECT fib.n, fib.f FROM fib;

fib2(n float, f float) := SELECT fib.n, fib.f FROM fib;

fib(n float, f float) := SELECT 0,1 UNION SELECT 1,1 UNION
SELECT fib1.n+1,fib1.f+fib2.f FROM fib1,fib2
WHERE fib1.n=fib2.n+1 AND fib1.n<10;

Duplicates and Termination Non termination is another problem that arises associated to re-
cursion when coupled with duplicates. For instance, the following standard SQL query (that
considers a finite relation t) makes current systems either to reject the query or to go into an
infinite loop (some systems allow to impose a maximum number of iterations as a simple termi-
nation condition, as DB2):

WITH RECURSIVE v(a) AS SELECT * FROM t UNION ALL SELECT * FROM v
SELECT * FROM v

Nevertheless, the fixpoint computation for the corresponding R-SQL relation:
v(a float) := SELECT * FROM t UNION SELECT * FROM v;

guarantees termination because duplicates are discarded2 and v does not grow unbounded. The
very same termination problem also happens in current RDBMS’s with the basic transitive clo-
sure over graphs including cycles, but not in R-SQL which ensures termination for finite graphs.

1 The relations fib1 and fib2 simply represent two aliases for fib, which are necessary because, for simplicity,
we have not added support for renamings in R-SQL FROM clauses.
2 Note that UNION does not require ALL, as current RDBMS’s do.

R-SQL: An SQL Database System with Extended Recursion 3 / 13

2.2 The meaning of an R-SQL database definition

In [ANSS13] we formalized an operational semantics for the language R-SQL based on stratified
negation and fixpoint theory, here we summarize the main ideas.

Stratification is based on the definition of a dependency graph DGdb for an R-SQL database
db that is a directed graph whose nodes are the relation names defined in db, and the edges,
that can be negatively labelled, are determined as follows. A relation definition of the form
R sch := sel stm in db produces edges in the graph from every relation name inside sel stm

to R. Those edges produced by the relation name that is just to the right of an EXCEPT are
negatively labelled.

If there are n relations defined in db, and we denote by RN the set of the relation names defined
in db, a stratification of db is a mapping str : RN→ {1, . . . ,n}, such that for every two relations
R1, R2 ∈ RN it satisfies:

• str(R1)≤ str(R2), if there is a path from R1 to R2 in DGdb,

• str(R1) < str(R2) if there is a path from R1 to R2 in DGdb with at least one negatively
labelled edge.

An R-SQL database db is stratifiable if there exists a stratification for it. We denote by numStr
the maximum stratum of the elements of RN. And, for every i, 1 ≤ i ≤ numStr, RNi denotes the
set of relation names R ∈ RN, such that str(R) = i.

Intuitively, a relation name preceded by an EXCEPT operator plays the role of a negated pred-
icate (relation) in the deductive database field. A stratification-based solving procedure ensures
that when a relation that contains an EXCEPT in its definition is going to be calculated, the mean-
ing of the inner negated relation has been completely evaluated, avoiding nonmonotonicity, as it
is widely studied in Datalog [Ull95].

We say that an interpretation I is the relationship between every relation R name and its in-
stance I(R). Interpretations are classified by strata; an interpretation belonging to a stratum i
gives meaning to the relations of strata less or equal to i. The meaning of every sel stm w.r.t.
an interpretation I can be understood as the set of tuples (in the current instance represented
by I) associated to the corresponding equivalent RA-expression, denoted by [sel stm]I . This
RA-expression is defined as follows: 3

• [SELECT exp1, . . . ,expk FROM R1, . . . ,Rm WHERE wcond]I =
πexp1,...,expk

(σwcond(I(R1)× . . .× I(Rm)))

• [sel stm1 UNION sel stm2]
I = [sel stm1]

I ∪ [sel stm2]
I

• [sel stm EXCEPT R]I = [sel stm]I− I(R)

Example 1 Consider the definitions of the relations odd and even of Section 2. Let us assume a
concrete interpretation I such that I(even)= {(0),(2)} and I(odd)= /0. Hence, the interpretation
of the select statement that defines the relation odd w.r.t. I is:

3 Notice that arithmetic expressions are allowed as arguments in projection (π) and select (σ) operations.

R-SQL: An SQL Database System with Extended Recursion 4 / 13

[SELECT even.x+1 FROM even WHERE even.x< 100]I =
{(even.x+1)[a/even.x] | (a) ∈ I(even),(even.x< 100)[a/even.x] is satisfied}= {(1),(3)}.

The case of the relation even is analogous:
[SELECT 0 UNION SELECT odd.x+1 FROM odd WHERE odd.x< 100]I =
[SELECT 0]I ∪ [SELECT odd.x+1 FROM odd WHERE odd.x< 100]I =
{(0)} ∪{(odd.x+1)[a/odd.x] | (a) ∈ I(odd), (odd.x< 100)[a/odd.x] is satisfied}= {(0)}.

Notice that the interpretation Î defined by:
Î(even) = {(0),(2), . . . ,(100)} and Î(odd) = {(1),(3), . . . ,(99)} satisfies:
Î(even) = [SELECT 0 UNION SELECT odd.x+1 FROM odd WHERE odd.x< 100]Î .
Î(odd) = [SELECT even.x+1 FROM even WHERE even.x< 100]Î .

So, to give meaning to a database definition, we are interested in an interpretation, called f ix,
such that for every R ∈ RN, if sel stm is the definition of R, then f ix(R) = [sel stm] f ix. In
the previous example f ix will be Î. Since R can occur inside its definition, for every stratum i,
the appropriate interpretation f ixi that gives the complete meaning to each relation of stratum
i is the least fixpoint of a continuous operator. These fixpoint interpretations are sequentially
constructed from stratum 1 to numStr. f ix represents the fixpoint of the last stratum and provides
the semantics for the whole database.

For every i, 1 ≤ i ≤ numStr, we define the continuous operator Ti that transforms interpreta-
tions belonging to a stratum i as follows:

- Ti(I)(R) = I(R), if str(R)< i.
- Ti(I)(R) = [sel stm]I , if str(R) = i and R sch := sel stm is the definition of R in db.
- Ti(I)(R) = /0, if str(R)> i.
The operator T1 has a least fixpoint, which is

⊔
n≥0 T n

1 (/0), where /0(R) = /0 for every R ∈ RN.
We will denote

⊔
n≥0 T n

1 (/0) by f ix1, i.e., f ix1 represents the least fixpoint at stratum 1.
Consider now the sequence {T n

2 (f ix1)}n≥0 of interpretations of stratum 2, greater than f ix1.
Using the definition of Ti and the fact that f ix1(R) = /0 for every R such that str(R)≥ 2, it is easy
to prove, by induction on n≥ 0, that this sequence is a chain:

f ix1 v2 T2(f ix1)v2 T2(T2(f ix1))v2 . . . ,v2 T n
2 (f ix1), . . .

{T n
2 (f ix1)}n≥0 is a chain that has as least upper bound,

⊔
n≥0 T n

2 (f ix1), which is the least
fixpoint of T2 containing f ix1. We denote this interpretation by f ix2. By proceeding successively
in the same way it is possible to find f ixnumStr. In [ANSS13] we have proved that f ixnumStr is the
interpretation f ix we are looking for, that associates the set of tuples denoted by its definition to
every relation of the database .

3 The R-SQL System

In this section we introduce the R-SQL system, based on the fixpoint construction of the pre-
vious section. Once the system is loaded in SWI Prolog (see the readme file of the dis-
tribution for details) a database definition dbDef.sql can be processed with the command
?- process(dbDef). First, the system parses the input R-SQL database definition, then it
builds the dependency graph and the stratification if exists (it aborts, otherwise); finally, it pro-

R-SQL: An SQL Database System with Extended Recursion 5 / 13

duces a Python script that will create the SQL database in a RDBMS. After this process, the user
can connect to PostgreSQL in order to query or modify the database. Although we are refer-
ring to PostgreSQL in this paper, the implementation can be straightforwardly applied to other
systems. In fact, the distribution also includes a MySQL implementation. The main difference
when adapting to a particular system is the concrete SQL dialect of such a system. For instance,
we use EXCEPT in PostgreSQL and NOT IN in MySQL, as it lacks a set difference operator.

Next we present a database for flights to illustrate the process and also will be the working
example for the rest of the section. As usual, the information about direct flights can be composed
of the city of origin, the city of destination, and the length of the flight. Cities (Lisbon, Madrid,
Paris, London, New York) will be represented with constants (lis, mad, par, lon, ny, resp.).
The relation reachable consists of all the possible trips between the cities of the database,
maybe concatenating more than one flight. The relation travel is analogous but also gives
time information about alternative trips.

flight(frm varchar(10), to varchar(10), time float) :=
SELECT ’lis’,’mad’,1.0 UNION SELECT ’mad’,’par’,1.5 UNION
SELECT ’par’,’lon’,2.0 UNION SELECT ’lon’,’ny’,7.0 UNION
SELECT ’par’,’ny’,8.0;

reachable(frm varchar(10), to varchar(10)) :=
SELECT flight.frm, flight.to FROM flight UNION

SELECT reachable.frm, flight.to
FROM reachable,flight WHERE reachable.to = flight.frm;

travel(frm varchar(10), to varchar(10), time float) :=
SELECT flight.frm, flight.to, flight.time FROM flight UNION
SELECT flight.frm, travel.to, flight.time+travel.time

FROM flight, travel WHERE flight.to = travel.frm;

Both reachable and travel represent transitive closures of the relation flight. Notice
that if flight has a cycle, then the relation travel that includes times for each trip is infinite,
while reachable is not. As pointed before, reachable can be finitely computed in our
system. But, as travel would produce an infinite set of different tuples, some computation
limitation would have to be imposed (as the maximum time for a travel, for example). How-
ever, this is not a drawback of our approach, but an issue due to using infinite relations (built
with arithmetic expressions). The relation madAirport contains travels departing or arriving
in Madrid, while avoidMad contains the possible travels that neither begin, nor end in Madrid.

madAirport(frm varchar(10), to varchar(10)) :=
SELECT reachable.frm, reachable.to FROM reachable
WHERE (reachable.frm = ’mad’ OR reachable.to = ’mad’);

avoidMad(frm varchar(10), to varchar(10)) :=
SELECT reachable.frm, reachable.to FROM reachable EXCEPT madAirport;

This definition includes negation together with recursive relations. This combination can not
be expressed in SQL:1999 as it is shown in [FMMP96]. The dependency graph of this database
is depicted in Figure 2, where negatively labelled edges are annotated with ¬. Then, the system
assigns stratum 1 to flight, reachable, travel, madAirport, and stratum 2 to
avoidMad.

R-SQL: An SQL Database System with Extended Recursion 6 / 13

Figure 2: DGdb of the working example.

3.1 The Generic Algorithm to Compute the Database Fixpoint

Let db be a stratifiable database definition R1 sch1 := sel stm1; . . . ; Rn schn := sel stmn. In
order to create the corresponding SQL database we have to generate the appropriate SQL state-
ments for building the expected relations (corresponding to the fixpoint of db) when processed
by a RDBMS. The algorithm in Figure 3 produces such SQL statements. This algorithm com-

1 str:=1
2 while str ≤ numStr do
3 for all R ∈ RNstr do
4 CREATE TABLE R sch;
5 end for
6 change := true
7 while change do
8 size := rel size sum(RNstr)
9 for all R ∈ RNstr do

10 INSERT INTO R SELECT * FROM sel stmR
11 EXCEPT SELECT * FROM R;
12 end for
13 change = (size 6= rel size sum(RNstr))
14 end while
15 str:=str+1
16 end while

Figure 3: Algorithm to compute the database fixpoint

putes f ix(R) for each relation R of the database and stores the corresponding tuples in a SQL
table with the same name R. Relations are computed by strata, from stratum 1 to the last one
numStr, by the while loop at lines 2-16. Each iteration obtains f ixstr for the current stratum str.
Within this loop, first of all, the for at lines 3-4 creates an empty table with the corresponding
attributes for each relation R in stratum str. Then the while loop at lines 7-14 at the n-iteration
computes T n

str(f ixstr−1). This is done by performing repeatedly the INSERT statements at lines
10-11 for each relation R in the current stratum, that add the tuples resulting from the statement
sel stmR that defines such relation. Assuming that the current database instance coincides with
the value of the interpretation T n−1

str (f ixstr−1), the set of tuples that satisfy that SQL statement

R-SQL: An SQL Database System with Extended Recursion 7 / 13

coincides with [sel stm]T
n−1

str (f ixstr−1). And this is T n
str(f ixstr−1)(Ri). The tuples already present in

the table are excluded to avoid duplicates by means of the EXCEPT clause at line 11. In this way,
T n

str(f ixstr−1)(R) is obtained for every R of stratum str. Finally, the expression rel size sum(RNstr)
at lines 8 and 13 denotes ∑R∈RNstr |R|, where |R| stands for the number of tuples of the table cor-
responding to R. Therefore, the variable change controls changes on the table sizes in order to
stop the process when the fixpoint for a stratum is reached.

3.2 Python Code Generation

The concrete implementation of this algorithm can be done in a number of ways. We have chosen
Python as the host language mainly because is multiplatform and it provides easy connections
with different database systems such as PostgreSQL, MySQL, or even via ODBC, which allows
connectivity to almost any RDBMS. The additional features required for the host language are
basic: Loops, assignment and basic arithmetic.

Below, we show the result of executing our proposed algorithm for the working example of
flights. We detail some parts of the code generated stratum by stratum. For stratum 1, we have:

change := True
while change do
size := rel_size_sum(R_str)

INSERT INTO flight (SELECT ’lis’,’mad’,1 UNION SELECT ’mad’,’par’,1
UNION SELECT ’par’,’lon’,2 UNION SELECT ’lon’,’ny’,7
UNION SELECT ’par’,’ny’,8) EXCEPT SELECT * FROM flight;

INSERT INTO reachable (SELECT flight.frm, flight.to FROM flight
UNION SELECT reachable.frm, flight.to WHERE reachable.to = flight.frm)
EXCEPT SELECT * FROM reachable;

INSERT INTO travel (SELECT * FROM flight UNION
SELECT flight.frm, travel.to, flight.time+travel.time FROM flight,travel
WHERE flight.to = travel.frm) EXCEPT SELECT * FROM travel;

INSERT INTO madAirport (SELECT travel.frm,travel.to
FROM travel) EXCEPT SELECT * FROM madAirport;

change = (size != rel_size_sum(R_str))
end while

In the first iteration of this loop, we obtain all the tuples for flight and madAirport
relations. But the recursive definitions for reachable and travel need more iterations. As
mentioned before, those iterations correspond to the successive applications of T1. The tuples
added for travel at each iteration are shown in Figure 4. After five iterations, the loop stops
and the first stratum is completed. In the second stratum we consider the avoidMad relation:

INSERT INTO avoidMad (SELECT travel.frm,travel.to FROM travel
EXCEPT SELECT * FROM madAirport) EXCEPT SELECT * FROM avoidMad;

This second loop ends after two iterations. This completes f ix2 for our db, i.e., it obtains the
semantics of the working example database.

R-SQL: An SQL Database System with Extended Recursion 8 / 13

T n
1 (/0)(travel) Set of tuples

T 1
1 (/0)(travel) {(lon,ny,7.0),(par,lon,2.0),(par,ny,8.0),

(mad,par,1.5),(lis,mad,1.0)}
T 2

1 (/0)(travel) {(lis,par,2.5),(par,ny,9.0),(mad,ny,9.5),(mad,lon,3.5)}
T 3

1 (/0)(travel) {(lis,ny,10.5),(lis,lon,4.5),(mad,ny,10.5)}
T 4

1 (/0)(travel) {(lis,lon,4.5),(mad,ny,10.5),(lis,ny,11.5)}

Figure 4: Obtaining f ix1(travel)

The values for flight, madAirport and avoidMad tables are illustrated in the graph in
Figure 5. Direct flights will be represented in blue color and labeled with their corresponding
time. Paths for madAirport relation will be represented in red color and path for avoidMad
relation will be represented in black color. The whole database resulting tables are included in
Appendix A.

3.3 The System in Action and Future Improvements

Once an R-SQL database definition has been processed, the tables obtained are stored as a
database instance in PostgreSQL. Then, the user can formulate queries that will be solved using
those tables (without performing any further fixpoint computation).

Notice that the modification of a relation of the database from the PostgreSQL system can
cause inconsistencies since the tables are not recomputed. For instance, after processing the
database for flights, if the user adds or deletes a tuple for the relation flight, then the relation
travel will become inconsistent according to its R-SQL definition. But this is the common
RDBMS behavior, when dealing with materialized views. R-SQL has been designed to compute
the meaning of a database definition and then to query this database. A future direction in order
to fully integrate R-SQL into a RDBMS is to have the possibility of restoring the consistence
of the database (using triggers for instance), as well as to define additional (possibly recursive)
views. This restoring involves the recomputation of the database fixpoint. But, using the de-
pendency graph, it is easy to determine the subset of relations that must be calculated, instead
of computing the whole fixpoint for the database. Moreover, those relations may not need to be

Figure 5: Graphical representation of resulting values of the working example.

R-SQL: An SQL Database System with Extended Recursion 9 / 13

recomputed from scratch. In addition, it is straightforward to modify the algorithm introduced in
Section 3.1 to get a lazy evaluation of such relations, performing iterations only when new val-
ues are demanded. Efficiency can also be improved by indexing (e.g., tries [SW12] and BDD’s
[WACL05]) temporary relations during fixpoint computations, and identifying tuple seeds in re-
lation definitions that do not need to be recomputed. To seamlessly integrate this into a RDBMS,
we can profit from the fourth-generation languages (e.g., SQL PL in IBM DB2 and PL/SQL in
Oracle). The current implementation of R-SQL must be understood as a prototype, which we
plan to enhance as just noted and then compare it with other systems.

Bibliography

[ANSS13] G. Aranda, S. Nieva, F. Sáenz-Pérez, J. Sánchez-Hernández. Formalizing a Broader
Recursion Coverage in SQL. In PADL’13. LNCS 7752. 2013. In Press.

[AOT+03] F. Arni, K. Ong, S. Tsur, H. Wang, C. Zaniolo. The Deductive Database System
LDL++. TPLP 3(1):61–94, 2003.

[Cod70] E. Codd. A Relational Model for Large Shared Databanks. Communications of the
ACM 13(6):377–390, June 1970.

[Dat09] C. J. Date. SQL and relational theory: how to write accurate SQL code. O’Reilly,
Sebastopol, CA, 2009.

[FMMP96] S. J. Finkelstein, N. Mattos, I. S. Mumick, H. Pirahesh. Expressing Recursive
Queries in SQL. Technical report, ISO, 1996.

[GUW09] H. Garcia-Molina, J. D. Ullman, J. Widom. Database systems - the complete book
(2. ed.). Pearson Education, 2009.

[KRP93] O. Kaser, C. R. Ramakrishnan, S. Pawagi. On the conversion of indirect to direct
recursion. ACM Lett. Program. Lang. Syst. 2(1-4):151–164, Mar. 1993.

[MP94] I. S. Mumick, H. Pirahesh. Implementation of magic-sets in a relational database
system. SIGMOD Rec. 23:103–114, May 1994.

[SP13] F. Sáenz-Pérez. Towards Bridging the Expressiveness Gap Between Relational and
Deductive Databases. In PROLE2013. 2013.

[SW12] T. Swift, D. S. Warren. XSB: Extending Prolog with Tabled Logic Programming.
TPLP 12(1-2):157–187, 2012.

[TLLP08] G. Terracina, N. Leone, V. Lio, C. Panetta. Experimenting with recursive queries in
database and logic programming systems. TPLP 8(2):129–165, 2008.

[Ull95] J. Ullman. Database and Knowledge-Base Systems Vols. I (Classical Database Sys-
tems) and II (The New Technologies). Computer Science Press, 1995.

[WACL05] J. Whaley, D. Avots, M. Carbin, M. S. Lam. Using Datalog with binary decision
diagrams for program analysis. In In APLAS’05. 2005.

R-SQL: An SQL Database System with Extended Recursion 10 / 13

Figure 6: Resulting tables of the working example.

A Appendix: Results for the Working Example

This appendix includes the full Python code generated by the R-SQL system for the working
example of the paper. The actual implementation of R-SQL introduces some improvements in
the code. For example, the code generated for flight table differs from the one explained in
the article, in order to save data from the cursor. In addition, the final values for all the tables are
illustrated in Figure 6.

import psycopg2

try:
conn = psycopg2.connect("dbname=’test’ user=’postgres’

host=’localhost’ password=’123456’")

except:
print "I am unable to connect to the database"

cursor=conn.cursor()

Code generated for Stratum 1
cursor.execute("drop table if exists flight;")
cursor.execute("create table flight

(ori varchar(10),des varchar(10),time float);")
cursor.execute("drop table if exists reachable;")
cursor.execute("create table reachable

(ori varchar(10),des varchar(10));")
cursor.execute("drop table if exists travel;")

R-SQL: An SQL Database System with Extended Recursion 11 / 13

cursor.execute("create table travel
(ori varchar(10),des varchar(10),time float);")

cursor.execute("drop table if exists madAirport;")
cursor.execute("create table madAirport

(ori varchar(10),des varchar(10));")

ch = True
while ch:

size1 = 0
size2 = 0
ch = False
cursor.execute("select * from flight;")
res=cursor.fetchall()
size1= size1 + len(res)
cursor.execute("insert into flight select ’lis’,’mad’,1

except select * from flight;")
cursor.execute("insert into flight select ’mad’,’par’,1.5

except select * from flight;")
cursor.execute("insert into flight select ’par’,’lon’,2

except select * from flight;")
cursor.execute("insert into flight select ’lon’,’ny’,7

except select * from flight;")
cursor.execute("insert into flight select ’par’,’ny’,8

except select * from flight;")

cursor.execute("select * from flight;")
res=cursor.fetchall()
size2= size2 + len(res)

cursor.execute("select * from reachable;")
res=cursor.fetchall()
size1= size1 + len(res)
cursor.execute("insert into reachable

select flight.ori,flight.des from flight
union (select reachable.ori,flight.des
from reachable,flight
where reachable.des = flight.ori
except select * from reachable;")

cursor.execute("select * from reachable;")
res=cursor.fetchall()
size2= size2 + len(res)

cursor.execute("select * from travel;")
res=cursor.fetchall()
size1= size1 + len(res)
cursor.execute("insert into travel

select * from flight
union select flight.ori,travel.des,
flight.time+travel.time
from flight,travel where flight.des = travel.ori
except select * from travel;")

cursor.execute("select * from travel;")
res=cursor.fetchall()

R-SQL: An SQL Database System with Extended Recursion 12 / 13

size2= size2 + len(res)

cursor.execute("select * from madAirport;")
res=cursor.fetchall()
size1= size1 + len(res)
cursor.execute("insert into madAirport

select reachable.ori,reachable.des
from reachable
where reachable.ori=’mad’ or reachable.des=’mad’)
except select * from madAirport;")

cursor.execute("select * from madAirport;")
res=cursor.fetchall()
size2= size2 + len(res)

ch = (size1 != size2)

Code generated for Stratum 2
cursor.execute("drop table if exists avoidMad;")
cursor.execute("create table avoidMad

(ori varchar(10),des varchar(10));")

ch = True
while ch:

size1 = 0
size2 = 0
ch = False
cursor.execute("select * from avoidMad;")
res=cursor.fetchall()
size1= size1 + len(res)
cursor.execute("insert into avoidMad

select reachable.ori,reachable.des
from reachable)
except select * from madAirport where true
except select * from avoidMad;")

cursor.execute("select * from avoidMad;")
res=cursor.fetchall()
size2= size2 + len(res)

ch = (size1 != size2)

R-SQL: An SQL Database System with Extended Recursion 13 / 13

