
PROLE 2006

Towards a Set Oriented Calculus for Logic
Programming 1

R. Caballero 2 Y. Garćıa-Ruiz 3 F. Sáenz-Pérez 4

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid

Madrid, Spain

Abstract

This paper presents SOCLP (Set Oriented Calculus for Logic Programming), a
proof calculus for pure Prolog programs with negation. The main difference of this
calculus w.r.t. other related approaches is that it deals with the answer set of a
goal as a whole, instead of considering each single answer separately. We prove
that SOCLP is well defined, in the sense that, at most, one answer set can be
derived from a goal, and that the derived set is correct the logical meaning of the
program. However the completeness result only holds for a restrictive subset of logic
programs. The calculus constitutes a starting point for defining a suitable semantics
for deductive database programs.

Key words: Logic Programming, Semantics.

1 Introduction

The semantics of logic programs was firstly studied in the seminal paper [5],
which introduced the ubiquitous immediate consequence operator TP . In [4],
the negation as failure rule was introduced as an effective means of deducing
negative information for logic programs, and proposed the completion of a
program as a description of its meaning. These and further approaches are
based on SLD resolution for logic programming, as proposed by [7], a partic-
ular refinement of the resolution principle [10]. The drawback of this point
of view is that one cannot directly reason about the meaning of a program
in terms of answer sets. In particular, this is an inconvenience when using
algorithmic debugging [11] for detecting missing answers, where the complete

1 This work has been funded by the projects TIN2005-09207-C03-03 and S-0505/TIC/0407.
2 Email: rafa@sip.ucm.es
3 Email: ygruiz@gmail.com
4 Email: fernan@sip.ucm.es

This paper was generated using LATEX macros provided by
Electronic Notes in Theoretical Computer Science



Caballero, Garćıa-Ruiz, and Sáenz-Pérez

set of answers for any subgoal of the subcomputation is needed. Also, deduc-
tive databases, for which semantics is usually defined in the same way as logic
programming [14], may be better described with a set oriented calculus, since
the natural answer in this context is a set of tuples, as in relational databases.

This paper presents SOCLP (Set Oriented Calculus for Logic Program-
ming), a proof calculus for pure Prolog programs with negation, which deals
with the set of answers of a goal as a whole, instead of considering each single
answer separately. However, we will see that the completeness of SOCLP can
only be ensured for a restrictive class of logic programs, namely the hierarchi-
cal programs [8,6] over finite Herbrand universes.

We also include theoretical results proving properties of the For the sake
of clarity and brevity, proofs of the results are not included in this paper but
can be consulted at [3].

Among these results we prove that SOCLP is well defined, in the sense
that only one set can be derived from a goal, and that such set represents
faithfully the answer set of a goal.

To the best of our knowledge, only few papers in the field of declarative
debugging address calculi involving goal answer sets (e.g., [12]). However,
these works do not consider programs with negation, and usually represent
the sets as disjunctions of logic formulas with variables instead of dealing
directly with set of ground terms. While their approach is more useful for
representing the answers of Prolog systems, ours is more oriented to the case
of deductive databases where the answers are assumed to be sets of ground
terms.

The limitation of our approach is that, in general, infinite proofs should be
needed for recursive goals with function symbols, and hence it seems no ade-
quate for describing logic programs. But if we consider deductive databases,
termination is guaranteed provided some conditions. These conditions can
avoid infinite proof trees and restrict both function symbols and negation.
This is the case of safe Datalog programs with stratified negation [13], where
finiteness and termination is ensured.

Our paper will be organized as follows: First, a motivating section in-
troduces our setting and highlights their advantages. Second, we pose some
preliminaries about the logic language we adhere to. The third section presents
the set oriented calculus SOCLP intended to represent goal meanings as tuple
sets. Finally, some conclusions and future work are pointed out.

2 Preliminaries

In this section, we present the notation and definitions used throughout the
paper which somehow differ from other approaches to logic programming. For
other basic definitions about this paradigm, we refer the reader to [1].

We consider programs with the syntax of pure Prolog programs with nega-
tion but without ”impure” features. A program P is therefore a set of normal

26



Caballero, Garćıa-Ruiz, and Sáenz-Pérez

clauses [8]. In order to distinguish the different clauses defining the same
predicate p, we use subindices following any arbitrary criterium (such as the
textual order in the program). Thus, if a predicate p is defined through r
clauses we will denote them as p1, . . . , pr. Each normal clause pi must have
the form:

pi(tn)︸ ︷︷ ︸
head

:− l1(ā
1
k1

), . . . , lm(ām
km

).︸ ︷︷ ︸
body

corresponding to the first order logic formula pi(tn)← l1(ā
1
k1

)∧ . . .∧ lm(ām
km

),
where the variables whose first occurrence is on the head of the clause have
implicit universal quantifiers and the variables whose first appearance is in
the body of the clause have implicit existential quantifiers. The notation (t̄n)
denotes the n-ary tuple (t1, . . . , tn). In particular, we represent by () the 0-ary
tuple, commonly called the unit tuple. The symbols ti (with 1 ≤ i ≤ n) and
au

v with 1 ≤ u ≤ m, 1 ≤ v ≤ ku represent terms, defined as usual in logic
programming: any variable and constant is a term, and any expression f(t̄n)
(with a function symbol f of arity n and terms ti (1 ≤ i ≤ n)) is a term as
well. The set of all the tuples of n terms that can be built using the constants
and functions of a program P is denoted in the rest of the paper as Un. Notice
that Un is infinite if the set of terms (the Herbrand universe) is infinite. The
symbols li(ā

i
ki

) with 1 ≤ i ≤ m stand for literals which can be either positive
atoms of the form p(āi

ki
) or negated atoms ¬p(āi

ki
). Sometimes, we will also

be interested in extended literals which can be of the form p(āi
ki

), pj(ā
i
ki

) and
¬p(āi

ki
). Including names of clauses as possible (extended) literals is consistent

with considering each clause pi as a predicate defined by just one clause, and
any predicate p defined by the implicit formula:

∀X1, . . . ,Xn (p(X̄n) ← p1(X̄n) ∨ · · · ∨ pm(X̄n))

where n is the predicate arity and Xj is a variable for every 1 ≤ j ≤ n.

Goals will be literals l(tn) with (tn) ∈ Un and with all the variables in
the goal assumed to be existentially quantified. Although the usual defi-
nition of goals in logic programming considers conjunctions of literals, ours
has no lack of generality; whenever we need to use a conjunction of literals
l1(ā

1
k1

), . . . , lm(ām
km

) as a goal, we replace it by the goal main(X̄n), assuming
the existence of a new predicate main defined by only one clause of the form:

main1(X̄n) :- l1(ā1
k1

), . . . , lm(ām
km

)

where {X1, . . . ,Xn} is the set of variables in l1(ā
1
k1

), . . . , lm(ām
km

).

Example 2.1 Figure 1 presents a small program written following the con-
ventions described so far. The predicate topicArea relates topics to their area
of knowledge. The three clauses of this predicate are facts, which are dis-
played in our setting by including the special propositional constant true as
the body of each clause. The main predicate of the example holds for those
values X such that are topics of the field of mathematics but not of the field

27



Caballero, Garćıa-Ruiz, and Sáenz-Pérez

topicArea1(logic,maths) : − true.

topicArea2(topology,maths) : − true.

topicArea3(logic,computers) : − true.

main1(X) : − topicArea(X,maths), ¬ topicArea(X,computers)).

Fig. 1. Relating topics to areas of knowledge

of computers.

An answer of a positive goal p(t̄n) w.r.t. a program P is a tuple of terms
(ān) such that:

i) (ān) ∈ Un.

ii) There exists a substitution θ verifying (t̄n)θ = ān.

iii) p(ān) is a logical consequence of the set of logic formulas represented by
the program.

We say that θ is the associated substitution to the answer (ān). The first
condition limits our possible answers to ground terms. For instance, the only
answer of the goal main(Y) w.r.t. the program of Figure 1 is (topology).

An answer for a negative goal ¬p(t̄n) w.r.t. a program P is a tuple of terms
(ān) such that (ān) is not an answer of p(t̄n). We use the expression answer set
to indicate the set containing all the answers of a given goal. For instance, the
answer set of the goal ¬main(X) is the set {(logic), (maths), (computers)},
since these are the elements of U1 that are not answers of main(X).

Finally, we define a special kind of programs: we say that a program
is hierarchical [8,6] if there exists some level mapping such that every clause
pi(tn) :−l1(ā

1
k1

), . . . , lm(ām
km

) verifies that the level of every predicate occurring
in the body is less than the level of p. A level mapping of a program is a
mapping from its set of predicate symbols to the natural numbers. We call
level of a predicate to the value of predicate under such mapping. For instance,
the program in Figure 1 is a hierarchical program because we can define the
following mapping: { true 7→ 0, topicArea 7→ 1, main 7→ 2 }.

3 The SOCLP Calculus

In this section, we present the proof calculus SOCLP, which allows to prove
that a set S is the answer set of a goal G w.r.t. a program P. We will use
the notation P S̀OCLP G↔ S, with G a goal and S a set of ground terms, to
indicate that the statement G ↔ S can be deduced in SOCLP using a finite
number of steps. In this case, we will say that G↔ S has a proof in SOCLP,
and that S is the SOCLP-set of G. The five rules of SOCLP can be seen in
Figure 2. The first two inference rules correspond to the trivial cases of a goal
being either true or pi(ān) with (ān) not unifiable with the head of any clause

28



Caballero, Garćıa-Ruiz, and Sáenz-Pérez

SOCLP

(TR↔)
true ↔ {()}

(EMP↔)
pi(tn) ↔ ∅

if (pi(ān) :− l1(b̄1
k1

), . . . , lm(b̄m
km

)) ∈ P , and

m.g.u.((ān), (t̄n)) does not exist.

(NEG↔)
p(t̄n) ↔ S2

¬p(tn) ↔ S1

if S1 = Un\S2

(PR↔)
p1(t̄n) ↔ S1 . . . pk(t̄n) ↔ Sk

p(tn) ↔ S

if S =
⋃k

i=1 Si, and p1, . . . , pk

are all the clauses of p in P

(CL↔)
l1(b̄1

k1
)θ ↔ S1 . . . lm(b̄m

km
)θ ↔ Sm

pi(tn) ↔ S
if:

- S ⊆ Un

- (pi(ān) :− l1(b̄1
k1

), . . . , lm(b̄m
km

)) ∈ P

- θ = m.g.u.((an), (tn))

- (t̄n)θθ′ ∈ S for all θ′ s.t. (b̄i
ki

)θθ
′ ∈ Si with i = 1 . . .m

- for all (t′n) ∈ S exists θ′ s.t. (t′n) = (t̄n)θθ′

and (b̄i
ki

)θθ
′ ∈ Si for each i = 1 . . .m

Fig. 2. The SOCLP calculus

for pi. In the first case, the SOCLP-set only contains the unit tuple (), since
we assume that this 0-ary predicate always holds. In the second case, if the
most general unifier of (ān) and the tuple at the head of pi does not exist, it
is easy to check that the goal has no answer. Thus, the SOCLP-set is ∅. The
inference rule (NEG↔) says that the SOCLP-set of a negated atom ¬p(tn)
is the complementary of the SOCLP-set of the corresponding positive atom
w.r.t. Un. That is, we use the closed world assumption [9], which assumes that
all atoms not entailed by a program are false. This point of view is convenient
for working with answer sets, which makes it widely used in database logic
languages (see for instance [14], chapter 10). (PR↔) defines the SOCLP-set
of a positive atom as the union of the SOCLP-sets obtained by using its
defining clauses. Finally, (CL↔) explains how to obtain the SOCLP-set S

29



Caballero, Garćıa-Ruiz, and Sáenz-Pérez

main(Y) ↔ {(topology)}

(PR↔)

main1(Y) ↔ {(topology)}XXXXXXXXXX

����������
(CL↔)(1)

topicArea(Y,maths) ↔ {(logic, topology)}
(PR↔)

¬ topicArea(Y,computers) ↔
{(maths, computers, topology)}������

topicArea1(Y,maths) ↔
{(logic)}

(CL↔)(2)

true ↔ {()}
(TR)↔

topicArea2(Y,maths) ↔ {(topology)}
(CL↔)(3)

true ↔ {()}
(TR)↔

HHH
topicArea3(Y,maths) ↔ ∅

(EMP↔)
(NEG↔)

topicArea(Y,computers) ↔ {(logic)}
����������

topicArea1(Y,computers) ↔ ∅

�
�

�
�

�
�

topicArea2(Y,computers) ↔ ∅

@
@

@
topicArea3(Y,computers) ↔

{logic }

(PR↔)

(EMP↔)

(EMP↔)
(CL↔)(4)

true ↔ {()}
(TR)↔

(1) Clause main1(X) : − topicArea(X,maths), ¬ topicArea(X,computers)), θ = {X 7→ Y }
(2) Clause topicArea1(Y,maths)), θ = {Y 7→ logic}
(3) Clause topicArea2(Y,maths)), θ = {Y 7→ topology}
(4) Clause topicArea3(Y,computers)), θ = {Y 7→ logic}

Fig. 3. Inference using the Calculus SOCLP↔

of a clause pi(tn) from the SOCLP-sets of the literals of its body. The clause
(pi(ān) :− l1(b̄

1
k1

), . . . , lm(b̄m
km

)) ∈ P is assumed to have new variables, different
from those in (tn). This rule says that all the premises must be affected by
the most general unifier of (an) and (tn). Then, each substitution θ′ that
generalizes the associated substitutions of one element of the SOCLP-set of
each body literal produces an element in S. Conversely, each substitution
associated to an element of S must correspond to the restriction of a more
general θ′ that generalizes the associated substitutions of one element of the
SOCLP-set of each body literal.

Example 3.1 As an example of inference using SOCLP, Figure 3 includes a
SOCLP proof tree for P S̀OCLP main(Y )↔ {(topology)}. The root contains
the initial statement, and the children of any node correspond to the premises
of the SOCLP inference rule applied at the node. Below the tree are listed the
renaming of the clauses and the m.g.u. associated to each application of the
(CL↔) inference rule. For instance, the first application of (CL↔) corresponds

30



Caballero, Garćıa-Ruiz, and Sáenz-Pérez

to the clause for main. The children correspond to the body of the clause after
applying the m.g.u.:

topicArea(Y,maths), ¬ topicArea(Y,computers))

The SOCLP-set for the first literal topicArea(Y,maths) is { logic, topology },
corresponding to the substitutions θ′ = {Y 7→ logic} and θ′ = {Y 7→ topology},
respectively. The SOCLP-set of the second literal is { maths, computers,
topology }, with associated substitutions θ′ = {Y 7→ maths}, θ′ = {Y 7→
computers}, and θ′ = {Y 7→ topology}. Only the substitution θ′ = {Y 7→
topology} corresponds to the SOCLP-sets of both literals, and for that reason
topology (underlined in the tree) is the only element in the SOCLP-set for
main1, following the requirements of the fourth and fifth conditions of (CL↔).

This example shows that in SOCLP neither the order of the literals in the
body of a clause nor the textual order of the clauses of the same predicate
is important. The following proposition ensures that the calculus defines at
most one SOCLP-set for any given goal.

Proposition 3.2 Let P be a program, l(t̄n) a goal, and Sa, Sb two sets such
that P S̀OCLP l(t̄n)↔ Sa and P S̀OCLP l(t̄n)↔ Sb. Then Sa = Sb.

The next theorem establishes the relationship between the SOCLP proofs
and the logical meaning of the program, proving that the SOCLP-set of any
goal is actually its answer set.

Theorem 3.3 (Soundness and weak completeness of SOCLP)

Let P be a program, l(t̄n) a goal, and S a set such that P S̀OCLP l(t̄n)↔ S.
Then (ān) ∈ S iff (ān) is an answer of l(t̄n).

The theorem states that, whenever a SOCLP-proof for l(t̄n)↔ S exists, we
can ensure that S is precisely the answer set of l(t̄n). Hence, we can trust the
SOCLP proofs as suitable descriptions of the answer set of a goal. However,
not all the answer sets admit a SOCLP proof tree.

Example 3.4 Consider, for instance, the small program:

p1(a) : − true.

p2(X) : − p(X).

It is easy to check out that the answer set of the goal p(X) is {(a)}. However,
the statement p(X) ↔ {(a)} cannot be proved in SOCLP.

The next proposition establishes that the answer set of a goal admit a
SOCLP proof if we restrict our setting to hierarchical programs over finite
Herbrand universes:

Proposition 3.5 (Restricted completeness)
Let P be a hierarchical program over a finite Herbrand universe and l(t̄n) a
goal. Then, there exists some set S such that P S̀OCLP l(t̄n)↔ S.

31



Caballero, Garćıa-Ruiz, and Sáenz-Pérez

¬ main(X) ↔ {(suc(zero)), (suc(suc(zero))), . . .}
(NEG↔)

main(X) ↔ {(zero)}
(PR↔)

main1(X) ↔ {(zero)}

(CL↔)(1)

less(X,suc(zero)) ↔ {(zero,suc(zero))}XXXXXXXXXX

����������
(PR↔)

less1(X,suc(zero)) ↔ {(zero,suc(zero))} less2(X,suc(zero)) ↔ ∅

(CL↔)(2) (CL↔)(3)

true ↔ {()}
(TR↔)

less(U, zero) ↔ ∅XXXXXX
������

less1(U, zero) ↔ ∅ less2(U, zero) ↔ ∅
(EMP↔) (EMP↔)

(1) Clause main1(Y) : − less(Y,suc(zero)), θ = {Y 7→ X}
(2) Clause less1(zero,suc(V)) : − true, θ = {X 7→ zero, V 7→ zero}
(3) Clause less2(suc(U), suc(V)) : − less(U,V), θ = {X 7→ suc(U ), V 7→ zero}

Fig. 4.

By Proposition 3.2, the set S is unique, and, by Theorem 3.3, this set is
the answer set of the goal. Thus, the SOCLP calculus defines correctly the
semantics of hierarchical programs [6] over finite Herbrand universes from the
point of view of the answer sets. Although the proposition provides a rather
restrictive set of programs for which SOCLP is complete, this does not mean
that SOCLP cannot be applied to non-hierarchical programs.

Example 3.6 The predicate main of the following program defines the set of
natural numbers which are less than one (i.e., only the number zero):

less1(zero,suc(Y)) : − true.

less2(suc(X),suc(Y)) : − less(X,Y).

main1(X) : − less(X,suc(zero)).

This program is not hierarchical, due to the second rule for less, and its Her-
brand Universe is infinite. However, as Figure 4 shows, using SOCLP is possi-
ble to prove that P S̀OCLP ¬main(X) ↔ {(suc(zero)), (suc(suc(zero))), . . .},
i.e., that all the natural numbers different from zero are not less than suc(zero).

In the previous example, it is also interesting to note that SOCLP proofs
are not always limited to finite answer sets. This is due to the rule for negation,

32



Caballero, Garćıa-Ruiz, and Sáenz-Pérez

which can convert the proof of an infinite answer set in the proof of a finite
answer set, and vice versa (as the first inference step of Figure 4 shows). This
rule also makes the set of provable statements different from those of pure
Prolog programs with negation. For instance, the previous goal ¬main(X)
has no solution using negation as failure because main(X) does not fail (it
succeeds with X 7→ zero).

4 Conclusions and Future Work

The usual operational mechanisms used in logic programming implementa-
tions successively yield the answers for a given goal. While this is a good
approach in practical implementations, from the point of view of semantics
it is worth considering the set of answers of a goal as a whole. The SOCLP
calculus presented in this paper represents this point of view. The calculus
derivations can be seen as proof trees proving that a set includes all the possible
ground answers for a given goal with respect to a logic program. In Theorem
3.3, we have proved that SOCLP proofs represent faithfully the answer set
of a given goal. The main limitation of this calculus is that SOCLP proofs
do not always exist; we have only proved completeness (Proposition 3.5) with
respect to the class of hierarchical programs over finite Herbrand universes.
Nevertheless, SOCLP proofs are often possible in more general programs and
it is part of our future work to extend the completeness result to a broader
class of programs.

As future work, we plan to define a calculus based on SOCLP for defin-
ing the semantics of deductive databases [14] and, in particular, of Datalog
programs. Notice that SOCLP has already several features that already fit in
the usual framework of Datalog, such as the notion of sets of ground tuples as
natural answers, and the closed world assumption as a basis for the treatment
of negation [2]. Also, the requirement of a finite Herbrand universe for com-
pleteness is a condition for Datalog programs, in which no function symbols
are allowed. Thus, the future extension of SOCLP should keep these features
while extending the class of complete programs to include non-hierarchical
programs, which is the case of Datalog.

Acknowledgement

The authors are grateful to F.J. López-Fraguas for his interesting and helpful
comments and suggestions.

33



Caballero, Garćıa-Ruiz, and Sáenz-Pérez

References

[1] Apt, K. R., “From Logic Programming to Prolog,” Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1996.

[2] Bidoit, N., Negation in rule-based database languages: a survey, in: Selected
papers of the workshop on Deductive database theory (1991), pp. 3–83.

[3] Caballero, R., Y. Garćıa-Ruiz and F. Sáenz-Pérez, A set oriented calculus
for logic programming, Technical Report Technical Report SIP-02/2006,
Facultad de Informática, Universidad Complutense de Madrid (2006),
https://www.fdi.ucm.es/profesor/rafa/papers/TR0206.pdf.

[4] Clark, K. L., Negation as failure, in: H. Gallaire and J. Minker, editors, Logic
and Databases (1987), pp. 293–322.

[5] Emden, M. H. V. and R. A. Kowalski, The semantics of predicate logic as a
programming language, J. ACM 23 (1976), pp. 733–742.

[6] Jäger, G. and R. F. Stärk, The defining power of stratified and hierarchical logic
programs, J. of Logic Programming 15 (1993), pp. 55–77.

[7] Kowalski, R. A., Predicate logic as a programming language, in: J. L. Rosenfeld,
editor, Proceedings of the Sixth IFIP Congress (Information Processing 74),
Stockholm, Sweden, 1974, pp. 569–574.

[8] Lloyd, J., “Foundations of Logic Programming,” Springer Verlag, 1984.

[9] Reiter, R., On Closed World Databases, Readings in nonmonotonic reasoning
(1987), pp. 300–310.

[10] Robinson, J. A., A machine-oriented logic based on the resolution principle, J.
ACM 12 (1965), pp. 23–41.

[11] Shapiro, E., “Algorithmic Program Debugging,” ACM Distiguished
Dissertation, MIT Press, 1982.

[12] Tessier, A. and G. Ferrand, Declarative Diagnosis in the CLP Scheme, in:
P. Deransart, M. Hermenegildo and J. Ma luszynski, editors, Analysis and
Visualization Tools for Constraint Programming, number 1870 in LNCS,
Springer, 2000 pp. 151–174.

[13] Ullman, J., “Database and Knowledge-Base Systems Vols. I (Classical Database
Systems) and II (The New Technologies),” Computer Science Press, 1995.

[14] Zaniolo, C., S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian and
R. Zicari, “Advanced Database Systems,” Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1997.

34




