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Abstract. The logic programming language Datalog has been exten-
sively researched as a query language for deductive databases. Although
similar to Prolog, the Datalog operational mechanisms are more intricate,
leading to computations quite hard to debug by traditional approaches.
In this paper, we present a theoretical framework for debugging Datalog
programs based on the ideas of declarative debugging. In our setting,
a debugging session starts when the user detects an unexpected answer
for some query, and ends with the debugger pointing to either an erro-
neous predicate or to a set of mutually recursive predicates as the cause
of the unexpected answer. Instead of representing the computations by
means of trees, as usual in declarative debugging, we propose graphs as
a more convenient structure in the case of Datalog, proving formally the
soundness and completeness of the debugging technique. We also present
a debugging tool implemented in the publicly available deductive data-
base system DES following this theoretical framework.

1 Introduction

Deductive databases rely on logic programming based query languages. Although
not very well-known out of the academic institutions, some of their concepts are
used in today relational databases to support advanced features of more recent
SQL standards, and even implemented in major systems (e.g., the linear re-
cursion provided in IBM’s DB2 following the SQL-99 standard). A successful
language for deductive databases has been Datalog [1], which allows users writ-
ing more expressive queries than relational databases. Relations and queries in
Datalog are considered from a model-theoretic point of view, that is, thinking
of relations as sets, and the language itself as a tool for manipulating sets and
obtaining answer sets.

Raising the abstraction level generally implies a more complex computation
mechanism acting as a black-box hidden from the user. Although this leads
to more expressive programs, it also makes query debugging a very difficult
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process. An operational semantics oriented debugger is not helpful in this con-
text, since the underlying computational mechanism is not directly related to the
model-theoretic approach, but to implementation techniques such as magic sets
[2] or tabling [3]. The few existing proposals for debugging specifically Datalog
programs are usually based on “imperative” debugging, that try to follow the
computation model to find bugs. These proposals are mainly based on forests of
proof trees [4,5,6], which makes debugging a trace based task not so amenable to
users. The first work related to the declarative debugging of Datalog programs
is due to [7], but a variant of SLD resolution is used in order to look for pro-
gram errors, imposing to traverse at least as many trees as particular answers
are obtained for any query.

In the more general setting of answer set programming [8], there have been
several proposals for diagnosing program errors in the last few years. In [9] a
technique for detecting conflict sets is proposed. The paper explains how this
approach can be used for detecting missing answers. Our proposal is limited to a
more particular type of programs, namely stratified programs, but it can be ap-
plied for diagnosing not only missing but also wrong answers. In [10] the authors
propose a technique that transforms programs into other programs with an-
swer sets including debugging-relevant information about the original programs.
This approach can be seen as a different, complementary view of the debugging
technique described here.

In [11] we proposed a novel way of applying declarative debugging (also called
algorithmic debugging, a term first coined in the logic programming field by E.H.
Shapiro [12]), to Datalog programs. In that work, we introduced the notion of
computation graphs (shortly CGs) as a suitable structure for representing and
debugging Datalog computations. One of the virtues of declarative debugging
is that it allows theoretical reasoning about the adequacy of the proposal. This
paper addresses this task, proving formally the soundness and completeness of
the debugging technique. We also present a prototype based in these ideas and
included as part of a publicly available Datalog system DES [13].

The next section introduces the theoretical background needed for proving the
properties of the debugger. Section 3 presents the concept of computation graph
and proves several properties of CGs, while Section 4 includes the soundness
and completeness results. Section 5 is devoted to discuss some implementation
issues. Finally, Section 6 summarizes the work and presents the conclusions.

2 Datalog Programs

In this section, we introduce the syntax and semantics of Datalog programs and
define the different types of errors that can occur in our setting. Although there
are different proposals for this language, we will restrict our presentation to the
language features included in the system DES [13]. Observe that the setting for
Datalog presented here is a subsumed by the more general framework of Answer
Set Programming [8].
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2.1 Datalog Syntax

We consider (recursive) Datalog programs [14,15], i.e., normal logic programs
without function symbols. In our setting, terms are either variables or constant
symbols and atoms are of the form p(t1, . . . , tn), with p an n-ary predicate symbol
and ti terms for each 1 ≤ i ≤ n. The notation t1, . . . , tn will be usually abbre-
viated as t̄n. A positive literal is an atom, and a negative literal is a negated
atom. A negated atom is syntactically constructed as not(A), where A is an
atom. The atom contained in a literal L will be denoted as atom(L). The set of
variables of any formula F will be denoted as var(F ). A formula F is ground
when var(F ) = ∅.

A rule (or clause in the logic programming context) R has the form p(t̄n) :
− l1, . . . , lm representing the first order logic formula p(t̄n) ← l1 ∧ . . . ∧ lm,
where li are literals for i = 1 . . .m, and m ≥ 0. The left-hand side atom p(t̄n)
will be referred to as the head of R, the right-hand side l1, . . . , ln as the body
of R, and the literals li as subqueries. The variables occurring only in the body
l1 ∧ . . . ∧ lm are assumed to be existentially quantified and the rest universally
quantified. We require that vars(H) ⊆ vars(B) for every program rule H :− B.
A fact is a rule with empty body and ground head. The symbol :− is dropped
in this case. The definition of a relation (or predicate) p in a program P consists
of all the program rules with p in the head. A query (or goal) is a literal.

We consider stratified negation, a form of negation introduced in the context
of deductive databases in [16]. A program P is called stratified if there is a
partition {P1, . . . , Pn} of P s.t. for i = 1 . . . n:

1. If a relation symbol occurs in a positive literal of the body of any rule in Pi

then its definition is contained in ∪j≤iPj .
2. If a relation symbol occurs in a negative literal of the body of any rule in Pi

then its definition is contained in ∪j<iPj .

We call each Pi a stratum. For instance, consider the Datalog program of
Figure 1. We can check that the program is stratified by defining two strata: P1
containing the rules for star, orbits and intermediate, and P2 containing the
rule for planet.

star(sun).
orbits(earth, sun).
orbits(moon, earth).
orbits(X,Y) :− orbits(X,Z), orbits(Z,Y).
planet(X) :− orbits(X,Y), star(Y), not(intermediate(X,Y)).
intermediate(X,Y) :− orbits(X,Y), orbits(Z,Y).

Fig. 1. A (buggy) Datalog Program



146 R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez

2.2 Program Models

We consider Herbrand interpretations and Herbrand models, i.e., Herbrand inter-
pretations that make every Herbrand instance of the program rules logically true
formulae. An instance of a formula is the result of applying the substitution θ to
a formula F . We use the notation Fθ instead of θ(F ) for representing instances.
The set Subst represents the set of all the possible substitutions. Often, we will
be interested in ground instances of a rule, assuming implicitly that every rule
is renamed with new variables each time it is selected. The composition opera-
tion between substitutions is defined in the usual way and fulfilling the property
(Fσ)θ = F (σ ·θ) for all σ, θ ∈ Subst. Two formulae ϕ, ϕ′ are variants if ϕ = ϕ′θ,
where θ is a renaming, i.e., a bijection among variables. We say that σ ∈ Subst
is an instance of θ ∈ Subst when σ = θμ, with μ some substitution. In this case,
we write σ ≥ θ.

Given a Herbrand interpretation I for a the Datalog program P , we use the
notation I |= F to indicate that the formula F is true in I. The meaning of a
query Q w.r.t. the interpretation I, denoted by QI , is the set of ground instances
Qθ s.t. I |= Qθ. If Q is an atom, then an equivalent definition is QI = {Qθ |
Qθ ∈ I for some θ ∈ Subst}.

In logic programming without negation, the existence of a least Herbrand
model for every program P is ensured, and it can be obtained as the least fixed
point of a closure operator TP , which is defined over any interpretation I as:

A ∈ TP (I) iff for some rule (H :− B) ∈ P, I |= Bθ and A = Hθ

In these conditions, the least Herbrand model is defined as TP ↑ ω(∅), i.e., as
the fixed point obtained when iterating the operator starting at the empty in-
terpretation. In general, however, the existence of the least Herbrand model is
not ensured in programs using negation. Fortunately, due to the use of stratified
programs in Datalog, the existence of a so-called standard model, which we will
represent also as M, is in any case ensured [14]. Given a program P stratified by
the partition {P1, . . . , Pk}, we define the sets M0 = ∅, M1 = TP1 ↑ ω(M0), . . . ,
Mk = TPk

↑ ω(Mk − 1). Then, the standard model of P is defined as M = Mk.
The standard model verifies the following properties (the proofs can be found in
[14]):

Proposition 1. Let P be a program stratified by the partition {P1, . . . , Pk}.
Then:

1. M is a minimal model.
2. M is supported, i.e., for all p(s̄n) ∈ M there exists an associated pro-

gram rule (H :−B) ∈ P and an associated substitution θ ∈ Subst such
that p(s̄n) = Hθ, M |= Bθ and Bθ ground (due to our safety condition,
var(H) ⊆ var(B), which means that Hθ is also ground).

3. Conversely, if there is some (H :−B) ∈ P , θ ∈ Subst s.t. M |= Bθ, then
M |= Hθ.

4. M is independent of the stratification.
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5. The following chain of inclusions holds:
∅ = M0 ⊆ TP1(M0) ⊆ T 2

P1
(M0) ⊆ . . . ⊆ M1

M1 ⊆ TP2(M1) ⊆ T 2
P2

(M2) ⊆ . . . ⊆ M2

. . .
Mk−1 ⊆ TPk

(Mk−1) ⊆ T 2
Pk

(Mk−1) ⊆ . . . ⊆ Mk = M

Since functions are not allowed in Datalog, the standard model is finite and it
can be actually computed. In fact, the deductive database systems such as DES
are implemented to obtain the values QM for every query Q. Thus, QM will
be referred to as the answer to Q. From now on, we assume that the Datalog
system supporting the debugger verifies this condition, which is a reasonable
requirement in the context of Datalog. This is different from the general setting of
logic languages such as Prolog, even if we restrict to the case of Prolog programs
without functions in the signature. For instance, consider the following dummy
program:

p(X) :- q(X). q(X) :- p(X).

The program is valid both in Prolog and in Datalog. However, the goal (resp.
query) p(X) shows the difference between the two settings: In Prolog, it leads to
a non-terminating computation, whereas in Datalog it succeeds with the answer
{}, meaning that no ground instance of p(X) can be deduced from the program.
Our selected system DES computes the answer to a query following a top-down
approach, so that only the relevant information to obtain QM is computed in
order to increase the efficiency of the computation.

The concept of standard model above is generalized by that of stable model
[17], which can be applied also to non-stratified programs. However, in this work
we restrict our semantics to stratified programs because this is a requirement of
several Datalog systems.

2.3 Correct and Incorrect Programs

We use the term intended interpretation, denoted by I, to denote the Herbrand
model the user has in mind for the program. If M = I, we say that the program
is well-defined, and if M �= I we say that the program is buggy. Declarative
debugging assumes that the user focus on query answers for comparing the
intended interpretation to the standard Herbrand model actually computed.
Thus, we say that QM is an unexpected answer for a query Q if QM �= QI . An
unexpected answer can be either a wrong answer, when there is some Qθ ∈ QM
s.t. Qθ /∈ QI , or a missing answer, when there is Qθ ∈ QI s.t. Qθ /∈ QM. In
the first case, Qθ is a wrong instance, while in the second one Qθ is a missing
instance. Observe that an unexpected answer can be both missing and wrong at
the same time. The next proposition indicates that an unexpected answer to a
positive query implies an unexpected answer to its negation.

Proposition 2. Let P be a program containing at least one constant, I its in-
tended model and Q a positive query. Then, QM is a missing answer for Q iff



148 R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez

(¬Q)M is a wrong answer for ¬Q, and QM is a wrong answer for Q iff (¬Q)M
is a missing answer for ¬Q.

Proof. Straightforward from the definition of meaning of a query w.r.t. an in-
terpretation, since QI ∩ (¬Q)I = ∅ in every interpretation I. Then, p(t̄n) /∈ QM
and p(t̄n) ∈ QI , i.e., if p(t̄n) is a missing instance and QM is a missing answer,
iff p(t̄n) ∈ (¬Q)M), p(t̄n) /∈ (¬Q)I , i.e., p(t̄n) is a wrong instance and (¬Q)M is
a wrong answer for ¬Q. Analogous for the other case. �

An unexpected answer indicates that the program is erroneous, and it will be
considered as the initial symptom for a user to start the debugging process.
The two usual causes of errors considered in the declarative debugging of logic
programs are wrong and incomplete relations:

Definition 1 (Wrong Relation). Let P be a Datalog program.We say that p ∈
P is a wrong relation w.r.t. I if there exist a rule variant p(t̄n) :− l1, . . . , lm
in P and a substitution θ such that I |= liθ, i = 1 . . .m and I � p(t̄n)θ.

Definition 2 (Incomplete Relation). Let P be a Datalog program. We say
that p ∈ P is an incomplete relation w.r.t. I if there exists an atom p(s̄n)θ
s.t. I |= p(s̄n)θ and, for each rule variant p(t̄n) : − l1, . . . , lm and substitution
θ′, either p(t̄n)θ′ �= p(s̄n)θ or I � liθ

′ for some li, 1 ≤ i ≤ m.

In Datalog we also need to consider another possible cause of errors, namely the
incomplete set of relations. This concept depends on the auxiliary definition of
uncovered set of atoms.

Definition 3 (Uncovered Set of Atoms). Let P be a Datalog program and
I an intended interpretation for P . Let U be a set of atoms s.t. I |= p(s̄n) for
each p(s̄n) ∈ U . We say that U is an uncovered set of atoms if for every rule
p(t̄n) :− l1, . . . , lm in P and substitution θ s.t.:

– p(t̄n)θ ∈ U ,
– I |= liθ for i = 1 . . .m

there is some ljθ ∈ U , 1 ≤ j ≤ m, with lj a positive literal.

Now, we are ready for defining the third kind of error, which generalizes the idea
of incomplete relation:

Definition 4 (Incomplete Set of Relations). Let P be a Datalog program
and S a set of relations defined in P . We say that S is an incomplete set
of relations in P iff exists an uncovered set of atoms U s.t. for each relation
p ∈ S, p(t̄n) ∈ U for some t1, . . . , tn.

To the best of our knowledge, this error has not been considered in the literature
about Datalog debugging so far, but it is necessary for correctly diagnosing Dat-
alog programs. Consider again the program p(X):- q(X). q(X):-p(X). with
the intended interpretation I = {p(a), q(a)} and the query p(X). The computed
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answer {} is a missing answer with p(a) as missing instance. However, neither
of the two relations is incomplete, because their rules can produce the values
p(a), q(a) by means of the instance given by the substitution θ = {X → a}.
So, U = {p(a), q(a)} is an uncovered set of atoms and hence S = {p, q} is an
incomplete set of relations.

We say that a relation is buggy when it is wrong, incomplete or member of an
incomplete set of relations, and that it is well-defined otherwise. Observe that,
due to the use of negation, a wrong answer does not correspond always to a
wrong relation. For instance, in the following program:

p(X) :- r(X), not(q(X)).
% missing q(a).
r(a).

with intended interpretation I = {q(a), r(a)} the query p(X) produces the wrong
answer {p(a)} but there is no wrong relation in the program and instead there
is an incomplete relation (q).

As an example, consider the program of Figure 1. This program defines a
relation orbits by two facts and a rule establishing the transitive closure of
the relation. A relation star is defined by one fact and indicates that the sun
is a star. The relation intermediate is defined in terms of orbits, relating
two bodies X and Y whenever there is some intermediate body between them.
Finally, planet is defined as a body X that orbits directly a star Y, without any
other body in between. However, a mistake has been introduced in the program:
The underlined Y in the rule for intermediate should be Z. As a consequence,
the query planet(X) yields the missing answer {} (assuming that the atom
planet(earth) is in I). In the next section, we will show how such errors can
be detected by using declarative debugging based on computation graphs.

3 Computation Graphs

In this section, we define a structure for representing Datalog computations and
prove their adequacy for declarative debugging.

3.1 Graph Terminology

We consider finite directed graphs G = (V, E), where V is a finite set of vertices
and E a finite set of directed edges, E ⊆ V × V . Often, we use the notation
v ∈ G instead of v ∈ V and (u, v) ∈ G instead of (u, v) ∈ E. Given any vertex
u ∈ G we say that v ∈ G is a successor of u in G if (u, v) ∈ G, which we represent
by the notation succG(u, v).

Given G = (V, E), we say that G′ = (V ′, E′) is a subgraph of G if G′ is a graph
s.t. V ′ ⊆ V and E′ ⊆ E. A particular case of subgraph is the subgraph generated
from a subset of vertices V ′ ⊆ V . This subgraph is of the form G′ = (V ′, E′),
where E′ = {(u, v) ∈ G | u, v ∈ V ′}.
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In a directed graph, the output degree of a vertex v ∈ G is the cardinal of
the set {u ∈ G | (v, u) ∈ G} and it is represented by gr+

G(v). Analogously,
the value gr−G(v) = | {u ∈ G | (u, v) ∈ G} | represents the input degree of v.
These concepts can be naturally extended to subgraphs by defining gr+

G(G′) =
| {(u, v) ∈ G | u ∈ G′, v /∈ G′} |, gr−G(G′) = | {(v, u) ∈ G | u ∈ G′, v /∈ G′} |.
We remove the subindex G in gr+

G, gr−G whenever the reference to the graph
considered cannot be ambiguous in the context.

A sequence of vertices u1, u2, . . . , un of G such that (ui, ui+1) ∈ G for all
i = 1 . . . n − 1 are called a walk from u1 to un. A walk s.t. u1 = un is called
a circuit. A walk with no repeated vertices except maybe the first and the last
vertex is called a path. If indeed u1 = un the path is called a cycle, i.e., a cycle is a
special case of circuit with exactly one vertex repeated. The notation pathG(u, v)
represents a path starting at u and ending in v in some graph G.

A directed graph G is called strongly connected if, for every pair of vertices
u, v ∈ G, there is a path from u to v and a path from v to u. The strongly
connected components of a directed graph are its maximal strongly connected
subgraphs, and they form a partition of G.

3.2 Datalog Computation Graphs

The computation graph (CG in short) for a query Q w.r.t. a program P is a
directed graph G = (V, E) such that each vertex V is of the form (Q′, Q′

M), where
Q′ is a subquery produced during the computation, and Q′

M is the computed
answer for Q′. The next definition includes the construction of a computation
graph. Observe that the answers of the subqueries are not relevant for the graph
structure and, therefore, they are included as part of the vertices in a last step.

Definition 5 (Computation Graph). Let P be a Datalog program and Q a
query either of the form p(ān) or not(p(ān)). The computation graph for Q w.r.t.
P is represented by a pair (V, E) of vertices and edges defined as follows:

The construction of the graph uses an auxiliary set A for containing the ver-
tices that must be expanded in order to complete the graph.

1. Put V = A = {p(ān)} and E = ∅.

2. While A �= ∅ do:
(a) Select a vertex u in A with query q(b̄n). A = A \ {u}.
(b) For each rule R defining q, R = (q(tn) :− l1, . . . , lm) with m > 0, such

that there exists θ = mgu(t̄n, b̄n), the debugger creates a set S of new
vertices. Initially, we define S = ∅ and include new vertices associated
to each literal li, i = 1 . . .m as follows:
i. i = 1, a new vertex is included: S = S ∪ {atom(l1)θ}.
ii. i > 1. We consider the literal li. For each set of substitutions {σ1,

. . . , σi} with dom(σ1 · . . . · σi−1) ⊆ var(l1) ∪ · · · ∪ var(li) such that
for every 1 < j ≤ i:
– atom(lj−1)(σ1 · . . . · σj−1) ∈ S, and



A Theoretical Framework for the Declarative Debugging 151

– lj−1(σ1 · . . . · σj) ∈ (lj−1(σ1 · . . . · σj−1))M
include a new vertex in S:

S = S ∪ {atom(li)(σ1 · . . . · σi)}

(c) For each vertex v ∈ S, test whether there exists already a vertex v′ ∈ V
such that v and v′ are variants (i.e., there is a variable renaming). There
are two possibilities:
– There is such a vertex v′. Then, E = E ∪ {(u, v′)}. That is, if the

vertex already exists, we simply add a new edge from the selected
vertex u to v′.

– Otherwise, V = V ∪ {v}, A = A ∪ {v}, and E = E ∪ {(u, v)}.
3. Complete the vertices including the computed answer QM of every subquery

Q.

End of Definition

We will use the notation [Q = QMA ] for representing the content of the vertices.
The values QMA included at step 3 can be obtained from the underlying deduc-
tive database system by submitting each Q. The vertex is valid if QMA is the
expected answer for Q, and invalid otherwise.

Figure 2 shows the CG for the query planet(X) w.r.t. the program of Figure
1. The first vertex included in the graph at step 1 corresponds to planet(X).

intermediate(moon,sun) =
   {intermediate(moon,sun) }

orbits(moon,sun) =
  { orbits(moon,sun) }

orbits(moon,Z) = {
    orbits(moon,earth),
    orbits(moon,sun) }

orbits(X,Y)={ (earth,sun),
                       (moon,earth),
                       (moon,sun) }

intermediate(earth,sun)=
    { intermediate(earth,sun) }

orbits(sun,sun)={orbits(sun,sun)}

orbits(sun,Z) = { }
orbits(earth,Y) =

   { orbits(earth,sun) }

orbits(Z,sun) = {orbits(earth,sun),
                           orbits(moon,sun) }

orbits(earth,sun) =
   {orbits(earth,sun) }

planet(X) = { }

star(earth)={ }star(sun)={star(sun)}

Fig. 2. CG for the Query planet(X) w.r.t. the Program of Figure 1
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From this vertex and by using the only program rule for planet, four new
vertices are added, the first one corresponding to the first literal orbits(X,Y).
Since two values of Y satisfy this subquery, namely Y=sun and Y=earth, the de-
finition introduces two new vertices for the next literal star(Y), star(sun) and
star(earth). The last one produces the empty answer, but star(sun) succeeds.
Then, the last literal in the rule, not(intermediate(X,Y)), yields vertices for
the two values of X and the only value of Y that satisfies the two previous literals.
Observe, however, that the vertices for this literal are introduced in the graph
without the negation, i.e., the CG will contain only subqueries for atoms. This
simplifies the questions asked to the user during the navigation phase, and can
be done without affecting the correctness of the technique because the validity
of the positive literal implies the validity of its negation, and the other way
round (although the type of associated error changes, see Proposition 2). The
rest of the vertices of the example graph are built expanding the successors of
planet(X) and repeating the process until no more vertices can be added.

The termination of the process is guaranteed because in our setting the sig-
nature is finite and the CG cannot have two occurrences of the same vertex due
to step 2c, which introduces edges between existing vertices instead of creating
new ones when possible.

The next proposition relates the elements of the computed answer stored at
a vertex u with the immediate successors of u and vice versa.

Proposition 3. Let u = [Q = QM] be a vertex in the computation graph G of
some query w.r.t. a program P . Let p(s̄n) be an instance of Q. Then p(s̄n) ∈ QM
iff there exist a rule variant p(t̄n) : − l1, . . . , lm and a substitution θ such that
among the successors of u in G there are vertices of the form [atom(li)σi = Ai]
with θ ≥ σi for each i = 1 . . .m.

Proof. First, we suppose that p(s̄n) ∈ QM . Let (p(t̄n) : − l1, . . . , lm) ∈ P
and θ ∈ Subst be respectively the associated rule and the associated substitu-
tion to p(s̄n), as defined in Proposition 1, item 2. Then, by this proposition,
p(s̄n) = p(t̄n)θ, which implies the existence of the mgu(p(t̄n), p(s̄n)) because we
always consider rule variants and, hence, var(p(s̄n))∩ var(p(t̄n)) = ∅. Then, the
algorithm of Definition 5, item 2b, ensures that this program rule produces new
vertices, successors of u in G. We check by induction on the number of literals
in the body rule, m, that these vertices are of the form [atom(li)σi = Ai] with
θ ≥ σi for i = 1 . . .m. If m = 0, the result holds trivially. If m = 1, then there
is a successor of u of the form [atom(l1)θ = A1] (item 2(b)i of Definition 5). For
the inductive case m > 1, we assume that there is already a successor of u of the
form [atom(lm−1)σ = Am−1], θ ≥ σ, i.e., θ = σ · σm for some substitution σm.
By the graph construction algorithm, σ must be of the form σ = σ1 · . . . · σm−1.
By Proposition 1, item 2, M |= lm−1θ, i.e., lm−1θ ∈ Am−1 (by the same Propo-
sition 1, lm−1θ is ground, and therefore must be part of the computed answer for
lm−1σ). Hence, lm−1(σ1 · . . . · σm) ∈ Am−1. In these conditions, the algorithm of
Definition 5 includes a new successor of u with the form atom(lm)(σ1 · . . . · σm).

Conversely, if there exists a program rule, a substitution, and successor ver-
tices as the proposition indicates, then it can be proved by a similar reasoning



A Theoretical Framework for the Declarative Debugging 153

that M |= (l1, . . . , lm)θ, and then, Proposition 1, item 3, ensures that p(s̄n) =
p(t̄n)θ verifies M |= p(s̄n). In particular, if p(s̄n) is ground, this means that
p(s̄n) ∈ M. �

The relation among a vertex and its descendants also relates the validity of them,
as the following proposition states:

Proposition 4. Let G be a computation graph and u = [p(s̄n) = A] be an
invalid vertex of G such that p is a well-defined relation. Then, u has some
invalid successor v in G.

Proof. If the vertex u is invalid, then A is either a wrong or a missing answer
for p(s̄n), which means that it contains either a wrong or a missing instance.

Suppose that p(s̄n)θ is a wrong instance for some θ ∈ subst. Since p(s̄n)θ ∈
(p(s̄n))M, by Proposition 1, there exists some associated program rule R ∈ P
and substitution θ′ s.t. (R)θ′ = (p(t̄n) : − l1, . . . lm)θ′, with M |= liθ

′ for all
i = 1 . . .m and p(t̄n)θ′ = p(s̄n)θ. From Proposition 3, it can be deduced that
there are successor vertices of u of the form [atom(li)σi = Ai] for all i = 1 . . .m,
with θ′ ≥ σi. Assume that all these vertices are valid. Then, for each i = 1 . . .m
we can ensure the validity of liθ

′ because:

– If li is a positive literal, from the validity of the answer for atom(li)σi we
obtain the validity of the more particular atom(li)θ′ (the validity of a formula
entails the validity of its instances).

– If li is a negative literal, from the validity of the answer for atom(li)σi we
obtain the validity of the answer for atom(li)θ′, and from this, the validity
of the answer for liθ

′ (as a consequence of Proposition 2).

Then, we have that M |= (l1, . . . , lm)θ′, but M � p(t̄n)θ′, i.e., (R)θ′ is a wrong
instance. But this is not possible because p is well-defined. Therefore, some of
the successors of u must be invalid.

The proof is analogous in the case of a missing answer. �

3.3 Buggy Vertices and Buggy Circuits

In the traditional declarative debugging scheme [18] based on trees, program
errors correspond to buggy nodes. In our setting, we also need the concept of
buggy node, here called buggy vertex, but in addition our computation graphs
can include buggy circuits:

Definition 6 (Buggy Circuit). Let CG = (V, A) be a computation graph. We
define a buggy circuit as a circuit W = v1 . . . vn s.t. for all 1 ≤ i ≤ n:

1. vi is invalid.
2. If (vi, u) ∈ A and u is invalid then u ∈ W .

Definition 7 (Buggy Vertex). A vertex is called buggy when it is invalid but
all its successors are valid.
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The next result proves that a computation graph corresponding to an initial error
symptom, i.e., including some invalid vertex, contains either a buggy circuit or
a buggy vertex.

Proposition 5. Let G be a computation graph containing an invalid vertex.
Then, G contains either a buggy vertex or a buggy circuit.

Proof. Let G be the computation graph and u ∈ G an invalid vertex. From G,
we obtain a new graph G′ by including all the invalid vertices reachable from u.
More formally, G′ is the subgraph of G generated by the set of vertices

{v ∈ G | there is a path Π = pathG(u, v) and w invalid for every w ∈ Π}

Now, we consider the set S of strongly connected components in G′,

S = {C | C is a strongly connected component of G′}

The cardinality of S is finite since G′ is finite. Then, there must exist C ∈ S such
that gr+

G′(C) = 0. Moreover, for all u ∈ C, succG(u, u′) means that either u′ ∈ C
or u′ is valid because u′ /∈ C, u′ invalid, would imply gr+

G′(C) > 0. Observe also
that, by the construction of G′, every u ∈ C is invalid. Then:

– If C contains a single vertex u, then u is a buggy vertex in G.
– If C contains more than a vertex, then all its vertices form a buggy circuit

in G. �

4 Soundness and Completeness

The debugging process we propose can be summarized as follows:

1. The user finds out an unexpected answer for some query Q w.r.t. some
program P .

2. The debugger builds the computation graph G for Q w.r.t. P .
3. The graph is traversed, asking questions to the user about the validity of

some vertices until a buggy vertex or a buggy circuit has been found.
4. If a buggy vertex is found, its associated relation is pointed out as buggy. If

instead a buggy circuit is found, the set of relations involved in the circuit
are shown to the user indicating that at least one of them is buggy or that
the set is incomplete.

Now, we must check that the technique is reliable, i.e., that it is both sound
and complete. First we need some auxiliary lemmata.

Lemma 1. Let G be a computation graph for some query Q w.r.t. a program P ,
and let C = u1, . . . , uk, with uk = u1 be a circuit in G. Then, all the ui are of
the form [Qi = QiM] with Qi associated to a positive literal in its corresponding
program rule for i = 1 . . . k − 1.
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Proof. It can be proved that every relation occurring in some Qi depends recur-
sively on itself. This means that Qi cannot occur negatively in a clause because
this would mean than P is not stratified (see Lemma 1 in [14]). �

Lemma 2. Let v = [p(s̄n) = . . . ] be a vertex of some CG G obtained w.r.t. some
program P with standard model M. Let p(t̄n) :− l1, . . . , lm be a rule in P , and
θ s.t. p(t̄n)θ = p(s̄n)θ, and that M |= l1θ, . . . , lkθ for some 1 ≤ k ≤ m. Then, v
has children vertices in G of the form [atom(li)θi = . . . ] for i = 1 . . . k + 1, with
θ ≥ θi.

Proof. The proof corresponds to that of Proposition 3, but considering only the
first k + 1 literals of the program rule. �

Observe that theoretically the debugger could be applied to any computation
graph even if there is no initial wrong or missing answer. The following soundness
result ensures that in any case it will behave correctly.

Proposition 6 (Soundness). Let P be a Datalog program, Q be a query and
G be the computation graph for Q w.r.t. P . Then:

1. Every buggy node in G is associated to a buggy relation.
2. Every buggy circuit in G contains either a vertex with an associated buggy

relation or an incomplete set of relations.

Proof

1. Suppose that G contains a buggy vertex u ≡ [q(t̄n) = S]. By definition of
buggy vertex, all the immediate descendants of u are valid. Since vertex u
is invalid, by Proposition 4, the relation q cannot be well-defined.

2. Suppose that G contains a buggy circuit C ≡ u1, . . . , un with un = u1 and
each ui of the form [Ai = Si] for i = 1 . . . n−1. We consider two possibilities:
(a) At least one of the vertices in the circuit contains a wrong answer. Let

S be the set of the wrong atom instances contained in the circuit:

S = {B ∈ Si ∧ B /∈ I | for some 1 ≤ i < n}

Obviously, S ⊆ M and S ∩ I = ∅. Now, we consider a stratification
{P1, . . . , Pk} of the program P and the sequence of Herbrand interpreta-
tions starting from ∅ and ending in M defined in item 5 of Proposition
1. We single out the first interpretation in this sequence including some
element of S. Such interpretation must be of the form TPi(I), with I the
previous interpretation in the sequence and 1 ≤ i ≤ k. Let p(s̄n) be an
element of TPi(I) ∩ S. By definition of TP , there exists a substitution θ
and a program rule (p(t̄n) :− l1, . . . , lm) ∈ P s.t. p(s̄n) = p(t̄n)θ and
that I |= liθ for every i = 1 . . .m. By Proposition 3, each li, i = 1 . . .m,
has some associated vertex V ′ successor of V in the CG with V ′ of the
form [atom(li)σ = . . . ] with σ more general than θ. We distinguish two
possibilities:
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– V ′ is out of the circuit. Then, by the definition of buggy circuit
V ′ is valid w.r.t. I, which means all the instances of liθ are also
valid w.r.t. I. This is true independently of whether li is positive or
negative because the validity of the answer for a query implies the
validity of the answer for its negation in our setting.

– V ′ is in the circuit. Then, li is positive due to Lemma 1, and by
construction, all the instances of liθ included in I are valid w.r.t. I.

In any case, I |= liθ for every i = 1 . . .m but p(t̄n)θ /∈ I and hence p is
an incorrect relation.

(b) If none of the vertices in the buggy circuit contains a wrong answer, then
every vertex contains a missing answer.
Put

S = {Aiσ ∈ I, Aiσ /∈ Si | for some 1 ≤ i < k}
i.e., S is the set of missing instances in the circuit. Next, we check that
S is an uncovered set of atoms, which means that the relations in the
buggy circuit form an incomplete set of relations. Let Ajσ ∈ S be an
atom of S with 1 ≤ j ≤ k, (p(t̄n) :− l1, . . . , lm) ∈ P be a program rule,
and θ ∈ Subst such that:
– p(t̄n)θ = Ajσ,
– I |= liθ for i = 1 . . .m

There must exist at least one liθ /∈ M, 1 ≤ i ≤ m, otherwise Ajσ would
be in M. Let r be the least index, 1 ≤ r ≤ m, s.t. lrθ /∈ M. By Lemma
2, there is a successor of [Aj = Sj ] in G of the form w = [lrθ′ = Sr] with
θ ≥ θ′. Then, lrθ is a missing answer for w, i.e., it is an invalid vertex (it
is easy to prove that, if lθ has a missing answer, then lθ′ has a missing
answer for every θ′ s.t. θ ≥ θ′). This implies that w ∈ C, and hence lr is
a positive literal (by Lemma 1), liθ ∈ S, and S is uncovered. �

After the soundness result, it remains to prove that the technique is complete:

Proposition 7 (Completeness). Let P be a Datalog program and Q be a query
with answer QM unexpected. Then, the computation graph G for Q w.r.t. P
contains either a buggy node or a buggy circuit.

Proof. By the construction of the computation graph, G contains a vertex for
[atom(Q) = atom(Q)M]. If Q is positive, then Q = atom(Q) and the vertex is of
the form [Q = QM]. Then, by hypothesis, QM is unexpected, and therefore the
vertex is invalid. If Q is negative and it has an unexpected answer, it is straight-
forward to check that atom(Q) also produces an unexpected answer and hence
[atom(Q) = atom(Q)M] is also invalid. Then, the result is a direct consequence
of Proposition 5.

5 Implementation

The theoretical ideas explained so far have been implemented in a debugger
included as part of the Datalog system DES [13]. The CG is built after the user
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has detected some unexpected answer. The values (Q, QMA) are stored along the
computation and can be accessed afterwards without repeating the computation,
thus increasing the efficiency of the graph construction.

A novelty of our approach is that it allows the user to choose working either
at clause level or at predicate level, depending on the grade of precision that the
user needs, and its knowledge of the intended interpretation I. At predicate level,
the debugger is able to find a buggy relation or an incomplete set of relations. At
clause level, the debugger can provide additional information, namely the rule
which is the cause of error.

For instance, next is the debugging session at predicate level for the query
planet(X) w.r.t. our running example:

DES> /debug planet(X) p

Info: Starting debugger...

Is orbits(sun,sun) = {} valid(v)/invalid(n)/abort(a) [v]? v
Is orbits(earth,Y) = {orbits(earth,sun)}

valid(v)/invalid(n)/abort(a) [v]? v
Is intermediate(earth,sun) = {intermediate(earth,sun)}

valid(v)/invalid(n)/abort(a) [v]? n
Is orbits(sun,Y) = {} valid(v)/invalid(n)/abort(a) [v]? v
Is orbits(X,sun) = {orbits(earth,sun),orbits(moon,sun)}

valid(v)/invalid(n)/abort(a) [v]? v

Error in relation: intermediate/2

Witness query:

intermediate(earth,sun) = {intermediate(earth,sun)}

The first question asks whether the query orbits(sun,sun) is expected to
fail, i.e., it yields no answer. This is the case because we do not consider the sun
orbiting around itself. The answer to the second question is also valid because
the earth orbits only the sun in our intended model. But the answer to the
next question is invalid, since the query intermediate(earth,sun) should fail
because the earth orbits directly the sun. The next two answers are valid, and
with this information the debugger determines that there is a buggy node in the
CG corresponding to the relation intermediate/2, which is therefore buggy.
The witness query shows the instance that contains the unexpected instance.
This information can be useful for locating the bug.

In order to minimize the number of questions asked to the user, the tool
relies on a navigation strategy similar to the divide & query presented in [12]
for deciding which vertex is selected at each step. In other paradigms it has
been shown that this strategy requires an average of log2 n questions to find the
bug [19], with n the number of nodes in the computation tree. Our experiments
confirms that this is also the case when the CGs are in fact trees, i.e., they do
not contain cycles, which occurs very often. In the case of graphs containing
cycles the results also show this tendency, although a more extensive number of
experiments is still needed.
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6 Conclusions and Future Work

We have applied declarative debugging to Datalog programs. The debugger de-
tects incorrect fragments of code starting from an unexpected answer. In order
to find the bug, the tool requires the help of the user as an external oracle an-
swering questions about the validity of the results obtained for some subqueries.
We have proved formally the completeness and soundness of the technique, thus
proposing a solid foundations for the debugging of Datalog programs. During the
theoretical study, we have found that the traditional errors considered usually
in logic programming are not enough in the case of Datalog where a new kind
of error, the incomplete sets of predicates, can occur.

The theoretical ideas have been set in practice by developing a declarative
debugger for the Datalog system DES. The debugger allows diagnosing both
missing and wrong answers, which constitute all the possible errors symptoms of
a Datalog program. Although a more extensive workbench is needed, the prelim-
inary experiments are encouraging about the usability of the tool. The debugger
allows to detect readily errors which otherwise would take considerable time.
This is particularly important for the DES system, which has been developed
with educational purposes. By using the debugger, the students can find the er-
rors in a program by considering only its declarative meaning and disregarding
operational issues.

From the point of view of efficiency, the results are also quite satisfactory. The
particular characteristics of DES make all the information necessary for produc-
ing the graph available after each computation. The answers to each subquery,
therefore, are not actually computed in order to build the graph but simply
pointed to. This greatly speeds up the graph construction and keeps small the
size of the graph even for large computations.

As future work, we consider the possibility of allowing more elaborated an-
swers from the user. For instance, indicating that a vertex is not only invalid but
also that it contains a wrong answer. The identification of such an answer can
greatly reduce the number of questions. Another task is to develop and compare
different navigation strategies for minimizing the number of questions needed
for finding the bug.
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