
Applying Constraint Logic Programming to SQL
Test Case Generation ?

Rafael Caballero, Yolanda Garćıa-Ruiz and Fernando Sáenz-Pérez

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain

{rafa,fernan}@sip.ucm.es and ygarciar@fdi.ucm.es

Abstract. We present a general framework for generating SQL query
test cases using Constraint Logic Programming. Given a database schema
and a SQL view defined in terms of other views and schema tables,
our technique generates automatically a set of finite domain constraints
whose solutions constitute the test database instances. The soundness
and correctness of the technique w.r.t. the semantics of Extended Re-
lational Algebra is proved. Our setting has been implemented in an
available tool covering a wide range of SQL queries, including views,
subqueries, aggregates and set operations.

1 Introduction

Checking the correctness of a piece of software is generally a labor-intensive
and time-consuming work. In the case of the declarative relational database
language SQL [17] this task becomes especially painful due to the size of actual
databases; it is usual to find select queries involving thousands of database rows,
and reducing the size of the databases for testing is not a trivial task. The
situation becomes worse when we consider correlated views. Thus, generating
test database instances to show the possible presence of faults during unit testing
has become an important task. Much effort has been devoted to studying and
improving the different possible coverage criteria for SQL queries (see [21, 1]
for a general discussion, [3, 18] for the particular case of SQL). However, the
common situation of queries defined through correlated views had not yet been
considered.

In this work we address the problem of generating test cases for checking
correlated SQL queries. A set of related views is transformed into a constraint
satisfiability problem whose solution provides an instance of the database which
will constitute a test case. This technique is known as constraint-based test
data generation [7], and has already been applied to SQL basic queries [20].
Other recent works [2] use RQP (Reverse Query Processing) to generate different
database instances for a given query and a result of that query. In [6] the problem

? This work has been partially supported by the Spanish projects
TIN2008-06622-C03-01, S-0505/TIC/0407, S2009TIC-1465 and
UCM-BSCH-GR58/08-910502.

of generating database test cases in the context of Java programs interacting
with relational databases, focusing on the relation between SQL queries and
program values. The contributions of our work w.r.t. previous related proposals
are twofold:

First, as mentioned above, the previous works focus on a single SQL query
instead of considering the more usual case of a set of correlated views. Observe
that the problem of test case generation for views cannot be reduced to solving
the problem for each query separately. For instance, consider the two simple
views, that assume the existence of a table t with one integer attribute a:

create view v2(c) as select v1.b from v1 where v1.b>5;
create view v1(b) as select t.a from t where t.a>8;

A positive test case for v2 considering its query as a non-correlated query could
consist of a single row for v1 containing for instance v1.b = 6, since 6 > 5 and
therefore this row fulfils the v2 condition. However, 6 is not a possible value
for v1.b because v1.b can contain only numbers greater than 8. Therefore the
connection between the two views must be taken into account (a valid positive
test case would be for instance a single row in t with t.a = 9).

Second, we present a formal definition of the algorithm for defining the con-
straints. This definition allows us to prove the soundness and (weak) complete-
ness of the technique with respect to the Extended Relational Algebra [9].

The next section presents the basis of our SQL setting. Section 3 introduces
the concept of positive and negative test cases, while Section 4 defines the con-
straints whose solution will constitute our test cases. This section also introduces
the main theoretical result, which is proven in Appendix A. Section 5 discusses
the prototype implementation and Section 6 presents the conclusions.

2 Representing SQL Queries

The first formal semantics for relational databases were based on the concept
of set (e.g. relational algebra, tuple calculus [4]). However these formalisms are
incomplete with respect to the treatment of non-relational features such as re-
peated rows and aggregates, which are part of practical languages such as SQL.
Therefore, other semantics based on multisets [5], also known in this context as
bags, have been proposed. In this paper we adopt the point of view of the Ex-
tended Relational Algebra [12, 9]. We start by defining the concepts of database
schemas and instances but with a Logic Programming flavor. In particular the
database instance rows will be considered logic substitutions of attributes by
values.

2.1 Relational Database Schemas and Instances

A table schema is of the form T (A1, . . . , An), with T the table name and Ai

attribute names for i = 1 . . . n. We will refer to a particular attribute A by
using the notation T.A. Each attribute A has an associated type (integer, string,
. . .) represented by type(T.A). An instance of a table schema T (A1, . . . , An)

will be represented as a finite multiset of functions (called rows) {|µ1, µ2, ..., µm|}
such that dom(µi) = {T.A1, . . . , T.An}, and µi(T.Aj) ∈ type(T.Aj) for every
i = 1, . . . ,m, j = 1, . . . , n. Observe that we qualify the attribute names in the
domain by table names. This is done because in general we will be interested in
rows that combine attributes from different tables, usually as result of cartesian
products. In the following, it will be useful to consider each attribute T.Ai in
dom(µ) as a logic variable, and µ as a logic substitution.

The concatenation of two rows µ1, µ2 with disjoint domain is defined as the
union of both functions represented as µ1�µ2. Given a row µ and an expression
e we use the notation eµ to represent the value obtained applying the substitu-
tion µ to e. Analogously, let S be a multiset of rows {|µ1, . . . , µn|} and let e be an
expression. Then (e)S represents the result of replacing each attribute T.A occur-
ring in an aggregate subexpression of e by the multiset {|µ1(T.A), . . . , µn(T.A)|}.
The attributes T.B not occurring in aggregate subexpressions of e must take the
same value for every µi ∈ S, and are replaced by such value. For instance, let
e = sum(T.A)+T.B and S = {|µ1, µ2, µ3|} with µ1 = {T.A 7→ 2, T.B 7→ 5}, µ2 =
{T.A 7→ 3, T.B 7→ 5}, µ3 = {T.A 7→ 4, T.B 7→ 5}. Then (e)S = sum({|2, 3, 4|}) +
5. If dom(µ) = {T.A1, . . . , T.An} and ν = {U.A1 7→ T.A1, . . . , U.An 7→ T.An}
(i.e., ν is a table renaming) we will use the notation µU to represent the substi-
tution composition ν◦µ. The previous concepts for substitutions can be extended
to multisets of rows in a natural way. For instance, given the multiset of rows
S and the row µ, Sµ represents the application of µ to each member of the
multiset.

A database schema D is a tuple (T , C,V), where T is a finite set of tables, C
a finite set of database constrains and V a finite set of views (defined below). In
this paper we consider only primary key and foreign key constraints, defined as
traditionally in relational databases (see Subsection 4.1). A database instance d
of a database schema is a set of table instances, one for each table in T verifying
C (thus we only consider valid instances). To represent the instance of a table T
in d we will use the notation d(T). A symbolic database instance ds is a database
instance whose rows can contain logical variables. We say that ds is satisfied by
a substitution µ when (dsµ) is a database instance. µ must substitute all the
logic variables in ds by domain values.

2.2 Extended Relational Algebra and SQL Queries

Next we present the basics of Extended Relational Algebra (ERA from now
on) [12, 9] which will be used as semantics of our framework. There are other
approaches for defining SQL semantics such as [14], but we have chosen ERA
because it provides an operational semantics very suitable for proving the cor-
rectness of our technique. Let R and S be multisets. Let µ be any row occurring
n times in R and m times in S. Then ERA consists of the following operations:

– Unions and intersections. The union of R and S, is a multiset R∪S in which
the row µ occurs n+m times. Analogously R∩S, the intersection of R and
S, is a multiset in which the row µ occurs min(n,m) times.

– Projection. The expression πe1 7→A1,...,en 7→An
(R) produces a new relation pro-

ducing for each row µ ∈ R a new row {A1 7→ e1µ, . . . , An 7→ enµ}. The
resulting multiset has the same number of rows as R.

– Selection. Denoted by σC(R), where C is the condition that must be satisfied
for all rows in the result. The selection operator on multisets applies the
selection condition to each row occurring in the multiset independently.

– Cartesian products. Denoted as R×S, each row in the first relation is paired
with each row in the second relation.

– Renaming. The expression ρS(R) changes the name of the relation R to S
and the expression ρA/B(R) changes the name of the attribute A of R to B.

– Aggregate operators. These operators are used to aggregate the values in
one column of a relation. Here we consider sum, avg, min, max and count.

– Grouping operator. Denoted by γ, this operator allows us to consider the
rows of a relation in groups, corresponding to the value of one or more at-
tributes and to aggregate only within each group. This operation is denoted
by γL(R), where L is a list of elements, each one either a grouping attribute,
that is, an attribute of the relation R to which the γ is applied, or an aggre-
gate operator applied to an attribute of the relation. To provide a name for
the attribute corresponding to this aggregate in the result, an arrow and a
new name are appended to the aggregate. It is worth observing that γL(R)
will contain one row for each maximal group, i.e., for each group not strictly
contained in a larger group.

A relational database can be consulted by using queries and views defined
over other views and queries. Queries are select SQL statements. In our setting
we allow three kind of queries:

– Basic queries of the form:
Q = select e1 E1, . . . , en En from R1 B1 , . . . , Rm Bm where Cw;

with Rj tables or views for j = 1 . . .m, ei, i = 1 . . . n expressions involving
constants, predefined functions and attributes of the form Bj .A, 1 ≤ j ≤ m,
and A an attribute of Rj . The meaning of any query Q in ERA is denoted
〈Q〉. In the case of basic queries is

〈Q〉 = Πe1→E1,...,en→En
(σCw

(R))

where R = ρB1(R1)× . . .× ρBm(Rm).
– Aggregate queries, including group by and having clauses:

Q = select e1 E1, . . . , en En from R1 B1 , . . . , Rm Bm where Cw

group by A′1, . . . , A
′
k having Ch;

In this case, the equivalent ERA expression is the following:

〈Q〉 = Πe′
1→E1,...,e′

n→En
(σC′

h
(γL(σCw

(R))))

where L = {A′1, . . . , A′k, u1 7→ U1, . . . , ul 7→ Ul}, R defined as in the previous
case, ui, 1 ≤ i ≤ l the aggregate expressions occurring either in the select or
in the having clauses, Ui new attribute names, e′j , j = 1 . . . n the result of
replacing each occurrence of ui by Ui in ej and analogously for C ′h.

– Set queries of the form Q = V1 {union, intersection} V2;
with V1, V2 views (defined below) with the same attribute names. The mean-
ing of set queries in ERA is represented by ∪ and ∩ multiset operators for
union and intersection, respectively: 〈Q〉 = 〈V1〉 {∪,∩} 〈V2〉

In order to simplify our framework we assume queries such that:

– Without loss of generality we assume that the where and having clauses only
contain existential subqueries of the form exists Q (or not exists Q). It has
been shown that other subqueries of the form ... in Q, ... any Q or ... all Q can
be translated into equivalent subqueries with exists and not exists (see for
instance [10]). Analogously, subqueries occurring in arithmetic expressions
can be transformed into exists subqueries.

– The from clause does not contain subqueries. This is not a limitation since
all the subqueries in the from clause can be replaced by views.

– We also do not allow the use of the distinct operator in the select clause. It
is well-known that queries using this operator can be replaced by equivalent
aggregate queries without distinct. In the language of ERA, this means that
the operator δ for eliminating duplicates –not used here– is a particular case
of the aggregate operator γ (see [9]).

– Our setting does not allow: recursive queries, the minus operator, join opera-
tions, and null values. All these features, excepting the recursive queries, can
be integrated in our setting, although they have not been considered here
for simplicity.

We also need to consider the concept of views, which can be thought of as
new tables created dynamically from existing ones by using a query and allowing
the renaming of attributes.

The general form of a view is: create view V(A1, . . . , An) as Q, with Q a
query and V.A1, . . . V.An the name of the view attributes. Its meaning is defined
as: 〈V 〉 = ΠE1→V.A1,...,En→V.An

〈Q〉, with E1, . . . , En the attribute names of the
select clause in Q. In general, we will use the name relation to refer to either a
table or a view. The semantics of a table T in a given instance d is defined simply
as its rows: 〈T 〉 = d(T). A view query can depend on the tables of the schema
and also on previously defined views (no recursion between views is allowed).
Thus, the dependency tree of any view V in the schema is a tree with V labeling
the root, and its children the dependency trees of the relations occurring in
the from clause of its query. This concept can be easily extended to queries by
assuming some arbitrary name labeling the root node, and to tables, where the
dependency tree will be a single node labeled by the table name.

3 SQL Test Cases

In the previous section we have defined an operational semantics for SQL. Now
we are ready for defining the concept of test case for SQL. We distinguish between
positive and negative test cases:

Definition 1. We say that a non-empty database instance d is a positive test
case (PTC) for a view V when 〈V 〉 6= ∅.

Observe that our definition excludes implicitly the empty instances, which
will be considered as neither positive nor negative test cases. We require that the
(positive or negative) test case contains at least one row that will act as witness
of the possible error in the view definition. The overall idea is that we consider
d a PTC for a view when the corresponding query answer is not empty. In a
basic query this means that at least one tuple in the query domain satisfies the
where condition. In the case of aggregate queries, a PTC will require finding a
valid aggregate verifying the having condition, which in turn implies that all its
rows verify the where condition. If the query is a set query, then the ranges are
handled according to the set operation involved.

The negative test cases (NTC) are defined by modifying the initial queries
and then applying the concept of positive test case. With this purpose we use
the notation QCw and Q(Cw,Ch) to indicate that Cw is the where condition in Q
and Ch is the having condition in Q (when Q is an aggregate query). If QCw

is of
the form select e1 E1, . . . , en En from R1 B1 , . . . , Rm Bm where Cw; then the
notation Qnot(Cw) represents select e1 E1, . . . , en En from R1 B1 , . . . , Rm Bm

where not(Cw); and analogously for Q(Cw,Ch) and Q(not(Cw),Ch), Q(Cw,not(Ch)),
and Q(not(Cw),not(Ch)). For instance, in the case of basic query, we expect that
a NTC will contain some row in the domain of the view not verifying the where
condition:

Definition 2. We say that a database instance d is a NTC for a view V with
associated basic query QCw

when d is a PTC for Qnot(Cw).

In queries containing aggregate functions, the negative case corresponds ei-
ther to a tuple that does not satisfy the where condition, or to an aggregate not
satisfying the having condition:

Definition 3. We say that a database instance d is a NTC for a view V with
associated aggregate query Q(Cw,Ch) if it is a PTC for either Q(not(Cw),Ch),
Q(Cw,not(Ch)), or Q(not(Cw),not(Ch)).

Next is the definition of negative test cases for set queries:

Definition 4. We say that a database instance d is a NTC for a view with query
defined by:

– A query union of Q1, Q2, if d is a NTC for both Q1 and Q2.
– A query intersection of Q1, Q2, if d is a NTC for either Q1 or Q2.

The main advantage of defining NTCs in terms of PTCs is that only a positive
test case generator must be implemented. The previous definitions are somehow
arbitrary depending on the coverage. For instance the NTCs for views with aggre-
gate queries Q(Cw,Ch) could be defined simply as the PTCs for Q(not(Cw),not(Ch)).

It is possible to obtain a test case which is both positive and negative at the
same time thus achieving predicate coverage with respect to the where and having

conditions (in the sense of [1]). We will call these tests PNTCs. For instance, for
the query select A from T where A=5; with T a table with a single attribute A,
the test case d s.t. d(T) = {|µ1, µ2|} with µ1 = {T.A 7→ 5}, µ2 = {T.A 7→ X}, X
any value different from 5, is a PNTC. However, this is not always possible. For
instance, the query select R1.A from T R1 where R1.A=5 and not exists (select
R2.A from T R2 where R2.A<>5); allows both PTCs and NTCs but no PNTC.
Our tool will try to generate a PNTC for a view first, but if it is not possible it
will try to obtain a PTC and a NTC separately.

4 Generating Constraints

The main goal of this paper is to use Constraint Logic Programming for gener-
ating test cases for SQL views. The process can be summarized as follows:

1. First, create a symbolic database instance. Each table will contain an arbi-
trary number of rows, and each attribute value in each row will correspond
to a fresh logic variable with its associated domain integrity constraints.

2. Establish the constraints corresponding to the integrity of the database
schema: primary and foreign keys.

3. Represent the problem of obtaining a test case as a constraint satisfaction
problem.

Next, we explain in detail phases 2 and 3.

4.1 Primary and Foreign Keys

Given a relation R with primary key pk(R) = {A1, . . . , Am} and a symbolic
instance d such that d(R) = {|µ1, . . . , µn|}, we check that d satisfies pk(R) by
establishing the following constraint:

n∧
i=1

(
n∧

j=i+1

(
m∨

k=1

(µi(R.Ak) 6= µj(R.Ak))))

that is, different rows must contain different values for the primary key. Given
two relations R1, R2 and an instance d such that d(R1) = {|µ1, . . . , µn1 |}, d(R2) =
{|ν1, . . . , νn2 |} a foreign key from R1 referencing R2, denoted by fk(R1, R2) =
{(A1, . . . , Am), (B1, . . . , Bm)}, indicates that for each row µ in R1 there is a row ν
in R2 such that (A1µ, . . . , Amµ) = (B1ν, . . . , Bmν). Foreign keys are represented
with the following constraints:

n1∧
i=1

(
n2∨

j=1

(
m∧

k=1

(µi(R1.Ak) = νj(R2.Bk))))

4.2 SQL Test Cases as a Constraint Satisfaction Problem

Now we are ready for describing the technique supporting our implementation.
First we introduce the two following auxiliary operations over multisets:

Definition 5. Let A = {|(a1, b1), . . . , (an, bn)|}. Then we define the operations
Π1 and Π2 as follows: Π1(A) = {|a1, . . . , an|}, Π2(A) = {|b1, . . . , bn|}.

The following definition will associate a first order formula to every possible
row of a relation. The idea is that the row will be in the relation instance iff the
formula is satisfied.

Definition 6. Let D be a database schema and d a database instance. We define
θ(R) for every relation R in D as a multiset of pairs (ψ, u) with ψ a first order
formula, and u a row. This multiset is defined as follows:

1. For every table T in D such that d(T) = {|µ1, . . . , µn|}:

θ(T) = {|(true, µ1), . . . , (true, µn)|}

2. For every view V = create view V(A1, . . . , An) as Q,

θ(V) = θ(Q){V.A1 7→ E1, . . . , V.An 7→ En}

with E1, . . . , En the attribute names in the select clause of Q.
3. If Q is a basic query of the form:

select e1 E1, . . . , en En from R1 B1, . . . , Rm Bm where Cw;

Then:

θ(Q) = {|(ψ1 ∧ . . . ∧ ψm ∧ ϕ(Cw, µ), sQ(µ)) |
(ψ1, ν1) ∈ θ(R1), . . . , (ψm, νm) ∈ θ(Rm), µ = ν1

B1 � · · · � νm
Bm |}

with sQ(µ) = {E1 7→ (e1µ), . . . , En 7→ (enµ)}, and the first order formula
ϕ(C, µ) is defined as

– if C does not contain subqueries, ϕ(C, µ) = C ′µ, with C ′ obtained from
C by replacing every occurrence of and by ∧, or by ∨, and not by ¬.

– if C does contain subqueries, let Q= (exists QE) be an outermost existen-
tial subquery in C, with θ(QE) = {|(ψ1, µ1), . . . (ψn, µn)|}. Let C ′ be the
result of replacing Q by true in C. Then ϕ(C, µ) = (∨n

i=1ψi) ∧ ϕ(C ′, µ).

4. For set queries:
– θ(V1 union V2) = θ(V1) ∪ θ(V2) with ∪ the multiset union.
– (ψ, µ) ∈ θ(V1 intersection V2) with cardinality k iff (ψ1, µ) ∈ θ(V1) with

cardinality k1, (ψ2, µ) ∈ θ(V2) with cardinality k2, k = min(k1, k2) and
ψ = ψ1 ∧ ψ2.

5. If Q includes aggregates, then it is of the form:

select e1 E1, . . . , en En from R1 B1, . . . , Rm Bm

where Cw group by e′1, . . . , e
′
k having Ch

Then we define:

P = {|(ψ, µ) | (ψ1, ν1), . . . , (ψm, νm) ∈ (θ(R1)× . . .× θ(Rm))
ψ = ψ1 ∧ . . . ∧ ψm, µ = ν1

B1 � · · · � νm
Bm |}

θ(Q) = {|(
∧

(Π1(A)) ∧ aggregate(Q,A), sQ(Π2(A))) | A ⊆ P |}

aggregate(Q,A) = group(Q,Π2(A)) ∧ maximal(Q,A) ∧ ϕ(Ch, Π2(A))
group(Q,S) = (

∧
{|ϕ(Cw, µ) | µ ∈ S|}) ∧

(
∧
{| ((e′1)ν1 = (e′1)ν2 ∧ . . . ∧ (e′k)ν1 = (e′k)ν2) | ν1, ν2 ∈ S|})

maximal(Q,A) =
∧
{| (¬ψ ∨ ¬group(Q,Π2(A) ∪ {|µ|}) | (ψ, µ) ∈ (P −A) |}

Observe that the notation sQ(x) with Q a query is a shorthand for the row µ
with domain {E1, . . . , En} such that (Ei)x = (ei)x, with i = 1 . . . n, with select
e1 E1, . . . , en En the select clause of Q. If Ei’s are omitted in the query, it is
assumed that Ei = ei.

Example 1. Let V1 , V2 , V3 and V4 be four SQL views defined as:

create view V1(A1, A2) as
select T ′1.A E1, T ′1.B E2

from T1 T
′
1

where T ′1.A ≥ 10

create view V2(A) as
select T ′2.C E1

from V1 V
′
1 , T2 T

′
2

where V ′1 .A1 + T ′2.C = 0

create view V3(A) as
select(V ′1 .A1) E
from V1 V

′
1

where exists
(select T ′2.C E1
from T2 T

′
2

where T ′2.C = V ′1 .A1)

create view V4(A) as
select V ′1 .A2 E
from V1 V

′
1

where V ′1 .A2 = “a”
group by V ′1 .A2

having sum(V ′1 .A1) > 100;

Suppose table T1 has the attributes A,B while table T2 has only one at-
tribute C. Consider the following symbolic database instances d(T1) = {|µ1, µ2|}
and d(T2) = {|µ3, µ4|} with: µ1 = {T1.A 7→ x1, T1.B 7→ y1}, µ2 = {T1.A 7→
x2, T1.B 7→ y2} and µ3 = {T2.C 7→ z1}, µ4 = {T2.C 7→ z2}. Then:

θ(T1) = {|(true, µ1), (true, µ2)|}, θ(T2) = {|(true, µ3), (true, µ4)|}

θ(V1) = {| (x1 ≥ 10, {V1.A1 7→ x1, V1.A2 7→ y1}) ,
(x2 ≥ 10, {V1.A1 7→ x2, V1.A2 7→ y2}) |}

θ(V2) = {| (x1 ≥ 10 ∧ x1 + z1 = 0, {V2.A 7→ z1}),
(x1 ≥ 10 ∧ x1 + z2 = 0, {V2.A 7→ z2}),
(x2 ≥ 10 ∧ x2 + z1 = 0, {V2.A 7→ z1}),
(x2 ≥ 10 ∧ x2 + z2 = 0, {V2.A 7→ z2}) |}

θ(V3) = {| (x1 ≥ 10 ∧ ((z1 = x1) ∨ (z2 = x1)), {V3.A 7→ x1}),
(x2 ≥ 10 ∧ ((z1 = x2) ∨ (z2 = x2)), {V3.A 7→ x2}) |}

θ(V4) = {|(ψ1, {V4.A 7→ y1}), (ψ2, {V4.A 7→ y1}), (ψ3, {V4.A 7→ y2})|}
ψ1 = (x1 ≥ 10 ∧ x2 ≥ 10) ∧ (y1 = “a” ∧ y2 = “a” ∧ y1 = y2)∧

(x1 + x2 > 100)
ψ2 = (x1 ≥ 10) ∧ (y1 = “a”) ∧

(¬(x2 ≥ 10) ∨ ¬(y1 = “a” ∧ y2 = “a” ∧ y1 = y2)) ∧ (x1 > 100)
ψ3 = (x2 ≥ 10) ∧ (y2 > “a”) ∧

(¬(x1 ≥ 10) ∨ ¬(y1 = “a” ∧ y2 = “a” ∧ y1 = y2)) ∧ (x2 > 100)

For instance observe that V4 has an aggregate query with a group by over V1.
Since θ(V1) contains 2 tuples, θ(V4) contains three possible tuples, one for each
possible group in V1: the first group containing the two rows in V1, the second
corresponding only to the first row, and the third possibility a group containing
only the second row in V1.

The following result and its corollary represent the main result of this paper,
stating the soundness and completeness of our proposal:

Theorem 1. Let D be a database schema and d a database instance. Assume
that the views and queries in D do not include subqueries. Let R be a relation
in D. Then µ ∈ 〈R〉 with cardinality k iff (µ, true) ∈ θ(R) with cardinality k.

Proof. See Appendix A.

The restriction to queries without subqueries is due to the limitations of
ERA. The following corollary contains the idea for generating constraints that
will yield the PTCs:

Corollary 1. Let D be a database schema and ds a symbolic database instance.
Assume that the views and queries in D do not include subqueries. Let R be
a relation in D such that θ(R) = {|(ψ1, µ1), . . . (ψn, µn)|}, and η a substitution
satisfying ds. Then dsη is a PTC for R iff (

∨n
i=1 ψi)η = true.

Proof. Straightforward from Theorem 1: (
∨n

i=1 ψi)η = true iff there is some ψi

with 1 ≤ i ≤ n such that ψiη = true iff (µiη) ∈ 〈R〉 iff 〈R〉 6= ∅.

5 Implementation and Prototype

In this section, we comment on some aspects of our implementation and show a
system session with actual results of the test case generator.

Our test case generator is bundled as a component of the Datalog deductive
database system DES [15]. The input of the tool consists of:

– A database schema D defined by means of SQL language, i.e., a finite set of
tables T , constraints C and views V, as well as the integrity constraints for
the columns (primary and foreign keys).

– A SQL view V for which the test case is to be generated.

DES [15] is implemented in Prolog and includes a SQL parser for queries and
views, and a type inference system for SQL views. In this way we benefit from
the DES facilities for dealing with SQL and at the same time we can exploit the
constraint solving features available in current Prolog implementations. As a first
step, we have chosen SICStus Prolog as a suitable platform for our development
(although others will be handled in a near future).

As explained in Section 4, we do need constraints that include a mix of con-
junctions and disjunctions. We use reification to achieve an efficient implementa-
tion of these connectives. Thus, we reify every atomic constraint and transform
conjunctions and disjunctions of constraints into finite domain constraints of
the form B1 ∗ . . . ∗Bk ≥ B0, and B1 + . . .+Bk ≥ B0, respectively. B0 allows a
compact form to state the truth or falsity of these constraints.

Apart from the constraints indicated in Section 4 we also need to consider
domain integrity constraints, the constraints that restrict the given set of values
a table attribute can take. These values are represented by a built-in datatype,
e.g., string, integer, and float. On the one hand, types in SQL are declared in
create table statements. In addition, further domain constraints can be declared,
which can be seen as subtype declarations, as the column constraint A > 0,
where A is a table attribute with numeric type. On the other hand, types are
inferred for views.

Up to now, we support integer and string datatypes by using the finite do-
main (FD) constraint system available in SICStus Prolog. Although with a few
changes this can also be easily mapped to Ciao Prolog, GNU Prolog and SWI-
Prolog. Posting our constraints over integers to the underlying FD constraint
solver is straightforward. In the case of string constraints we map each different
string constant in the SQL statements to a unique integer, allowing equality
and disequality (FD) constraints. This mapping is stored in a dictionary be-
fore posting constraints for generating the test cases. Then, string constants are
replaced by integer keys in the involved views. Generation and solving of con-
straints describing the test cases in the integer domain follows. Before displaying
the instanced result involving only integers, the string constants are recovered
back by looking for these integer keys in the dictionary. If some key values are
not in the dictionary they must correspond to new strings. The tool generates
new string constants for these values. Our treatment is only valid for equalities
and disequalities, and it does not cover other common string operations such as
the concatenation or the LIKE operator which will require a string constraint
solver (see [8] for a discussion on solving string constraints involving the LIKE
operator).

Our tool allows the user to choose the type of test case to be generated,
either PTC, or NTC or both PNTC for any view V previously defined in D.
The output is a database instance d of a database schema D such that d is a
test case for the given view V with as few entries as possible.

For instance, consider the following session:

DES-SQL> CREATE OR REPLACE TABLE t(a INT PRIMARY KEY, b INT);
DES-SQL> CREATE OR REPLACE VIEW u(a1, a2) AS SELECT a, b

FROM t WHERE a >= 10;
DES-SQL> CREATE OR REPLACE VIEW v(a) AS SELECT a2 FROM u

WHERE a2 = 88 GROUP BY a2 HAVING SUM(a1) > 0;

Then, test cases (both positive and negative) for the view v can be obtained
via the following command:

DES-SQL> /test_case v
Info: Test Case over integers:
[t([[1000,88],[999,1000]])]

Here, we get the PNTC [t([[1000,88],[999,1000]])]. If it is not possible
to find a PNTC, the tool would try to generate a PTC and a NTC separately.

Observe that in practice our system cannot reach completeness, but only
weak completeness module the size of the tables of the instance. That is, our
system will find a PTC if it is possible to construct it with all the tables contain-
ing a number of rows less than an arbitrary number. By default the system starts
trying to define PTCs with the number of rows limited to 2. If it is not possible,
the number of rows is increased. The process is repeated stopping either when
a PTC is found or when an upper bound is reached (by default 10). Both the
lower and the upper limits are user configurable.

6 Conclusions and Future Work

We have presented a novel technique for generating finite domain constraints
whose solutions correspond to test cases for SQL relations. Similar ideas have
been suggested in other works but, to the best of our knowledge, not for views,
which corresponds to more realistic applications. We have formally defined the
algorithm for producing the constraints, and have proved the soundness and
weak completeness of the approach with respect to the operational semantics of
Extended Relational Algebra. Another novelty of our approach is that we allow
the use of string values in the query definitions. Although constraint systems
over other domains, as reals or rationals, are available, we have not used them
in our current work. However, they can be straightforwardly implemented. In
addition, enumerated types (available in object-oriented SQL extensions) could
also be included, following a similar approach to the one taken for strings.

Our setting includes primary and foreign keys, existential subqueries, unions,
intersections, and aggregate queries, and can be extended to cover other SQL
features not included in this paper. For instance, null values can be considered
by defining an extra null table Tnull containing the logic variables that are null,
and taking into account this table when evaluating expressions. For instance, a
condition T.A = T ′.B will be translated into (T.A = T ′.B) ∧ (T.A /∈ Tnull) ∧
(T ′.B /∈ Tnull).

Dealing with recursive queries is more involved. One possibility could be
translating the SQL views into a logic language like Prolog, and then use a
technique for generating test cases for this language [11]. However, aggregate

queries are not easily transformed into Prolog queries, and thus this approach
will only be useful for non-aggregate queries.

It is well-known that the problem of finding complete sets of test cases is
in general undecidable [1]. Different coverage criteria have been defined (see [1]
for a survey) in order to define test cases that are complete at least w.r.t. some
desired property. In this work, we have considered a simple criterion for SQL
queries, namely the predicate coverage criterium. However, it has been shown
[19] that other coverage criteria can be reduced to predicate coverage by using
suitable query transformations. For instance, if we look for a set of test cases
covering every atomic condition in the where clause of a query Q, we could apply
our tool to a set of queries, each one containing a where clause containing only
one of the atomic conditions occurring in Q.

A SICStus Prolog prototype implementing these ideas has been reported in
this paper, which can be downloaded and tested (binaries provided for both Win-
dows and Linux OSs) from http://gpd.sip.ucm.es/yolanda/research.htm. To allow
performance comparisons and make the sources for different Prolog platforms
available, an immediate work is the port to Ciao, GNU Prolog and SWI-Prolog.

Although test case generation is a time consuming problem, the efficiency of
our prototype is reasonable, finding in a few seconds TCs for views with depen-
dence trees of about ten nodes and with a number of rows limited to seven for
every table. The main efficiency problem comes from aggregate queries, where
the combinatorial problem of selecting the aggregates can be too complex for
the solver. To improve this point, even when efficiency of the SICStus constraint
solver is acknowledged, there are more powerful solvers in the market. In partic-
ular, we plan to test the industrial, more efficient FD and R IBM ILOG solvers
[13], which allow to handle bigger problems at a faster rate than SICStus solvers.
Also, another striking state-of-the-art, free, and open-source FD solver library
to be tested is Gecode [16].

References

1. P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University
Press, 2008.

2. C. Binnig, D. Kossmann, and E. Lo. Towards automatic test database generation.
IEEE Data Eng. Bull., 31(1):28–35, 2008.

3. M. J. S. Cabal and J. Tuya. Using an SQL coverage measurement for testing
database applications. In R. N. Taylor and M. B. Dwyer, editors, SIGSOFT FSE,
pages 253–262. ACM, 2004.

4. E. Codd. Relational Completeness of Data Base Sublanguages. In Rustin, edi-
tor, Data base Systems, Courant Computer Science Symposia Series 6. Englewood
Cliffs, N.J. Prentice-Hall, 1972.

5. U. Dayal, N. Goodman, and R. H. Katz. An extended relational algebra with
control over duplicate elimination. In PODS ’82: Proceedings of the 1st ACM
SIGACT-SIGMOD symposium on Principles of database systems, pages 117–123,
New York, NY, USA, 1982. ACM.

6. F. Degrave, T. Schrijvers, and W. Vanhoof. Automatic generation of test inputs
for mercury. pages 71–86, 2009.

7. R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering, 17(9):900–910, 1991.

8. M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for database
applications. In ISSTA ’07: Proceedings of the 2007 international symposium on
Software testing and analysis, pages 151–162, New York, NY, USA, 2007. ACM.

9. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete
Book. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2008.

10. M. Gogolla. A note on the translation of SQL to tuple calculus. SIGMOD Record,
19(1):18–22, 1990.

11. M. Gómez-Zamalloa, E. Albert, and G. Puebla. On the generation of test data for
prolog by partial evaluation. CoRR, abs/0903.2199, 2009.

12. P. W. Grefen and R. A. B. de. A multi-set extended relational algebra: a formal ap-
proach to a practical issue. In 10th International Conference on Data Engineering,
pages 80–88. IEEE, 1994.

13. ILOG CP 1.4. http://www.ilog.com/products/cp/.
14. M. Negri, G. Pelagatti, and L. Sbattella. Formal semantics of SQL queries. ACM

Trans. Database Syst., 16(3):513–534, 1991.
15. F. Sáenz-Pérez. Datalog educational system. user’s manual version 1.7.0. Technical

report, Faculty of Computer Science, UCM, November 2009. Available from http:

//des.sourceforge.net/.
16. C. Schulte, M. Z. Lagerkvist, and G. Tack. Gecode. http://www.gecode.org/.
17. SQL, ISO/IEC 9075:1992, third edition, 1992.
18. M. Surez-Cabal and J. Tuya. Structural coverage criteria for testing SQL queries.

Journal of Universal Computer Science, 15(3):584–619, 2009.
19. J. Tuya, M. J. Surez-Cabal, and C. de la Riva. Full predicate coverage for test-

ing SQL database queries. Software Testing, Verification and Reliability, to be
published, 2009.

20. J. Zhang, C. Xu, and S. C. Cheung. Automatic generation of database instances
for white-box testing. In COMPSAC, pages 161–165. IEEE Computer Society,
2001.

21. H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy.
ACM Computing Surveys, 29:366–427, 1997.

A Proof of Theorem 1

In this Appendix we include the proof of our main theoretical result. The theorem
establishes a bijective mapping between the rows obtained by applying the ERA
semantics to a relation R defined on an schema with instance d and the tuples
(true, σ) in θ(R) (see Definition 6). Before proving the result we introduce an
auxiliary Lemma:

Lemma 1. Let D be a database schema and d a database instance, R1, . . . , Rm

relations verifying Theorem 1, B1, . . . , Bm attribute names, and R an expression
in ERA defined as R = ρB1(R1) × . . . × ρBm

(Rm). Let P be a multiset defined
as

P = {|(ψ, µ) | (ψ1, ν1), . . . , (ψm, νm) ∈ (θ(R1)× . . .× θ(Rm))
ψ = ψ1 ∧ . . . ∧ ψm, µ = ν1

B1 � · · · � νm
Bm |}

Then µ ∈ R with cardinality k iff (true, µ) ∈ P with cardinality k.

Proof. (true, µ) ∈ P with cardinality k iff there are pairs (ψi, νi) ∈ θ(Ri) with
cardinality ci for i = 1 . . .m such that k = c1×. . .×cm and µ = ν1

B1�· · ·�νm
Bm .

From the conditions of P we have that ψ = true iff ψi = true for i = 1 . . .m.
By hypothesis (true, νi) ∈ θ(Ri) with cardinality ci iff νi ∈ Ri with cardinality
ci for i = 1 . . .m, iff (ν1B1 � · · · � νm

Bm) ∈ (ρB1(R1) × . . . × ρBm(Rm)) with
cardinality c1 × . . .× cm, i.e., µ ∈ R with cardinality k.

Next we prove the Theorem by induction on the number of nodes of the de-
pendence tree for R. If this number is 1 (basis) then R is a table T , 〈T 〉 = d(T),
and the result is an easy consequence of Definition 6 item 1. If the dependence
tree contains at least two nodes (inductive case) R cannot be a table. We dis-
tinguish cases depending on the form of R:
- R aggregate query. Then Q is of the form

Q = select e1 E1, . . . , en En from R1 B1 , . . . , Rm Bm

where Cw group by A′1, . . . , A
′
k having Ch

Then 〈Q〉 = Πe′
1→E1,...,e′

n→En
(σC′

h
(γL(σCw

(R)))), with R = ρB1(R1) × . . . ×
ρBm

(Rm), L = {A′1, . . . , A′k, u1 7→ U1, . . . , ul 7→ Ul}, ui the aggregate expressions
occurring either in the select or in the having clauses for i = 1 . . . l, Ui new
attribute names for i = 1 . . . l, e′j the result of replacing each occurrence of ui in
ej , 1 ≤ j ≤ n by Ui and analogously for C ′h. From Definition 6, item 5 we have

θ(Q) = {|(
∧

(Π1(A)) ∧ aggregate(Q,A), sQ(Π2(A))) | A ⊆ P |}

Let µ ∈ 〈Q〉 with cardinality k. Then there are rows ν1, . . . , νr such that
µ is of the form µ = (νi){E1 7→ e′1, . . . , En 7→ e′n}, 1 ≤ i ≤ r with νi ∈
(σC′

h
(γL(σCw

(R))), with cardinality ci for i = 1 . . . r and k = c1 + . . .+ cr. From
the definition of γ we have that the ci occurrences of νi for i = 1 . . . r correspond
to the existence of ci maximal aggregates Sj

i ⊆ σCw (R), j = 1 . . . ci.

Observe for every η ∈ Sj
i we have that the cardinality of η in Sj

i and in R

is the same because Sj
i is maximal. Then from Lemma 1 we have that the set

Aj
i = {|(true, η) | η ∈ Sj

i |} verifies Aj
i ⊆ P for i = 1 . . . r, j = 1 . . . ci. Then it

is immediate that
∧

(Π1(Aj
i)) = true and that sQ(Π2(Aj

i)) = sQ(Si) = {E1 7→
((e1)Sj

i), . . . , En 7→ ((en)Sj
i)} = (νi){E1 7→ e′1, . . . , En 7→ e′n} = µ. Then we

have that (true ∧ aggregate(Q,Aj
i), µ) ∈ θ(Q) for i = 1 . . . r, j = 1 . . . ci. It

remains to check that aggregate(Q,Aj
i) = true, i.e., that

– group(Q,Π2(Aj
i)) = true. Π2(Aj

i) = Sj
i and the definition of group requires

that all the rows in Sj
i verify the where condition and that every row takes

the same values for the grouping attributes. The first requirement is a conse-
quence of Sj

i ⊆ σCw
(R), while the second one holds because we are assuming

that the multiset Sj
i was selected has a valid group by the operator γ.

– maximal(Q,Aj
i) = true. The auxiliary definition maximal indicates that no

other element of the form (true, µ′) from P can be included in Sj
i verifying

that we still have the same values for the grouping attributes and µ′ verifying
the where condition. This is true because if there were such (true, µ′) ∈
P − Aj

i , then by Lemma 1 µ′ will be in R and Sj
i will not be maximal in

σCw
(R) as required by γ.

– ϕ(Ch, Π2(Aj
i)) = true. Observe that ϕ(Ch, Π2(Aj

i)) = ϕ(Ch, S
j
i), and that

in the absence of subqueries ϕ only checks that the Sj
i verify the having

condition Ch, which is true because νi verifies C ′h.

Then we have (true, µ) ∈ θ(Q) for i = 1 . . . r, j = 1 . . . ci and thus (true, µ) ∈
θ(Q) with cardinality k .
The converse result, i.e., assuming (true, µ) ∈ θ(Q) with cardinality k and prov-
ing that then µ ∈∈ 〈Q〉 with cardinality k, is analogous.
- R basic query. Similar to the previous case.
- R = V1 union V2. Then 〈R〉 = 〈V1〉∪〈V2〉, θ(R) = θ(V1) ∪ θ(V2) and the result
follows by induction hypothesis since V1, V2 are children of R in its dependence
tree.
- R = V1 intersection V2 . Then

〈R〉 = 〈V1〉 ∩ 〈V2〉
θ(R) = {|(ψ1 ∧ ψ2 ∧ ν1 = ν2, ν1) | (ψ1, ν1) ∈ θ(V1), (ψ2, ν2) ∈ θ(V2)|}

Then µ ∈ 〈R〉 with cardinality k iff µ ∈ 〈V1〉 and µ ∈ 〈V2〉 with cardinalities
k1, k2 respectively and k = min(k1, k2). By the induction hypothesis (true, µ) ∈
θ(V1) with cardinality k1, (true, µ) ∈ θ(V2) with cardinality k2 and this happens
iff (true, µ) ∈ θ(R).
- R is a view V with associated query Q. Then 〈V 〉 = ΠE1→V.A1,...,En→V.An

〈Q〉
and θ(V) = θ(Q){V.A1 7→ E1, . . . , V.An 7→ En} with E1, . . . , En the attribute
names of the select clause in Q. We have proved above that µ ∈ 〈Q〉 iff (true, µ) ∈
θ(Q) with the same cardinality. Now observe that for every µ ∈ 〈Q〉 applying
the projection ΠE1→A1,...,En→An

produces a renaming of its domain E1, . . . , En

to A1, . . . An, and that this is the same as µ{V.A1 7→ E1, . . . , V.An 7→ En}.

