Algorithmic Debugging of SQL Views*

Rafael Caballero, Yolanda Garcia-Ruiz and Fernando Sdenz-Pérez

Departamento de Sistemas Informaticos vy Computacién
Universidad Complutense de Madrid, Spain
{rafa,feman}@sip.ucm.es and ygarciar@fdi.ucm.es

Abstract. We present a general framework for debugging systems of correlated SQL views. The debugger
locates an erroneous view by navigating a suitable computation tree. This tree contains the computed
answer associated with every intermediate relation, asking the user whether this answer is expected or not.
The correctness and completeness of the technique is proven formally, using a general definition of SQL
operational semantics. The theoretical ideas have been implemented in an available tool which includes
the possibility of employing trusted specifications for reducing the number of questions asked to the user.

1 Introduction

SQL [12] is the de facto standard language for querying and updating relational databases. Its declarative nature‘

and its high-abstraction level allows the user to easily define complex operations that could require hundreds of
lines programmed in a general purpose language. In the case of relational queries, the language introduces the
possibility of querying the database directly using a select statement. However. in realistic applications, queries

can become too complex to be coded in a single statement and are generally defined using views. Views can be .
considered in essence as virtual tables. They are defined by a select statement that can rely on the database
tables as well as in other previously defined views. Thus, views become the basic components of SQL queries. -

As in other programming paradigms, views can have bugs which produce unexpected results. However, we
cannot infer that a view is buggy only because it returns an unexpected result. Maybe it is correct but receives
erroncous input data from the other views or tables it depends on. There are very few tools for helping the user

to detect the cause of these errors; so, debugging becomes a labor-intensive and time-consuming task in the case -
of queries defined by means of several intermediate views. The main reason for this lack of tools is that the usual

trace debuggers used in other paradigms are not available here due to the high abstraction level of the language.

A select statement is internally translated into a sequence of low level operations that constitute the ezecution

plan of the query. Relating these operations to the original query is very hard, and debugging the execution plan

step by step will be of little help. In this paper, we propose a theoretical framework for debugging SQL views -
based on declarative debugging, also known as algorithmic debugging [11]. This technique has been employed

successfully in (constraint) logic programming [11], functional programming 9], functional-logic programiming

[2], and in deductive database languages [1]. The overall idea of declarative debugging [7] can be explained

briefly as follows:

- The process starts with an initial error symptom, which in our case corresponds to the unexpected result of
a user-defined view,

- The debugger automatically builds a tree representing the computation. Each node of the tree correspornds
to an intermediate computation with its result. The children of a node are those nodes obtained from the
subcomputations needed for obtaining the parent result. In our case, nodes will represent the computation of a
relation R together with its answer. Children correspond to the computation of views and tables occurring in
Rifit is a view.

— The tree is navigated. An external oracle, usually the user, compares the computed result in each node with
the intended interpretation of the associated relation. When a node contains the expected result, it is marked
as valid, otherwise it is marked as nonvalid.

- The navigation phase cnds when a nonvalid node with valid children is found. Such node is called a buggy
nade, and corresponds to an incorrect piece of code. In our case. the debugger will end pointing out either an
erronecusly defined view, or a table containing a nonvalid instance.

Our goal is to present a declarative debugging framework for SQL views, showing that it can be implemented
in a realistic, scalable debugging tool.

" This work has been partially supported by the Spanish projects STAMP {TIN20UR-06622-C 03-01), Prometidos-CM
(S2009TIC-1465) and GPD ¢ LOM-BSCH-GR35/10-A-910502)

<

T~ T S

(73

P o T S . o)

Caballero R., Gareia-Rusz Y., Sdenz-Pérez F. Algurithmic Debugging of SOL Views 2056

Pet PetOwner

| LRI g Kitty | cat 1l
| T Mark Costas) 102 Wilma | cat 21
?_'g, Helen Kaye | gmi Lucky | dog %2
3| Rubin Scott | 1104 | Rocky | dog % 139
{ 4! Tom Cohen | i 10 | Oreo | cat i %3
j 3 106 | Cecile :.*1%66 i”y
' 107 _:{jili I-'c'.ll teg { | 0T

Fig. 1. All Peis Club database instance

We have implemented our debugging proposal in the Datalog Educational System {DES [10]}, which makes it
possible for Datalog and SQL to coexist as query languages for the same database. The current implementation
of our proposal for debugging SQL views and instructions to use it can be downloaded from https://gpd.sip.
ucm. es/trac/gpd/wiki/GpdSystems/Des.

2 SQL Semantics

The hrst formal semantics for relational databases based on the concept of set (e.g., relational algebra, tuple
caleulus [3]) were incomplete with respect to the treatment of non-relational features such as repeated rows and
aggregates, which are part of practical languages such as SQL. Therefore, other semantics, most of them based
on multisets [4], have been proposed. In our framework we will use the Extended Relational Algebra [6.5]. We
start by defining the concepts of database schemas and instances.

A table schema is of the form T(Ay,..., A,), with T being the table name and A; the attribute names
for i = 1...n. We will refer to a particular attribute A by using the notation 7.A. Each attribute A has an
associated type (integer, string, ...). An instance of a table schema 7(A, . .., Ay) is determined by its particular
rows. Each row contains values of the correct type for each attribute in the table schema. Views can be thought
of as new tables created dynamically from existing ones by using a SQL query. The general syntax of a SQL
view is: create view V(Ay, ..., 4,) as Q, with @ a SQL select statement, and V.Ay, ..., V. A,, the names of the
view attributes. In general, we will use the name relation to refer to either a table or a view {observe that the
mathematical concept of relation is defined over sets, but in our setting we define relations among multisets).

£y

A database schemu D is a tuple (T.V), where T is a finite set of table schemas and V a fnite sot of view
definitions. Although database schemas also include constraints such as primary keys, they are not relevant to
our setting.

A database instance d of a database schema is a set of table instances, one for each table in 7. To represent
the instance of a table T in d we will usc the notation d(7T),

The syntax of SQL queries can be found in [12]. The dependency free of any view V in the schema is a troe
with V' fabeling the root, and its children the dependency trees of the relations ocewrring in its query. The next
examiple defines a particular database schema that will be used in the rest of the paper as a running example.

cample 1. The Dog and Cat Club annual dinner is going to take place in a few weeks, and the organizing
committee is preparing the guest list. Each year they browse the database of the All Pets Club looking for
people that own at least one cat and one dog. Owners come to the dinner with all their cats and dogs. However,
tw itional constraints have been introduced this year

~ People owning more than 5 auimals are not allowed {the dinner would become too noisy).

= No animals sharing the same name are allowed at the party. This means that if two different people liave a
cat or dog sharing the same name neither of them will be invited. This severe restriction follows afrer last
year's incident, when someone cried Tiger and dozens of pets started running without control.

e 1 shows the All Pete Uhub database instance. It consists of three tables: Oumer, Pet, and PetOwner which

es each owner with its pets. Primary keys are shown underfined. F igure 2 contains the views for selecting

the dinner gnests. The f i which obtains all the tuples (id, aname, species) such

the owner of an animal of name aname of . LessThanf retirns the identifiers of the ow

less than six cats and dogs. CaisAndDogsOuwner returns pairs (id.aname) where id is the identifier of the owner

Fview is Anim

206 Ershov Informatics Conference 2011

create or replace view AnimalOwner (id ,aname, species) as
select O.id, P.name, P.species

from Owner O, Pet P, PetOwner PO

where O.id = PO.id and P.code = PO. code;

create or replace view LessThan6(id) as
select id from AnimalOwner

where species="cat’ or species=’dog’
group by id having count{«)<8;

create or replace view CatsAndDogsOwner{id.}aname) as
select AOLl.id ,AQl.aname
from AnimalOwner AOL, AnimalOwner AO2
where AOLl.id = AO2.id and AOIL. species="dog’
and AO2. species="cat ";

create or replace view NoCommonName(id) as

select id from CatsAndDogsOwner

except

select B.id from CatsAndDogsOwner A, CatsAndDogsOwner B
where A.id <> B.id
and A. aname = B.aname;

create or replace view Guest(id ,name) as

select id, name

from Owner natural inner join NoCommonName
natural inner join LessThan6;

Fig. 2. Views for selecting dinner guests

of either a cat or a dog with name aname, such that id owns both cats and dogs. NoCommonName is defined by
removing owners sharing pet names from the total list of cats and dog owners. Finally, the main view is Guest,

which selects those owners that share no pet name with another owner (view NoCommonName) and that have

less than six cats and dogs (view Less Than6). However, these views contain a bug that will become apparent
in the next sections.

The Extended Relational Algebra (ERA from now on) [6] is an operational SQL Semantics allowing aggre-

gates, views and most of the common features of SQL queries. The main characteristics of ERA are:

1.

)

Wt

The table instances and the result of evaluating queries/views are multisets, (it is also possible to consider -

lists instead of multisets if we consider relevant the order among rows in a query result).

- ERA expressions define new relations by combining previously defined relations using multiset operators-

(see [5] for a formal definition of each operator).

. We use @, to represent a SQL query or view R as an ERA expression, as explained in [5]. Since a query/view

Ha

depends on previously defined relations, sometimes it will be useful to write ®p(Ry,..., R,) indicating that’
Rdepends on Ry,... R, . If My, ... M, are multisets we use the notation @My, ..., M,) to indicate that
the expression @ is cvaluated after substituting Ry,..., R, by My, M,,. ‘

Tables are denoted by their names, that s, &7 = T if T is a table.
The computed answer of &g with respect to some schema instance d will be denoted by || &5 I, where
— If R is a database table, || 5 4= d{R).
— If R is a database view or a query and Ry, . .., H,, the relations defined in R then | PR lla= Pr{l &g, 4
sooall @R, Hla)-

Observe that || B ll; is well defined since mutually recursive view definitions are not allowed!. We assume that
[Pr {4 actually corresponds to the answer obtained by a correct SQL implementation, i.e., that the available
SQL systems implement ERA. In fact our proposal is valid for any semantics that associate a formula dp to
any relation R and allow the recursive definition of computed answer of item 5 above.

' Recursive views are allowed in the SQL:1989 standard but they are not supported in all the systems, and they are not
considered here,

—

e

5

o

Lol TR I O I o B T T 2 o DR o O b 2 BN-C N Laae Al o TR # MU '

L O

o ek W

Caballero R., ta-Ruiz Y., Saenz-Pérez F. Algorithmic Debugging of SQL Views 207

Cats \“'” JogsOwne NoCommonName

Fig. 3. Intended amswer for the views in Example 1

3 Declarative Debugging Framework

[n this section, we assume a set of SQL views V = {V;, ...,V } such that for some 1 < 7 < n, and for some
Jdatabase instance d, Vi has produced an unexpected result in some SQL system. We also assume that this SQL
system unplements the EFRA operational semantics of previeus seetion. Our debugging technique will be based
on the comparison between the apswers by a SQL system implementing the ERA semantics, and the oracle
intended answers. Next, we define the concept of intended answer for schema relations.

Definition 1. Intended Answers for Schema Relations

Let D be a database schema, d an instance of D, and R a relation defined in D. The intended answer for R
wrt, d, is a multiset denoted as Z{R,d) containing the answer that the user expects for the query select * from
R; in the instance d.

The intended answer depeuds not only on the view semantics but also on the contents of the tables in the
instance . This concept corresponds to the idea of intended interpretations employed usually in algorithmic
delmgeing. Figure 3 contains the intended answer for each view defined in Figure 2. For instance, it is expected
that AnimalOuner will identify each owner id with the names and species of his pets. It is also expected than
LessThant will contain the id of all four owners, since all of them have less than six cats and dogs. The intended
answer for view CafsAndDogsOwner contains the id and name attributes of those entries in AnimalOwner
corresponding to owners with at least one dog and one cat, and removing pets different from cats and dogs.
View NoCommonName is expected to contain only one row for owner with identifier 3. The reason is that both
owners 1 and 2 share a pet name { Wilma). Finally, the only expected Guest will be the owner with identifier
3, Robin Seott. If now we try the query select * from Guest; in a SQL system, we obtain a computed answer
representing the mualtiset {1, Mark Costas), {2, Helen Kaye), (3, Robin Scott J}. This computed answer is
different from the intended answer for Gurest, and indicates that there is sowe error. However, we cannot ensure
that the error is in the query for Guest, because the error can come from any of the relations in its from clause.
And also from the relations used by these relations, and so on. In order to define the key concept of erroneous
relation it will be useful to define the auxiliary concept of inferred answer,

Definition 2. Inferred Answers
Let D be a database schema, d an instance of D, and R a relation in D. The inferred answer for R. with respect
tod, E{R.d), is defined as

I. If R is o table, E(R.d) = d(R).

w the relations occurring in R.
just its fable ingtance. In the case of a view V, the inferred
43;% would be obtained assuming that all the relations B, ccourring
i sider Example 1 and the mstance d of

e, for every table T, Z(T. di = d{T}. Then

iﬁ&{%’é iizs 52;8 comp asteé resnl
sa of Vocontain the intended answers, For
e that :«13% the tx;z?ﬁm {m}{am the z;zzmxfée@

AR Y COY
;;z the definit

E{Cuta. éz‘a»’?iﬁ*w’s{ 3;;:21{??“, fﬁ
i

1. Wilma)

hows that R does not compute ifs izzw;;{i@{,’i answer, even assuming ?im al % 1w reiations zi {;{;}ﬁz;dg

nch relation 8 erroneous:

and {1

%

on contain their intended answers. 5

208 Ershov Informatics Conference 2011

Definition 3. Erroneous Relation |
Let D be a database schema, d an instance of D, an R a relation defined in D. We say that R is an erroneoys I
relation when I(R,d) # E(R,d). !

Definition 3 clarifies the fundamental concept of erroncous relation. However, it cannot be used directly
for defining a practical debugging tool, because in order to point out a view V as erroncous, it would require
comparing Z(V,d) and £(V,d). By Definition 2, to obtain £(V, d), the tool will need the intended answer Z(R,d)
for every I ocenrring in the query defining V. But Z(R, d) is only known by the user, who should provide thig
information during the debugging process. Obviously, a technique requiring such amount of information would !
be rejected by most of the users. Instead, we will require from the oracle only to answer questions of the form |
Is the computed answer (...} the intended answer for view V ?' Thus, the declarative debugger will compare
the computed answer —obtained from the SQL system~ and the intended answer —known by the oracle- In a
first phase. the debugger builds a computation tree for the main view. The definition of this structure is the
following:

Definition 4. Computation Trees :
Let D be a database schema with views V, d an instance of D, and R a relation defined in D. The computation

tree CT(R. d) associated with R w.r.t. d is defined as follows:

— The root of CT(R,d) is (R~ &g la). i
— For any node N = (R’ | & ||4) in CT(R,d):
o If R is a table, then N has no children.
o If R is a view, the children of N will correspond to the CTs for the relations occurring in the query
associated with R'.

In practice, the nodes in the computation tree correspond to the syntactic dependency tree of the main SQL view,
with the children at each node corresponding to the relations occurring in the definition of the corresponding
view. After building the computation tree, the debugger will navigate the tree, asking the oracle about the
validity of some nodes:

Definition 5. Valid, Nonvalid and Buggy Nodes

Let T = CT(R,d) be a computation tree, and N = (R’ —| g ||4) a node in T. We say that N is valid when -
| Dr la= Z(R',d), nonvalid when || S {|4# Z(R',d), and buggy when N is nonvalid and all its children in
T are valid.

The goal of the debugger will be to locate buggy nodes. The next theorem shows that a computation tree with
a nonvalid root always contains a buggy node, and that every buggy node corresponds to an erroneous relation.

Theorem 1. Let d be an instance of a database schema D, V a view defined in D, and T a computation tree
for V ow.r.t. d. If the root of T is nonvalid then:

— Completeness. T contains a buggy node.
— Soundness. Every buggy node in T corresponds to an erroneous relation.

The debugging process starts when the user finds a view V returning an unexpected result. The debugger
builds the computation tree for V', which has a nonvalid root as required by the theorem. Figure 4 shows the
computation tree for our running example (after removing the repeated children). Nonvalid nodes are underlined,
and the only buggy node {in bold face) corresponds to view CatsAndDogsOwner.

4 Conclusions

In this paper, we propose using algorithmic debugging for finding errors in systems involving several SQL views.
To the best of our knowledge, it is the first time that a debugging tool of these characteristics has been proposed.
The debngger is based on the navigation of a suitable computation tree corresponding to some view returning
some unexpected result. The validity of the nodes in the tree is determined by an external oracle, which can
be either the user, or a trusted specification containing a correct version of part of the views in the system.
The debngger ends when a bugey vode. e, a nonvalid node with valid children, is found. We prove formally
that every buggy node corresponds to an erroneous relation, and that every computation tree with a nonvalid
root contains some buggy node. Although the results are established in the context of the Extended Relational

e i

e T i ——
r‘:lir.\lllllinlgaf]m = i Owner)
————

Fig. 4. Computation trec for view Guest

Alaebra, they can be easily extended to other possible SQL semantics, such as the Extended Three Valued
Predicate Calenlus [8].

The techniqgue is easy to implement, obtaining an efficient. platform-independent and scalable debugger without
much effort. The tool is very intuitive, becanse it antomates what usually is done when an wiexpected answor
is found in a system with several views: check the relations in the Jrom clause, and if some of them return
i unexpected answer, repeat the process, Automating this process is of great help. especially when the tool
inclndes additional features as advanced navigation strategies, or the possibility of using trusted specifications.
We have successfully implemented onr proposal in the existing. widely-used DES systom.

As futwre work, we plan the developiment of a graphical interface, which can be very helpful for inspecting the
eomputation tree providing information about the node validity. It will also be useful to consider individnal
wrong tuples in the unexpected results and study its provenance{13], for a fine-grain error detection.

References

L R. Caballere, Y. Garcfa-Ruiz, and ¥. Sdens-Pérez, A theoretical framework for the declarative debugging of datalog
programs. In SDKB 2008, vohime 4925 of LNCS, pages 143-159. Springer, 2008,
2. R. Caballero, F. Lépez-Fraguas, and M. Rodriguez-Artalejo. Theoretical Foundations for the Declarative Debugging
of Lazy Functional Logic Programs. In Proc. FLOPS ‘01, vumber 2024 in LNCS, pages 170-184, Springer, 2001,
3. E. Codd. Relational Completencss of Data Base Sublanguages. In Rustin, cditor, Data base Systems, Courant
Computer Scicnce Syniposia Series 6, Englewood Clifs, N.J. Prentice-Ilall, 1972,
. U. Dayal, N. Goodmen. and R. H. Katz, An extended relational algebra with control over duplicate elimination.
In PODS °82: Procecdings of the 1st ACM SI GACT-8IGMOD sumnpasium on Principles of database systems, pages
New York, ?
5. H. Garcia-Alolina, J. D).
Saddle River, NI, USA. 2008,
6. P W Grefen and R AL B de. A multi-set extonded relativnal algebra: a formal approach to a practical issne. In
criational Confercnee on Dat jLeering, pa . IEEE, 1994,
F JIs h. A Declarntive Debng v. Journol of onal and Logic Programiing, 3, 1897,
' ‘ a. Formal semantics of SQL queries. ACH Trans, Dajobese Sy

1515~

L1603

Nilss i & lagy functional debugger. Jow
Funeise

Y Maonze-Pr

shose Svsiem,

e on Progromming and

riation. AT Pr

. 1982,

eaing provenance lor sol guer

s and updates, JEEE Nata Eng Bull, 3004
&3 ¢ £ of ¥

]
B
i
[
[

Ershov Informatics Conference
PSI Series, 8™ Edition

Preliminary Proceedings

June 27 - July 1, 2011
Akademgorodok
Novosibirsk, Russia

ERSHOV INFORMATICS CONFERENCE
PSI Series, 8" Edition

June 27 — July 1, 2011, Akademgorodok, Novosibirsk, Russia

Organized by:

¢ A.P. Ershov Institute of Informatics Systems,
Siberian Branch of Russian Academy of Sciences
¢ Novosibirsk State University

Sponsored by:

@ o] f ««»,,,
ik, |

¢ Russian Foundation for Basic Research

& Google

& EMC?

¢ Intel Corporation

& PlanetData

& SESAME-S

¢ Microsoft Research

¢ Formal Methods Europe

¢ DFG

& Centre National de la Recherche Scientifique.
Laboratoire J.-V. Poncelet franco-russe

" __:!_(0 l‘k ,a.g_,."““' |

\/G Lawda. (area Q&R @

UDK 519.6

Ershov Informaties Conference (Proceedings). - Novosibirsk: A.P. Ershov Institute of Infor-
matics Systems. 2011, - 338 p.

The volume comprises the papers selected for presentation at the Ershov Informatics Conference
(PSI Series, the 8™ edition), Akademgorodok, Novosibirsk, Russia, June, 27 - July, 1, 2011. The
main goal of the conference is to give an overview of research directions which are decisive for
the growth of major areas of research activities in computer, software and information sciences.

FOREWORD

Welcome to the Ershov Informatics Conference (PSI Series, the 8" edition).

PSI is a forumn for academic and industrial researchers, developers and users working on
topics relating to computer, software and information sciences. The conference serves to bridge
the gaps between different communities whose research areas are covered by but not limited
to foundations of program and system development and analysis, programming methodology
and software engineering, and information technologies. Another aim of the conference is the
improvement of contacts and exchange of ideas between researchers from the East and West.

The previous seven PSI conferences were held in 1991, 1996, 1999, 2001, 2003, 2006 and
2009, respectively, and proved to be significant international events. Traditionally, PSI offers
a program of tutorials, invited lectures, presentations of contributed papers and workshops
complemented by a social program reflecting the amazing diversity of Novosibirsk culture and
history.

The PSI 2011 conference is dedicated to the 80" anniversary of a pioneer in theoretical and
system programming rescarch, academician Andrei Petrovich Ershov (1931-1988), and to the
100" anniversary of one of the founders of cybernetics, a member of the Soviet Academy of
Sciences Aleksei Andreevich Lyapunov (1911-1973).

Aleksei Lyapunov was one of the early pioneers of computer science in this country. He
worked at the Steklov Institute of Mathematics and Institute of Applied Mathematics in
Moscow. In 1961 he moved to Novosibirsk where the Siberian Branch of the USSR Acadamy of
Sciences had been founded. First A.A. Lyapunov worked at the Institute of Mathematics, then
he led the Laboratory of Cybernetics at the Institute of Hydrodynamics. He played an important
role in the organization of the Physics and Mathematics School for talented children from all
over Siberia, and was a professor at the Novosibirsk State University. In 1996 he posthumously
received the IEEE Computer Society Computer Pioneer Award for his contribution to Soviet
cybernetics and programming. There are many distinguished mathemicians among the students
of A.A. Lyapunov, including the academician A.P. Ershov.

Andrei Ershov graduated from the Moscow State University in 1954. He began his scientific
career under the guidance of professor Lyapunov who was the supervisor of his PhD thesis.
A.P. Ershov worked at the Institute of Precise Mechanics and Computing Machinery, and
later headed the Theoretical Programming Department at the Computing Center of the USSR
Academy of Sciences in Moscow. In 1958 the Department of Programming was organized at
the Institute of Mathematics of Siberian Branch of the USSR Academy of Sciences, and by the
initiative of the academician S.L. Sobolev Ershov was appointed the head of this Department,
which later became part of the Computing Center in Novosibirsk Akademgorodok. The first
significant project of the Department was aimed at the development of ALPHA system. an
optimizing compiler for an extension of Algol 60 implemented on a Soviet computer, M-20.
Later the rescarchers of the Department created the Algibr, Epsilon, Sigma, and Alpha-6
programming systems for the BESM-6 computers. The list of achievements also includes the
first Soviet time-sharing system AIST-0, the multi-language system BETA, research projects
in artificial intelligence and parallel programming, integrated tools for text processing and
publishing, and many more. A.P. Ershov was a leader and a participant of these projects. In
1974 he was nominated as a Distinguished Fellow of the British Computer Society. In 1981 he
received the Silver Core Award for services rendered to IFIP. Andrei Ershov’s brilliant speeches
were always in the focus of public attention. Especiallv notable was his lecture on “Aesthetic

iii

3.

and human factor in programming” presented at the AFIPS Spring Joint Computer Conference
(Atlantic City, USA) in 1972.

60 papers have been submitted to the conference by rescarchers from 26 countries. Each
paper was reviewed by four experts, at least three of them from the same or closely related
discipline as the authors. The reviewers generally provided high quality assessment of the
papers and often gave extensive comments to the authors for the possible improvement of the
contributions. As the result. the Programme Committee has selected 18 high quality papers as
regular talks and 10 papers as short talks to be presented at the conference. A range of hot
topics in computer science and informatics will be covered by a tutorial and five invited talks
given by prominent computer scientists from different countrics.

We are glad to express our gratitude to all the persons and organizations who contributed to
the conference — to the authors of the papers for their effort in producing the materials included
here, to the sponsors for their moral, financial and organizational support, to the steering
committee members for their coordination of the conference, to the programme committee
members and the reviewers who did their best to review and select the papers, and to the
members of the organizing committee for their contribution to the success of this event and its
cultural program.

‘The programme committee work was done using the EasyChair conference management
system.

June, 2011 Edmund Clarke,
Irina Virbitskaite,
Andrei Voronkov

v

CONFERENCE CHAIR

Alexander Marchuk {Novosibirsk, Russia)

STEERING COMMITEE

Members:

Dines Bjegrner (Lyngby, Denmark)
Manfred Broy (Miinchen, Germany)
Victor Ivannikov (Moscow, Russia)
Bertrand Meyer (Ziirich, Switzerland)
Leonid Libkin (Edinburgh, UK)

Honorary Member:
Tony Hoare {Cambridge, UK)

CONFERENCE SECRETARY

Natalya Cheremnykh (Novosibirsk, Russia)

PROGRAMME COMMITTEE

Samson Abramsky (Oxford, UK)

Frédéric Benhamou (Nantes, France)
Leopoldo Bertossi (Carleton, Canada)
Eike Best (Oldenburg, Germany)

Kim Bruce (Pomona, USA)

Mikhail Bulyonkov (Novosibirsk, Russia)
Gabriel Ciobanu (Iasi, Romania)

Dieter Fensel (Innsbruck, Austria)

Jean Claude Fernandez (Grenoble, France)
Jan Friso Groote (Eindhoven, The Netherlands)
Heinrich Herre (Leipzig, Germany)

Victor Kasyanov (Novosibirsk, Russia)
Joost-Pieter Katoen (Aachen, Germany)
Laura Kovdes (Vienna, Austria)

Gregory Kucherov (Lille, France)

Kim Guldstrand Larsen (Aalborg, Denmark)
Johan Lilius (Turku, Finland)

Pericles Loucopoulos {Loughborough, UK)
Andrea Maggiolo-Schettini (Pisa, Italy)
Klaus Meer (Cottbus, Germany)
Dominique Méry (Nancy, France)

Torben Mogensen (Copenhagen, Denmark)
Hanspeter Massenbéck (Linz, Austria)
Peter Mosses (Wales, UK}

_—‘

PROGRAMME COMMITTEE
CHAIRS

Edmund M. Clarke (Pittsburgh, USA)
Irina Virbitskaite (Novosibirsk, Russia)
Andrei Voronkov (Manchester, UK)

INVITED SPEAKERS

Eike Best (Oldenburg, Germany)

Peter Buneman (Edinburgh, UK)

Rupak Majumdar (Kaiserslautern, Germany)
Ugo Montanari (Pisa, Italy)

Andreas Zeller (Saarbriiken, Germany)

Peter Miiller (Ziirich, Switzerland)

Valery Nepomniaschy (Novosibirsk, Russia)

Nikolaj Nikitchenko (Kiev, Ukraine)

José R. Parama (A Corufia, Spain)

Francesco Parisi-Presicce (Rome, Italy)

Wojciech Penczek (Warsaw, Poland)

Peter Pepper (Berlin, Germany)

Alexander Petrenko (Moscow, Russia)

Jaroslav Pokorny (Prague, Czech Republic)

Vladimir Polutin (Moscow, Russia)

Wolfgang Reisig (Berlin, Germany)

Donald Sannella (Edinburgh, UK)

Klaus-Dieter Schewe (Hagenberg, Austria)
David Schmidt (Manhattan, USA) 3

Alexander Semenov (Novosibirsk, Russia) , %
Nikolay Shilov (Novosibirsk, Russia) R

Val Tanpen (Philadelphia, USA)
Lothar Thiele (Ziirich, Switzerland)
Alexander Tomilin (Moscow, Russia)
Mark Trakhtenbrot (Rehovot, Israel)
Alexander L. Wolf (London, UK)
Tatyana Yakhno (Izmir, Turkey) ;
Wang Yi (Uppsala, Sweden)]

REFEREES

Agrigoroaiei, Oana
Aman, Bogdan
Andriamiarina, Manamiary
Anureev, Igor
Attiogb, Christian
Bauerei, Thomas
Bochman, Alex
Brihave, Thomas
Ceberio, Martine
Cranen, Sjoerd
Danelutto, Marco
Demin, Alexander
Dikovsky, Alexander
Ferrara, Pietro
Fertin, Guillaume
Fleischhack, Hans
Garanina, Natalia
Gierds, Christian
Gluck, Robert
Gordeev, Dmitry
Gray, Robert M.
Gretz, Friedrich
Guan, Nan

Hoger, Christoph

Idrisov, Renat
Jacob, Marie
Juhasz, Uri
Kassios, loannis
Keiren, Jeroen
Knapik, Michal
Kreinovich, Vladik
Lamarre. Philippe
Lampka, Kai
Lorenzen, Florian
Lv, Mingsong

Ma, Hui

Melatti, Tgor
Meski, Artur
Mikucionis, Marius
Monahan, Rosemary
Muller, Richard
Nguyen, Viet Yen
Niehren, Joachim
Niewiadomski, Artur
Olesen, Mads Chr.
Olsen, Petur
Perathoner, Simon
Promsky, Alexey

vi

Prufer, Robert
Pyjov, Konstantin
Raffelsieper, Matthias
Rama, Aureliano
Rohloff, Judith
Ruskiewicz, Joseph
Schulte, Christian
Shkurko, Dmitry
Singh, Neeraj
Stasenko, Alexander
Stigge, Martin
Stoimenov, Nikolay
Stovanovich, Julia

- Szreter, Maciej

Tarasyuk, Igor
Thalhammer, Andreas
Tronci, Enrico

Von Styp, Sabrina
Wagner, Christoph
Wang, Qing
Willemse, Tim
Winkowski, Jozef
Yang, Hoeseok
Zwirchmayr, Jakob

TABLE OF CONTENTS

Tutorial
Zeller A, Mining Programs 1
Invited Talks
Best E., Darondeau Ph. Petri Net Distributability 2
Brunt R., Melgratti H., Montanari U. Connector Algebras and Petri Nets, 3
Buneman P. Models of Provenance 8
Majumdar R. End-to-End Guarantees in Embedded Control Systems 9
Zeller A, Mining Precise Specifications 10
Regular Papers
Baar Th., Kumar Ph. Detecting Entry Points in Java Libraries 11
Beyer M., Glesner S. Static Analysis of Run-Time Modes in Synchronous Process
NetwWork .o 20
Demin A., Ponomaryov D., Vityaev E. Probabilistic Concepts in Formal Contexts 29
Fried M.A.H., Fensel A., Facca F.M., Fensel D. An Extensible System for Enhancing
Social Conference Experience i 39
Garanina N.O. Exponential Acceleration of Model Checking for Perfect Recall Systems ... 50
Ghick R. Bootstrapping Compiler Generators from Partial Evaluators 59
Hamalton G.W., Jones N.D. Proving the Correctness of Unfold/Fold Program
Transformations Using Bisimulation 69
Khoroshilov A., Mutilin V., Novikov E., Shved P., Strakh A. Towards an Open Framework
for C Verification Tools Benchmarking 82

Klimov A.V. Coverability Problem for Monotonic Counter Systems by Supercompilation . .92
Klyuchnikov I., Romanenko S. Multi-Result Supercompilation as Branching Growth

of the Penultimate Level in Metasystem Transitions 104

Knoop 1., Kovdcs L., Zwirchmayr J. Symbolic Loop Bound Computation for WCET "'
Analysis ..o 116 4

Korovin K., Tsiskaridze N., Voronkov A. Implementing Conflict Resolution 127

Korovina M., Vorobjou N. Reachability in One-Dimensional Controlled Polynomial
Dy namical SYSEOINs ... 137

Mardare R. Decidability of Modular Loglcs for Concurrency 144

Mogensen T..E. Partial Evaluation of Janus Part 2: Assertions and Procedures 155

Sharma A.. Katoen J.-P. Weighted Lumpability on Markov Chains................... ... 164

Studer Th. Justified Terminological Reasoning 177

Veanes M., Bjorner N. Symbolic Tree Transducers 186

Short Papers
Bozhenkova E.N. Compositional Methods in Characterization of Timed Event

SETUCLUICS ..o 198
Caballero R., Garcia-Ruiz Y., Sdenz-Pérez F. Algorithmic Debugging of SQL Views 204
Dubtsov R. Timed Transition Systems with Independence and Marked Scott Domains:

an Adjunction . ..o 210

vii

Gribovskaya N.S. A Logic Characteristic For Timed Extensions of Partia] Order

pased Bauivalences ... TR 216
Jaskelioff M., Russo 1. Secure Multi-Execution in Haskell ... 223
Korovin K., Voronkov A. GoRRILA and Hard Reality ... 229
Letichevsky AAL Letychevskyi O, A Peschanenko V.S Insertion Modeling System ... 234
Petrov E. Scalable Parallel Interval Propagation for Sparse Constraint Satisfaction

Problems ... e 242
Ponomarenko A., Rubanoy V. A Combined Technique for Automatic Detection of

Backward Binary Compatibility Problems ...~ 7 249
Shilov N. V.. Akinin AA., Zubkov A V., Idrisov R] Development of the Computer

Language Classification Rnowledge Portal ... T 255
Posters
Anureev I, Maryasov L., Nepomniaschy V. The Mixed Axiomatic Semantics Method for

Cprogtan Verification ... T etadlor 261
Baranov S.. Kotlyaroy V., Weigert Th. Test Automation with Verifiable Coverage

Ui e 267
Klimov A. Transforming Affine Nested Loop Programs to Dataflow Computation

pOdel T e 274
Polo Usaola M., Reales Mateo P., Pérez Lamancha B. Reduction of Test Suites Using

SUALON e s 286
Promsky A. V. Verification Condition Understanding ... 295
Shelekhov V. Rules of Correctness Proof for Programs with Simple Logic 301
Tarasyuk: 1. V. Performance Analysis of the Dining Philosophers System in dtsPBC ... 309
Zagorulko Yu., Zagorulko G. Open Extensible Tools for Development of Intelligent

DS Towards an Avehitecture U TR 322

Vil

Author Index

Akinin, Alexander................ 255
Anureey, [0 oo 261
RBaar, Thomas ..o oacions 11
Baranov, Sergey.................. 267
Best, Fike ..ot 2
Beyer, Michael 20
Bjgrner, Nikolaj................. 186
Bozhenkova, Elena............... 198
Bruni, Roberto.................. .. 3
Buneman, Petero... .. 8
Caballero, Rafael............... .. 204
Darondeau, Philippe................ 2
Demin, Alexander 29
Dubtsov, Roman 210
Facca, Federico Michele............ 39
Fensel, Anna...........o.oooviin 39
Fensel, Dieter...................... 39
Fried, Michael Alois Helmut 39
Garanina, Natalia 50
CGarcifa-Ruiz, Yolanda............. 204
Glesner, Sabine.................... 20
Gliick, Robert59
Gribovskaya, Natalia............. 216
Hamilton, Geoff, 69
Idrisov, Renat 255
Jaskelioff, Mauro................. 223
Jones, Neil ... 69

Katoen, Joost-Pleter 164
Khoroshilov, Alexey 82
Klimov, Andrei.................... 92
Klmov, Arkady 274
Klyuchnikov, Ilya.............. ... 104
Knoop, Jens. ..., 116
Korovin, Konstantin......... 127, 228
Korovina, Margarita.............. 137
Kotlyarov, Vsevolod 267
Kovées, Laura... ... 116
Kumar, Philipp.................... 11
Letichevsky, Alexander........... 234
Letichevskyi, Olexander 234
Majumdar, Rupak.................. 9
Mardare, Radu................... 144
Maryasov, llya 261
Melgratti, Herndn 3
Mogensen, Torben Egidius....... 155
Montanari, Ugo.............cooo0 0 3
Mutilin, Vadim 82
Nepomniaschy, Valery 261
Novikov, Eugene................... 82
Peschanenko, Viadimir........... 234
Petrov, Evgueni.................. 242
Polo Usaola, Macario............. 286
Ponomarenko, Andrey............ 249
Ponomaryov, Denis................ 29
¥

Promsky, Alexei.................. 295
Pérez Lamancha, Beatriz......... 286
Reales Mateo, Pedro......... 286
Romanenko, Sergei............... 104
Rubanov, Viadimir 249
Russo, Alejandro.............. .. 223
Saenz-Pérez, Fernando..... 204
Sharma, Arpit................ o0 164
Shelekhov, Viadimir.............. 301
Shilov, Nikolay 255
Shved, Pavel....................... 82
Strakh, Alexander................. 82
Studer, Thomas.................. 177
Tarasyuk, Igor............ 309
Tsiskaridze, Nestan............... 127
Veanes, Margus 186
Vityaev, Evgeny................... 29
Vorobjov, Nicolai................. 137
Voronkov, Andrei............ 127, 229
Weigert, Thomas................. 267
Zagorulko, Galina 322
Zagorulko, Yury.................. 322
Zeller, Andreas.......... A 1, 10
Zubkov, Alexey................... 255
Zwirchmayr, Jakob............ ... 116

