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Abstract. This paper presents a debugging technique for diagnosing
errors in SQL views. The debugger allows the user to specify the error
type, indicating if there is either a missing answer (a tuple was expected
but it is not in the result) or a wrong answer (the result contains an un-
expected tuple). This information is employed for slicing the associated
queries, keeping only those parts that might be the cause of the error.
The validity of the results produced by sliced queries is easier to deter-
mine, thus facilitating the location of the error. Although based on the
ideas of declarative debugging, the proposed technique does not use com-
putation trees explicitly. Instead, the logical relations among the nodes
of the trees are represented by logical clauses that also contain the infor-
mation extracted from the specific questions provided by the user. The
atoms in the body of the clauses correspond to questions that the user
must answer in order to detect an incorrect relation. The resulting logic
program is executed by selecting at each step the unsolved atom that
yields the simplest question, repeating the process until an erroneous re-
lation is detected. Soundness and completeness results are provided. The
theoretical ideas have been implemented in a working prototype included
in the Datalog system DES.

1 Introduction

SQL (Structured Query Language [18]) is a language employed by relational
database management systems. In particular, the SQL select statement is used
for querying data from databases. Realistic database applications often contain
a large number of tables, and in many cases, queries become too complex to
be coded by means of a single select statement. In these cases, SQL allows the
user to define views. A SQL view can be considered as a virtual table, whose
content is obtained executing its associated SQL select query. View queries can
rely on previously defined views, as well as on database tables. Thus, complex
queries can be decomposed into sets of correlated views. As in other program-
ming paradigms, views can have bugs. However, we cannot infer that a view is
? Work partially supported by the Spanish projects STAMP (TIN2008-06622-C03-01),
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incorrectly defined when it computes an unexpected result, because it might be
receiving erroneous input data from other database tables or views. Given the
high-abstraction level of SQL, usual techniques like trace debugging are difficult
to apply. Some tools as [2, 13] allow the user to trace and analyze the stored SQL
procedures and user defined functions, but they are of little help when debugging
systems of correlated views. Declarative Debugging, also known as algorithmic
debugging, is a technique applied successfully in (constraint) logic programming
[16], functional programming [12], functional-logic programming [5], and in de-
ductive database languages [3]. The technique can be described as a general
debugging schema [11] which starts when an initial error symptom is detected
by the user, which in our case corresponds to an unexpected result produced
by a view. The debugger automatically builds a tree representing the erroneous
computation. In SQL, each node in the tree contains information about both a
relation, which is a table or a view, and its associated computed result. The root
of the tree corresponds to the initial view. The children of a node correspond
to the relations (tables or views) occurring in the definition of its associated
query. After building the tree, it is navigated by the debugger, asking to the user
about the validity of some nodes. When a node contains the expected result,
it is marked as valid, and otherwise it is marked as nonvalid. The goal of the
debugger is to locate a buggy node, which is a nonvalid node with valid chil-
dren. It can be proved that each buggy node in the tree corresponds to either
an erroneously defined view, or to a database table containing erroneous data.
A debugger based on these ideas was presented in [4]. The main criticism that
can be leveled at this proposal is that it can be difficult for the user to check the
validity of the results. Indeed, even very complex database queries usually are
defined by a small number of views, but the results returned by these views can
contain hundreds or thousands of tuples. The problem can be easily understood
by considering the following example:

Example 1. The loyalty program of an academy awards an intensive course for
students that satisfy the following constraints:
- The student has completed the basic level course (level = 0).
- The student has not completed an intensive course.
- To complete an intensive course, a student must either pass the all in one
course, or the three initial level courses (levels 1, 2 and 3).

The database schema includes three tables: courses(id,level) contains informa-
tion about the standard courses, including their identifier and the course level;
registration(student,course,pass) indicates that the student is in the course, with
pass taking the value true if the course has been successfully completed; and the
table allInOneCourse(student,pass) contains information about students regis-
tered in a special intensive course, with pass playing the same role as in registra-
tion. Figure 1 contains the SQL views selecting the award candidates. The first
view is standard, which completes the information included in the table Regis-
tration with the course level. The view basic selects those standard students that
have passed a basic level course (level 0). View intensive defines as intensive stu-
dents those in the allInOneCourse table, together with the students that have
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create or r ep l a c e view standard ( student , level , pass ) as
select R. student , C. level , R. pass
from cour s e s C, r e g i s t r a t i o n R
where C. id = R. course ;

create or r ep l a c e view bas i c ( student ) as
select S . student
from standard S
where S . level = 0 and S . pass ;

create or r ep l a c e view i n t e n s i v e ( student ) as
( select A. student from al l InOneCourse A where A. pass )
union
( select a1 . student
from standard A1 , standard A2 , standard A3
where A1 . student = A2 . student and A2 . student = A3 . student

and
a1 . level = 1 and a2 . level = 2 and a3 . level = 3) ;

create or r ep l a c e view awards ( student ) as
select student from bas i c
where student not in ( select student from i n t e n s i v e ) ;

Fig. 1. Views for selecting award winner students

completed the three initial levels. However, this view definition is erroneous: we
have forgotten to check that the courses have been completed (flag pass). Finally,
the main view awards selects the students in the basic but not in the intensive
courses. Suppose that we try the query select * from awards;, and that in the re-
sult we notice that the student Anna is missing. We know that Anna completed
the basic course, and that although she registered in the three initial levels, she
did not complete one of them, and hence she is not an intensive student. Thus,
the result obtained by this query is nonvalid. A standard declarative debugger
using for instance a top-down strategy [17], would ask first about the validity
of the contents of basic, because it is the first child of awards. But suppose that
basic contains hundreds of tuples, among them one tuple for Anna; in order to
answer that basic is valid, the user must check that all the tuples in the result
are the expected ones, and that there is no missing tuple. Obviously, the question
about the validity of basic becomes practically impossible to answer.

The main goal of this paper is to overcome or at least to reduce this drawback.
This is done by asking for more specific information from the user. The questions
are now of the type “Is there a missing answer (that is, a tuple is expected but it
is not there) or a wrong answer (an unexpected tuple is included in the result)?”
With this information, the debugger can:
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- Reduce the number of questions directed at the user. Our technique considers
only those relations producing/losing the wrong/missing tuple. In the example,
the debugger checks that Anna is in intensive. This means that either awards is
erroneous or Anna is wrong in intensive. Consequently, the debugger disregards
basic as a possible error source, reducing the number of questions.
- The questions directed at the user about the validity in the children nodes can
be simplified. For instance, the debugger only considers those tuples that are
needed to produce the wrong or missing answer in the parent. In the example,
the tool would ask if Anna was expected in intensive, without asking for the
validity of the rest of the tuples in this view.

Another novelty of our approach is that we represent the computation tree
using Horn clauses, which allows us to include the information obtained from the
user during the session. This leads to a more flexible and powerful framework for
declarative debugging that can now be combined with other diagnosis techniques.
We have implemented these ideas in the system DES [14, 15].

Next section presents some basic concepts used in the rest of the paper.
Section 3 introduces the debugging algorithm that constitutes the main contri-
bution of our paper, including the theoretical results supporting the proposal.
The implementation is discussed in Section 4. Finally, Section 5 presents the
conclusions and proposes future work.

2 Preliminaries

This section introduces some basic concepts about databases, interpretations and
types of errors which are used in the rest of the paper. A table schema has the
form T (A1, . . . , An), with T being the table name and Ai the attribute names for
i = 1 . . . n. We refer to a particular attribute A by using the notation T.A. Each
attribute A has an associated type. An instance of a table schema T (A1, . . . , An)
is determined by its particular tuples. Each tuple contains values of the correct
type for each attribute in the table schema. The notation t i represents the i -th
element in the tuple. In our setting, partial tuples are tuples that might contain
the special symbol ⊥ in some of their components. The set of defined positions
of a partial tuple s, def(s), is defined by p ∈ def(s) ⇔ sp 6=⊥. Tuples s with
def(s) = ∅ are total tuples. Membership with partial tuples is defined as follows:
if s is a partial tuple, and S a set of total tuples with the same arity as s, we
say that s ∈ S if there is a tuple u ∈ S such that up = sp for every p ∈ (def(s)
∩ def(u)). Otherwise we say that s /∈ S.

A database schema D is a tuple (T ,V), where T is a finite set of tables and V
a finite set of views. Views can be thought of as new tables created dynamically
from existing ones by using a SQL query. The general syntax of a SQL view is:
create view V(A1, . . . , An) as Q, with Q a query and V.A1, . . . V.An the names of
the view attributes. A database instance d of a database schema is a set of table
instances, one for each table in T . The notation d(T ) represents the instance of
a table T in d. The dependency tree of any view V in the schema is a tree with V
labeling the root, and its children the dependency trees of the relations occurring
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Fig. 2. Example of Computation Tree

in its query. Figure 2 shows the dependency tree for our running example. In
general, the name relation refers to either a table or a view. The syntax of SQL
queries can be found in [18]. We distinguish between basic queries and compound
queries. A basic query Q contains both select and from sections in its definition
with the optional where, group by and having sections. For instance, the query
associated to the view standard in the example of Figure 1 is a basic query. A
compound query Q combines the results of two queries Q1 and Q2 by means of
set operators union [all], except [all] or intersect [all] (the keyword all indicates
that the result is a multiset). For convenience, our debugger transforms basic
queries into compound queries when necessary. We also assume that the queries
defining views do not contain subqueries. Translating queries into equivalent
definitions without subqueries is a well-known transformation (see for instance
[6]). For instance, the query defining view awards in the Figure 1 is transformed
into:

select student from bas i c
except
select student from i n t e n s i v e ;

The semantics of SQL assumed in this paper is given by the Extended Relational
Algebra (ERA) [10], an operational semantics allowing aggregates, views, and
most of the common features of SQL queries. Each relation R is defined as a
multiset of tuples. The notation |R|t refers to the number of occurrences of the
tuple t in the relation R, and ΦR represents the ERA expression associated to a
SQL query or view R, as explained in [8]. A query/view usually depends on pre-
viously defined relations, and sometimes it will be useful to write ΦR(R1, . . . , Rn)
indicating that R depends on R1, . . . , Rn. Tables are denoted by their names,
that is, ΦT = T if T is a table. The computed answer of an ERA expression ΦR

with respect to some schema instance d is denoted by ‖ ΦR ‖d, where:
– If R is a database table, ‖ ΦR ‖d= d(R).
– If R is a database view or a query and R1, . . . , Rn the relations defined in
R, then ‖ ΦR ‖d= ΦR(‖ ΦR1

‖d, . . . , ‖ ΦRn
‖d).
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The parameter d indicating the database instance is omitted in the rest of the
presentation whenever is clear from the context.

Queries are executed by SQL systems. The answer for a query Q in an
implementation is represented by SQL(Q). The notation SQL(R) abbreviates
SQL(select * from R). In particular, we assume in this paper the existence
of correct SQL implementations. A correct SQL implementation verifies that
SQL(Q) = ‖ ΦQ ‖ for every query Q. In the rest of the paper, D represents
the database schema, d the current instance of D, and R a relation defined in
D. We assume that the user can check if the computed answer for a relation
matches its intended answer. The intended answer for a relation R w.r.t. d, is
a multiset denoted as I(R) containing the answer that the user expects for the
query select * from R in the instance d. This concept corresponds to the idea
of intended interpretations employed usually in algorithmic debugging. We say
that SQL(R) is an unexpected answer for a query R if I(R) 6= SQL(R). An un-
expected answer can contain either a wrong tuple, when there is some tuple t in
SQL(R) s.t. |I(R)|t < |SQL(R)|t, or a missing tuple, when there is some tuple t
in I(R) s.t. |I(R)|t > |SQL(R)|t. For instance, the intended answer for awards
contains Anna once, which is represented as |I(awards)|(Anna) = 1. However, the
computed answer does not include this tuple: |SQL(awards)|(Anna) = 0. Thus,
(’Anna’) is a missing tuple for awards. In order to define the key concept of
erroneous relation we need the following auxiliary concept. Let R be either a
query or a relation. The expectable answer for R w.r.t. d, E(R), is defined as:

1. If R is a table, E(R) = d(R), with d the database schema instance.
2. If R is a view, then E(R) = E(Q), with Q the query defining R.
3. If R is a query E(R) = ΦR(I(R1), . . . , I(Rn)) with R1, . . . , Rn the relations

occurring in R.

Thus, in the case of a table, the expectable answer is its instance. In the case of
a view V , the expectable answer corresponds to the computed result that would
be obtained assuming that all the relations Ri occurring in the definition of V
contain the intended answers. Then, I(R) 6= E(R) indicates that R does not
compute its intended answer, even assuming that all the relations it depends
on contain their intended answers. Such relation is called erroneous. In our
running example, the real cause of the missing answer for the view awards is the
erroneous definition of the view intensive.

3 Debugging Algorithm

In this section we present the algorithm that defines our debugging technique, de-
scribing the purpose of each function. Although the process is based on the ideas
of declarative debugging, this proposal does not use computation trees explicitly.
Instead, our debugger represents computation trees by means of Horn clauses,
denoted as H ← C1, . . . , Cn, where the comma represents the conjunction, and
H, C1, . . . , Cn are positive atoms. As usual, a fact H stands for the clause H
← true. Next, we describe the functions that define the algorithm, although the
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Code 1 debug(V)
Input: V: view name
Output: A list of buggy views
1: A := askOracle(all V)
2: P := initialSetOfClauses(V, A)
3: while getBuggy(P)=[ ] do
4: LE := getUnsolvedEnquiries(P)
5: E := chooseEnquire(LE)
6: A := askOracle(E)
7: P := P ∪ processAnswer(E,A)
8: end while
9: return (getBuggy(P))

code of some basic auxiliary functions is omitted for the sake of space. This is the
case of getSelect, getFrom, getWhere, and getGroupBy which return the different
sections of a SQL query. In getFrom, we assume that every relations has an alias.
The result is a sequence of elements of the form R as R’. A Boolean expression
like getGroupBy(Q)=[] is satisfied if the query Q has no group by section. Func-
tion getRelations(R) returns the set of relations involved in R. It can be applied
to queries, tables and views: if R is a table, then getRelations(R) = {R}, if R is
a query, then getRelations(R) is the set of relations occurring in the definition
of the query, and if R is a view, then getRelations(R) = getRelations(Q), with
Q the query defining R. The function generateUndefined(R) generates a tuple
whose arity is the number of attributes in R containing only undefined values
(⊥, . . . ,⊥).

The general schema of the algorithm is summarized in the code of function
debug (Code 1). The debugger is started by the user when an unexpected answer
is obtained as computed answer for some SQL view V. In our running example,
the debugger is started with the call debug(awards). Then, the algorithm asks the
user about the type of error (line 1). The answer A can be simply valid, nonvalid,
or a more detailed explanation of the error, like wrong(t) ormissing(t), indicating
that t is a wrong or missing tuple respectively. In our example, A takes the initial
value missing((’Anna’)). During the debugging process, variable P keeps a list
of Horn clauses representing a logic program. The initial list of clauses P is
generated by the function initialSetofClauses (line 2). The purpose of the main
loop (lines 3-8) is to add information to the program P, until a buggy view
can be inferred. The function getBuggy returns the list of all the relations R
such that buggy(R) can be proven w.r.t. the logic program P. The clauses in P
contain enquiries that might imply questions to the user. Each iteration of the
loop represents the election of an enquiry in a body atom whose validity has not
been established yet (lines 4-5). Then, an enquiry about the result of the query
is asked to the user (line 6). Finally, the answer is processed (line 7). Next, we
explain in detail each part of this main algorithm.

Code 2 corresponds to the initialization process of line 2 from Code 1. The
function initialSetofClauses gets as first input parameter the initial view V. This
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Code 2 initialSetofClauses(V, A)

Input: V: view name, A: answer
Output: A set of clauses

1: P := ∅
2: P := initialize(V)
3: P := P ∪ processAnswer((all V), A)
4: return P

initialize(R)
Input: R: relation
Output: A set of clauses

1: P := createBuggyClause(R)
2: for each Ri in getRelations(R) do
3: P := P ∪ initialize(Ri)
4: end for
5: return P

createBuggyClause(V)
Input: V: view name
Output: A Horn clause

1: [R1, . . . , Rn] := getRelations(V)
2: return { buggy(V)← state((all V), nonvalid),

state((all R1), valid), . . . , state((all Rn), valid)). }

view has returned an unexpected answer, and the input parameter A contains
the explanation. The output of this function is a set of clauses representing the
logic relations that define possible buggy relations with predicate buggy. Initially
it creates the empty set of clauses and then it calls the function initialize (line 2),
a function that traverses recursively all the relations involved in the definition
of the initial view V, calling createBuggyClause with V as input parameter.
createBuggyClause adds a new clause indicating the enquiries that must hold in
order to consider V as incorrect: it must be nonvalid, and all the relations it
depends on must be valid. Next is part of the initial set of clauses generated for
the running example of this paper:
buggy(awards) :- state(all(awards),nonvalid),

state(all(basic),valid), state(all(intensive),valid).
buggy(basic) :- state(all(basic),nonvalid), state(all(standard),valid).
buggy(intensive) :- state(all(intensive),nonvalid),

state(all(allInOneCourse),valid), state(all(standard),valid).
. . .

The correlation between these clauses and the dependency tree is straightfor-
ward. Finally, in line 3, function processAnswer incorporates the information
that can be extracted from A into the program P. The information about the
validity/nonvalidity of the results associated to enquiries is represented in our
setting with predicate state. The first parameter is an enquiry E, and the second
one can be either valid or nonvalid. Enquiries can be of any of the following
forms: (all R), (s ∈ R), or (R’ ⊆ R) with R, R’ relations, and s a tuple with the
same schema as relation R. Each enquiry E corresponds to a specific question
with a possible set of answers and an associated complexity C(E):
- If E ≡ (all R). Let S = SQL(R). The associated question asked to the user
is “Is S the intended answer for R?” The answer can be either yes or no. In
the case of no, the user is asked about the type of the error, missing or wrong,
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Code 3 processAnswer(E,A)
Input: E: enquiry, A: answer obtained for the enquiry
Output: A set of new clauses
1: if A ≡ yes then
2: P := {state(E,valid).}
3: else if A ≡ no or A ≡ missing(t) or A ≡ wrong(t) then
4: P := {state(E,nonvalid).}
5: end if
6: if E ≡ (s ∈ R) then
7: if (s ∈ SQL(R) and A ≡ no) then
8: P:= P ∪ processAnswer((all R),wrong(s))
9: else if (s/∈ SQL(R) and A ≡ yes) then
10: P:= P ∪ processAnswer((all R),missing(s))
11: end if
12: else if E ≡ (V ⊆ R) and (A ≡ wrong(s)) then
13: P:= P ∪ processAnswer((all R), A)
14: else if E ≡ (all V) with V a view and (A ≡ missing(t) or A ≡ wrong(t)) then
15: Q := SQL query defining V
16: P := P ∪ slice(V,Q,A)
17: end if
18: return P

giving the possibility of providing a witness tuple t. If the user provides this
information, the answer is changed to missing(t) or wrong(t), depending on the
type of the error. We define C(E) = |S|, with |S| the number of tuples in S.

-If E ≡ (R’ ⊆ R). Let S = SQL(R’). Then the associated question is “Is S
included in the intended answer for R?” As in the previous case the answer
allowed can be yes or no. In the case of no, the user can point out a wrong tuple
t ∈ S and the answer is changed to wrong(t). C(E) = |S| as in the previous case.

- If E ≡ (s ∈ R). The question is “Does the intended answer for R include a tuple
s?” The possible answer can be yes or no. No further information is required
from the user. In this case C(E) = 1, because only one tuple must be considered.

In the case of wrong, the user typically points to a tuple in the result R. In
the case of missing, the tuple must be provided by the user, and in this case
partial tuples, i.e., tuples including some undefined attributes are allowed. The
answer yes corresponds to the state valid, while the answer no corresponds to
nonvalid. An atom state(q,s) occurring in a clause body, is a solved enquiry if the
logic program P contains at least one fact of the form state(q, valid) or state(q,
nonvalid), that is, if the enquiry has been already solved. The atom is called
an unsolved enquiry otherwise. The function getUnsolvedEnquiries (see line 4 of
Code 1) returns in a list all the unsolved enquiries occurring in P. The function
chooseEnquiry (line 5, Code 1) chooses one of these enquiries according to some
criteria. In our case we choose the enquiry E that implies the smaller complexity
value C(E), although other more elaborated criteria could be defined without
affecting the theoretical results supporting the technique. Once the enquiry has
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been chosen, Code 1 uses the function askOracle (line 6) in order to ask for the
associated question, returning the answer of the user. We omit the definitions of
these simple functions for the sake of space.

The code of function processAnswer (called in line 7 of Code 1), can be found
in Code 3. The first lines (1-5) introduce a new logic fact in the program with
the state that corresponds to the answer A obtained for the enquiry E. In our
running example, the fact state(all(awards), nonvalid) is added to the program.
The rest of the code distinguishes several cases depending on the form of the
enquiry and its associated answer. If the enquiry is of the form (s ∈ R) with
answer no (meaning s /∈ I(R)), and the debugger checks that the tuple s is in
the computed answer of the view R (line 7), then s is wrong in the relation R.
In this case, the function processAnswer is called recursively with the enquiry
(all R) and wrong(s) (line 8). If the answer is yes and the debugger checks that
s does not belong to the computed answer of R (line 10), then s is missing in
the relation R. For enquiries of the form (V ⊆ R) and answer wrong(s), it can
be ensured that s is wrong in R (line 13). If the enquiry is (all V) for some view
V, and with an answer including either a wrong or a missing tuple, the function
slice (line 16) is called. This function exploits the information contained in the
parameter A (missing(t) or wrong(t)) for slicing the query Q in order to produce,
if possible, new clauses which will allow the debugger to detect incorrect relations
by asking simpler questions to the user. The implementation of slice can be found
in Code 4. The function receives the view V, a subquery Q, and an answer A as

Code 4 slice(V,Q,A)
Input: V: view name, Q: query, A: answer
Output: A set of new clauses
1: P := ∅; S= SQL(Q); S1= SQL(Q1); S2= SQL(Q2)
2: if (A ≡ wrong(t) and Q ≡ Q1 union [all] Q2) or

(A ≡ missing(t) and Q ≡ Q1 intersect [all] Q2) then
3: if |S1|t = |S|t then P:= P ∪ slice(V, Q1, A)
4: if |S2|t = |S|t then P:= P ∪ slice(V, Q2, A)
5: else if A ≡ missing(t) and Q ≡ Q1 except [all] Q2 then
6: if |S1|t = |S|t then P:= P ∪ slice(V, Q1, A)
7: if Q ≡ Q1 except Q2 and t ∈ S2 then P :=P∪ slice(V,Q2,wrong(t))
8: else if basic(Q) and groupBy(Q)=[ ] then
9: if A ≡ missing(t) then P := P ∪ missingBasic(V, Q, t)
10: else if A ≡ wrong(t) then P := P ∪ wrongBasic(V, Q, t)
11: end if
12: return P

parameters. Initially, Q is the query defining V, and A the user answer, but this
situation can change in the recursive calls. The function distinguishes several
particular cases:
- The query Q combines the results of Q1 and Q2 by means of either the operator
union or union all, and A is wrong(t) (first part of line 2). Then query Q produces
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too many copies of t. Then, if any Qi produces as many copies of t as Q, we can
blame Qi as the source of the excessive number of t ’s in the answer for V (lines
3 and 4). The case of subqueries combined by the operator intersect [all], with
A ≡ missing(t) is analogous, but now detecting that a subquery is the cause of
the scanty number of copies of t in SQL(V).
- The query Q is of the form Q1 except [all] Q2, with A ≡ missing(t) (line 5).
If the number of occurrences of t in both Q and Q1 is the same, then t is also
missing in the query Q1 (line 6). Additionally, if query Q is of the particular
form Q1 except Q2, which means that we are using the difference operator on
sets (line 7), then if t is in the result of Q2 it is possible to claim that the tuple
t is wrong in Q2. Observe that in this case the recursive call changes the answer
from missing(t) to wrong(t).
- If Q is defined as a basic query without group by section (line 8), then either
function missingBasic or wrongBasic is called depending on the form of A.

Both missingBasic and wrongBasic can add new clauses that allow the sys-
tem to infer buggy relations by posing questions which are easier to answer.
Function missingBasic, defined in Code 5, is called (line 9 of Code 4) when A
is missing(t). The input parameters are the view V, a query Q, and the missing

Code 5 missingBasic(V,Q,t)
Input: V: view name, Q: query, t: tuple
Output: A new list of Horn clauses
1: P := ∅; S := SQL(SELECT getSelect(Q) FROM getFrom(Q) )
2: if t /∈ S then
3: for (R AS S) in (getFrom(Q)) do
4: s = generateUndefined(R)
5: for i=1 to length(getSelect(Q)) do
6: if ti 6=⊥and member(getSelect(Q),i) = S.A, A attrib., then s.A = ti
7: end for
8: if s /∈ SQL(R) then
9: P := P ∪ { (buggy(V) ← state((s ∈ R), nonvalid).) }
10: end if
11: end for
12: end if
13: return P

tuple t. Notice that Q is in general a component of the query defining V. For
each relation R with alias S occurring in the from section, the function checks
if R contains some tuple that might produce the attributes of the form S.A oc-
curring in the tuple t. This is done by constructing a tuple s undefined in all
its components (line 4) except in those corresponding to the select attributes of
the form S.A, which are defined in t (lines 5 - 7). If R does not contain a tuple
matching s in all its defined attributes (line 8), then it is not possible to obtain
the tuple t in V from R. In this case, a buggy clause is added to the program
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Code 6 wrongBasic(V,Q,t)
Input: V: view name, Q: query, t: tuple
Output: A set of clauses
1: P := ∅
2: F := getFrom(Q)
3: N := length(F)
4: for i=1 to N do
5: Ri as Si := member(F,i)
6: relevantTuples(Ri,Si,Vi, Q, t)
7: end for
8: P := P ∪ { (buggy(V) ← state((V1 ⊆ R1), valid), . . . , state((Vn ⊆ Rn), valid).) }
9: return P

Code 7 relevantTuples(Ri,R’,V,Q,t)
Input: Ri: relation, R’: alias,

V: new view name, Q: Query, t: tuple
Output: A new view in the database schema
1: Let A1, . . . , An be the attributes defining Ri

2: SQL(create view V as
(select Ri.A1, . . . , Ri.An from Ri)

intersect all
(select R’.A1, . . . , R’.An from getFrom(Q)
where getWhere(Q) and eqTups(t,getSelect(Q))))

eqTups(t,s)
Input: t,s : tuples
Output: SQL condition
1: C := true
2: for i=1 to length(t) do
3: if ti 6= ⊥ then
4: C:= C AND ti = si
5: end for
6: return C

P (line 9) meaning that if the answer to the question “Does the intended answer
for R include a tuple s?” is no, then V is an incorrect relation.

The implementation of wrongBasic can be found in Code 6. The input pa-
rameters are again the view V, a query Q, and a tuple t. In line 1, this function
creates an empty set of clauses. In line 2, variable F stands for the set containing
all the relations in the from section of the query Q. Next, for each relation Ri ∈
F (lines 4 - 7), a new view Vi is created in the database schema after calling the
function relevantTuples (line 6), which is defined in Code 7. This auxiliary view
contains only those tuples in relation Ri that contribute to produce the wrong
tuple t in V. Finally, a new buggy clause for the view V is added to the program
P (line 8) explaining that the relation V is buggy if the answer to the question
associated to each enquiry of the form Vi ⊆ Ri is yes for i ∈ {1 . . . n}.

The following theoretical results guarantee that the technique is reliable.

Theorem 1. Let R be a relation. Then:
Correctness: If the call debug(R) returns a list L, then all relation names con-
tained in L are erroneous relations.
Completeness: Let A be the answer obtained after the call to askOracle(all R)
in line 1 of Code 1. If A is of the form nonvalid, wrong(t) or missing(t), then
the call debug(R) (defined in Code 1) returns a list L containing at least one
relation.
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Thus, the algorithm always stops pointing to some user view (completeness)
which is incorrectly defined (correctness).

4 Implementation

The algorithm presented in Section 3 has been implemented in the Datalog Ed-
ucational System (DES [14, 15]). The debugger is started when the user detects
that Anna is not among the (large) list of student names produced by view
awards. The command /debug_sql starts the session:

1: DES-SQL> /debug_sql awards
2: Info: Debugging view ’awards’: { 1 - awards(’Carla’), ... }
3: Is this the expected answer for view ’awards’? m’Anna’
4: Does the intended answer for ’intensive’ include (’Anna’) ? n
5: Does the intended answer for ’standard’ include (’Anna’,1,true) ? y
6: Does the intended answer for ’standard’ include (’Anna’,2,true) ? y
7: Does the intended answer for ’standard’ include (’Anna’,3,false)? y
8: Info: Buggy relation found: intensive

The user answer m’Anna’ in line 3 indicates that (’Anna’) is missing in the
view awards. In line 4 the user indicates that view intensive should not include
(’Anna’). In lines 5, 6, and 7, the debugger asks three simple questions involving
the view standard. After checking the information for Anna, the user indicates
that the listed tuples are correct. Then, the tool points out intensive as the
buggy view, after only five simple questions. Observe that intermediate views
can contain hundreds of thousands of tuples, but the slicing mechanism helps
to focus only on the source of the error. Next, we describe briefly how these
questions have been produced by the debugger.

After the user indicates that (’Anna’) is missing, the debugger executes a call
processAnswer(all(awards),missing((Anna))). This implies a call to slice(awards,
Q1 except Q2, missing((’Anna’))) (line 16 of Code 3). The debugger checks
that Q2 produces (’Anna’) (line 7 of Code 4), and proceeds with the recursive
call slice(awards, Q2, wrong((’Anna’))) with Q2 ≡ select student from inten-
sive. Query Q2 is basic, and then the debugger calls wrongBasic(awards, Q2,
(’Anna’)) (line 10 of Code 4)). Function wrongBasic creates a view that selects
only those tuples from intensive producing the wrong tuple (’Anna’) (function
relevantTuples in Code 7):

create view i n t e n s i v e_ s l i c e ( student ) as
( select ∗ from i n t e n s i v e )
intersect a l l
( select ∗ from i n t e n s i v e I where I . s tudent = ’Anna ’ ) ;

Finally the following buggy clause is added to the program P (line 8, Code 6):
buggy(awards) :- state(subset(intensive_slice,intensive),valid).

By enabling development listings with the command /development on, the logic
program is also listed during debugging. The debugger chooses the only body
atom in this clause as next unsolved enquiry, because it only contains one tuple.
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The call to askOracle returns wrong((’Anna’)) (the user answers ’no’ in line
4). Then processAnswer(subset(intensive_slice,intensive), wrong((’Anna’))) is
called, which in turn calls to processAnswer(all(intensive),wrong((’Anna’))) re-
cursively. Next call is slice(intensive, Q, wrong((’Anna’))), with Q ≡ Q3 union
Q4 the query definition of intensive (see Figure 1). The debugger checks that
only Q4 produces (’Anna’) and calls to slice(intensive, Q4, wrong((’Anna’))).
Query Q4 is basic, which implies a call to wrongBasic(intensive, Q4, (’Anna’)).
Then relevantTuples is called three times, one for each occurrence of the view
standard in the from section of Q4, creating new views:

create view s t anda rd_s l i c e i ( student , level , pass ) as
( select R. student , R. level , R. pass from standard as R)

intersect a l l
( select A1 . student , A1 . level , A1 . pass
from standard as A1 , standard as A2 , standard as A3
where (A1 . student = A2 . student and A2 . student = A3 . student

and A1 . level = 1 and A2 . level = 2 and A3 . level = 3)
and A1 . student = ’Anna ’ ) ;

for i = 1 . . . 3. Finally, the clause:
buggy(intensive) :- state(subset(standard_slice1,standard),valid),

state(subset(standard_slice2,standard),valid),
state(subset(standard_slice3,standard),valid).

is added to P (line 8, Code 6). Next, the tool selects the unsolved question with
less complexity that correspond to the questions of lines 5, 6, and 7, for which
the user answer yes. Therefore, the clause for buggy(intensive) succeeds and the
algorithm finishes.

5 Conclusions

We have presented a new technique for debugging systems of SQL views. Our
proposal refines the initial idea presented in [4] by taking into account informa-
tion about wrong and missing answers provided by the user. Using a technique
similar to dynamic slicing [1], we concentrate only in those tuples produced by
the intermediate relations that are relevant for the error. This minimizes the
main problem of the technique presented in [4], which was the huge number
of tuples that the user must consider in order to determine the validity of the
result produced by a relation. Previous works deal with the problem of tracking
provenance information for query results [9, 7], but to the best of our knowledge,
none of them treat the case of missing tuples, which is important in our setting.

The proposed algorithm looks for particular but common error sources, like
tuples missed in the from section or in and conditions (that is, intersect com-
ponents in our representation). If such shortcuts are not available, or if the user
only answers yes and no, then the tools works as a pure declarative debugger.

A more general contribution of the paper is the idea of representing a declar-
ative debugging computation tree by means of a set of logic clauses. In fact, the
algorithm in Code 1 can be considered a general debugging schema, because it is
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independent of the underlying programming paradigm. The main advantage of
this representation is that it allows combining declarative debugging with other
diagnosis techniques that can be also represented as logic programs. In our case,
declarative debugging and slicing cooperate for locating an erroneous relation.
It would be interesting to research the combination with other techniques such
as the use of assertions.
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