Integrating ILOG CP technology into TOY*

Nacho Castiñeiras1 and Fernando Sáenz-Pérez2

1 Dept. Sistemas Informáticos y Computación
2 Dept. Ingeniería del Software e Inteligencia Artificial
Universidad Complutense de Madrid
ncasti@fdi.ucm.es, fernan@sip.ucm.es

Abstract. The constraint functional logic programming system TOY has been using the SICStus Prolog finite domain (FD) constraint solver. In this work, we show how to integrate the ILOG CP FD constraint solving technology into this system, with the aim of improving its application domain and performance. We describe our implementation emphasizing the synchronization between Herbrand computations in the TOY side and FD constraint solving in the ILOG CP side. Finally, performance results are reported and discussed.

1 Introduction

TOY1 is a system implemented in SICStus Prolog 3.12.8 \cite{10}. Its operational semantics is based on a lazy narrowing calculus and includes several constraint domains allowing its cooperation. This system allows Herbrand equality and disequality constraints (managed by the constraint domain H), linear and non-linear arithmetic constraints over reals (R), finite domain constraints over integers (FD), and a communication domain (M) which makes possible the cooperation among H, R and FD. Whereas R as FD rely on the constraint solvers provided by SICStus Prolog, solving in H and M needs an explicitly management \cite{3}. TOY offers a wide range of finite domain constraints comparable to many CLP(FD) systems, using a concrete constraint solving system as one of its components \cite{5}. Here, we focus on this particular constraint domain for integrating a new constraint solving system based on ILOG CP technology.

The generic component architecture of the connection between TOY and its external FD constraint system is shown to the left of Fig. 1. TOY identifies each FD constraint during goal solving, and factorizes this (possibly) composed constraint into primitive ones, adding new produced variables if necessary \cite{3}. Then, it posts these primitive constraints to $solve^{FD}$, which acts as an intermediary between TOY and the external FD system. $solve^{FD}$ sends the constraints to this system and collects its computed answers.

* This work has been partially supported by the Spanish projects TIN2005-09207-C03-03, TIN2008-06622-C03-01, S-0505/0407 and UCM-BSCH-GR58/08-910502
1.1 *TOY* with SICStus Prolog: *TOY(FDs)*

TOY (referred to as *TOY(FDs)* from now on) has been using the *FD* constraint system provided in the library *clpfd* of SICStus Prolog, which is basically composed of a constraint store and solver. The component architecture of the connection between *TOY* and SICStus Prolog *FD* constraint system is shown in the middle of Fig. 1. Next, we show a basic example for illustrating the use of the system *TOY(FDs)* with finite domains constraints.

Example 1. Let's consider that *X* is an integer between 5 and 12, *Y* is an integer between 2 and 17, *X* + *Y* = 17 and *X* - *Y* = 5. It is possible to solve this problem in *TOY(FDs)* as shown in the following interactive session:

```
TOY(FDs)> X #>= 5, X #=< 12, Y #>= 2, Y #=< 17,
     X #+ Y == 17, X #- Y == 5
yes
   { 5 #+ Y #= X,
     X #+ Y #= 17,
     X in 10..12,
     Y in 5..7 }
Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]? no
Elapsed time: 0 ms.
```

However, the use of the SICStus Prolog *FD* system has some disadvantages:

- Recent works [2] have proved that its performance can be enhanced, needed when dealing with complex problems.
- The constraint solver works as a black-box for predefined search processing.
 This precludes user-defined interactions for pruning the search tree.
- There are no debugging capabilities allowing, for instance, to derive the subset of infeasible constraints.

![Fig. 1. Architectural Components](image-url)
1.2 ILOG CP to improve TOY

ILOG CP 1.4 [6] is an industrial technology market leader. Its nature is declarative and provides a C++ API to access its libraries. Its constraint solver works as a glass-box, allowing interactions during the solving process. It also includes debugging techniques helping the user to discover the unfeasible subset of the constraints set input. Its wide range of global constraints make possible to formulate different and complex properties. The use of different constraint solvers for a unique application domain is also allowed. Moreover, libraries for solving specific, efficient algorithms for complex scheduling problems are provided.

Any ILOG CP 1.4 application isolates objects responsible of modeling the user problem from objects responsible of solving any concrete model. Following this idea, the problem is modeled in a generic language, easing the task of expressing the constraints of the problem. Once the modeling phase is completed, the model can be solved by one or more different constraint solvers. The solver extracts all of the modeling objects contained into the model, creating a one-to-one object translation. This new objects belonging to the solver are semantically equivalent to the modeling objects, but their internal structure is targeted at the solver. It is possible to access each object created by the solver through the associated object contained into the model. The most paradigmatic tool representing this philosophy is ILOG OPL Studio [7]. ILOG CP 1.4 includes the library ILOG Concert 2.6 to provide the necessary interface for connecting models to solvers. Three libraries are provided for FD constraint solving:

- ILOG Solver 6.6, for generic FD problems solving.
- ILOG Scheduler 6.6, with specific algorithms for solving scheduling problems.
- ILOG Dispatcher 4.6, with specific algorithms for solving routing problems.

As a first approach, we will consider only ILOG Solver 6.6. For this case, any ILOG CP application needs the following set of ILOG Concert 2.6 and ILOG Solver 6.6 objects (see [6] for a detailed explanation):

- IloEnv env It manages the memory of any object of the application.
- IloModel model(env) Is the main modeling object. Contains the set of objects responsible of formulating the FD problem, which are:
 - IloIntArray vars(env) This vector is intended to make possible to reference all of the decision variables of the model from a unique object.
 - IloIntVar v(env, int lowerBound, int upperBound).
 - IloConstraint c Each IloConstraint involves some IloIntVar of vars. It can be added directly to the model, without being created previously.
- IloSolver solver(env) It is the main solving object. It contains an object IloGoal goal which specifies the concrete search procedure to be used. solver main methods are:
 - solver.extract(model) Extracts the information contained into model.
 - solver.solve(goal) Solves the extracted model.
2 \(TOY \) with ILOG CP: \(TOY(FDi) \)

In this section, we explain in detail how to integrate ILOG CP FD technology into the system \(TOY \) (referred to as \(TOY(FDi) \) from now on). \(TOY \) is implemented in SICStus Prolog while ILOG CP is a technology implemented and available in C++. So, first we study how to make a connection between \(TOY \) and ILOG CP by connecting SICStus Prolog and C++. Our approach is based on the integration of a C++ foreign resource into a SICStus Prolog application.

Due to the different nature of both languages, we study the emerging difficulties to establish a communication between \(TOY \) and ILOG CP, as well as the decisions we have made to solve them. Also, an example of the behavior of the new system \(TOY(FDi) \) is shown.

2.1 Connecting SICStus Prolog with C++

It is possible to communicate a SICStus Prolog application with a C++ component. This communication is done by mapping a set of linking Prolog facts (contained in the Prolog application) with a set of C++ functions (defined in the C++ component). The C++ component needs to be a dynamic library with a specific internal file structure. SICStus Prolog also defines a set of possible conversions between Prolog arguments and C++ arguments. Each argument of a linking Prolog fact must also indicate if it is either an input argument (sent to the C++ function) or an output argument (computed by the C++ function). There is a bidirectional conversion between a Prolog term and the C++ type \texttt{SP.term.ref}. By invoking \texttt{SP.term.ref} object methods, C++ functions can perform the following actions:

- Create and assign Prolog terms.
- Obtain the contents of a Prolog term.
- Compare and unify Prolog terms.

This context supports the necessary conditions to connect \(TOY \) and ILOG CP by making just a few changes in the component architecture of \(TOY \), whose new structure can be seen on the right hand side of Fig. 1.

- From the point of view of \(TOY \), it is necessary to put a new Prolog fact in any place of \(solve^{FD} \) where a communication with ILOG CP is needed (posting a new constraint, declaring a new ILOG decision variable, etc.).
- On the other hand, we build a new ILOG CP application which integrates ILOG Concert 2.6 and ILOG Solver 6.6 libraries. This application contains instances of the basic modeling and solving objects explained in Section 1.2. It also includes the set of C++ functions linked to the existing Prolog facts in \(solve^{FD} \).

Each time \(solve^{FD} \) calls any interfaced predicate, first, it turns all Prolog arguments into C++ arguments. Next, it transfers the program control to the C++ function, which uses and/or computes them within its body. Once the C++ function has finished, the execution control comes back to \(solve^{FD} \), which continues with the evaluation of the next call.
Creating a SICStus Prolog C++ Foreign Resource

SICStus Prolog needs two files for creating a dynamic library as, for instance, `interface.dll`, which could be used within a SICStus Prolog application:

- `interface.pl` Declares the mapping of each Prolog predicate to each C++ function. It groups all of these functions in a unique resource. For example:

  ```prolog
  foreign(f1,pl(+integer)).
  foreign(f2,pl(+term,-term)).
  foreign_resource(interface,[f1,f2]).
  ```

- `interface.cpp` Includes the C++ functions mapped to Prolog facts. It adds as many auxiliary functions and libraries as needed. For example:

  ```cpp
  void f1(long i){...}
  void f2(SP_term_ref t1, SP_term_ref t2){...}
  ```

SICStus Prolog supplies a tool, `splfr` [9], to create a dynamic library (say `interface.dll`), taking as input `interface.pl` and `interface.cpp`. The macro `splfr` is used as a shortcut to the execution of some compiling and linking commands offered by Microsoft Visual C++ [8]. First of all, taking `interface.pl` as input, it creates two new files, `interface glue.c` and `interface glue.h`, which provides the necessary glue code for the SICStus application.

2.2 Communication between TOY and ILOG CP

In this section we explain in detail how to implement TOY(FDi) in such a way it accepts any TOY(FDs) input goal, including all FD constraints managed by the existing solveFD in TOY(FDs). Also, TOY(FDi) uses the same goal solution structure as TOY(FDs) does. To achieve that behavior is necessary to solve the following difficulties:

- As TOY is a system implemented in SICStus Prolog, in TOY(FDs) the communication between TOY and its FD technology is quite natural. However, as ILOG CP is implemented in C++, some glue code is needed to fix the impedance mismatch problem.

- ILOG CP and SICStus Prolog differ on their notion of solution of a FD problem.

There have been four difficult tasks to achieve in the new system TOY(FDi). We explain each of them in the next subsections. When we make reference to any ILOG CP application object, we use the notation of Section 1.2. To this end, we use `model` if we refer to the ILOG Concert 2.6 model object, we use `solver` if we refer to the ILOG Solver 6.6 generic FD solver, and we use `vars` if we refer to the decision variables contained in `model`.

Managing Decision Variables

The set of FD constraints of a TOY goal involves a set of logic variables that we denote as 'FD logic variables'. To model the FD constraint set with ILOG CP, some points must be taken into account:
We need to create as many IloIntVar decision variables as FD logic variables take part into the FD constraint set. These variables must be added to model and vars (the former to model the FD problem properly and the latter to make possible to refer to each variable of the model from a unique object).

We must find a bijective relation that associates each FD logic variable of the TOY goal with each decision variable existing in the ILOG CP vector vars.

We model each FD constraint in ILOG CP over the set of decision variables of the vector vars associated to the set of FD logic variables involved in that FD constraint.

Whatever way of communication between TOY and ILOG CP, for each FD logic variable we have three variables:

- The FD logic variable contained in TOY.
- The decision variable modeled as an IloIntVar object in model.
- The specific IloIntVar object created by solver from its associated IloIntVar object contained in model.

A first attempt for mapping a FD logic variable to a decision variable of vars is tried. It intends to manage vars and a SP_term_ref vector, making them evolve simultaneously. The elements of the SP_term_ref vector are in fact the SP_term_ref conversion of the FD logic variables. Each time solveFD sends a new FD constraint to ILOG CP, the associated C++ function will first look for its FD logic variables into the SP_term_ref vector. If it can not find any variable, we can assure that the C++ function is dealing with a new FD logic variable not treated before. So, the C++ function adds this new FD logic variable to the SP_term_ref vector last position, say i. Immediately, a new IloIntVar decision variable is created and added to model and vars[i]. When each FD logic variable of the FD constraint sent by solveFD is contained at an index of the SP_term_ref vector, the FD constraint is modeled over the decision variables of vars associated to these indexes.

However, this first attempt fails. This is due to the rules which govern the scope of a SP_term_ref. When a C++ function containing SP_term_refs (as arguments or dynamically created within it) finishes its execution, all these SP_term_refs become invalid. Let's see the next example, where an interface between the Prolog predicates p1, p2 and p3 and the C++ functions f1, f2 and f3, resp, is defined. Functions f1 and f2 receive a Prolog term as an argument, while f3 receives two Prolog terms.

- Let's call p3 with to occurrences of the logic variable X, as p3(X,X). If we make SP_compare(t1,t2) within f3(SP_term_ref t1, SP_term_ref t2) the result says that both SP_term_refs are in fact the same Prolog term.
- But, let's do the call p1(X). We store t1 of f1(SP_term_ref t1) into a global vector <SP_term_ref>. When f1 finishes, the program control comes back to Prolog. Now, we call p2 with the logic variable X again, p2(X). If
we make \(SP\text{.compare}(t_1,t_2) \) within \(f_2(SP\text{.term.ref } t_2) \) between \(t_2 \) and the \(SP\text{.term.ref} \) stored in the vector during \(f_1 \), the result says that both \(SP\text{.term.refs} \) are different. There is no doubt that both are in fact the same Prolog term. The problem is that, when \(f_1 \) finish, the \(SP\text{.term.ref} \) stored in the vector becomes invalid.

The second and successful attempt relies on the management of the bijective relation, which is done into the Prolog application by the use of a list of \(FD \) logic variables (referred to as \(L \) from now on). We want \(L \) to be used in each \(solve^{FD} \) predicate. On one hand SICStus Prolog does not allow global variables. On the other hand, there is a logic variable \(Cin \) [4], which represents a mixed constraints store and is common to each \(solve^{FD} \) predicate. Our plan is to store any data structure demanded by the communication between \(TOY \) and ILOG CP, specifically \(L \) into \(Cin \). Each time a \(solve^{FD} \) predicate manages a new \(FD \) constraint, we can check whether a \(FD \) logic variable belongs to \(L \) or not by accessing to it within \(Cin \). Any new \(FD \) logic variable is automatically added to the end of \(L \), say at position \(i \). Here, a new call to the C++ function which creates a new \(IloIntVar \) is done. This function adds this decision variable to \(model \) and \(vars[i] \). Once all \(FD \) logic variables of the \(FD \) constraint belongs to \(L \), \(solve^{FD} \) determines their indexes, and put them as arguments to the C++ function, which models the \(FD \) constraint by adding to \(model \) a new \(IloConstraint \) over the associated positions of \(vars \).

Synchronizing ILOG CP with \(TOY \)

\(TOY \) can also bind its \(FD \) logic variables through an equality constraint in the Herbrand solver. For example, in the goal \(TOY(FD_i) \leq X \#= 0, X \#= 3 \) the variable \(X \) is bound to the value 3. This is done by the Prolog terms unification which results from the Herbrand equality constraint \(X \#= 3 \). This unification is visible at any occurrence of that \(FD \) logic variable, particularly the one in \(L \). This causes an inconsistency between the contents of \(L \) and \(vars \). To repair this lack of synchronization we must send an equality constraint to ILOG CP, making the mapped decision variable in \(vars \) equals to the bound value.

A first attempt tries to synchronize by an event-driven approach. To capture events, SICStus Prolog provides the module of attributed variables. This module assigns attributes to a set of logic variables. Each time an attributed logic variable is bound, the predicate \(verify\text{.attributes}(+Var,+Value,+Goals) \) is triggered. We use the attribute \(fd \) for each \(FD \) logic variable. Thus, each time the Herbrand solver binds a \(FD \) logic variable, \(verify\text{.attributes}(+Var,+Value,+Goals) \) will automatically call the C++ function which synchronizes the associated decision variable of \(vars \).

However, this first attempt fails. For this synchronization we need to know which index does the associated decision variable have in \(vars \). We can only get this index by looking for the \(FD \) logic variable in \(L \). But, unfortunately, the arguments of \(verify\text{.attributes}(+Var,+Value,+Goals) \) are fixed. SICStus Prolog does not allow global variables, so there is no way to get access to \(L \).
A second attempt consists of making the Herbrand solver responsible of calling the C++ synchronization function. But this idea must be rejected, because there is a basic principle of independency between the different solvers of the system TOY. Any solution to this problem must respect the idea of solving the synchronization within solveFD.

The third (and successful) attempt modifies the internal structure of L. Now it becomes a list of pairs. The first element of each pair contains the FD logic variable, and the second one contains a flag which determines if the bound FD logic variable has been synchronized with vars. Thus, while the FD logic variable is not bound, the value of the flag remains at 0. When the FD logic variable becomes bound, the value of the flag indicates whether the variable of vars is synchronized or not.

Each time solveFD sends a new FD constraint to ILOG CP, it must previously:

- Look for any pair in L (say at position i) whose pattern is [value,0]
- Add to model the new IloConstraint vars[i]==value.
- Change the pair at position i of L by [value,1]

Once there is no pairs with the pattern [value,0] in the list, solveFD is able to send the new FD constraint. If there are no more FD constraints, the pairs [value,0] will be synchronized at the end of the TOY goal. This synchronization attempt is clearly inefficient, making it a task to be improved in new releases of TOY(FDi). Let's see the next goal:

Toy(FDi)> X #>= 2, X == 1, X1 == 1, X2 == 1, ..., X1000 == 1

The first FD logic variable of the goal is X, which occurs at the first position of L and vars. The synchronization of X == 1 as vars[0] == 1 makes the FD problem infeasible. So, the TOY goal will fail after X == 1, and there is no need of computing the rest of the goal expressions. However, the first equality vars[0] == 1 is not computed until the next FD constraint is posted.

As X == 1, X1 == 1, X2 == 1, ..., X1000 == 1 are computed by Herbrand solver there are no more FD constraints in the goal, so the synchronization will not occur until the end of the goal. The goal will useless compute a thousand of successful expressions. After that, it synchronizes vars[0] == 1 and fails.

Synchronizing TOY with ILOG CP

ILOG CP can bind variables in vars via the set of C++ functions concerning the management of FD constraints. This produces a lack of synchronization between the vector vars and L. To achieve the synchronization, whenever any of this C++ functions binds to value vars[i], the pair contained at position i of L must be automatically unified with [value,1].

To this end, solveFD sends L to a C++ function as an input argument, and puts an output argument to obtain the new state of L computed within the C++ function. A new global variable of type vector<int,int> must be created
in ILOG CP. This vector of pairs is cleared at the beginning of each C++
function. Each pair of the vector contains:

- The index i in vars of the decision variable.
- The value that solver has obtained for this variable.

A C++ function manages any new constraint by adding it to model, and
propagates its new FD constraint set. Next, the C++ function accesses to
the contents of the vector<int, int>, to see whether there are any iloIntVar
that has been bound. Using the content of vector<int, int> and L, the C++
function builds the new state of L by unifying as many FD logic variables as
vector<int, int> demands.

The only remaining task to be explained is how to add each pair to the global
vector<int, int>. To do so, we use demons to capture bind events. Thus, a new
demon object IlcDemon RealizeVarBound is created. It concerns on how to
insert each new pair into the vector<int, int>. This demon is triggered by the
propagation of a constraint IlcCheckWhenBound. Each IlcCheckWhenBound con-
straint involves one iloIntVar. This constraint propagates when its iloIntVar
becomes bound. ILOG CP associates a demon to a method of a constraint class.
When the demon is triggered, the method of this constraint class is automatically
executed. We associate RealizeVarBound to the method varDemon of the
IlcCheckWhenBound constraint class. This method checks the index in vars of
the bounded iloIntVar and its value, adding both of them as a new pair of
integers to the global vector<int, int>. We summarize how our ILOG CP ap-
plication adds the pairs to the vector<int, int> in the next three steps:

- For each new decision variable iloIntVar added to vars and model, we
 impose the constraint IlcCheckWhenBound.
- When this iloIntVar becomes bound, IlcCheckWhenBound propagates, trig-
gerating the demon RealizeVarBound.
- RealizeVarBound executes the IlcCheckWhenBound method varDemon,
 which adds the pair <index of the variable, value of the variable>
 to vector<int, int>.

Solutions in ILOG CP

Any TOY(FDs) solution is expressed in general with constraints (equality,
dis_equality, FD constraints—including ranges—). Of course, TOY(FDs) accepts
to label FD variables by calling the FD labeling enumeration procedure.

In TOY(FDs), to show the remaining values of the FD logic variables we
access to each IlcIntVar of solver by its associated iloIntVar contained in
model. There are some methods to check the remaining values of these variables.
However, ILOG Solver does not grant access to simplified constraints (i.e., solved
forms). The ILOG philosophy of a solution is to select a value for each decision
variable while satisfying the constraint set. Of course, you can use no search
procedure, obtaining the same structure as in an interval solution, but again
without accessing the simplified constraints. As in our context we have to show
them, we store within Cin a list with the FD constraints (referred to as C from
now on) appearing in the TOY goal.

197
2.3 A TOY(FDi) Example

In this section we detail how goal solving works with the new system TOY(FDi) over the example 1:

\[
\text{Toy(FDi)} > X \geq 5, X \leq 12, Y \geq 2, Y \leq 17, X + Y = 17, X - Y = 5
\]

We specify how the data structures of solveFD and ILOG CP evolve with each expression evaluation. On one hand we look at the state of L and C within Cin. On the other hand we look at the state of vars, model, solver by pointing out any IloIntVar, IloConstraint, IloIntVar, IloConstraint object accessed through them. For each goal expression any new element added to each data structure is remarked in boldface. Figure 2 tries to make it clearer:

- Figure 2a) represents the internal state of solveFD and ILOG CP data structures at the end of Toy(FDi) > X \geq 5, X \leq 12 evaluation.
- Figure 2b1) and 2b2) describes which actions must be done for the correct management of the new FD Constraint Y \geq 2.

Fig. 2. TOY(FDi) data structures evolution over FD Constraint expression evaluation
Before evaluating any goal expression, in the solveFD side L=[and C=[].
In the ILOG CP side model=[], vars=[] and solver=[]. There is also no
IloIntVar, IloConstraint, IlcIntVar, IlcConstraint objects.

- Execution of X #>= 5
 The new FD constraint is added to C=[X#>=5]. The new FD logic var is
 added to L=[[X,0]]. A new IloIntVar v0 is created and added to vars=<v0>
 and model=[v0]. A new IloConstraint c0 is created, involving vars[0]
 and the value 5. This IloConstraint c0 is added to model=[v0,c0]. solver
 extracts the new state of model and creates a new IloIntVar v0' and a new
 IloConstraint c0'. solver=[v0',c0']. Its constraint propagation technique
 prunes the domain of v0'=5..sup. The state of the solver remains 'Feasible'.
 TOY continues evaluating next goal expression.

- Execution of X #>= 12
 C=[X#>=5,X#<=12]. L=[[X,0]], vars=<v0>. A new IloConstraint c1 is
 created involving vars[0] and 12. model=[v0,c0,c1]. solver extracts model
 creating IloConstraint c1'. solver=[v0',c0',c1']. Constraint propagation
 prunes v0'=5..12. solver state='Feasible'.

- Execution of Y #>= 2
 By managing Y#>=2 arguments, solveFD adds L=[[X,0],[Y,0]]. By adding
 a new FD Logic Var to L, a new IloIntVar v1 is created and added to
 vars=<v0,v1> and model=[v0,c0,c1,v1]. There is a correspondence between
 Y and v1 because both are at the same position of L and vars respectively.
 solveFD adds Y#>=2 to C=[X#>=5,X#<=12,Y#>=2]. The relevant information to
 modeling the FD constraint into ILOG CP is the tuple <1,1,0,2>
 which says if the arguments are variables or not and its index/value re-
 spectively. Then a new IloConstraint c2 is created involving vars[1] and
 the value 2. This IloConstraint c2 is added to model=[v0,c0,c1,v2,c2],
 solver extracts the new state of model creating a new IloIntVar v1' and
 IloConstraint c2'. solver=[v0',c0',c1,v1',c2']. Constraint propagation
 prunes v1'=2..sup. solver state='Feasible'. After constraint propagation,
 the program control comes back to solveFD. It finishes the management
 of the FD constraint by storing the new state of L=[[X,0],[Y,0]] and
 C=[X#>=5,X#<=12,Y#>=2] into Cin.

- Execution of Y #<= 17
 C=[X#>=5,X#<=12,Y#>=2,Y#<=17]. L=[[X,0],[Y,0]]. vars=<v0,v1>. A new
 IloConstraint c3 is created involving vars[1] and 12.
 model=[v0,c0,c1,v2,c3]. solver extracts model creating IloConstraint
 c3'. solver=[v0',c0',c1',v1',c2',c3']. Constraint propagation prunes
 v1'=2..17. solver state='Feasible'.

- Execution of X#+Y==17
 This expression includes a compound constraint. This constraint must be
 decomposed into primitive constraints. In this case: X#+Y==Z, Z==17
 - Execution of X#+Y==Z
 C=[X#>=5,X#<=12,Y#>=2,Y#<=17,X#+Y==Z].
 L=[[X,0],[Y,0],[Z,0]]. A new IloIntVar v0 is created and added
to vars=[v0, v1, v2]. A new IloConstraint c4 is created involving vars[0] and vars[1]. model=[v0, c0, v1, v2, c3, c4]. solver extracts model creating IloIntVar v2' and IloConstraint c4'. solver=[v0', c0', v1', v2', c3', c4']. Constraint propagation prunes v2'=7..29. solver state='Feasible'.

- Execution of _Z==17

TOY sends _Z == 17 to the Herbrand solver. This will bind the variable _Z to 17. L=[[X, 0], [Y, 0], [17, 0]]. C=[X#>=5, X#<=12, Y#>=2, Y#<=17, X#+Y==17]. However, this value will not be automatically synchronized with ILOG CP. The synchronization will happen before either a new FD constraint is sent or at the end of the TOY goal.

- Execution of X#-Y==5

This expression is decomposed again into X#-Y==_T, _T==5

- Execution of X#-Y==_T

As we have pointed out, before the new FD constraint is sent to ILOG CP, any pattern [value, 0] contained in L at position i will be synchronized with model by adding the new IloConstraint vars[i]==value. C=[X#>=5, X#<=12, Y#>=2, Y#<=17, X#+Y==17]. L=[[X, 0], [Y, 0], [17, 0]]. A new IloConstraint c5 is created involving vars[2] and 17. model=[v0, c0, v1, v2, c3, c4, c5]. solver extracts model creating IloConstraint c5'. solver=[v0', c0', v1', v2', c3', c4', c5']. Constraint propagation bounds vars[2] to 17. L=[[X, 0], [Y, 0], [17, 1]]. solver state='Feasible'.

As there is no more patterns [value, 0] in L, solveFD is now able to manage the constraint X#-Y==_T. So the new FD constraint is added to C=[X#>=5, X#<=12, Y#>=2, Y#<=17, X#==Y==_T]. L=[[X, 0], [Y, 0], [17, 1], [, 0]]. A new IloIntVar v0 is created and added to vars=[v0, v1, v2, v3]. model=[v0, c0, c1, v2, c2, c3, c4, c5, v3]. A new IloConstraint c6 is created involving vars[0] and vars[1]. model=[v0, c0, c1, v2, c2, c3, c4, c5, v3, v0]. solver extracts model creating IloIntVar v3' and IloConstraint c6'. solver=[v0', c0', c1', v2', c2', c3', v3', c4', c5', c6']. Constraint propagationprunes v0'=6..12, v1'=5..11', v3'=1..7. solver state='Feasible'.

- Execution of _T==5

TOY sends _T == 5 to the Herbrand solver. This will bind the variable _T to 5, making L=[[X, 0], [Y, 0], [17, 11], [5, 0]]. C=[X#>=5, X#<=12, Y#>=2, Y#<=17, X#+Y==17, X#-Y==_5]. Again, the synchronization will happen before either a new FD constraint is sent or at the end of the TOY goal.

- The TOY goal is almost finished. To completely finish the goal computation we synchronize the pairs L with the pattern [value, 0]. C=[X#>=5, X#<=12, Y#>=2, Y#<=17, X#+Y==17].
\[L=\{[X,0],[Y,0],[17,1],[5,0]\} \]. A new `IloConstraint c7` is created involving \text{vars}[3] and 5. `model` contains: `[v0,c0,c1,v2,c2,c3,c4,c5,v3,c6,c7]`. `solver` contains: `IloConstraint c7`. `solver` contains: `v0'=10..12, v1'=5..7`. \[L=\{[X,0],[Y,0],[17,1],[5,1]\} \]. `solver` state: 'Feasible'.

After this synchronization, the `TOY` goal is completely finished. It shows as the computed answer the set of non-ground \textit{FD} constraints of \text{C} as well as the (unbound) variables of \text{L}. For each of these variables, `TOY` shows its domain. These values are obtained from the `I1cIntVar` contained in `solver` through the associated `IloIntVar` contained in `model`. Each decision variable of `model` is accessed through its position of `vars`.

```prolog
yes
\{ X #+ Y #= 17,  
X #- Y #= 5,  
X in 10..12,  
Y in 5..7 \}  
Elapsed time: 16 ms.
sol.1, more solutions (y/n/d/a) [y]?
no  
Elapsed time: 0 ms.
```

3 Measuring Performance

In this section we use two test parametric, scalable (on \text{n}) benchmark programs which model systems of linear equations \(A \ast X = b \). Each system has \text{n} independent equations with \text{n} variables \([X_1,\ldots,X_n]\) whose domains are \([1..n]\). Each system has a unique integer solution. The matrix \(A \) takes the value \(i \) on its diagonal coefficients \(A_{ii} \) and the value 1 for the rest of them.

Both benchmark programs have been run in a machine with an Intel Dual Core 2.4Ghz processor and 4GB RAM memory. The OS used is Windows XP SP3. The SICStus Prolog version used is 3.12.8. The ILOG CP application used is ILOG CP 1.4, with ILOG Concert 2.6 and ILOG Solver 6.6 libraries. Microsoft Visual C++ 6.0, tools are used for compiling and linking the application.

We show performance results (expressed in milliseconds) for the following systems: both `TOY(FDs)` and `TOY(FDz)` just described, and also for a C++ program directly modelling the problems using the ILOG CP libraries (denoted by `FDs`, `FDi` and ILOG in the tables, respectively). The latter will help us in analysing the overhead due to `TOY` implementation of lazy narrowing.

For each benchmark, we show three instances of \text{n}: 4, 12 and 15 variables. In each case, we present results for two labeling strategies: a static search procedure which selects the variables in the textual order they occur in the program, and the dynamic search procedure ‘first fail’ (denoted by `ff`), which selects first the variable with minimum domain size. For a given variable, both of them selects first the minimum value in its domain.
Also, we show the speedups of $T_OY(FD_i)$ with respect to $T_OY(FD_s)$ and ILOG CP respectively. Specifically, we denote as:

- (a) to the speedup of $T_OY(FD_i)$ with respect to $T_OY(FD_s)$ using the static search procedure to solve the problem.
- (b) to the speedup of $T_OY(FD_i)$ with respect to $T_OY(FD_s)$ using the ‘first fail’ search procedure.
- (c) to the speedup of $T_OY(FD_i)$ with respect to ILOG CP C++ program using the static search procedure.
- (d) to the speedup of $T_OY(FD_i)$ with respect to ILOG CP C++ program using the ‘first fail’ search procedure.

The benchmarks programs are:

- The solution $[X_1, \ldots, X_n]$ holds: $\forall i \in \{1 \ldots n\} X_i = i$. Performance measurement gives the following results:

<table>
<thead>
<tr>
<th>n</th>
<th>FDs</th>
<th>FDs()</th>
<th>FDi</th>
<th>FD(i)</th>
<th>ILOG</th>
<th>ILOG()</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>1.0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>31</td>
<td>1.75</td>
<td>15</td>
<td>1.0</td>
<td>5.0</td>
<td>0.29</td>
<td>10.4</td>
<td>1.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>297</td>
<td>29.312</td>
<td>15</td>
<td>1.0</td>
<td>20.578</td>
<td>1.42</td>
<td>0.22</td>
<td>6.7</td>
<td>3.27</td>
<td></td>
</tr>
</tbody>
</table>

For this first benchmark, $T_OY(FD_i)$ takes more time than $T_OY(FD_s)$ for solving with the static search procedure, but less time for the dynamic search procedure. The solving time difference between them grows as we increase the number of variables for the benchmarks. Looking at how the domains of the variables evolve after the initial constraint propagation, we can conclude that the structure of the solution for this first benchmark fits quite well into the static search procedure, while it is dramatically harmful to the dynamic search procedure. This helps us to realize that, for problems where the needed exploration to obtain the solution is really small, then $T_OY(FD_i)$ is slower than $T_OY(FD_s)$. This is because of the time involved in the communication between the Prolog implementation of $T_OY(FD_i)$ and ILOG CP. However, as the nodes needed to be explored increase slightly, this waste of time is balanced, making $T_OY(FD_i)$ more efficient than $T_OY(FD_s)$.

- The solution $[X_1, \ldots, X_n]$ holds: $\forall i \in \{1 \ldots n\} X_i = n - (i - 1)$. Performance measurement gives the following results:

<table>
<thead>
<tr>
<th>n</th>
<th>FDs</th>
<th>FDs()</th>
<th>FDi</th>
<th>FD(i)</th>
<th>ILOG</th>
<th>ILOG()</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>16</td>
<td>16</td>
<td>31</td>
<td>31</td>
<td>15</td>
<td>1.0</td>
<td>1.93</td>
<td>0.51</td>
<td>2.06</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>531</td>
<td>250</td>
<td>437</td>
<td>126</td>
<td>109</td>
<td>63</td>
<td>0.83</td>
<td>0.50</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>15,563</td>
<td>21,968</td>
<td>13,937</td>
<td>3,406</td>
<td>843</td>
<td>1,765</td>
<td>0.90</td>
<td>0.16</td>
<td>16.53</td>
<td>1.93</td>
</tr>
</tbody>
</table>

The above conclusions are clearly confirmed in this second benchmark, where $T_OY(FD_i)$ is faster than $T_OY(FD_s)$ for both search procedures. In this case, the structure of the solution is dramatically harmful for the static strategy, while it behaves better for the dynamic strategy. In the former, $T_OY(FD_i)$ takes
slightly less solving time than $TOY(FDs)$. In any case, these measurements point out that our first approach to integrate the ILOG CP technology into $TOY(FDi)$ is encouraging, but also that the management of the additional data structures used for the interface should be optimized.

4 Conclusions and Future Work

In this work, we have studied how to integrate the FD ILOG CP technology into the system TOY. We have shown that this technology offers some advantages over the existing system TOY based on the FD technology of SICStus Prolog. We have described in detail our implementation, showing that the application architecture of TOY and ILOG CP are hard to integrate in terms of a correct communication between them. We have shown by means of two scalable benchmarks that the new system $TOY(FDi)$ is faster than $TOY(FDs)$ as the benchmark increases its size. However, we have concluded that there is a performance penalization due to the management of the data structures that make possible the connection of TOY with its new FD component. Therefore, optimizing this management will be the target of our immediate future work. In addition, backtracking management will be covered in a next work, together with an extended set of benchmarks. Another subject of interest is to test other constraint libraries, as Gecode [11].

References

RDP 2009

Universidade de Brasília, Brasília D.F., Brazil
June 28th – July 03rd

Pre-proceedings
18th International Workshop on Functional and (Constraint) Logic Programming
WFLP 2009

Santiago Escobar (Ed.)
Functional and (Constraint) Logic Programming

18th International Workshop, WFLP’09

part of the Federated Conference on Rewriting, Deduction, and Programming (RDP’09)

Brasília, Brazil, June 28, 2009.

Informal Proceedings
Preface

This report contains the informal workshop proceedings of the 18th International Workshop on Functional and (Constraint) Logic Programming (WFLP’09), held at Brasília, Brazil, during June 28, 2009. WFLP’09 is part of the Federated Conference on Rewriting, Deduction, and Programming (RDP’09). Previous meetings are: WFLP 2008 (Siena, Italy), WFLP 2007 (Paris, France), WFLP 2006 (Madrid, Spain), WCFLP 2005 (Tallinn, Estonia), WFLP 2004 (Aachen, Germany), WFLP 2003 (Valencia, Spain), WFLP 2002 (Grado, Italy), WFLP 2001 (Kiel, Germany), WFLP 2000 (Benicassim, Spain), WFLP’99 (Grenoble, France), WFLP’98 (Bad Honnef, Germany), WFLP’97 (Schwarzenberg, Germany), WFLP’96 (Marburg, Germany), WFLP’95 (Schwarzenberg, Germany), WFLP’94 (Schwarzenberg, Germany), WFLP’93 (Rattenberg, Germany), and WFLP’92 (Karlsruhe, Germany).

The aim of the WFLP workshop is to bring together researchers interested in functional programming, (constraint) logic programming, as well as the integration of the two paradigms. It promotes the cross-fertilizing exchange of ideas and experiences among researchers and students from the different communities interested in the foundations, applications and combinations of high-level, declarative programming languages and related areas.

The Program Committee of WFLP’09 collected three reviews for each paper and held an electronic discussion during May 2009. The Program Committee selected 12 regular papers for presentation at the workshop. In addition to the selected papers, the scientific program includes two invited lectures by Claude Kirchner from the Centre de Recherche INRIA Bordeaux - Sud-Ouest, France and Roberto Jerusalimschy from the Departamento de Informática, PUC-Rio, Brazil. I would like to thank them for having accepted our invitation.

I would also like to thank all the members of the Program Committee and all the referees for their careful work in the review and selection process. Many thanks to all authors who submitted papers and to all conference participants. We gratefully acknowledge the Departamento de Sistemas Informáticos y Computación of the Universidad Politécnica de Valencia, who has supported this event. Finally, we express our gratitude to all members of the local organization of the Federated Conference on Rewriting, Deduction, and Programming (RDP’09), whose work has made the workshop possible.

Brasília, Brazil, Santiago Escobar
WFLP’09 Chair

June 2009
Organization

WFLP’09 is part of the Federated Conference on Rewriting, Deduction, and Programming (RDP’09).

Program Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maria Alpuente</td>
<td>Universidad Politécnica de Valencia, Spain</td>
</tr>
<tr>
<td>Sergio Antoy</td>
<td>Portland State University, USA</td>
</tr>
<tr>
<td>Cristiano Braga</td>
<td>Universidade Federal Fluminense, Brazil</td>
</tr>
<tr>
<td>Rafael Caballero</td>
<td>Universidad Complutense de Madrid, Spain</td>
</tr>
<tr>
<td>David Déharbe</td>
<td>Universidade Federal do Rio Grande do Norte, Brazil</td>
</tr>
<tr>
<td>Rachid Echahed</td>
<td>CNRS, Laboratoire LIG, France</td>
</tr>
<tr>
<td>Moreno Falaschi</td>
<td>Università di Siena, Italy</td>
</tr>
<tr>
<td>Michael Hanus</td>
<td>Christian-Albrechts-Universität zu Kiel, Germany</td>
</tr>
<tr>
<td>Frank Huch</td>
<td>Christian-Albrechts-Universität zu Kiel, Germany</td>
</tr>
<tr>
<td>Tetsuo Ida</td>
<td>University of Tsukuba, Japan</td>
</tr>
<tr>
<td>Wolfgang Lux</td>
<td>Westfälische Wilhelms-Universität Munster, Germany</td>
</tr>
<tr>
<td>Mircea Marin</td>
<td>University of Tsukuba, Japan</td>
</tr>
<tr>
<td>Camilo Rueda</td>
<td>Universidad Javeriana-Cali, Colombia</td>
</tr>
<tr>
<td>Jaime Sánchez-Hernández</td>
<td>Universidad Complutense de Madrid, Spain</td>
</tr>
<tr>
<td>Anderson Santana de Oliveira</td>
<td>Universidade Federal do Rio Grande do Norte, Brazil</td>
</tr>
</tbody>
</table>

Additional Referees

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gloria Álvarez</td>
<td></td>
</tr>
<tr>
<td>Iliano Cervesato</td>
<td></td>
</tr>
<tr>
<td>Albert Rubio</td>
<td></td>
</tr>
<tr>
<td>Rafael del Vado Vírseda</td>
<td></td>
</tr>
<tr>
<td>Demis Ballis</td>
<td></td>
</tr>
<tr>
<td>Yukiyoshi Kamayama</td>
<td></td>
</tr>
<tr>
<td>Clara Segura</td>
<td></td>
</tr>
<tr>
<td>Toshiyuki Yamada</td>
<td></td>
</tr>
<tr>
<td>Bernd Braüél</td>
<td></td>
</tr>
<tr>
<td>Temur Kutsia</td>
<td></td>
</tr>
<tr>
<td>Peter Sestoft</td>
<td></td>
</tr>
<tr>
<td>Hans Zantema</td>
<td></td>
</tr>
<tr>
<td>Linda Brodo</td>
<td></td>
</tr>
<tr>
<td>Miguel Palomino</td>
<td></td>
</tr>
<tr>
<td>Thierry Boy de la Tour</td>
<td></td>
</tr>
</tbody>
</table>

Sponsoring Institution

Departamento de Sistemas Informáticos y Computación (DSIC)
Universidad Politécnica de Valencia (UPV)
Table of Contents

Strategic Deduction .. 1
Claude Kirchner, Florent Kirchner, and Hélène Kirchner

Programming with Multiple Paradigms in Lua 5
Roberto Jerusalimschy

A Theoretical Framework for the Declarative Debugging of Functional Logic Programs with Lambda Abstractions ... 15
Ignacio Castiñeiras Pérez and Rafael del Valo Vírseda

Type Checking and Inference Are Equivalent in Lambda Calculi with Existential Types .. 31
Yuki Kato and Koji Nakazawa

A Taxonomy of Some Right-to-Left String-Matching Algorithms .. 45
Manuel Hernández

A Simple Region Inference Algorithm for a First-Order Functional Language .. 63
Manuel Montenegro, Ricardo Peña, and Clara Segura

pFun: A Semi-explicit Parallel Purely Functional Language 79
André R. Du Bois, Gerson Cavalheiro, and Juliana Vizzotto

Realizing Multiparadigm Programming based on Hierarchical Graph Rewriting .. 95
Petra Hofstedt and Kazunori Ueda

Termination of Context-Sensitive Rewriting with Built-In Numbers and Collection Data Structures .. 111
Stephan Falke and Deepak Kapur

Semantic Labelling for Proving Termination of Combinatory Reduction Systems .. 127
Makoto Hamana

Fast and Accurate Strong Termination Analysis with an Application to Partial Evaluation .. 141
Michael Leuschel, Salvador Tamarit, and Germán Vidal

Advances in Type Systems for Functional Logic Programming .. 157
Francisco J. López-Fraguas, Enrique Martín-Martín, and Juan Rodríguez-Hortalá

A Complete Axiomatization of Strict Equality over Infinite Trees .. 173
Javier Álvez and Francisco J. López-Fraguas

Integrating ILOG CP technology into TOY 189
Ignacio Castiñeiras and Fernando Sáenz-Pérez