--v-v--I'.-C.“....."“'J"'ll'"""",',‘.‘

Integrating ILOG CP technology into TOY*

Nacho Castineiras! and Fernando Sgenz-Pérez2

! Dept. Sistemas Informaticos v Computacion
2 Dept. Ingenierfa del Software e Inteligencia Artificial
Universidad Complutense de Madrid
ncasti@fdi.ucm.es, fernan@sip.ucm.es

Abstract. The constraint functional logic programming system 7Oy
has been using the SICStus Prolog finite domain (F'D) constraint solver.
In this work, we show how to integrate the ILOG CP FD constraint solv-
ing technology into this system, with the aim of improving its application
domain and performance. We describe our implementation emphasizing
the synchronization between Herbrand computations in the 7OY side
and F'D constraint solving in the ILOG CP side. F inally, performance
results are reported and discussed.

1 Introduction

TOY[1] is a system implemented in SICStus Prolog 3.12.8 [10]. Its operational
semantics is based on a lazy narrowing calculus and includes several constraint
domains allowing its cooperation. This system allows Herbrand equality and dise-
quality constraints (managed by the constraint domain 1), linear and non-linear
arithmetic constraints over reals (R), finite domain constraints over integers
(F'D), and a communication domain (M) which makes possible the cooperation
among H, R and FD. Whereas R as FD rely on the constraint solvers pro-
vided by SICStus Prolog, solving in H and M needs an explicitly management
[3]. TOY offers a wide range of finite domain constraints comparable to many
CLP(FD) systems, using a concrete constraint solving system as one of its com-
ponents [5]. Here, we focus on this particular constraint domain for integrating
a new constraint solving system based on ILOG CP technology.

The generic component architecture of the connection between TQOY and its
external F'D constraint system is shown to the left of Fig. 1. TOY identifies each
FD constraint during goal solving, and factorizes this (possibly) composed con-
traint into primitive ones, adding new produced variables if necessary [3]. Then,
it posts these primitive constraints to solve® ‘D which acts as an intermediary
between 7OY and the external FD system. solve’? sends the constraints to
this system and collects its computed answers.

" This work has been partially supported by the Spanish projects TIN2005-09207-C03-

03, TIN2008-06622-C03-01, S-0505/T1C/0407 and UCM-BSCH-GR58/08-910502

1.1 TOY with SICStus Prolog: TOY(FDs)

TOY (referred to as TOY(FDs) from now on) has been using the F'D con-
straint system provided in the library clpfd of SICStus Prolog, which is ba-
sically composed of a constraint store and solver. The component architecture
of the connection between 70) and SICStus Prolog FD constraint system is
shown in the middle of Fig. 1. Next, we show a basic example for illustrating
the use of the system TOY(F Ds) with finite domains constraints.

TOY TOY TOY

Constraints Other Constraints Other Constraints Other
over integers domains over integers domains over integers domains
solve®”’ Solvether : solve!” Solve!™ solve’™” Solye™

FD external Other S clphd Other i oG e Other
system solvers : solvers ¢ Application solvers
SICStus Prolog SICStus Prolog Concert 2.6 SICStus

¢ Solver6.6 Prolog

Generic TOY(FDg) TOY(FDy)

Fig. 1. Architectural Components

Ezample 1. Let’s consider that X is an integer between 5 and 12, Y is an integer
between 2 and 17, X+Y=17 and X-Y=5. It is possible to solve this problem in
TOY(FDs) as shown in the following interactive session:

TOY(FDs)> X #>= 5, X #<= 12, Y #>= 2, Y #<= 17,
X #+ Y ==17, X #- Y == 5
yes
{5 # +Y #= X,
X#+Y #= 17,
X in 10..12,
Y in 5..7 }
Elapsed time: O ms.
sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: O ms.

However, the use of the SICStus Prolog F'D system has some disadvantages:

— Recent works [2] have proved that its performance can be enhanced, needed
when dealing with complex problems.

— The constraint solver works as a black-box for predefined search processing.
This precludes user-defined interactions for pruning the search tree.

— There are no debugging capabilities allowing, for instance, to derive the
subset of infeasible constraints.

190

TR RN SN R NN R IR E I ET T ET T EFT T ETETET T T T IR AYAYAYAM Y MY Y Y)Y

GITIITIIIIOPIOOIIOIOOPOIOIOOIOOIIIITIUIUTITIOGTUEIOTOOPRORODPOOOONISSSS?

1.2 ILOG CP to improve 70Y

ILOG CP 1.4 [6] is an industrial technology market leader. Its nature is declar-
ative and provides a C++ API to access its libraries. Its constraint solver works
as a glass-box, allowing interactions during the solving process. It also includes
debugging techniques helping the user to discover the unfeasible subset of the
constraints set input. Its wide range of global constraints make possible to for-
mulate different and complex properties. The use of different constraint solvers
for a unique application domain is also allowed. Moreover, libraries for solving
specific, efficient algorithms for complex scheduling problems are provided.

Any ILOG CP 1.4 application isolates objects responsible of modeling the
user problem from objects responsible of solving any concrete model. Following
this idea, the problem is modeled in a generic language, easing the task of ex-
pressing the constraints of the problem. Once the modeling phase is completed,
the model can be solved by one or more different constraint solvers. The solver
extracts all of the modeling objects contained into the model, creating a one-to-
one object translation. This new objects belonging to the solver are semantically
equivalent to the modeling objects, but their internal structure is targeted at the
solver. It is possible to access each object created by the solver through the asso-
ciated object contained into the model. The most paradigmatic tool representing
this philosophy is ILOG OPL Studio [7]. ILOG CP 1.4 includes the library ILOG
Concert 2.6 to provide the necessary interface for connecting models to solvers.
Three libraries are provided for F'D constraint solving:

— ILOG Solver 6.6, for generic F'D problems solving.
— ILOG Scheduler 6.6, with specific algorithms for solving scheduling problems.
— ILOG Dispatcher 4.6, with specific algorithms for solving routing problems.

As a first approach, we will consider only ILOG Solver 6.6. For this case, any
ILOG CP application needs the following set of ILOG Concert 2.6 and ILOG
Solver 6.6 objects (see [6] for a detailed explanation):

— IloEnv enw It manages the memory of any object of the application.

— IloModel model(env) Is the main modeling object. Contains the set of
objects responsible of formulating the F'D problem, which are:

® IloIntVarArray vars(env) This vector is intended to make possible to
reference all of the decision variables of the model from a unique ob ject.
Each variable must be created previously by
IloIntVar v(env, int lowerBound, int upperBound).

e IloConstraint c¢ Each IloConstraint involves some IloIntVar of
vars. It can be added directly to the model, without being created pre-
viously.

— IloSolver solver (env) It is the main solving object. It contains an ob-
Ject IloGoal goal which specifies the concrete search procedure to be used.
solver main methods are:

¢ solver.extract(model) Extracts the information contained into model.
For each IloIntVar and IloConstraint contained in model it creates
an associated new IlcIntVar or IlcConstraint object.

® solver.solve(goal) Solves the extracted model.

191

2 TOY with ILOG CP: TOY(F Dsi)

In this section, we explain in detail how to integrate ILOG CP F D technology
into the system TOY (referred to as TOY(F Di) from now on). TOY is im-
plemented in SICStus Prolog while ILOG CP is a technology implemented and
available in C4+. So, first we study how to make a connection between 70OY
and ILOG CP by connecting SICStus Prolog and C++4. Our approach is based
on the integration of a C++ foreign resource into a SICStus Prolog application.
Due to the different nature of both languages, we study the emerging difficulties
to establish a communication between 7 O)Y and ILOG CP, as well as the deci-
sions we have made to solve them. Also, an example of the behavior of the new
svstem TOY(F Di) is shown.

2.1 Connecting SICStus Prolog with C++

It is possible to communicate a SICStus Prolog application with a C++ com-
ponent. This communication is done by mapping a set of linking Prolog facts
(contained in the Prolog application) with a set of C++ functions (defined in
the C++ component). The C++ component needs to be a dynamic library with
a specific internal file structure. SICStus Prolog also defines a set of possible
conversions between Prolog arguments and C++ arguments. Each arguments of
a linking Prolog fact must also indicate if it is either an input argument (sent
to the C++ function) or an output argument (computed by the C++ func-
tion). There is a bidirectional conversion between a Prolog term and the C++
type SP_term_ref. By invoking SP_term_ref object methods, C++ functions can
perform the following actions:

— Create and assign Prolog terms.
~ Obtain the contents of a Prolog term.
— Compare and unify Prolog terms.

This context supports the necessary conditions to connect 7OY and ILOG
CP by making just a few changes in the component architecture of 70)), whose
new structure can be seen on the right hand side of Fig. 1.

- From the point of view of 7O), it is necessary to put a new Prolog fact
in any place of solvef” where a communication with ILOG CP is needed
(posting a new constraint, declaring a new ILOG decision variable, etc.)

- On the other hand, we build a new ILOG CP application which integrates
ILOG Concert 2.6 and ILOG Solver 6.6 libraries. This application contains
instances of the basic modeling and solving objects explained in Section 1.2.
It also includes the set of C++ functions linked to the existing Prolog facts
in solve™™”.

Each time solve!? calls any interfaced predicate, first, it turns all Prolog
arguments into C++ arguments. Next, it transfers the program control to the
C++ function, which uses and/or computes them within its body. Once the
C++ function has finished, the execution control comes back to solvef?, which
continues with the evaluation of the next call.

192

TEY9499999493 287 1111111944171 7 1 7 1T 11T TN T 999991 1Y

8883338338393543843434483388844543345332300200001033433118)

Creating a SICStus Prolog C++ Foreign Resource
SICStus Prolog needs two files for creating a dynamic library as, for instance
interface.dll, which could be used within a SICStus Prolog application:

— interface.pl Declares the mapping of each Prolog predicate to each C+-+
function. It groups all of these functions in a unique resource. For example:
foreign(f1,pl(+integer)).
foreign(f2,p2(+term,-term)).
foreign resource(interface, [f1,f2]).

— interface.cpp Includes the C++ functions mapped to Prolog facts. It adds
as many auxiliary functions and libraries as needed. For example:
void f1(long 1){...}
void f2(SP term ref t1, SP_termref t2){...}

SICStus Prolog supplies a tool, splfr [9], to create a dynamic library (say
interface.dll), taking as input interface.pl and interface. cpp. The macro
splfr is used as a shortcut to the execution of some compiling and linking com-
mands offered by Microsoft Visual C++ [8]. First of all, taking interface.pl
as input, it creates two new files, interface glue.c and interface _glue.h,
which provides the necessary glue code for the SICStus application.

2.2 Communication between 7OY and ILOG CP

In this section we explain in detail how to implement 7OY (£ Di) in such a way
it accepts any TOY(F Ds) input goal, including all FD constraints managed
by the existing solve" P in TOY(FDs). Also, TOY(FDi) uses the same goal
solution structure as 7OY(F Ds) does. To achieve that behavior is necessary to
solve the following difficulties:

— As TOY is a system implemented in SICStus Prolog, in TOY(FDs) the
communication between 7O) and its F'D technology is quite natural. How-
ever, as ILOG CP is implemented in C++, some glue code is needed to fix
the impedance mismatch problem.

— ILOG CP and SICStus Prolog differ on their notion of solution of a FD
problem.

There have been four difficult tasks to achieve in the new system TOY(F Dj).
We explain each of them in the next subsections. When we make reference to
any ILOG CP application object, we use the notation of Section 1.2. To this
end, we use model if we refer to the ILOG Concert 2.6 model object, we use
solver if we refer to the ILOG Solver 6.6 generic F'D solver, and we use vars
if we refer to the decision variables contained in model.

Managing Decision Variables

The set of F'D constraints of a TOY goal involves a set of logic variables
that we denote as ‘F'D logic variables’. To model the FD constraint set with
ILOG CP, some points must be taken into account:

193

— We need to create as many IloIntVar decision variables as I'D logic vari-
ables take part into the F'D constraint set. These variables must be added
to model and vars (the former to model the F'D problem properly and the
latter to make possible to refer to each variable of the model from a unique
object).

— We must find a bijective relation that associates each F'D logic variable of
the 7OY goal with each decision variable existing in the ILOG CP vector
vars.

— We model each F'D constraint in ILOG CP over the set of decision variables
of the vector vars associated to the set of F'D logic variables involved in
that F'D constraint.

Whatever way of communication between 70O)Y and ILOG CP, for each FD
logic variable we have three variables:

- The FD logic variable contained in 7O).

- The decision variable modeled as an IloIntVar object in model.

- The specific IlcIntVar object created by solver from its associated
IloIntVar object contained in model.

A first attempt for mapping a F'D logic variable to a decision variable of
vars is tried. It intends to manage vars and a SP_term ref vector, making
them evolve simultaneously. The elements of the SP_term_ref vector are in fact
the SP_term_ref conversion of the F D logic variables. Each time solvef'? sends
a new FD constraint to ILOG CP, the associated C++ function will first look for
its £'D logic variables into the SP_term_ref vector. If it can not find any variable,
we can assure that the C++ function is dealing with a new F D logic variable
not treated before. So, the C++ function adds this new F'D logic variable to
the SP_term ref vector last position. say i. Immediately, a new IloIntVar de-
cision variable is created and added to model and vars[i]. When each F D logic
variable of the FD constraint sent by solvef? is contained at an index of the
SP_term_ref vector. the F'D constraint is modeled over the decision variables of
vars associated to these indexes.

However. this first attempt fails. This is due to the rules which govern the
scope of a SP_term ref. When a C++ function containing SP_term_refs (as
arguments or dyvnamically created within it) finishes its execution, all these
SP_term refs become invalid. Let’s see the next example, where an interface
between the Prolog predicates p1, p2 and p3 and the C++ functions £1, £2 and
£3, resp, is defined. Functions £1 and £2 receive a Prolog term as an argument,
while £3 receives two Prolog terms.

— Let’s call p3 with to occurrences of the logic variable X, as p3(X,X). If we
make SP_compare(t1,t2) within £3(SP_term_ref t1, SP_term ref t2)
the result says that both SP_term_refs are in fact the same Prolog term.

— But, let’s do the call p1(X). We store t1 of f1(SP_term ref t1) into a
global vector <SP_term_ref>. When f1 finishes, the program control comes
back to Prolog. Now, we call p2 with the logic variable X again, p2(X). If

194

1 1994849919211 181911111119 17°81711°1 711" 1"T"T"T"T""T"1TM" 1T 7T1"T"" 7" 29271711111

AA AL AR XA X N L L Y Y N N N E R R R R R R R YRR

we make SP_compare(t1,t2) within f2(SP_term_ref t2) between t2 and
the SP_term_ref stored in the vector during £1, the result says that both
SP_term_refs are different. There is no doubt that both are in fact the same
Prolog term. The problem is that, when f1 finish, the SP_term_ref stored
in the vector becomes invalid.

The second and successful attempt relies on the management of the bijective
relation, which is done into the Prolog application by the use of a list of FD
logic variables (referred to as L from now on). We want L to be used in each
solve™P predicate. On one hand SICStus Prolog does not allow global variables.
On the other hand, there is a logic variable Cin [4], which represents a mixed
constraints store and is common to each solve™? predicate. Our plan is to store
any data structure demanded by the communication between 7OY and ILOG
CP, specifically L, into Cin. Each time a solve™? predicate manages a new FD
constraint, we can check whether a F'D logic variable belongs to L or not by
accessing to it within Cin. Any new F'D logic variable is automatically added to
the end of L, say at position i. Here, a new call to the C++ function which creates
a new IloIntVar is done. This function adds this decision variable to model and
vars[i]. Once all FD logic variables of the F'D constraint belongs to L, solve?
determines their indexes, and put them as arguments to the C++ function, which
models the F'D constraint by adding to model a new IloConstraint over the
associated positions of vars.

Synchronizing ILOG CP with 70y

TOY can also bind its F'D logic variables through an equality constraint in
the Herbrand solver. For example, in the goal TOY(FDi)> X #>= 0, X == 3 the
variable X is bound to the value 3. This is done by the Prolog terms unification
which results from the Herbrand equality constraint X == 3. This unification
is visible at any occurrence of that F'D logic variable, particularly the one in
L. This causes an inconsistency between the contents of L and vars. To repair
this lack of synchronization we must send an equality constraint to ILOG CP,
making the mapped decision variable in vars equals to the bound value.

A first attempt tries to synchronize by an event-driven approach. To capture
events, SICStus Prolog provides the module of attributed variables. This mod-
ule assigns attributes to a set of logic variables. Each time an attributed logic
variable is bound, the predicate verify attributes(+Var, +Value, +Goals)
1s triggered. We use the attribute fd for each FD logic variable. Thus, each
time the Herbrand solver binds a F'D logic variable, verify_attributes (+Var,
+Value, +Goals) will automatically call the C++ function which synchronizes
the associated decision variable of vars.

However, this first attempt fails. For this synchronization we need to know
which index does the associated decision variable have in vars. We can only
get this index by looking for the F'D logic variable in L. But, unfortunately, the
arguments of verify attributes(+Var, +Value, +Goals) are fixed. SICStus
Prolog does not allow global variables, so there is no way to get access to L.

195

A second attempt consists of making the Herbrand solver responsible of call-
ing the C++ synchronization function. But this idea must be rejected, because
there is a basic principle of independency between the different solvers of the
system 7OY . Any solution to this problem must respect the idea of solving the
synchronization within solvefP.

The third (and successful) attempt modifies the internal structure of L. Now
it becomes a list of pairs. The first element of each pair contains the F'D logic
variable, and the second one contains a flag which determines if the bound F D
logic variable has been synchronized with vars. Thus, while the F'D logic variable
is not bound, the value of the flag remains at 0. When the F'D logic variable
becomes bound, the value of the flag indicates whether the variable of vars is
synchronized or not.

Each time solve”? sends a new FD constraint to ILOG CP, it must previ-
ously:

— Look for any pair in L (say at position i) whose pattern is [value,0]
— Add to model the new IloConstraint vars[i]==value.
— Change the pair at position i of L by [value,1]

Once there is no pairs with the pattern [value,0] in the list, solve®? is
able to send the new F'D constraint. If there are no more F D constraints, the
pairs [value,0] will be synchronized at the end of the 7OY goal. This synchro-
nization attempt is clearly inefficient, making it a task to be improved in new
releases of TOY (F Di). Let’s see the next goal:

Toy(FDi)> X #>= 2, X == 1, X1 == 1, X2 == 1, ... , X1000 ==

The first F'D logic variable of the goal is X, which occurs at the first posi-
tion of L and vars. The synchronization of X == 1 as vars[0] == 1 makes the
F'D problem infeasible. So, the 7OY goal will fail after X == 1, and there is no
need of computing the rest of the goal expressions. However, the first equality
vars[0] == 1 is not computed until the next F'D constraint is posted.

AsX ==1, X1 == 1, X2 == 1, ... , X1000 == 1 are computed by
Herbrand solver there are no more F'D constraints in the goal, so the synchro-
nization will not ocecur until the end of the goal. The goal will useless compute
a thousand of successful expressions. After that, it synchronizes vars[0] ==
and fails.

Synchronizing 70OY with ILOG CP

ILOG CP can bind variables in vars via the set of C+-+ functions concerning
the management of F'D constraints. This produces a lack of synchronization
between the vector vars and L. To achieve the synchronization, whenever any
of this C++ functions binds to value vars[il, the pair contained at position i
of L must be automatically unified with [value,1].

To this end, solve™” sends L to a C++ function as an input argument. and
puts an output argument to obtain the new state of L computed within the
C++ function. A new global variable of type vector<int,int> must be created

196

T S Y YRR I T T 1 1 1 T 1 1 1 1 T T T T T T T I I VY

ittt il A A A A A A A A A A K N R R N R R N N R R R R R R R XXX PR Y

in ILOG CP. This vector of pairs is cleared at the beginning of each C++
function. Each pair of the vector contains:

— The index i in vars of the decision variable.
— The value that solver has obtained for this variable.

A C++ function manages any new constraint by adding it to model, and
propagates its new F'ID constraint set. Next, the C++4 function accesses to
the contents of the vector<int,int>, to see whether there are any IloIntVar
that has been bound. Using the content of vector<int,int> and L, the C4++
function builds the new state of L by unifying as many F'D logic variables as
vector<int,int> demands.

The only remaining task to be explained is how to add each pair to the global
vector<int,int>. To do so, we use demons to capture bind events. Thus, a new
demon object IlcDemon RealizeVarBound is created. It concerns on how to
insert each new pair into the vector<int,int>. This demon is triggered by the
propagation of a constraint I1cCheckWhenBound. Each I1cCheckWhenBound con-
straint involves one IloIntVar. This constraint propagates when its IloIntVar
becomes bound. ILOG CP associates a demon to a method of a constraint class.
When the demon is triggered, the method of this constraint class is automati-
cally executed. We associate RealizeVarBound to the method varDemon of the
IlcCheckWhenBound constraint class. This method checks the index in vars of
the bounded IloIntVar and its value, adding both of them as a new pair of
integers to the global vector<int,int>. We summarize how our ILOG CP ap-
plication adds the pairs to the vector<int,int> in the next three steps:

— For each new decision variable IloIntVar added to vars and model, we
impose the constraint I1cCheckWhenBound.

— When this IloIntVar becomes bound, I1cCheckWhenBound propagates, trig-
gering the demon RealizeVarBound.

— RealizeVarBound executes the I1cCheckWhenBound method varDemon,
which adds the pair <index of the variable, value of the variable>
to vector<int,int>.

Solutions in ILOG CP

Any TOY (FDs) solution is expressed in general with constraints (equality,
disequality, F'D constraints ~including ranges-). Of course, 7. OY (F Ds) accepts
to label F'DD variables by calling the FD labeling enumeration procedure.

In TOY (FDi), to show the remaining values of the F.D logic variables we
access to each IlcIntVar of solver by its associated IloIntVar contained in
model. There are some methods to check the remaining values of these variables.
However, ILOG Solver does not grant access to simplified constraints (i.e., solved
forms). The ILOG philosophy of a solution is to select a value for each decision
variable while satisfying the constraint set. Of course, you can use no search
procedure, obtaining the same structure as in an interval solution, but again
without accessing the simplified constraints. As in our context we have to show
them, we store within Cin a list with the F'D constraints (referred to as C from
now on) appearing in the 7O) goal.

197

2.3 A TOY(FDi) Example

In this section we detail how goal solving works with the new system 7 OY (F D)
over the example 1:

Toy(FDi)> X #>= 5, X #<= 12, Y #>= 2, Y #<= 17,
X #+ Y == 17, X #- Y ==

We specify how the data structures of solvet? and ILOG CP evolve with each
expression evaluation. On one hand we look at the state of L and C within Cin.
On the other hand we look at the state of vars, model, solver by pointing out
any IloIntVar, IloConstraint, IlcIntVar, IlcConstraint object accessed
through them. For each goal expression any new element added to each data
structure is remarked in boldface. Figure 2 tries to make it clearer:

TOY{FDn=> X#=5, X#<12, Y#»2 el
Constraints over integers X#>5, X#<12 i\z Constraints over integers Y#>2
solvefD } solvefD > 1) FD Logic Vars - [[X,01[Y.0]}
e | T 1
Cin=[...,[X.0]) [X#>5,3#<12]] y
Y Concert 2.6 = 1) IloIntVar vl
A i ut) vars: <0, vl >
)KK 1) madel = [v0,c0,c1,v1]
y
3
v (P b1) Y #>2 arguments evaluation
ILOG CP Application -
e e solve”P > v) FD Constraints. [X#>5, X#<12, Y#»2]
Concert 2.6 vi) “Y” > sVar=1, index_in_vars=1;
vars <w0® meodel =[v0,c0,c1] “0” S isVar=0, value =2 -
TloIntVar w0 IloConstraint ¢0, ¢l
U Concert 2.6 = vi1) IloConstraint c2
Soiver 6.6 vi) model = [v0,c0,c1,v1,e2]
lcIntVar w0’ TleConstramt c0’, c1” Rkttt === - ees
solver = [v0' o0 c17] Solver 6.6 > solver.extract(model)
1%) HelntVar v1’, IlcConstraint ¢2’
%) solver = [v0’ c0',c1” v1",c27]
D and ILOG CP data structure b2) Y #>2 FD Constraint modeling

re Y#>2 evaluation

Fig. 2. TOY (F Dt) data structures evolution over FD Constraint expression evaluation

— Figure 2a) represents the internal state of solve™” and ILOG CP data struc-
tures at the end of Toy(FDi)> X #>= 5, X #<= 12 evaluation.

— Figure 2b1) and 2b2) describes which actions must be done for the correct
management of the new F'D Constraint Y #>= 2.

198

2300089999007 I09933333%83C300553033%2%3022%33133111t)

Before evaluating any goal expression, in the solvef? side L=]] and c=].
In the ILOG CP side model=(], vars=<> and solver=[]. There is also no
IloIntVar, IloConstraint, IlcIntVar, Il1cConstraint objects.

— Execution of X #>= 5
The new FD constraint is added to C=[X#>=5]. The new FD logic var is
added to L=[[X,0]]. A new IloIntVar vO is created and added to vars=<v0>
and model=[v0]. A new IloConstraint cO is created, involving vars[0]
and the value 5. This I1loConstraint c0 is added to model=[v0,c0]. solver
extracts the new state of model and creates a new IlcIntVar v0’ and a new
IlcConstraint c0’. solver={v0’,c0’]. Its constraint propagation technique
prunes the domain of v0’=5..sup. The state of the solver remains ‘Feasible’.
T OY continues evaluating next goal expression.

- Execution of X #<= 12
C=[X#>=5,X#<=12]. L=[[X,0]]. vars=<v0>. A new IloConstraint cl is
created involving vars [0] and 12. model=[v0,c0,c1]. solver extracts model
creating IlcConstraint c1’. solver=[v0’,c0’,c1’]. Constraint propagation
prunes v0’=5..12. solver state=‘Feasible’.

— Execution of Y #>= 2
By managing Y#>=2 arguments, solve’” adds L=[[X,0],[Y,0]]. By adding
a new D Logic Var to L, a new IloIntVar vl is created and added to
vars=<v0,v1> and model[v0,c0,c1,v1]. There is a correspondence between
Y and v1 because both are at the same position of L and vars respectively.
solve™ P adds Y#>=2 to C=[X#>=5,X#<=12,Y#>=2]. The relevant informa-
tion to modeling the F'D constraint into ILOG CP is the tuple <1,1,0,2>
which says if the arguments are variables or not and its index/value re-
spectively. Then a new IloConstraint c2 is created involving vars[1] and
the value 2. This IloConstraint c2 is added to model=[v0,c0,cl,v2,c2].
solver extracts the new state of model creating a new IlcIntVar v1’ and
IlcConstraint c2’. solver=[v0’,c0’,c1’,v1’ ¢2’]. Constraint propagation
prunes v1’=2..sup. solver state=‘Feasible’. After constraint propagation,
the program control comes back to solvefP. It finishes the management
of the F'D constraint by storing the new state of L=[[X,0], [Y,0]] and
C=[X#>=5,X#<=12, Y#>=2] into Cin.

— Execution of Y #<= 17
C=[X#>=5,X#<=12,Y#>=2, Y#<=17]. L=[[X,0], [Y,0]]. vars=<v0,vi>. A
new IloConstraint c3 is created involving vars[1] and 12.
model=[v0,c0,c1,v2,c2,c3]. solver extracts model creating I1cConstraint
c3’. solver=[v(’,c0’¢c1’,v1’,c2’,c3’]. Constraint propagation prunes
v1’=2..17. solver state=‘Feasible’.

— Execution of X#+Y==17
This expression includes a compound constraint. This constraint must be
decomposed into primitive constraints. In this case: X#+Y==_7, Z==17

- Execution of X#t+Y==_
C=[X#>=5,X#<=12,Y#>=2, Y#<=17 , X#+Y==_Z].
L=[[{X,01,[Y,0],[_-Z,0]]. A new IloIntVar vO is created and added

199

to vars=<v0,v1,v2> A new IloConstraint c4 is created involving
vars[0] and vars[1]. model=[v0,c0,c1,v2,c2,c3,c4]. solver extracts
model creating IlcIntVar v2’ and IlcConstraint c4’.
solver=[v0’,c0’,c1’,v1’,c2",¢3’,v2’,c4’]. Constraint propagation prunes
v2’=7..29. solver state=‘Feasible’.
- Execution of Z==17
TOY sends _Z == 17 to the Herbrand solver. This will bind the variable
_Z to 17, L=[[X,0], [Y,0],[17,0]],
C:[X#>=5,X#<=12,Y#>=2,Y#<=17,X#+Y=:17}. However, this value
will not be automatically synchronized with ILOG CP. The synchroniza-
tion will happen before either a new F'D constraint is sent or at the end
of the 7OY goal.
— Execution of X#-Y==5
This expression is decomposed again into X#-Y==_T, _T==5
- Execution of X#-Y==_
As we have pointed out, before the new F D constraint is sent to ILOG
CP, any pattern [value,0] contained in L at position i will be synchro-
nized with model by adding the new IloConstraint vars(il==value.
C=[X#>=5,X#<=12,Y#>=2, Y#<=17 , X#+Y==17].
L=[{X,0],[Y,0],[17,0]]. A new IloConstraint c5 is created involv-
ing vars[2] and 17.
model=[v0,c0,c1,v2,c2,c3,c4,c5|. solver extracts model creating
IlcConstraint ¢5’. solver=[v0’,c0’cl’,v1’,c2’,c3’,v2",c4’,c5’].
Constraint propagation bounds vars [2] to 17. L=[[X,0], [¥,0],[17,1]].
solver state=‘Feasible’.

As there is no more patterns [value,0] in L, solve™? is now able to
manage the constraint X#-Y==_T. So the new F'D constraint is added to
C=[X#>=5,X#<=12,Y#>=2,Y#<=17 , X#+Y==17 , X#-Y==_T.
L=[[X,0], [Y,0],[17,1]1,[_T,0]]. A new IloIntVar vO is created and
added to vars=<v0,v1,v2,v3> model=[v0,c0,c1,v2,c2,c3,c4,c5,v3]. A
new IloConstraint c6 is created involving vars[0] and vars[1].
model=[v0.c0.c1.v2.c2.c3.c4,c¢5,v3,c6].s01lver extracts model creating
IlcIntVar v3’ and IlcConstraint c6’.
solver=[v0".c0".c1".v1'.c2",c3’,v2’,c4’¢5,v3’,c6’].
Constraint propagation prunes v0’=6..12, v1°=5..11", v3’=1..7.
solver state=‘Feasible’.
- Execution of _T==5

TOY sends _T == 5 to the Herbrand solver. This will bind the variable
_T to 5, making L=[[X,0], [Y,0], [17,1],[5,0]],
C=[X#>=5, X#<=12, Y#>=2, Y#<=17 , X#+Y==17 , X#-Y ==5|.
Again, the synchronization will happen before either a new FD con-
straint is sent or at the end of the TOY goal.

— The 70Y goal is almost finished. To completely finish the goal computation

we synchronize the pairs L with the pattern [value,0].
C=[X#>=5,X#<=12, Y#>=2, Y#<=17 , X#+Y==17],

200

ft 1914940808881 1TC€CT7T7T1TTTTTT1TT11T11T111T1119T%721912111111°¢%

3838344335534 3333332 5328333 1LLR222034800)

L=[{X,01,(Y,0],[17,1],[5,0]]. A new IloConstraint c7 is created in-
volving vars [3] and 5. model=[v0,c0,c1,v2,c2,c3,c4,c5,v3,¢6,c7]. solver ex-
tracts model creating IlcConstraint c7’.

solver=[v0’ c0’cl’,v1’,c2",c3",v2" c4’,c5’ ,v3’,c6’,c7’]. Constraint propagation
bounds vars [3] to 5, v0’=10..12, v1’=5..7". L=[[X,0], [Y,0], [17,11,[5,1]].
solver state=‘Feasible’.

After this synchronization, the 7O)Y goal is completely finished. It shows
as the computed answer the set of non-ground FD constraints of C as well
as the (unbound) variables of L. For each of these variables, TOQY shows its
domain. These values are obtained from the I1cIntVar contained in solver
through the associated IloIntVar contained in model. Each decision variable
of model is accessed through its position of vars.

yes

{ X #+ Y #= 17,
X #- Y #= 5,
X in 10..12,
Y in 5..7 }

Elapsed time: 16 ms.

sol.1, more solutions (y/n/d/a) [yl?
no
Elapsed time: O ms.

3 Measuring Performance

In this section we use two test parametric, scalable (on n) benchmark programs
which model systems of linear equations A * X = b. Each system has n inde-
pendent equations with n variables [X1,...,Xn] whose domains are {1..n}.
Each system has a unique integer solution. The matrix A takes the value i on
its diagonal coeflicients A;; and the value 1 for the rest of them.

Both benchmark programs have been run in a machine with an Intel Dual
Core 2.4Ghz processor and 4GB RAM memory. The SO used is Windows XP
SP3. The SICStus Prolog version used is 3.12.8. The ILOG CP application used
is ILOG CP 1.4, with ILOG Concert 2.6 and ILOG Solver 6.6 libraries. Microsoft
Visual C++ 6.0. tools are used for compiling and linking the application.

We show performance results (expressed in miliseconds) for the following
systems: both 7OY(F Ds) and TOY(F Di) just described, and also for a C++
program directly modelling the problems using the ILOG CP libraries (denoted
by FDs, FDi and ILOG in the tables, respectively). The latter will help us in
analysing the overhead due to 7 OY implementation of lazy narrowing.

For each benchmark, we show three instances of n: 4, 12 and 15 variables. In
each case, we present results for two labeling strategies: a static search procedure
which selects the variables in the textual order they occur in the program, and
the dynamic search procedure ‘first fail’ (denoted by ff), which selects first the
variable with minimum domain size. For a given variable, both of them selects
first the minimum value in its domain.

201

Also, we show the speedups of 7OY(F Di) with respect to TOY(F Ds) and
ILOG CP respectively. Specifically, we denote as:

— (a) to the speedup of TOY(FDi) with respect to TOY(F'Ds) using the
static search procedure to solve the problem.

— (b) to the speedup of TOY(FDi) with respect to TOY(F Ds) using the ‘first
fail’ search procedure.

— (c) to the speedup of TOY(F Di) with respect to ILOG CP C++ program
using the static search procedure.

— (d) to the speedup of TOY(F Di) with respect to ILOG CP C+4-+ program
using the ‘first fail’ search procedure.

The benchmarks programs are:

— The solution [X1,...,Xn] holds: Vi € {1...n} Xi = i. Performance mea-
surement gives the following results:

o [FDs| FDsTF[EDi FDITILOGIILOGIT @] 5] (9] ()
4 0 15 0 0 15 15| 1.0 0 0
12| 31| 1.750| 156 516 15 281] 5.010.29(10.4]1.83
15| 297]299,312 423| 67,376 63| 20.,578|1.42|0.22| 6.7|3.27

For this first benchmark, 7OY(F Di) takes more time than TOY(F Ds) for
solving with the static search procedure, but less time for the dynamic search
procedure. The solving time difference between them grows as we increase
the number of variables for the benchmarks. Looking at how the domains of
the variables evolve after the initial constraint propagation, we can conclude
that the structure of the solution for this first benchmark fits quite well into
the static search procedure, while it is dramatically harmful to the dynamic
search procedure. This help us to realize that, for problems where the needed
exploration to obtain the solution is really small, then TOY(F Di) is slower
than T OY(F Ds). This is because of the time involved in the communication
between the Prolog implementation of 7OY(F Di) and ILOG CP. However,
as the nodes needed to be explored increase slightly, this waste of time is
balanced. making 7OY(F Di) more efficient than 7OY(F Ds).

— The solution [X1,_,Xn] holds: Vi € {l..n} Xi = n — (i — 1). Performance
measurement gives the following results:

o | EDs|FDsH| FDIFDITILOGIILOGT] (@] B (9] (d)
4 16 16 16 31 31 15| 1.0/1.93| 0.51|2.06
12 531 250| 437 126 109 630.8310.50 4 2
15(15,563| 21,968(13,937} 3,406| 843 1,765/0.90/0.16{16.53|1.93

The above conclusions are clearly confirmed in this second benchmark, where
TOY(FDi) is faster than TOY(FDs) for both search procedures. In this case,
the structure of the solution is dramatically harmful for the static strategy, while
it behaves better for the dynamic strategy. In the former, TOY(FDi) takes

202

1199119¢€4¢¢€¢ € ¢°82€¢°€°€° ° °71° 4171 17"1T"7"1"1"111"111111111911179797779791711717 11

EAA AL A A A A A A A A R R A S R R R R R KN RRRRERRRRRRERYRREETY N,

slightly less solving time than TOY(FDs). In any case, these measurements
point out that our first approach to integrate the ILOG CP technology into
TOY(FDi) is encouraging, but also that the management of the additional
data structures used for the interface should be optimized.

4 Conclusions and Future Work

In this work, we have studied how to integrate the F'D ILOG CP technology
into the system 70O)Y. We have shown that this technology offers some advan-
tages over the existing system 70Y based on the F'D technology of SICStus
Prolog. We have described in detail our implementation, showing that the ap-
plication architecture of TOY and ILOG CP are hard to integrate in terms of
a correct communication between them. We have shown by means of two scal-
able benchmarks that the new system 7OY(FDi) is faster than 7OY(F Ds)
as the benchmark increases its size. However, we have concluded that there is
a performance penalization due to the management of the data structures that
make possible the connection of 7OY with its new F'D component. Therefore,
optimizing this management will be the target of our immediate future work.
In addition, backtracking management will be covered in a next work, together
with an extended set of benchmarks. Another subject of interest is to test other
constraint libraries, as Gecode {11].

References

1. P. Arenas, S. Estévez, A. Fernandez, A. Gil, F. Lopez-Fraguas, M. Rodriguez-
Artalejo, and F. Sdenz-Pérez. 7). a multiparadigm declarative language.
version 2.3.1., 2007. R. Caballero and J. Sadnchez (Eds.), Awvailable at
http://toy.sourceforge.net.

2. R. G. del Campo and F. Sdenz-Pérez. Programmed Search in a Timetabling Prob-
lem over Finite Domains. Electr. Notes Theor. Comput. Sci., 177:253-267, 2007.

3. 8. Estévez-Martin, A. Ferndndez, M. Hortald-Gonzélez, F. Sdaenz-Pérez,
M. Rodriguez-Artalejo, and R. del Vado-Virseda. On the Cooperation of the Con-
straint Domains H, R and F'D in CFLP. Theory and Practice of Logic Program-
ming, 2009. Accepted for publication.

4. S. Estévez-Martin, A. J. Ferndndez, and F. Sdenz-Pérez. About implementing a
constraint functional logic programming system with solver cooperation. In proc.
of CICLOPS 07, pages 57-71, 2007.

5. A. J. Ferndndez. T. Hortala-Gonzéalez, F. Sdenz-Pérez, and R. del Vado-Virseda.
Constraint Functional Logic Programming over Finite Domains. Theory Pract.
Log. Program., 7(5):537-582, 2007.

. ILOG. ILOG Solver 6.6, Reference Manual, 2008.

ILOG. ILOG OPL Studio 6.1, Reference Manual, 2009.

Microsoft, 2005. http://msdn.microsoft.com/en-us/visualc/default.aspx.

SICStus Prolog. Using SICStus Prolog with newer Microsoft C compilers.

SICStus Prolog, 2007. http://www.sics.se/isl/sicstus.

The Gecode team. Generic constraint development environment. Available from

http://www.gecode.org, 2006.

e S

—_

203

Federated Conference on Rewriting, Deduction & Programming

RDP 2009

Universidade de Brasilia, Brasilia D.F., Brazil
June 28th — july 03

Pre-proceedings ‘
18th International Workshop on Functional

and (Constraint) Logic Programming
WFLP 2009

Scientific sponsorship

CCCCC

SPOPIOOPOBULBOIIBVVEISSISIIIIIIIIIIIIIISsssLBB033338

Santiago Escobar (Ed.)

Functional and (Constraint) Logic
Programming

18th International Workshop, WFLP’09

part of the Federated Conference on Rewriting, Deduction, and
Programming (RDP’09)

Brasilia, Brazil, June 28, 2009.

Informal Proceedings

VRS TRRBUIRBIIANNAEI333333333333q333%083800

Preface

This report contains the informal workshop proceedings of the 18th International Workshop on
Functional and (Constraint) Logic Programming (WFLP’09), held at Brasilia, Brazil, during June
28. 2009. WFLP’09 is part of the Federated Conference on Rewriting, Deduction, and Programming
(RDP’09). Previous meetings are: WFLP 2008 (Siena, Italy), WFLP 2007 (Paris, France), WFLP
2006 (Madrid, Spain), WCFLP 2005 (Tallinn, Estonia), WFLP 2004 (Aachen, Germany), WFLP
2003 (Valencia, Spain), WFLP 2002 (Grado, Italy), WFLP 2001 (Kiel, Germany), WFLP 2000
(Benicassim, Spain), WFLP’99 (Grenoble, France), WELP’98 (Bad Honnef, Germany), WFLP'97
(Schwarzenberg, Germany), WFLP’96 (Marburg, Germany), WELP’95 (Schwarzenberg, Germany),
WFLP’94 (Schwarzenberg, Germany), WEFLP'93 (Rattenberg, Germany), and WFLP’92 (Karl-
sruhe, Germany).

The aim of the WFLP workshop is to bring together researchers interested in functional pro-
gramming, (constraint) logic programming, as well as the integration of the two paradigms. It
promotes the cross-fertilizing exchange of ideas and experiences among researchers and students
from the different communities interested in the foundations, applications and combinations of
high-level, declarative programming languages and related areas.

The Program Committee of WEFLP’09 collected three reviews for each paper and held an
electronic discussion during May 2009. The Program Committee selected 12 regular papers for
presentation at the workshop. In addition to the selected papers, the scientific program includes
two invited lectures by Claude Kirchner from the Centre de Recherche INRIA Bordeaux - Sud-
Ouest, France and Roberto lerusalimschy from the Departamento de Informatica. PUC-Rio. Brazil.
I would like to thank them for having accepted our invitation.

I would also like to thank all the members of the Program Committee and all the referees for
their careful work in the review and selection process. Many thanks to all authors who submitted
papers and to all conference participants. We gratefully acknowledge the Departamento de Sistemas
Informdticos y Computacion of the Universidad Politécnica de Valencia, who has supported this
event. Finally, we express our gratitude to all members of the local organization of the Federated
Conference on Rewriting, Deduction, and Programming (RDP’09), whose work has made the
workshop possible.

Brasilia, Brazil, Santiago Escobar
June 2009 WFLP'09 Chair

PP TITIPIIIIIIIOIOPIIOIIOIIIIIIIIIITIIIITIIOIOOPOPPPOOOIIOSIEY

Organization

WEFLP'09 is part of the Federated Conference on Rewriting, Deduction, and Programming (RDP°09).

Program Committee

Maria Alpuente Universidad Politécnica de Valencia, Spain

sergio Antoy Portland State University, USA

Christiano Braga Universidade Federal Fluminense, Brazil

Rafael Caballero Universidad Complutense de Madrid, Spain

David Déharbe Universidade Federal do Rio Grande do Norte, Brazil
Rachid Echahed CNRS, Laboratoire LIG, France

Moreno Falaschi Universita di Siena, Italy

Michael Hanus Christian- Albrechts-Universitat zu Kiel, Germany
Frank Huch Christian- Albrechts-Universitat zu Kiel, Germany
Tetsuo Ida University of Tsukuba, Japan

Wolfgang Lux Westfalische Wilhelms-Universitat Munster, Germany
Mircea Marin University of Tsukuba, Japan

Camilo Rueda Universidad Javeriana-Cali, Colombia

Jaime Sanchez-Hernandez Universidad Complutense de Madrid, Spain

Anderson Santana de Oliveira Universidade Federal do Rio Grande do Norte, Brazil

Additional Referees

Gloria Alvarez Iliano Cervesato Albert Rubio Rafael del Vado Virseda
Demis Ballis ~ Yukiyoshi Kameyama Clara Segura Toshiyuki Yamada
Bernd BraBlel Temur Kutsia Peter Sestoft Hans Zantema

Linda Brodo Miguel Palomino Thierry Boy de la Tour

Sponsoring Institution

Departamento de Sistemas Informaticos y Computacién (DSIC)
Universidad Politécnica de Valencia (UPV)

LA A A A A A A A A A NN NNELENENEEN NN RN N NN RN RER RN K,

Table of Contents

Strategic Deduction
Claude Kirchner, Florent Kirchner, and Héléne Kirchner

Programming with Multiple Paradigms in Lua.............
Roberto Ierusalimschy

A Theoretical Framework for the Declarative Debugging of Functional Logic Programs
with Lambda Abstractions
Ignacio Castineiras Pérez and Rafael del Vado Virseda

Type Checking and Inference Are Equivalent’ in Lambda Calculi with Existential Types. . ..
Yuki Kato and Ko ji Nakazawa

A Taxonomy of Some Right-to-Left String-Matching Algorithms
Manuel Herndndez

A Simple Region Inference Algorithm for a First-Order Functional Language
Manuel Montenegro, Ricardo Pena, and Clara Sequra

pFun: A Semi-explicit Parallel Purely Functional Language
André R. Du Bois, Gerson Cavalheiro, and Juliana Vizzotto

Realizing Multiparadigm Programming based on Hierarchical Graph Rewriting
Petra Hofstedt and Kazunori Ueda

Termination of Context-Sensitive Rewriting with Built-In Numbers and Collection Data
SETUCLULES ... e e e
Stephan Falke and Deepak Kapur

Semantic Labelling for Proving Termination of Combinatory Reduction Systems
Makoto Hamana

Fast and Accurate Strong Termination Analysis with an Application to Partial Evaluation .
Michael Leuschel, Salvador Tamarit, and Germdn Vidal

Advances in Type Systems for Functional Logic Programming
Francisco J. Lopez-Fraguas, Enrique Martin-Martin, and Juan Rodrduez-Hortald

A Complete Axiomatization of Strict Equality over Infinite Trees
Javier Alvez and Francisco J. Lopez-Fraguas

Integrating ILOG CP technology into 7OV
Ignacio Castineiras and Fernando Sdaenz-Pérez

(<1

31

45

63

79

95

111

127

141

