
I

t
|l
rD
a
t
t
-

)

)

)

a
la
a
rD
rt
r'
t
lD

I
e
lD
ll

t
ll
'I'
a
a
a
a
o
o
I
D
I
I
I
D
I
l
t
t
t
)

l
)

)

)

I

rntegrating ILOG cP technology into T()y*

Nacho Castiñeirasl and Fernando Sáenz-pérez2

^
t D"pt. Sisternas Informáticos y Computación

2 Dept. Ingeniería del Software e Inteligencia Artificial
Universidad Complutense de N4aclrid

ncas t i@fd i . ucm. es , f e rnan@s ip .ucm. es

Abstract. The constraint functional logic prograrnrning svstern TOy
has been rtsiilg the SICStus Prolog finite clomain (FD) constraint solver.
In this work. we show how to integrate the ILOG CP FD constraint solv-
ing technology into this system, with the airn of irnproving its applicatio¡
dornain and performance. We describe our implementatián ernphasizing
the sytrchronization between Herbrancl cornputations in the ZO) side
and FD constraint solving in the ILOG CP side. Finally. perforrna¡ce
results are reported and discussed.

1 Introduction

fq)Jl is a svstern implemented in SICStus Prolog 3.12.8 [10]. I ts operatio¡al
seulantics is based on a lazy ttarrowiug calculus arrd inclucles several constraint
clotrtaitls allowing its cooperation. Tiris systern allows Herbrand equality and ¿ise-
qualitv constraints (managecl by the constraint clornain 11), linear ard non-li'ear
arithnletic constraints over reals (/?), finite dornaiu constraints over i¡tegers
(F D). at ld a conlnrulr ic¿rt ion dornain (,41) which nrakes possible the cooperatio¡
arrrorlS H, R arrd FD. Whereas I? as F D relv on tiie constraint solvers pro-
vided by SICStus Prolog, solving in H ancl ,41 neecls an explicitly marragement
P]' f q) offers a wide range of finite domain constraints conrparable to ma¡y
CLP(FD) systetns, t tsing a cotrcrete constraint solving systern o, or," of i ts com-
ponetlts [5]. Here, we fbcus on this particular constraint dornai¡ for integrating
a rlew constraint solving system based on ILOG Cp teclinology.

Tlie geueric cotupoueut architecture of the connection betwee¡ TOy and its
exterual FD constraint system is shown to the left of Fig. 1. TOy iclentifies each
I'D constraint during goal solviug, ancl factorizes this (possibly) co¡rposecl co¡-
traint into primitive ones, adding new produced variables if necessarJ. [3]. Then,
it posts these prinlitive constraints to solueF D, which acts as an irtermecliary
between TOJ) and the exterual ,FD system. solueFD sencls the constraints to
this system and collects its computecl answers.

This work has been partially supported by the Spanish projects TIN2005-0 I2OT-C}B-
03. TIN2008-06622-C03-01. s-050b/TI C l 040T and uc1\4-BSCH-cR58/08-910b02

1.1 TOy wi th SICStus Pro log: TO!(FDs)

TOy (refcrrecl to as TOy(FDs) from now on) has been using the FD con-
straint systenr provided in the l ibrary clpfd of SICStus Prolog, which is ba-
sically cornposed of a constraint store and solver. The colnporlent architecture
of the connection betweertTO! and SICStus Prolog FD constraint systern is
shown in tlie rnidclle of Fig. 1. Next, we show a basic exanrple for illustrating

the use of the systern TOy(L-Ds) with f ini te domains constraints.

/

¿

¿
q
?
É

€

€

;

€

€

€

€

€

¿

¿

¿

f;
J1
Jn
JÁ
fE
JH
fE
G
lJ'-
JA
f4
JÁ
-

-

E
FT
-

ts
t
G
Gq
q
JE

I

J;
é

¿

á

f4
fÁ
rt
s

TOY

Const ra in ts
o\ cr lnlcgcrs

Othcr
dornains

¡ L l ¡
SOI \ L -

" " " " " t^ " " " " " "
I

" . . . , . , . " t " " . . " " . .
FD cxternal

systern

Solvct ' tn" '

Other
solvers

SICStus Pro log

j solue"'

" " " " " " 'T ' " ' . " " " "
I, "v . . , . . " . .

1 ctpJtt

I

t I). s o l v c;" * " " " " " " "1 " ' " " " "
I
ü

i rr-oc cp
i Appl icat ion
:,
j Concert 2.6
1 Solver 6.6
i " " " , " " . " " " , , " . " . " . ,

Cener ic TOY(FDS) TOY(FDr)

Fig. 1. Architectural Comporrents

Erample 1. Let's consider that X is an integer between 5 and L2, Y is an integer
betweerr 2 and 17. X+Y=17 and X-Y=S. I t is ¡rossible to solve this problem in

TOy(FDs) as shou,,n in the following interactive session:

T O Y (F D s) > X #) = 5 , X # (= ! 2 , Y #) = 2 , Y # (= 1 7 ,

X # + Y = = 1 7 . X # - Y = = 5
yes

{ s * + Y # = X ,

X # + Y # = 1 7 ,
X i n I O . . I 2 ,
Y i n 5 . . 7]

E lapsed t ime : 0 ms .
so1 .1 , more so lu t i ons (y /n /d /a) t y l Z

no

E lapsed t ime : 0 ms .

However, the use of the SICStus Prolog FD system has some disadvantages:

- Recent works [2] have proved that its perfbrmance can be enhanced. needecl
when dealing with complex problems.

- The cotrstraint solver works as a black-box for preclefined search processing.

This precludes user-defined interactions for pruning the search tree.
- There are no debugging capabilities allowing, for instance, to derive tlie

subset of infeasible constraints.

Constraints
ovcr integers

SICStus Prolog

Constraints
over lntegcrs

190

¡

rl
t
t
rD
rl
a
)

)

)

a
a
)

)

a
)

a
a
I
I
t
t
t
D
t
T
a
a
a
a
I
I
I
o
I
o
t
I
I
D
I
I
I
t
I
]

I
t
I

I .2 ILOG CP to improve TOy

ILOG CP 1 4 [6] is an industrial technology rnarket leader. Its nature is cleclar-
ative and provides a C++ API to access its libraries. Its constraint solver q,orks
as a glass-box. allowing interactions during the solving process. It also incl¡des
debugging techniques trelping the user to discover the unfeasible subset of the
cotistraiuts set input. Its wide range of global constraints make possible to fbr-
mttlate different and complex properties. The use of cliffere¡t co¡straint solvers
for a unique application dotnain is also allowecl. N{oreover, libraries for solvi¡g
specific, efficient algorithms for complex scheduiing problerns are provided.

Any ILOG CP 1.4 appl icat ion isolates objects responsible of modeling the
user problem frotn objects responsible of solving any concrete moclel. Following
this idea, the problem is rnodeled in a generic language, easing the task of ex-
pressing the constraints of the problem. Once the modeling phase is completed.
the model can be solved by one or nore different constraint solvers. The solver
extracts all of the modeiing objects contained into the model, creating a one-to-
one object translation. This new objects belonging to the solver are sernantically
equivalent to the rnodeling objects, but their internal structure is targeted at the
solver. It is possible to access each object created by the solver through the asso-
ciatecl object coutaitled into the model. The most paradigmatic tool representing
this phi losophy is ILOG OPL Studio [7]. ILOG CP 1.4 includes rhe l ibrary ILOC
Concert 2.6 to provide the necessar¡r interf'ace fbr connecting modeis to solvers.
Tliree libraries are provided for FD constraint solving:

- ILOG Solver 6.6, for generic FD problems solving.
- ILOG Schedrrler 6.6, with specific algorithms for solving scheduling problems.
- ILOG Dispatcher 4.6, with specific algorithms for solving routinf problems.

As a first approach, we will consider only ILOG Solver 6.6. For this case, any
ILOG CP application ueeds the fol lowing set of ILOG Concert 2.6 and ILOG
Solver 6.6 objects (see [6] for a detailed explanatiorr):

- IloEnv ena It rnanages the nienrory of any object of the application.
- I loModel rnodel(env) Is the main modeling object. Contains the set of

objects responsible of fornrulating the F D problern, which are:
o IlolntVarArray uars (env) This vector is intended to make possible to

reference all of the decision variables of the moclel from a unique ob.ject.
Each variable must be created previously by
f lofntVar o(env, int lowerBound, int upperBound).

o I loConstraint c Each f loConstraint involves some l l-ofntVar of
vars' It can be added directly to tlie rnodel, without being createcl pre-
viously.

- I loSolver soluer (env) I t is the main solving ob.ject. I t contains an ob-
ject IloGoa]- goal which specifies the concrete search procedure to be used.
solaer main methods are:

o solver. extract (modeI) Extracts the information contained into mode1.
For each IloIntVar and fl-oConstraint contained in model it creates
an associated new rlcrntvar or r l-cconstraint object.

¡ so lver .so lve(goal) So lves the ext racted model .

1 9 1

2 TOy with ILOG CP: TOY(FDí)

Irr tlris section, we explain in detail how to integrate ILOG CP F D technology

irito the systern TOy (referre<l to as TOy(FDi) froni now on) . TOy is inr-
plernented in SICStus Prolog while ILOG CP is a technology irnplenrented arrd

available in C+*. So, first we stucly how to rnake a connection between TOJ)

and ILOG CP bv connecting SICStus Prolog and C**. Our approach is based

on the integration of a C++ foreign resource into a SICStus Prolog application.

Due to the different nature of both languages, we study the enierging difficulties

to establisli ¿r conruruuication between TO! and ILOG CP. as well as tlie deci-

siorrs u'e have nracle to solve them. Also. an exalriple of the behavior of the rrew

svstettt TOy(FDl) is shou't t .

2 .T Connect ing SICStus Pro log wi th C++

It is lrossible to corrrruunicate a SICStus Prolog applicatiorr with a C++ conr-

¡ronent. This c'onrrnunication is done by niapping a set of l inking Prolog facts

(conttr ined in t l ie Prolog application) with a set of C** fuuctions (defined in

the C-|* cor]rponent). The C++ cornponent needs to be a dy'narnic l ibrary with

a specific intern¿rl file stnrcture. SICStus Prolog also defines a set of possible

conversions between Prolog argurnents ancl C++ argttrtrents. Each argunteuts of

a linking Prolog fact must also indicate if it is either an input argurnent (sent

to the C++ function) or an output argurnent (conrputed by the C*f func-

t ion). There is a bidirect ional conversion between a Prolog term and the C++

tvpe SP-term-ref . By invoking SP-term-ref object methods, C++ functions can
perfbrrn the following actions:

- Create and assign Prolog tertns.
- Obtain the contents of a Prolog ternr.
- Coniparc ancl unifv Prolog terrns.

Tliis context supports the necessary conditions to connect TO! and ILOG

CIP bv making just a few changes in the comporlelrt arcliitecture of TOy, whose

rrew structure can be seen on the r ight hand sicle of Fig. 1.

- Frotn the point of vier¡' of TO)), it is uecessary to put a, ne\r Prolog fact

irr any place of sohteFD wliere a conlmunication with ILOG CP is needed
(posting a new constraint, declarirrg a new ILOG clecisiorr variable, etc.)

- On the other hand, we build a new ILOG CP applicatiorr wliich integrates

ILOG Concert 2.6 and ILOG Solver 6.6 l ibraries. This appl icat ion contains

instances of the basic nrodeling and solvimg obiects explained in Section 7.2.

It also includes the set of C** firnctions linked to the existing Prolog f'acts
' r F D
l l t , 9 0 ¿ ? ' e - " .

Each tinre solaeFD calls any interfaced preclicate, first, it turns all Prolog

argurnents iuto C++ argunrents. Next, it transfers the prograrn control to the

C++ fuuction. wliicil uses and/or cornputes thern within its bod¡r. Once the

C++ function l ias f inished. the execution control comes back to sohteFD. u'hich

continues with the evaluation of the next call.

7
7
I-
J4
F
?
C
€

?
?
€

€

€

é

a
¿

e
J1
ü

JS
ü

J;
ü

G
f;-
é

ü

J¿
J4
JÁ
lÁ
E
E
E
F
F;
Il
;T
Il
I
q
q
;

¿

¿a
lr
;,

FI

792

rt

t
-
¡r
¡f

+r
J " a
-

)

-

)

-

-

-

-

-

-

aD
rD
t
+
+
rc
a
rc
!
-

-

-

-

rt
rl
rc
a
t
rC
rl
rI
t
rl
rl
rt
rl
rt
rl
rl
rt
rl
I

Creating a SICStus Prolog C++ Foreign Resource
SICStus Prolog tteeds two files for creating a dynarnic librarv as. fbr instance

interf ace.dl l , which could be used within a SICStus Prolog application:

- interface.pl Declares the mapping of each Prolog predicate to each C+*
fuuctiou. It groups all of tliese functions in a unique resource. For example:
f o re ign (f1 ,p1 (+ in tege r)) .
fore ign (f2 ,p2(+term, - term)) .
fore ign-resource (in ter face , [f I , f2]) .

- interf ace. cpp Includes the C+* functions mapped to Prolog facts. I t adds
as Irany auxiliary functions and libraries as needed. For example:
v o i d f 1 (I o n g i) { . . . }
vo id f 2 (SP_ te rm_re f t 1 , SP_ te rm_re f t 2) { . . }

SICStus Prolog supplies a tool, splfr [9], to create a dynamic l ibrarv (say
in ter f ace. d11) , tak ing as input in ter f ace.p1 and in ter f ace.cpp. The macro
spJ-f r is used as a shortcut to the execution of some compiling and linking com-
mauds offered by N4icrosoft Visual C++ [8]. First of al l , taking interface.pl
as input. i t creates two new f i les, interf ace-gIue.c and interface-g]ue.h,
which provides the necessary glue code for the SICStus application.

2.2 Communication between TOy and ILOG CP

In t l i is sectiou we explain in detai l how to irnplernentTO))(FDi) in such a way
it accepts any TO!(FDs) input goal, including all FD constraints managed
by t lre exist ing solueFD in TO))(FDs). Also, TOJ)(FDi) uses the same goal
solution structure as TOI(FDs) does. To achieve that behavior is necessary to
solve the following difficulties:

- As TOy is a system implemented in sICStus Prolog, in TO!(FDs) the
cotltnunication between TOy and its FD technology is quite natural. How-
ever, as ILOG CP is implernented in C++, sorne glue code is needed to fix
the impedance mismatch problem.

- ILOG CP and SICStus Prolog dif fer on their notion of solut ion of a FD
problern.

There have been four difficult tasks to achieve in the new systemTO)l(FDi).
We explairr each of them in the next subsections. When we make reference to
any ILOG CP application ob.ject, we use the notat ion of Section 1.2. To this
etrd, we use model- if we refer to the ILOG Concert 2.6 model object, we use
solver if we refer to the ILOG Solver 6.6 generic FD solver, and we use vars
if we refer to the decision variables contained in model-.

Managing Decision Variables
The set of FD cotrstraints of a TO! goal involves a set of logic variables

tlrat we denote as'FD logic variables'. To model the F.D constraint set with
ILOG CP, some points must be taken into account:

193

- We need to create as many flolntVar decision variables as FD logic vari-
ables take part into the ,FD constraint set. These variables must be added
to model and vars (the fbmier to model the FD problem properly and the
latter to rnake possible to refer to each variable of the rnodel frorn a unique
object) .

- W'e nnrst fincl a bi.jectir.'e relation that associates each FD logic variable of
the TOI goal u'ith each decision variable existing in the ILOG CP vector
vars .

- We ntoclel eacli FD constraint in ILOG CP over the set of decision variables
of the r.ector vars associated to the set of .FD losic variables involved in
that FD constraint.

\\-ltatever lva\. of conrmunication betweett TOy and ILOG CP. for eacli FD
logic variable we have tliree variables:

- The FD logic variable contained in TOU.
- The clecision variable rnodeled as an IlolntVar object in model.
- The specific IlcIntVar object created by solver fiorn its associated

IloIntVar object contained in nodel.

A first atternpt for rnapping a .FD logic variable to a decision variable of
vars is tried. It irrtencls to rnanage vars and a SP-term-ref vector, making
tlieur evolve sinrultaneously. The elerrreuts of the SP-term-ref vector are in fact
tlre SP-term-ref conversion of the FD logic variables. Each tinte solueFD sends
a new .F.D constraint to ILOG CP. the associated C++ function will first look for
its ,FD logic variables into the SP-term-ref vector. If it can not find anv variable.
we can assure that the C++ function is dealing with a new lrD logic variable
not treated before. So, the C++ functiott adds this new FD logic variable to
t l ie SP-term-ref vector last posit iort. sav i . Irnmediatelv, a new I lolntVar de-
cision variable is created and added to model and vars [i] . W]ren each I.D logic
variable of tlie FD constraint serrt b¡' sohteFD is contained at an index of the
SP-term-ref vector'. the FD constraint is modeled over the decision variables of
vars associated to these indexes.

Hou'er-er. this f i rst atteurpt fai ls. This is due to the rules which govern t l ie
s('ol)e of a SP-term-ref. \ \ 'hen a C+* function containing SP-term-refs (as

argunrents or dvnamicallv created n'ithin it) finishes its execution, all these
SP-term-refs ltecorne invalid. Let's see tlie next example. where an interface
between the Prolog predicates p1. p2 and p3 and the C+* functions f 1, f2 and
f3, resp, is defined. Furrctions f 1 and f2 receiv'e a Prolog term as an argument,
while f 3 receives two Prolog ternrs.

- Let 's cal l p3 with to occurrerlces of the logic variable X, as p3(X,X). I f we
make SP-compare(t I , t2) w i th in f 3(SP- term-ref t1 , SP- term-ref t2)
the result sa¡rs that both SP-term-ref s are in fact the same Prolog term.

- But , le t 's c lo the ca l l p l (X) . We s tore t1 o f f1(SP- term-ref t1) in to a
global vector <SP-term-ref). When f 1 finishes, the program control comes
back to Prolog. Now, we call p2 with the logic variable X again, p2 (X) . If

1]

It
t
:

II
F
é

é

É

a
a
€

É

a
a
a
a
I
a
O
O
€

O
I
O
e
O
O
O
-

ú

f
IT
It

lÉ

rÉ
IT
I
I
É

I
É

É

J
r
d
O
O
a

t94

¡

|l
|l
t
rl
t
)

a
)

a
a
a
)

)

)

aa
a
rc
rc
I
!
a
rI
rD
!
!
a
a
a
a
a
a
I
'I
e
I
I
I
I
C
I
t
a
I
I
a
a
a
a

we make SP-compare(t7,t2) wit l i in f2(SP-term-ref t2) betwee¡ t2 and
the SP-term-ref stored in the vector during f1, the result says that both
SP-term-ref s are different. There is no doubt that both are in fact the same
Prolog term. The problern is that, when f 1 finish, tlie SP-term-ref stored
in the vector becomes invalid.

The secoud and successful atternpt relies on the rnanagement of the bijective
relation, which is done into the Prolog application by the use of a list of FD
logic variables (referred to as L from now on). We want L to be used in each
solueFD predicate. On one hand SICStus Prolog cloes not allow global variables.
On the other hatrd, there is a logic variable Cin [a], which represents a mixed
cotrstraiuts store and is columon to each solueFD predicate. Our plan is to store
arry data structure demanded by the communication between TOJ) and ILOG
CP. specifically L, into Cin. Each tiure a solueFD predicate manages a rrew FD
cotrstraint, we can check whether a FD logic variable belongs to L or not by
accessing to it witltin Cin. Any new FD logic variable is autornatically aclded to
the enci of L. say at position i. Here, a new call to the C+* function which creates
a llew IloIntVar is done. This function adds this decision variable to model ancl
vars [i] . Once all F D logic variables of the FD constraint belongs to L, solueF D

determirres their iudexes, and put tliem as arguments to the C++ function. which
models t l ie FD coustraint by adding to model- a new I loConstraint over the
associated posit ions of vars.

Synchronizing ILOG CP with TOy
TOY can also bind its FD logic variables through an equality constraint in

the Herbrand solver. For example, in the goal T0Y(FDi) > X #)= 0, X == 3 the
variable X is bound to the value 3. This is done by the Prolog terrns unification
which results frorn the Herbrand equality constraint X == 3. This unification
is visible at anv occrlrrence of that FD logic variable, particularly the one in
L. This causes an incousistency between the contents of L and vars. To repair
this lack of synchrotrization we must send an equality constraint to ILOG CP,
making the mapped decision variable in vars equals to the bound value.

A first attempt tries to synchronizeby an event-driven approach. To capture
events, SICStus Prolog provides the niodule of attributed variables. This mocl-
ule assigns attributes to a set of logic variables. Each time an attributecl logic
variable is bound, the predicate veri fy-attr ibutes(+Var, +Value, +Goal_s)
is triggered. We use the attribute f d fbr each F D logic variable. Thus, eacli
t ime the Herbrand solver binds a F D logic variable, veri f y-attr ibutes (+Var,
+Value, +Goa1s) wil l automatical ly cal l the C+* function which synchronizes
the associated decision variable of vars.

However. this first attempt fails. For this synchronization we need to know
which index does the associated decision variable have irr vars. We can only
get this index by looking for the FD logic variable in L. But, unfortunately, the
arguments of veri fy-attr ibutes(+Var, +Value, +Goal-s) are f ixed. SICStus
Prolog does not allow global variables, so there is no way to get access to L.

195

A second attenipt consists of making the Herbrand solver responsible of call-
ing t l ie C++ synchronization function. But this idea must be rejected, because
there is a basic principle of independency between the different solvers of the
systeru TOY . Anv solution to this problern rnust respect the idea of solving the
syriclrronization witliin solueF D .

The tliird (and successfirl) attenipt rnodifies the internal structure of L. Now
it becomes a list of pairs. The first element of eacli pair contains the FD logic
variable. and the second one contains a flag which determines if the bound FD
logic variable has been synchronized with vars. Tltus, while the F'D logic variable
is not bound. the 'n'alue of the flag rernains at 0. When the -FD logic variable
beconres bound. the value of the flag irrdicates whether the variable of vars is
svnc l r ron izcd or not .

Each t ime solueFD sends a new FD constraint to ILOG CP. i t rnust previ-

otrsh':

- Look for anv pair in L (say at posit ion i) whose pattern is [uaLue,Ol
- Add to model- the new l l-oConstraint vars l í f ==ualue.
- C l range the pa i r a t pos i t ion i o f Lby lua lue, I f

Once there is no pairs with the pattern lualue,Ol in the l ist, solueFD is
able to send tlie new FD constraint. If there are no nore F D constraints. the
pairs lualue,0l wi l l be s¡ 'nchronized at the errcl of t ,he TOY goal. This synchro-
trizatiott attenrpt is clearly inefficient, making it ¿r task to be irlproved in ner¡'
releases of TOY(FDi). Let 's see the next goal:

T o y (F D i) > X #) = 2 , X = = ! , X l = = L , X 2 = = t , X1000 == 1

Tlie first FD logic variable of the goal is X, which occurs at the first posi-

t ion of L and vars. The syncl ironization of X == 1 as vars [0] == 1 makes the
FD problem infeasible. So. the TOY goal will fail after X == 1, and there is no
need of cornputing the rest of the goal expressions. However, the first equalitr'
vars [0] == 1 is not computed until the next FD constraint is posted.

As X == 1, X1 == I , X2 == t , , X1000 == 1 are cornputed bv
Herbrand solver tliere are no nrore F.D constraints in the goal, so the synchro-
nization will not occur until the end of the goal. The goal will useless cornput<:
a thousand of successful expressions. After that, it synctrronizes vars [0] == 1
and fails.

Synchronizing TOy with ILOG CP
ILOG CP can bind variables in vars via the set of C++ functions concerninq

tlre tnanagement of F D constraints. This produces a lack of synchronizatiorr
between the vector vars and L. To achieve the synchronization, whenever anr'
of this C++ functions binds to uahte vars [i] , the pair contained at position j.

o f L must be automat ica l ly un i f ied wi th [ua lue, l) .
To this end. solueFD sends L to a C++ function as an input argunent. ancl

puts an output argument to obtain the new state of L computed within the
C++ function. A new global variable of type vector(int, int) must be createcl

¿

7
¿

;

?
?
?
;

?
?
?
?
?
;

é

¿q
¿

G
á

á

G
Js
JA
JA
J1
e
e
¿

J1
fÁ
JÁ

It
É

J1
J:I
q
q
q
;

fe
¿

J4

E
-

lF

f2
É

196

T
|l
rD
rt
t
rD
aa
)

)

)

a
a
a
-

rT
t
t
!
lc
I
+
II
II

e
lD

e
a
a
a
a
o
I
C
C
C
C
I
I
I
f
t
t
D
t
I
t
D
t
I

in ILOG CP. This vector of pairs is cleared at the beginning of each C++
function. Eacli pair of the vector contains:

- The index i in vars of the decision variable.
- The ualue that sorver has obtai'ed fbr this variable.

A C++ function lnanages any new constraint by adding it to model, a¡d
propagates its trew FD cortstraint set. Next, tlie C++ functiorr a,ccesses to
the contents of the vector(int, int), to see whether there are any I l-olntVar
that l ias beeu bound. Using the content of vector(int, int) ancl L, the C++
function builds the new state of L by unifying as rnany F D logic variables as
r¡ector(int, int) demands.

Tlie onlv retnaining task to be explained is how to add each pair to the global
vector(int, i -nt). To do so, we use dernons to capture bind events. Thus, a new
dentotl object flcDemon Real-izeVarBound is created. It concerns on how to
insert each new pair into the vector(int, j.nt). This demon is triggered by the
propagation of a constraint IlcCheckWhenBound. Eacli f l-cCheckVJhenBound con-
strailit involves one fl-olntVar. This constraint propagates when its fl-ofntVar
becomes bound. ILOG CP associates a demon to a rnethocl of a constraint class.
When the demon is triggered, the method of tliis co¡straint class is automati-
cally executed. We associate RealizeVarBound to tlie rnethod varDemon of the
Il-cCheckWhenBound coustraint class. This rnetliod checks ttre index in vars of
the bounded IlolntVar and its value. adding botli of tliem as a new pair of
irrtegers to the global vector(int, int). We suntrn arize how our ILOG Cp ap-
pl icat ion aclds t l ie pairs to the vector(int, int) in the next three steps:

- For each new decision variable lloIntVar aclded to vars and mode1, we
irnpose the constraint f l_cCheckl,thenBound.

- When this IloIntVar becomes bound, f lcChecklrlhenBound propagates, trig-
gering the demon ReaIizeVarBound.

- RealizeVarBound executes the IlcCheck!,/henBound methocl varDemon,
which adds t l ie pair <index of the variable, value of the variabf e)
to vector (in t , in t) .

Solut ions in ILOG CP
Any TOY(FDs) solution is expressed in general with constraints (equality,

disequali ty, FD constraints - including ranges-). Of course, TOY(FDr) o"."pi,
to label FD variables by calling the F D labeling enumeration procedure.

In TOY (F Di), to show the reruaining values of the FD logic variables we
access to each I lcfntVar of solver by i ts associatecl I lolntVar contained irr
model. There are some methods to check the remaining values of these variables.
However. ILOG Solver does not grant access to simplified constraints (i.e., solvecl
fbrms). The ILOG philosophy of a solution is to select a value for each decision
variable while satisfying the constraint set. Of course, you can use no search
procedure. obtaining the same structure as in an interval solution, but agai¡
without accessing the sirnplified constraints. As i¡ our context we have to show
them, we store within Cin a iist with tbe F D constraints (referrecl to as C from
now on) appearing in the TOy goal.

197

2.3 A TO!(FDi) Example

In this section we detail how goal solving works witli the new syste nt TO))(F Di)
over tire exanrple 1:

T o y (F D i) > X #) = 5 , X # (= L 2 , Y #) = 2 , Y # (= 1 7 ,
X #+ Y == 17 , X # - Y == 5

We specify how the data structures of sohteF D and ILOG CP evolve with each
expression evaluation. On one hand we look at the state of L and C witliin Cin.
On the otirer hancl we look at the stafe of vars, rnodel-, sol-ver by pointing out
any IJ-oIntVar, I loConstraint. I IcIntVar, I lcConstraint object accessed
through thern. For each goal expression any new elernent added to each data
structure is remarked in boldface. Figure 2 tries to make it clearer:

F-
7
q
FT
q
r;
É
(F
?
?
e
?
?
;

€

;

é

€

¿

e
¿

¿

¿

¿

J;
¿
?
¿e
¿

J4
J;
fÁ
G
JF
J¿
J4
f4
IH
J1
J1
q
q
q
;

J)
€

¿

J4

TOYGDi)> X#>5, X#<12. Y#>2

t
\

Constrarnts over rntÉgers X#>5, X#<.l2

, É.ñ
s o l v e ' "

crn : ["Itx,0]1. [x#>5,x#< 12]l
t

n pC Cl Apphcatron

\:al's

IloIntVar

:,J
v0

Concerf 2.ó
r n o d e l = [v ü , c 0 , c 1]
I loConskarn t c0 . c l

Soiver 6.ó
I l c ln tVar v0 ' I l cConst ra rn t c0 ' , c 1

s o l v e r = [v 0 ' . c 0 ' , c 1 ']

Constrarnts over integers Y#>2

solveFD) r) FD Logic Vars : t tX,Ol , lY,0l l

Concert2 6 + i i) I lolntVarr. l

.¿.' b1) Y #>2 arguments evaluation

ig]yg.P) v) FD Conskarnts [X#>5. X#<12, t-:r.']l
v i) "Y") rsVar= 1, index in vals = 1;

"2") rsVar : 0 . va lue = 2

Concert 2 6) vir) I loConstraint c2
vr i r) rno de l = [v0 ,c0 ,c 1 ,v1 , r3]

Solver6 6) solver.extracf(model)
rx) I lclntVar v1', I lcConstaint c2'
x) so lver . : I v0 ' ,c0 ' ,c 1 ' , v1 ' ,c2 ']

u) ;Sly.,g-|,? and ILOG CP data stucture b2) Y #>2 FD Consfarnt ry,.qd"."llle
state before Y#>2 evaluatron

Fig. 2. f OY @ Di) data structures evolution over FD Constraint expression evaluatiorr

- Figure 2a) represents the internal state of solue.FD anct ILOG CP datastruc-
tures a t the end of Toy(FDi)> X #)= 5 , X #<= 12 eva luat ion.

- Figure 2b1) and 2b2) describes which actions must be done for the correct
managernent of the new -FD Constraint Y #)= 2.

198

rr
fl
{
q
rD
;

J)
)

)

)

a
)

-

)

)

AD
)

a
a
t
É

rI
rI
-

-

rI
)

a
a
a
a
rl
rc
t
rD
rc
t
I
t
t
t
I
t
t
I
a
a
a
a

Before evaluating any goal expression, in the solueFD side L:[] and c:[] .
In t tre ILOG CP side model:[] , vars:() and solver:[] . There is also no
I lo In tVar , I loConst ra in t , I l -c In tVar , I lcConst ra in t ob jects .

- Execution of X #)= 5
The new FD constraint is added to C:[X*>_51. The new FD logic var is
added to L:[[X,0]1. A new I l-olntVar v0 is created and added to vars:<vo>
aud model:[v0]. A new I loConstraint c0 is created, involving vars[0]
and the value 5. Tl i is r loconstraint c0 is added to moder-:[v0,c0]. solver
extracts the new state of model and creates a new IlclntVar v0' and a new
f lcConstraint c0'. sol-vs¡:[v0t,c0t]. I ts constraint propagation technique
prul)es the domain of v0t:5..sup. The state of the solver remains 'Feasible' .

TOy continues eraluating next goal expression.
- Execution of X #(= 12

C : [X#>=5 ,X#< - I2] . t : [[X ,0]] . va rs :<vO> . A new l l oCons t ra i n t c l i s
created involving vars [0] and 12. model:[v0,c0,c1]. solver extracts model
creat ing I lcConst ra in t c1t . so lvs¡ : [v0 ' ,c0 ' ,c1t] . Const ra in t propagat ion
prunes v0 ' :5 . .12. so lver s ta te : 'Feas ib le ' .

- Execution of Y #)= 2
By tnanaging Y#>=2 arguments. solueFD adcls ¡: [[X,0],[Y,0]]. BV adcl ing
a Irew FD Logic Var to L. a new lLolntVar vl is created and added to
vars : (v0,v l) and model [v0,c0,c1,v1] . There is a cor respondence between
Y and vl because both are at the sarne position of L and vars respectively.
so lueFD adds y#>=2 to c : [x#>=s,x#(=12.y#>_2] . The re levant in forma_
t ion to rnodel ing the FD const ra in t in to ILOG CP is the tup le (r , r ,0 ,2>

which says if the argttments are variables or not and its index/value re-
spectively. Then a l tew l loConstraint c2 is created involving vars [1] and
tlre value 2. This r l-oconstraint c2 is added to moder:[v0,c0,c1,v2,c2].
sol-ver extracts the new state of model creating a new I lcIntVar vlt and
f lcConst ra in t c2t . so l -vs¡ : [v0 ' ,c0 ' ,c1 ' .v1 ' , c2 '] . Const ra in t propagat ion
prunes vL':2..sttp. solver state: 'Feasible' . After constraint propagation,
the program control comes back to solueFD. It finishes the rnanagement
of the FD const ra in t by s tor ing the new sta te o f L : [tx ,o] , [y ,o] l and
C: [X#>=5 ,X#1=L2 ,y#>=2) i n to C in .

- Execution of Y #(= LT
C : [x # > = 5 , x # 1 = ! 2 , y #) = 2 , Y # < - 1 7] . t : [[x , 0] , [y , O]] . r a r s : < v 0 , v 1 > . A
uew I loConstraint c3 is created involving vars [1] and 12.
model:[v0,c0.c1 .v2,c2,c3). solver extracts mod.e]- creating I l-cConstraint
c3t . so lvg¡ : [v0 ' ,c0 ' ,c 1 ' ,v1 ' ,c2 ' ,c3)) . Const ra in t propagat ion prunes
vL' :2..17. sol-ver state: 'Feasible' .

- Execution of X#+Y==17
This expression includes a compound constraint. This constraint must be
decomposed into primit ive constraints. In this case: X#+y==-7, -Z==I7

- Execution of X#+Y==-7
6 : [X#>=5 ,X#1= I2 ,Y #)=2 ,y#< .= IT , X#+Y- - _Z] .
¡ : [[X,0] , [Y,Of , [-ZrO]] . A new r lo In tVar v0 is created and addec l

199

to vars:(v0,v1 ,v2>. A trew I loConstraint c4 is created involving
vars [0] and vars [1] . model : [v0,c0,c I .v2,c2,c3,c4] . so lver ext racts
model- creating I lcfntVar v2' and f lcConstraint c4).
soLver : [v0 ' ,c0 ' ,c1 ' ,v1 ' .c2 ' ,c3 ' ,v2 ' ,c4t] . Const ra in t propagat ior r prunes
v2' :7 . .29. solver state: 'Feasible' .

- Execution of -Z==I7
TOy settds -Z == 77 t,o the Herbrand solver. This will bind the variable
_z to 17 . L : [[x , o] , [Y , o] , [17 ,0]1 .
C: [X#>=5 ,X#1=72 ,Y#)=2 ,Y#1=L7, X#+1'- -I7). However, this value
u,ill not be automatically synchronized with ILOG CP. Tlie synchroniza-
tion ivill happen before either a new .FD constraint is sent or at the end
of the TOy goal.

Execution of X#-Y==5
This expression is decornposed again into X#-Y==-T, -T==5

- Execution of X#-Y==-T
As we have pointed out, befbre tlte new FD constraint is sent to ILOG
CP. any pattern lualue,0l contairred in L at posit ion i wi l l be synchro-
rr ized with model by adding the rrew f l-oConstraint vars l í)==rotu".
C : l x#>=s ,X#1=72 ,Y#)=2 ,Y#1= I7 , X#+y==171 .
¡ : [[X , 0] , [Y , 0) , 1 I 7 , 0]] . A n e w l l o C o n s t r a i n t c 5 i s c r e a t e d i n v o l r -
ing vars [2] and 17.
model : [v0,c0, c 1. r '2,c2.c3,c4,c5] . s olver extracts model creating
I 1 cConst ra in t c5 ' . so lvs¡ : [v0 ' ,c0 ' .c 1 ' ,v1 ' ,c2 ' ,c3 ' ,v2 ' ,c4 ' ,c5 ') .
Cons t ra i n t p ropaga t i on bounds va rs [2] t o 17 . L : [[X ,O] , [y , 0] , [17 ,1]] .
solver state: 'Feasible' .

As t lrere is no nlore patterns lualue,o) in L, solueFD is now able to
lllanage tlte constraint X#-Y==-T. So tlie new FD constraint is added to
C : fX#>=5 ,X# (= !2 ,Y#)=2 ,Y#1= I7 , X#+Y==17 , X# -Y - -_T l .
¡ : [[X , 0] , [Y , 0] , [1 7 , 1] , [- T , 0] 1 . A n e w I l - o l n t V a r v 0 i s c r e a t e d a n c i
addec i t o va rs : (v0 , v1 , v2 , vJ) . mode l : [v0 , c0 , c1 , v2 , c2 ,C3 ,cL , cb , vS] . A
rueu' r loconstraint c6 is created involving vars [0] and vars [1] .
model : [r '0 .c0.c1. r '2 .c2.c3.c4,c5.v3,c6] .so lver ext racts model - c reat ing
I lc ln tVar v3 ' and I lcConst ra in t c6t .
so l ve r : [r ' 0 ' . c0 ' . c i ' . \ ' 1 ' . c2 ' . c 3 ' , v2 ' , c4 ' , c5 ' , v3 ' , c6 t] .
Coust r¿r in t propagat ion prunes v0t :6 . . 12, v I t :5 . .1 1 ' , v3t :1 . .7 .
sol-ver state: 'Feasible' .

- Execution of -T==5
f O)) sencls -T == 5 to the Herbrand solver. This will bind the variable
_ T t o 5 . r n a k i n g ¡ : [[X , 0] , [Y , 0) , 1 L 7 , 1] , [5 , 0]] ,
C : [X#>=5 ,X#1= I2 ,Y#)=2 ,Y#1=L7 , X#+ f==17 , X# -Y - :b] .
Again, the svnchronization will happen before either a new F D con-
straint is sent or at the end of the TOy goal.

The TOY goal is almost finished. To completely flnish the goal cornputation
we synchronize the pairs L with the pattern [uoLue,O7.
C : [X#>=5 ,X#1= I2 ,Y#)=2 , y# (= I7 , X#+y==171 .

T
!
!
F
F
F
é

é

I
a
é

é

í

I
a
a
I
¿

€

€

€

€

?
a
e
€

t
I
t
!

F

F

t
It

I

IT

I

IT

I

1,

!

T
!

IF

F
F
a
I
u

200

-

{

I
{
rl
ta
-

-

)

a
ó

-

-

-

-

-

-

-

2l
rt
-

'D
at
AD
-

ta
-

-

)

-

-

aa
tl
f,
r'
!t
rt
rt
T
a
a
a
f,
f
rl
)

)

)

-

¡ : [[X , 0] , [Y , 0] , [1 7 , 1] , [5 , 0]] . A n e r v I l - o C o n s t r a i n t c T i s c r e a t e d i n -
vo lv ing vars [3] and 5. model : [v0,c0,c1,v2.c2,c3,c4,c5,v3.c6,c7] . so lver ex-

tracts model creating I lcConstraint c7t.

so lver : [v0 ' ,c0 ' ,c1 ' ,v l ' ,c2 ' ,c3 ' ,v2 ' ,c4 ' .c5 ' ,v3 ' ,c6 ' ,c7 ') . Const ra in t propagat ion

b o u n d s v a r s [3] t o 5 , v 0 ' : 1 0 . . I 2 . v L ' - - 5 . . 7 ' . ¡ : [[X , 0] , [Y , o f , 1 I 7 , 1] , [5 , 1]] .
solver state: 'Feasible' .
After this synchronization, the TOy goal is cornpletely finished. It shows

as the computed answer the set of non-grouud FD constraints of C as well

as the (unbound) variables of L. For each of these variables. TOy shows its

domain. These values are obtained from the IlclntVar contained in solver

througli the associated IloIntVar contained in mode1. Each decision variable
of model is accessed tlirough its position of vars.

yes

{ x * + Y # = 1 7 ,

X # - Y # = 5 ,

X i n I 0 . . L 2 ,

Y i n 5 . . 7 j

E lapsed t ime : 16 ms .

so l . 1 , more so lu t ions (y /n /d / a) ty l Z

no

E lapsed t ime : 0 ms .

3 Measuring Performance

In this section we use two test parametric, scalable (on n) benchrnark programs

which model systems of linear equations A * X : b. Each system has n inde-
penden t equa t i ons w i t h n va r i ab les [X1 , . . . ,Xn] whose doma ins a re {1 . . r } .
Each systern has a unique integer solution. Tire rnatrix A takes the value zl on
its diagonal coefficients A¿,¿ and the value 1 fbr the rest of them.

Both benchmark programs have been run irr a machine with an Intel Dual

Core 2.4Ghz processor and 4GB RAM memory. Tlie SO used is Windows XP

SP3. The SICStus Prolog version used is 3.12.8. The ILOG CP application used
is ILOG CP 1.4. with ILOG Concert 2.6 and ILOG Solver 6.6 l ibraries. N{icrosoft
Visual C++ 6.0. tools are used for compil ing and l inking the application.

We show perfornrance results (expressed in rniliseconds) for the fbllowing

systems: both TOy(FDs) and TO!(FDz) just described, and also for a Cf*
program directly modelling the problems using the ILOG CP libraries (denoted

by FDs, FDi and ILOG in the tables, respectively). The latter wi l l help us in

analysing the overhead due to TOI irnplementation of lazy narrowing.

For each benchmark, we strow three instances of n: 4, 12 and 15 variables. In

each case, we present results for two labeling strategies: a static search procedure

which selects the variables in the textual order they occur in the program, and
the dynamic search procedure'f i rst fai l ' (denoted bV f f) , which selects f irst the
variable with minirnum dornain size. For a given variable, both of them selects

first the minimum value in its doniain.

207

Also. we show the speedups of TOy(FDi) with respect toTO!(FDs) and

ILOG CP respectively. Specifically, we denote as:

- (") to the speeclup of TO)S(FD|) with respect to TOy(FDs) using the

static search procedure to solve the problem.
- (b) to the speedup of TOU(FDz) with respect to TO!(FDs) using the ' f i rst

fail' searcir procedure.
- (.) to the speedup of TO!(FDL) with respect to ILOG CP C++ prograln

rtsing tlie static search procedure.
- (d) to the speedup of TO!(FDá) with respect to ILOG CP C++ progran)

using the 'first fail' search procedure.

The benclitlarks programs are:

- The so l ¡ t i on [X1 , . . . ,XnJ ho lds : V i € {1 . . . t r } X i : ¿ . Pe r fo rn ta l l ce l nea -

srlrentent q-ives the following results:

n FDs FDs¡r FDi FD|TT TLOGTLOGI J (u) (b) (*) (d)

4 0 1 5 0 0 1 5 1 5 1 . 0 0 0

l 2 3 1 1.750 1 5 6 5 1 6 1 5 287 5 .00.291 0 . 41 . 8 3

1 5 297 299,31.2 423 67.376 63 20^578r .420.22 6 . 73.27

For this f irst benchmark, TOy(FDi) takes more t inre than TOI(FDs) for

solving with the static search procedure, but less tirne fbr the dynamic search

procedure. Tire solving tirne difference between thern grows as we increase

the n¡mber of variables for the benchmarks. Looking at ltow the domairls of

the variables evolve after the initial constraint propagation, we can conclude

that the struct¡re of the solutiotr fbr this first benchnrark fits quite well into

the static search proceclure. rvhile it is ciramatically harmf'ul to the dynamic

search procedure. Tliis help us to realize that, for problerus where the needed

exploratio¡ to obtain the solut ion is real lv stnal l , then TO!(FDi) is slower

tltan TO)) (FD.s). This is because of the time involved in the communicatiotr

bets'ee¡ t l ie Prolog implementation of TOU(FDi) and ILOG CP. However,

as the ¡ocles ¡eeclecl to be explored increase slightly, this waste of tinre is

lralailcecl. ilraking TOJ)(F Dz) more efficient than TO!(F Ds).
- The so lu t ion [X l , - ,Xn] ho lds: V¿ € {1 . .n} x l : n , - (i - 1) . Per formance

lneasurement gives the follou'irlg results:

n FDs FDSJ¡ FDi FD¿T J TLOG ILOGT¡ (") (b) (.) (d)

4 1 6 1 6 16 31 3 1 1 5 1 .01 . 9 3 0 . 5 12.06
I 2 531 250 437 r26 109 630.830.50 4 2
1 5 15,56321,96813,937 3,406 843 1,7650.900 . 1 616.531 . 9 3

The above conclusions are clearly confirmed in this second benchmark, where

TOy(FDz) is faster than TOy(FDs) for both search procedures. In this case)

the structure of the solution is dramatically harmful for the static strategy, while

it belraves better for the dynamic strategy. In the fbrmer. TO!(FDz) takes

F
F
F
F
;

1;

O
O
€

o
€

é

€

I
é

e
(

é

e
é

e
C
é

a
a
J
I
F

,

,

F
T
I
I
T

í

a
I
I

I
I
!
I

I
I
;

I
í

a

202

I'

t
n
{

I
ü

-

a
f
-

a
-

)

-

)

-

-

aa
rt)
rt
t
t
t
t
t)
!
)

)

a
a
a
a
t
I
I
t
I
t
I
t
t
t
I
I
a
a
I
ü

I

slightly less solving time than TOI(FDs). In any case, these rneasurerlents
point out that our first approach to integrate the ILOG CP technology into
TOy(FDi) is encouraging, but also that the nanagement of tlie additional
data stmctures used for the interface should be optirnized.

4 Conclusions and F\rture Work

In this work, we have studied how to integrate the FD ILOG CP technologv
into tlie svstem TOy. We have shown that this technology offers some advan-
tages over the existing system TOy based on the FD technology of SICStus
Prolog. We liave described in detail our implementation, showing that the ap-
plication architecture of TOy and ILOG CP are hard to integrate in terms of
a correct courmunication between them. Wb have shown by means of two scal-
able benchmarks that the new systen TO!(FDi) is faster tban TO!(FDs)
as the benchmark increases its size. However. we have corrcluded that there is
a perfbrrnalrce penalization due to the managenrent of the data structures that
tnake possible the connection of TO)) with its new F'D component. Therefore,
optirnizing this llranagernent will be the target of our immediate future work.
In addition, backtracking nlanagernent will be covered in a next work, together
witir an extended set of benchmarks. Another sub.ject of interest is to test other
constraint l ibraries. as Gecode [111.

References

1. P. Arenas, S. Estévez, A. Fernández, A. Gil, F. López-Fraguas, N{. Rodríguez-
Artalejo, and F. Sáenz-Pérez. TOy.a multiparadigm declarative language.
version 2.3.7.. 2007. R.. Caballero and J. Sánchez (Eds.), Avai lable at
http : / / toy. sourcef orge . net.

2. R. G. del Carnpo and F. Sáenz-Pérez. Programmed Search in a Timetabling Prob-
Iem over Finite Domairrs. ELectr. Notes T'heor. Comput. 9ci. ,177:253 267,2007.

3. S. Estévez-\4artín, A. Fernández, N{. Hortalá-González, F. Sáenz-Pérez,
Nf . R.odríguez-Artalejo. and R. del Vado-Vírseda. On the Cooperation of the Con-
straint Domains H, R and FD inCFLP. Theory and Practice of Logic Program-
m'ing, 2009. Accepted for publication.

4. S. trstévez-N4artín, A. J. Fernández, and F. Sáenz-Pérez. About implementing a
corrstraint functional logic programming system with solver cooperation. In proc.
of CICLOPS'17, pages 57-77, 2007.

5. A. J. Fernández. T. Hortalá-González, F. Sáenz-Pérez, and R. del Vado-Vírseda.
Constraint Functional Logic Programming over Finite Domains. Theoru Pract.
Log. Program.. 7(5):537 582, 2007.

6. ILOG. ILOG Solver 6.6, Reference \,{anual, 2008.
7. ILOG. ILOG OPL Studio 6.1, Reference N4anual, 2009.
8. N4icrosof t ,2005. h t tp : / /msdn.microsof t .com/en-us/v isua lc /defau l t .aspx.
9. SICStus Prolog. Using SICStus Prolog with newer Microsoft C compilers.

10. SICStus Pro log. 2007. h t tp : / /vuw.s ics .se l is l /s ics tus.
11. The Gecode team. Generic constraint development environment. Available from

http: / /www. gecode.org, 2006.

203

Ianq ó _q-
Sc¡ent¡fic aponsorsh¡p

t
t
ta
rl
a
aa
aa
2 Santiago Escobar (Ed.)
)

rt
rl
r¡
I
t
t
! F\rnctional and (Constraint) Logic
-

; I'rogrammrng
t
! l8th International Workshop, WFLP'O9rt
rl part of the Federated Conference on Rewriting, Deduction, and
I Programming (RDP'09)
t
rt Brasília, Brazll, June 28, 2009.
I
t
I Informal Proceedings
t
ll
rl
a
a
a
a
a
a
a
a
a
a
a
a
a
I
I
I
a
a

rD
rD
ta
t
ta
-

-

-

)

-

-

rl
sa
t
t
t
I
|'

rt
t
r|)
t
f
rl
t
rt
t
t
t
-

ta
-

-

-

-

-

-

ú

t
t
)

-

)

-

rl
-

t
-

a

Preface

Tlris report contains the infbrmal workshop proceedings of the 18th International Workshop on

Ftnrctional and (Constraint) Logic Prctgramming (WFLP'09), lield at Brasília, Brazil, during June

2E. 2009. WFLP'09 is part of the Federated Conference ott Rewriting, Deduction. aud Programrning
(RDP'09). Previous meetings are: WFLP 2008 (Siena, I taly), WFLP 2007 (Paris, France), WFLP

2006 (Nladrid, Spain), WCFLP 2005 (Tal l inn, trstonia), WFLP 2004 (Aachen, Gertnany), WFLP

2003 (Valencia, Spain), WFLP 2002 (Grado, I taly), \ IFLP 2001 (Kiel. Germany). WFLP 2000

(Benicassim, Spain), \ \¡FLP'99 (Grenoble, France), WFLP'98 (Bad Honnef, Germauy), WFLP'97

(Schwarzenberg. Germany), WFLP'96 (Nlarburg, Germany), WFLP'95 (Schwarzeuberg, Gerrnany).

\ \ ;FLP'94 (Schwarzenberg. Germany), WFLP'93 (Rattenberg, Gertnany), and WFLP'92 (Karl-

snrhe, Gernrany).
Tire aim of the WFLP workshop is to bring together researchers interested in functional pro-

granuning, (constraint) logic progranrrning, as well as the integration of the two paradigms. It

pronrotes the cross-f'ertilizing excliange of ideas and experiences arnong researchers and students

from the different corununities interested in the foundations, applications aud combinations of

higli-level, declarative programmiug languages aud related areas.

The Program Comniittee of WFLP'09 collected three reviews fbr each paper and held an

electronic cliscussion during N,fay 2009. The Program Comniittee selected 12 regular papers fbr

l tresentation at the workshop. In addit ion to the selected papers, the scienti f ic progranr iucludes

two invited lectures by Claude Kirchner from tlte Centre de Reclierclie INR.IA Bordeartx - Sud-

Ouest. Frarrce altci R,oberto Ierusal inrschv froni t l te Departantctrto de hiforrnática. PUC-Rio. Brazi l .

I would like to thank thenr fbr having accepted our itn'itatiott.

I would also like to thank al! the members of the Program Conrnrittee arrcl all the ref'erees for

tlieir careful work in the review ancl selection process. N{atit' thanks to all ¿rrtthors n'lto sttituiitted

papers and to all conf'erence participants. We gratefully acknowledge the Departarnento de Sistemas

Infonnd,ticos A Computación of the Llniuersidad Politécnica de Valencia, who has supported this

event. Finally. we express our gratitucle to all members of the local organization of tlie Federated

Conference on R.ewrit ing, Deduction. and Programming (RDP'09). whose rvork has made the

rvorkshop possible.

Brasília, Brazil, Santiago Escobar
WFLP'09 Chair.June 2009

t
t
t
I
t
a
a
a
a
a
a
a
a
t
I
I
I
I
I
t
I
t
I
t
I
I
t
t
D
D
D
I
a
a
I
ü

a
I
I
I
I
I
I
I
I
I
t
D
I

Organization

\ \-FLP'09 is part of t l ie Federated Conf'erence on R,ewrit ing, Deduction, ancl Progranrnring (R.DP'0g).

Program Committee

\ la r ía A lpuente

>ergio Antoy
C' l r r is t ia l ro Braga
Rafael Caballero
Davicl Déharbe
Rac'hicl Echahed
\loreno Falascl i i
\ l ichael Hanus
Frank Huch
Tetsrro Ida
\\blfgang Lux
\ l i rcea Nlar in

C'amilo Rueda

Universidad Politécnica de Valencia, Spain
Portland State University, USA
Universidade Federal Fluminense, Brazil
Universidad Complutense de Madrid, Spain
Universidade Federal do Rio Grande do Norte, Brazil
CNRS, Laboratoire LIG, France
Universitá di Siena, Italy
Christian-Albreclrts-Universitát zu Kiel, Gerlnany
Christian-Albrechts-Universitát zu Kiel, Germany
University of Tsukuba, Japan
Westfalische Wilhelms-Universitat N{unster. Germanv
University of Tsukuba, Japan
Universidad Javeriana-Cali. Colombia

'Jairtre Sáncliez-Heruárrdez Universidad Complutense de N,Iadrid. Spain
-\ttderson Santana cie Oliveira Universidade Federal do Rio Grande do Norte. Brazil

Additional Referees

Gloria ÁI,r,..e, Iliano Cervesato Albert Rubio Rafael del Vado Vírsecla
Demis Ballis Yukiyoshi Kameyama Clara Segura Toshiyuki Yanrada
Berncl Brafiel Tenlur Kutsia Peter Sestoft Hans Zantema
Linda Brodo N,Iiguel Palomino Thierry Boy de la Tour

Sponsoring Institution

Departarnento de Sistemas Informáticos y Computación (DSIC)
Uni'u'ersidad Politécnica de Valencia (UPV)

I
t
I
t
t
rl
a
a
)

a
a
a
a
a
a
a
a
Il

I
I
I
|r
t
i
I
t
I
I
I
I
I
I
a
a
I
a
a
a
t
)

)

)

)

I
I
I
I
I
)

Table of Contents

Strategic Deduction

Claude Kirchner, Florent Kirchner, and Héléne Kircltner

Programming with N,Iultiple Paradigms in Lua
Roberto Ierus alimsch,y

A Tlieoretical Franrework for the Declarative Debugging of Functional Logic Prograrns
u,ith Lambda Abstractions

Ignac'io Casti,ñe'iras Pérez and Rafael del Vado Vírseda

Type Checking and Inference Are Equivalent in Lambda Calculi with Existential Types. . . .
Yuki, Kato and Ko ji Nakazawa

A Taxonorny of Some Right-to-Left String-Matching Algorithms .
Manuel Hernd,ndez

A Siniple Region Inf'erence Algorithm for a First-Order Functional Language .
Manuel Montenegro, R'icardo Peña. and Clara Segura

pFun: A Semi-explicit Parallel Purely Functional Language. . . .
André R. Du Bois, Gerson Caualheiro, and Juliana Vizzotto

Realizing N'Iultiparadigm Programming based on Hierarchical Graph Rewriting
Petra Hofstedt and Kazunori Ueda

Termiuation of Context-Sensitive Rewriting with Built-In Numbers and Collection Data
Structures . . .

Stephan Falke and Deepak Kapur

Setlantic Labelling fbr Proving Termination of Combinatory Reduction Systerns
Makoto Hamana

Fast and Accurate Strong Termination Analysis with an Application to Partial Evaluation
Michael Leuschel, Saluador Tamarit, and Germán Vidal

Advances in Type Systems for Functional Logic Programming . .
Francisco J. López-Fraguas, Enri,que Martín-Martín, and Juan Rodrguez-Hortal(t"

A Complete Axiomatization of Strict Equality over Infinite Tlees
Jauier Át ez and, Francisco J. López-Fraguas

Integrating ILOG CP technology into TOU
Ignacio Castiñeiras and Fernando Sáaenz-Pérez

t .)

1 5

31

45

95

1 1 1

r27

r4l

r57

173

189

