
Integrating ILOG CP Technology into T OY�

Ignacio Castiñeiras1 and Fernando Sáenz-Pérez2

1 Dept. Sistemas Informáticos y Computación
2 Dept. Ingenieŕıa del Software e Inteligencia Artificial

Universidad Complutense de Madrid
ncasti@fdi.ucm.es, fernan@sip.ucm.es

Abstract. The constraint functional logic programming system T OY
has been using the SICStus Prolog finite domain (FD) constraint solver.
In this work, we show how to integrate the ILOG CP FD constraint solv-
ing technology into this system, with the aim of improving its application
domain and performance. We describe our implementation emphasizing
the synchronization between Herbrand computations in the T OY side
and FD constraint solving in the ILOG CP side. Finally, performance
results are reported and discussed.

1 Introduction

T OY [1] is a system implemented in SICStus Prolog 3.12.8 [11]. Its operational
semantics is based on a lazy narrowing calculus and includes several constraint
domains allowing its cooperation. This system allows Herbrand equality and dise-
quality constraints (managed by the constraint domain H), linear and non-linear
arithmetic constraints over reals (R), finite domain constraints over integers
(FD), and a communication domain M which makes possible the cooperation
among H, R and FD. Whereas R as FD rely on the constraint solvers provided
by SICStus Prolog, solving in H and M needs an explicit management [3]. T OY
offers a wide range of finite domain constraints comparable to many CLP(FD)
systems, using a concrete constraint solving system as one of its components
[5]. Here, we focus on this particular constraint domain for integrating a new
constraint solving system based on ILOG CP technology.

The generic component architecture of the connection between T OY and its
external FD constraint system is shown to the left of Fig. 1. T OY identifies each
FD constraint during goal solving, and factorizes this (possibly) composed con-
traint into primitive ones, adding new produced variables if necessary [3]. Then,
it posts these primitive constraints to solveFD , which acts as an intermediary
between T OY and the external FD system. solveFD sends the constraints to
this system and collects its computed answers.

� This work has been partially supported by the Spanish projects TIN2005-09207-C03-
03, TIN2008-06622-C03-01, S-0505/TIC/0407 and UCM-BSCH-GR58/08-910502.

S. Escobar (Ed.): WFLP 2009, LNCS 5979, pp. 27–43, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

28 I. Castiñeiras and F. Sáenz-Pérez

1.1 T OY with SICStus Prolog CLP(FD): T OY(FDs)

T OY (referred to as T OY(FDs) from now on) has been using the FD con-
straint system provided in the library clpfd of SICStus Prolog, which is ba-
sically composed of a constraint store and solver. The component architecture
of the connection between T OY and SICStus Prolog FD constraint system is
shown in the middle of Fig. 1. Next, we show a basic example for illustrating
the use of the system T OY(FDs) with finite domains constraints.

TOY

Constraints
over integers

SICStus Prolog

Other
domains

Other
solvers

FD external
system

solveFD solveOther

TOY

Constraints
over integers

SICStus Prolog

Other
domains

Other
solvers

clpfd

solveFDsolveOther

Constraints
over integers

SICStus
Prolog

Other
solvers

ILOG CP
Application

Concert 2.6
Solver 6.6

solveFD solveOther

Other
domains

TOY

 Generic TOY(FDS) TOY(FDI)

Fig. 1. Architectural Components

Example 1. Let’s consider that X is an integer between 5 and 12, Y is an integer
between 2 and 17, X+Y=17 and X-Y=5. It is possible to solve this problem in
T OY(FDs) as shown in the following interactive session:

TOY(FDs)> X #>= 5, X #<= 12, Y #>= 2, Y #<= 17,
X #+ Y == 17, X #- Y == 5

yes
{ 5 # + Y #= X,
X # + Y #= 17,
X in 10..12,
Y in 5..7 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

However, the use of the SICStus Prolog FD system reveals some disadvan-
tages:

– Recent works [2] have proved that its performance can be enhanced, which
is needed when dealing with complex problems.

Integrating ILOG CP Technology into T OY 29

– The constraint solver works as a black-box for predefined search processing.
This precludes user-defined interactions for pruning the search tree.

– There are no debugging capabilities allowing, for instance, to derive the
subset of infeasible constraints.

1.2 ILOG CP to Improve T OY

ILOG CP 1.4 [7] is an industrial technology market leader. It has a declarative
nature. It provides aC++API to access its libraries. ItsFDconstraint solverworks
as a glass-box, allowing interactions during the solving process. It also includes
debugging techniques helping the user to discover the unfeasible subset of the input
constraint set. It allows the user to define new classes of constraints in order to
formulate different and complex properties. The use of different constraint solvers
for a unique application domain is also allowed. Moreover, libraries using specific,
efficient algorithms for solving complex scheduling problems are provided.

Any ILOG CP 1.4 application isolates objects responsible of modeling the user
problem from objects responsible of solving any concrete model. Following this
idea, the problem is modeled in a generic language, easing the task of expressing
the constraints of the problem. Once the modeling phase is completed, the model
can be solved by one or more different constraint solvers. The solver extracts all
of the modeling objects contained into the model, creating a one-to-one object
translation. This new objects belonging to the solver are semantically equivalent
to the modeling objects, but their internal structure is targeted at the solver.
It is possible to access each object created by the solver through the associated
object contained into the model. The most paradigmatic tool representing this
philosophy is ILOG OPL Studio [8]. ILOG CP 1.4 includes the library ILOG
Concert 2.6 to provide the necessary interface for connecting models to solvers.
Three libraries are provided for FD constraint solving:

* ILOG Solver 6.6, for generic FD problems solving.
* ILOG Scheduler 6.6, with specific algorithms for solving scheduling problems.
* ILOG Dispatcher 4.6, with specific algorithms for solving routing problems.

In this work we will consider only ILOG Solver 6.6. Fig. 2. shows the basic
objects needed to model and solve the FD problem proposed in Example 1:

– IloEnv env . It manages the memory of any object of the application.
– IloModel model(env). Is the main modeling object. Contains the set of

objects responsible of formulating the FD problem, which are:
• FD constraints, each of them modeled as an IloConstraint object.
• FD decision variables, each of them modeled as an IloIntVar object.

– IloIntVarArray vars(env). This vector is intended to make possible to
reference, from a unique object, any IloIntVar contained in model.

– IloSolver solver(env). Is the main solving object. Contains the set of
objects responsible of solving the FD problem, which are:
• FD constraints, each of them modeled as an IlcConstraint object.
• FD decision variables, each of them modeled as an IlcIntVar object.

30 I. Castiñeiras and F. Sáenz-Pérez

ILOG CP Application

ILOG CONCERT 2.6

IloEnv env
IloIntVarArray vars = [x, y]

IloModel model = [x,y,c0,c1]

IloIntVar x
IloIntVar y

IloConstraint c0 = x + y == 17
IloConstraint c1 = x – y == 5

ILOG SOLVER 6.6

 IloGoal goal

IloSolver solver = [x’,y’,c0’,c1’]

IlcIntVar x’ in 10..12
IlcIntVar y’ in 5..7

IlcConstraint c0’ = x’ + y’ == 17
IlcConstraint c1’ = x’ – y’ == 5

Fig. 2. Generic ILOG CP Application

The main methods of solver we use in this work are:
• solver.extract(model). For each IloIntVar and IloConstraint con-

tained in model it creates an associated new IlcIntVar or
IlcConstraint object, whose internal structure is targeted at solver
solving techniques.

• solver.propagate(). Propagates the IlcConstraint set contained in
solver. This propagation prunes some values of the IlcIntVar set con-
tained in solver by using limit consistency techniques. In Fig. 2. we can
see the remaining values of the IlcIntVar set contained in solver after
the propagation of the IlcConstraint set.

• solver.solve(goal). Uses the labeling enumeration procedure defined
in goal to look for a first concrete solution of the FD problem contained
in solver.

– IloGoal goal(env,vars,Strategy). This object represents a labeling enu-
meration procedure which labels the IlcIntVars contained in solver as-
sociated to the IloIntVars contained in vars. By this labeling procedure,
solver is able to find the different extensional solutions to the FD problem.
In this work we use two labeling strategies predefined in ILOG Solver 6.6:
• A static search procedure IloChooseFirstUnboundInt, which selects

the variables in the textual order they occur in vars.
• A dynamic search procedure ‘first fail’ IloChooseMinSizeInt, which

selects first the variable of vars with minimum domain size.
For a given variable, both strategies select first the minimum value in its
domain.

2 T OY with ILOG CP: T OY(FDi)

In this section, we explain in detail how to integrate ILOG CP FD technology
into the system T OY (referred to as T OY(FDi) from now on). T OY is im-
plemented in SICStus Prolog while ILOG CP is a technology implemented and

Integrating ILOG CP Technology into T OY 31

available in C++. So, first we study how to make a connection between T OY
and ILOG CP by connecting SICStus Prolog and C++. Our approach is based
on the integration of a C++ foreign resource into a SICStus Prolog application.
Due to the different nature of both languages, we study the emerging difficulties
to establish a communication between T OY and ILOG CP, as well as the deci-
sions we have made to solve them. Also, an example of the behavior of the new
system T OY(FDi) is shown.

2.1 Connecting SICStus Prolog to C++

It is possible to communicate a SICStus Prolog application to a C++ compo-
nent. The C++ component needs to be a dynamic library with a specific internal
file structure. This communication is done by mapping a set of linking Prolog
predicates (contained in the Prolog application) to a set of C++ functions (de-
fined in the C++ component). SICStus Prolog also defines a set of possible
conversions between Prolog arguments and C++ arguments. Each argument of
a linking Prolog predicate must also indicate if it is either an input argument
(sent to the C++ function) or an output argument (computed by the C++ func-
tion). There is a bidirectional conversion between a Prolog term and the C++
type SP term ref. By invoking SP term ref object methods, C++ functions
can perform the following actions:

– Create and assign Prolog terms.
– Obtain the contents of a Prolog term.
– Compare and unify Prolog terms.

This context supports the necessary conditions to connect T OY and ILOG
CP by making just a few changes in the component architecture of T OY , whose
new structure can be seen on the right hand side of Fig. 1.

- From the point of view of T OY , it is necessary to put a new Prolog predicate
in any place of solveFD where a communication with ILOG CP is needed
(posting a new constraint, declaring a new ILOG decision variable, etc.)

- On the other hand, we build a new ILOG CP application which integrates
ILOG Concert 2.6 and ILOG Solver 6.6 libraries. This application contains
instances of the basic modeling and solving objects explained in Section
1.2. It also includes the set of C++ functions linked to the existing Prolog
predicates in solveFD.

Each time solveFD calls any interfaced predicate, first, it turns all Prolog
arguments into C++ arguments. Next, it transfers the program control to the
C++ function, which uses and/or computes them within its body. Once the
C++ function has finished, the execution control comes back to solveFD, which
continues with the evaluation of the next call.

Creating a SICStus Prolog C++ Foreign Resource
SICStus Prolog supplies a tool, splfr [10], for creating a dynamic library as, for
instance interface.dll taking as input two files:

32 I. Castiñeiras and F. Sáenz-Pérez

– interface.pl Declares the mapping of each Prolog predicate to each C++
function. It groups all of these functions in a unique resource. For example:
foreign(f1,p1(+integer)).
foreign(f2,p2(+term,-term)).
foreign resource(interface,[f1,f2]).

– interface.cpp Includes the C++ functions mapped to Prolog facts. It adds
as many auxiliary functions and libraries as needed. For example:
void f1(long l){...}
void f2(SP term ref t1, SP term ref t2){...}

The macro splfr is used as a shortcut to the execution of some compiling
and linking commands offered by Microsoft Visual C++ [9]. First of all, tak-
ing interface.pl as input, it creates two new files, interface glue.c and
interface glue.h, which provides the necessary glue code for the SICStus
application.

2.2 Communication between T OY and ILOG CP

In this section we explain in detail how to solve the communication difficulties
between SICStus Prolog and ILOG CP in the system T OY(FDi). As T OY is a
system implemented in SICStus Prolog, the communication between T OY and
its FD technology is quite natural in T OY(FDs). However, as ILOG CP is
implemented in C++, some glue code is needed to fix the impedance mismatch
problem in T OY(FDi).

There have been four difficult tasks to overcome in the new system T OY(FDi).
We explain each of them in the next subsections. When we make reference to any
ILOG CP application object, we use the notation of Section 1.2. To this end, we
use model if we refer to the ILOG Concert 2.6 model object, we use solver if we
refer to the ILOG Solver 6.6 generic FD solver, and we use vars if we refer to the
decision variables contained in model.

Managing FD constraints
The set of FD constraints of a T OY goal involves a set of logic variables that
we denote as ‘FD logic variables’. To model the FD constraint set with ILOG
CP, some points must be taken into account:

– We need to create as many IloIntVar decision variables as FD logic vari-
ables take part into the FD constraint set. These variables must be added
to model and vars.

– We must find a bijective relation that associates each FD logic variable of
the T OY goal to each decision variable existing in the ILOG CP vector vars.

– We model each FD constraint in ILOG CP over the set of decision variables
of the vector vars associated to the set of FD logic variables involved in
that FD constraint.

Whatever way of communication between T OY and ILOG CP, for each FD
constraint and each FD logic variable we need three instances:

Integrating ILOG CP Technology into T OY 33

- The FD constraint and FD logic variable contained in T OY.
- The IloConstraint and IloIntVar contained in model.
- The IlcConstraint and IlcIntVar created by solver from its associated
IloConstraint and IloIntVar contained in model, respectively.

Fig. 3. shows the association between the different instances of an element in
T OY , ILOG Concert 2.6 and ILOG Solver 6.6.

TOY ILOG CONCERT 2.6 ILOG SOLVER 6.6

X IloIntVar x IlcIntVar x’
Y IloIntVar y IlcIntVar y’
X #> Y IloConstraint c0 = x > y IlcConstraint c0’ = x’ > y’

Fig. 3. Association between T OY and ILOG CP

A first attempt for mapping a FD logic variable to a decision variable of
vars is tried. It intends to manage vars and a SP term ref vector, making
them evolve simultaneously. The elements of the SP term ref vector are in fact
the SP term ref conversions of the FD logic variables. Each time solveFD sends
a new FD constraint to ILOG CP, the associated C++ function will first look for
its FD logic variables in the SP term ref vector. If it can not find any variable,
we can ensure that the C++ function is dealing with a new FD logic variable
not handled before. So, the C++ function adds this new FD logic variable
to the SP term ref vector last position, say i. Immediately, a new IloIntVar
decision variable is created and added to model and vars[i]. When each FD
logic variable of the FD constraint sent by solveFD is contained at an index of
the SP term ref vector, the FD constraint is modeled over the decision variables
of vars associated to these indexes.

However, this first attempt fails. This is due to the rules which govern the
scope of a SP term ref. When a C++ function containing SP term refs (as
arguments or dynamically created within it) finishes its execution, all these
SP term refs become invalid. Let’s see the next example, where we define an
interface between the Prolog predicates p1, p2 and p3 and the C++ functions
f1, f2 and f3, respectively. Functions f1 and f2 receive a Prolog term as an
argument, while f3 receives two Prolog terms.

– Let’s call p3 with two occurrences of the logic variable X, as p3(X,X). If we
call SP compare(t1,t2) within f3(SP term ref t1, SP term ref t2)
the result says that both SP term refs are in fact the same Prolog term.

– But, let’s do the call p1(X). We store t1 of f1(SP term ref t1) in a global
vector with type SP term ref. When f1 finishes, the program control comes
back to Prolog. Now, we call p2 with the logic variable X again, p2(X).
If we call SP compare(t1,t2) within f2(SP term ref t2) between t2 and
the SP term ref stored in the vector during f1, the result says that both

34 I. Castiñeiras and F. Sáenz-Pérez

SP term refs are different. There is no doubt that both are in fact the same
Prolog term. The problem is that, when f1 finishes, the SP term ref stored
in the vector becomes invalid.

The second and successful attempt relies on the management of the bijective
relation, which is done in the Prolog application by the use of a list of FD logic
variables (referred to as V from now on). We want V to be used in each solveFD

predicate. On the one hand, SICStus Prolog does not allow global variables.
On the other hand, there is a logic variable Cin [4], which represents a mixed
constraint store and is common to each solveFD predicate. Our plan is to store
any data structure demanded by the communication between T OY and ILOG
CP, specifically our FD logic variables list V, into Cin. Each time a solveFD

predicate manages a new FD constraint, we can check whether a FD logic
variable belongs to V or not by accessing it within Cin. Any new FD logic
variable is automatically added to the end of V, say at position i. Here, a new
call to the C++ function which creates a new IloIntVar is done. This function
adds this decision variable to model and vars[i]. Once all FD logic variables
of the FD constraint belong to V, solveFD determines their indexes, and puts
them as arguments to the C++ function, which models the FD constraint by
adding to model a new IloConstraint over the associated positions of vars.

Synchronizing ILOG CP with T OY
T OY can also bind its FD logic variables through an equality constraint in
the Herbrand solver. For example, in the goal TOY(FDi)> X #>= 0, X == 3 the
variable X is bound to the value 3. This is done by the Prolog term unification
which results from the Herbrand equality constraint X == 3. This unification
is visible at any occurrence of that FD logic variable, particularly the one in
V. This causes an inconsistency between the contents of V and vars. To repair
this lack of synchronization we must send an equality constraint to ILOG CP,
making the mapped decision variable in vars equals to the bound value.

A first attempt tries to synchronize by an event-driven approach. To capture
events, SICStus Prolog provides the module of attributed variables. This mod-
ule assigns attributes to a set of logic variables. Each time an attributed logic
variable is bound, the predicate verify attributes(+Var, +Value, +Goals)
is triggered. We use the attribute fd for each FD logic variable. Thus, each
time the Herbrand solver binds a FD logic variable, verify attributes(+Var,
+Value, +Goals) will automatically call the C++ function which synchronizes
the associated decision variable of vars.

However, this first attempt fails. For this synchronization we need to know
which index does the associated decision variable have in vars. We can only
get this index by looking for the FD logic variable in V. But the arguments
of verify attributes(+Var, +Value, +Goals) are fixed. As SICStus Prolog
does not allow global variables, there is no way to get access to V.

A second attempt consists of making the Herbrand solver responsible of call-
ing the C++ synchronization function. But this idea must be rejected, because
there is a basic principle of independency between the different solvers of the

Integrating ILOG CP Technology into T OY 35

system T OY . Any solution to this problem must respect the idea of solving the
synchronization within solveFD.

The third (and successful) attempt modifies the internal structure of V. Now
it becomes a list of pairs. The first element of each pair contains the FD logic
variable, and the second one contains a flag which determines if the bound FD
logic variable has been synchronized with vars. Thus, while the FD logic variable
is not bound, the value of the flag remains at 0. When the FD logic variable
becomes bound, the value of the flag indicates whether the variable of vars is
synchronized or not.

Each time solveFD sends a new FD constraint to ILOG CP, it must previ-
ously:

– Look for any pair in V (say at position i) whose pattern is [value,0]
– Add to model the new IloConstraint vars[i]==value.
– Change the pair at position i of V by [value,1]

Once there are no pairs with the pattern [value,0] in the list, solveFD

is able to send the new FD constraint. Also, at the end of the T OY goal, a
new synchronization is done. This synchronization attempt is clearly inefficient,
making it a task to be improved in new releases of T OY(FDi). Let’s consider
the next goal:

Toy(FDi)> X #>= 2, X == 1, X1 == 1, X2 == 1, ... , X1000 == 1

The first FD logic variable of the goal in the narrowing order is X, which
occurs at the first position of V and vars. The synchronization of X == 1 as
vars[0] == 1 makes the FD problem infeasible. So, the T OY goal will fail af-
ter X == 1, and there is no need for computing the rest of the goal expressions.
However, the first equality vars[0] == 1 is not computed until the next FD
constraint is posted.
As X == 1, X1 == 1, X2 == 1, ... , X1000 == 1 are computed by the Her-
brand solver there are no more FD constraints in the goal, so the synchronization
will not occur until the end of the goal. The goal will useless compute a thousand
of successful expressions. After that, it synchronizes vars[0] == 1 and fails.

Synchronizing T OY with ILOG CP
ILOG CP can bind variables in vars via the IlcConstraint set propagation pro-
duced by solver.propagate() or a labeling enumeration procedure goal used
by solver.solve(goal). This produces a lack of synchronization between the
vector vars and V. To synchronize, whenever any IlcIntVar var’ (associated
to the IloIntVar var contained in vars[i]) is bound to value, the pair [Var,0]
contained at position i of V must be automatically unified with [value,1].

To this end, the predicates of solveFD send the list V as an input argument to
the C++ functions managing the FD constraints in ILOG CP. An output argu-
ment is also added to obtain the new state of V computed by the C++ function
after solver propagation or labeling. A new global variable vector<int,int>
must be created in ILOG CP. Each pair of the vector contains:

36 I. Castiñeiras and F. Sáenz-Pérez

– The index i in vars of the IloIntVar associated to the IlcIntVar treated.
– The value that solver has obtained for this IlcIntVar.

Any C++ function clears vector<int,int> at the beginning of the man-
agment of a new FD constraint. After the solving techniques used, the C++
function accesses to the content of vector<int,int>, to see whether there are
any variable that has been bound. By using vector<int,int> and V, the C++
function builds the new state of V, unifying as many FD logic variables as
vector<int,int> demands.

The only remaining task to be explained is how the solving techniques add au-
tomatically each pair to vector<int,int>. To do so, we use demons to capture
bind events. Thus, a new demon object IlcDemon RealizeVarBound is created.
It concerns on how to insert each new pair into the vector<int,int>. This de-
mon is triggered by the propagation of a constraint IlcCheckWhenBound. Each
IlcCheckWhenBound constraint involves one IloIntVar. This constraint propa-
gates when the IlcIntVar associated to this IloIntVar becomes bound. ILOG
CP associates a demon to a method of a constraint class. When the demon is
triggered, the method of this constraint class is automatically executed. We asso-
ciate RealizeVarBound to the method varDemon of the IlcCheckWhenBound con-
straint class. This method checks the index in vars of the associated IloIntVar
of the bound IlcIntVar and its value, adding both of them as a new pair of
integers to the global vector<int,int>. We summarize how our ILOG CP ap-
plication adds the pairs to the vector<int,int> in the next three steps:

– For each new decision variable IloIntVar added to vars[i] and model, we
impose the constraint IlcCheckWhenBound.

– When the IlcIntVar associated to vars[i] is bound to value,
IlcCheckWhenBound propagates, triggering the demon RealizeVarBound.

– RealizeVarBound executes the IlcCheckWhenBound method varDemon,
which adds the pair <i,value> to vector<int,int>.

Solutions in T OY(FDi)
Any T OY(FDs) solution is expressed in general with constraints (equality, dise-
quality and FD constraints –including ranges–). Of course, T OY(FDs) accepts
to label FD variables by using a FD labeling enumeration procedure, in order
to obtain the extensional solution to a goal.

The system T OY(FDi) presented in this work reproduces the solution struc-
ture of T OY(FDs). But, as a first approach, we do not support the use of
backtracking, so we can only use labeling enumeration procedures to look for
the first concrete solution to a goal. When the goal is completely finished, we
show to the user the set of non-ground FD constraints as well as the remaining
values of the FD variables.

ILOG Solver 6.6 does not grant access to simplified constraints (i.e., solved
forms). So, to show the solution to the user, we do not parse the IlcConstraint
set contained in solver. Instead of that, we store in Cin a list with the FD
constraints (referred to as C from now on) appearing in the T OY goal. When a

Integrating ILOG CP Technology into T OY 37

solveFD predicate manages a new FD constraint of the goal, this constraint is
added to C. In the solution we show any non-ground element of C.

To show the remaining values of the FD logic variables, we access to each
IlcIntVar contained in solver throughout its associated IloIntVar contained
in model. ILOG Solver 6.6 provides some methods to check the remaining values
of these variables.

2.3 A T OY(FDi) Example

In this section we detail how goal solving works with the new system T OY(FDi)
following Example 1:

Toy(FDi)> X #>= 5, X #<= 12, Y #>= 2, Y #<= 17,
X #+ Y == 17, X #- Y == 5

We specify how the data structures of solveFD and ILOG CP evolve with each
goal expression evaluation. On the one hand, we look at the state of V and C
within Cin. On the other hand, we look at the state of vars, model and solver
by pointing out any IloIntVar, IloConstraint, IlcIntVar, IlcConstraint
object accessed through them. Any new element added by the evaluation of a
goal expression is highlighted in boldface. At the beginning of the computation,
all data structures are empty, as we can see in Fig. 4.

solveFD

--
Cin { V = [] ; C = [] }

R H M

ILOG CP application

 vars = []
 model = [] solver = []

ILOG SOLVER 6.6 ILOG CONCERT 2..6

TOY > X #>= 5, X #<= 12, Y #>= 2, Y #<= 17, X #+ Y == 17, X #- Y == 5

Fig. 4. Beginning of the computation

Now, we detail in Fig. 5. the evaluation of the goal expression X #>= 5.
First, we model the FD constraint in ILOG Concert 2.6:

1. As X is not contained in V, we add the new pair [X,0] in the position 0 of V.
Then, we create a new IloIntVar x and we add it to vars[0] and model.
Now, X and x are associated due to they are at the same index (0) of V and
vars, respectively.

2. We add the propagator IloCheckWhenBound c1(x,0) to be able to synchro-
nize the FD logic variable X when the IlcIntVar associated to x becames
bound to a value.

38 I. Castiñeiras and F. Sáenz-Pérez

3. We add the new FD constraint X #>= 5 to C. Then, we add to model the
IloConstraint c0.

Then, we solve the FD problem contained in model:

4. We use solver.extract(model) to make a one-to-one object translation of
the model content. This creates the new objects x’,c0’ and c1’.

5. We use solver.propagation(). It prunes some values of the domain of x’.
6. As the state of solver remains feasible, T OY continues with the evaluation

of the next goal expression.

Cin { V = [[X,0]] ; C = [X#>5] }

 vars = [x]
 model = [x,c0,c1] solver = [x’,c0’,c1’]
 ----------------------------------- ------------------------------------
 IloIntVar x IlcIntVar x’ in 5..sup
 IloConstraint c0 = x > 5 IlcConstraint c0’ = x’ > 5
 IloCheckWhenBound c1(x,0) IlcCheckWhenBound c1’(x’,0)

R H M

TOY > X #>= 5, X #<= 12, Y #>= 2, Y #<= 17, X #+ Y == 17, X #- Y == 5

Fig. 5. Evaluation of the first FD constraint

We do not detail here the evaluation of X #<= 12, Y #>= 2 and Y# <= 17,
which are quite similar to X #>=5. The evaluation continues with the expression
X #+ Y == 17. As this is a compound constraint, T OY decomposes it into the
primitive constraints X #+ Y == _Z and _Z == 17.

– The evaluation of X #+ Y == _Z adds this constraint to C. It also adds
[_Z,0] to V, _z to model and _z’ to solver.

– In the evaluation of _Z == 17 the constraint is sent to the Herbrand solver H,
which binds the variable _Z to the value 17. This causes that the instances of
_Z in V and C are also unified to 17, producing a lack of consistency between
_Z and its associated variables in ILOG _z and _z’. The synchronization of
_z and _z’ will happen with the management of the next FD constraint or
at the end of the T OY goal.

The evaluation continues with the expression X #- Y == 5. As this is a com-
pound constraint, T OY decomposes it into the primitive constraints:
X #- Y == _T and _T == 5. We detail here the evaluation of the goal expression
X #- Y == _T, which can be seen in Fig. 6.

In the top of Fig. 6. we see the state before the evaluation starts. We can see
that the constraint _Z == 17 appears in the Herbrand solver of T OY. Also, the
instances of _Z in V and C are highlighted, because they have been unified to 17.
The variables associated to _Z in ILOG are also highlighted, because they have
not been bound yet to the value 17.

In the middle of Fig. 6. we see the state after the synchronization of _Z with
_z and _z’. Now the IlcIntVar z’ is also bound to the value 17. The pair

Integrating ILOG CP Technology into T OY 39

TOY > X #>= 5, X #<= 12, Y #>= 2, Y #<= 17, X #+ Y == _Z, Z == 17, X #- Y == _T, _T == 5

Cin { V = [[X,0],[Y,0],[17,0]] ; C = [X#>5,…, X #+ Y == 17] } R H M

 _Z == 17 vars = [x,y,_z]
 model = [x,c0,...,_z,c7] solver = [x’,c0’,...,_z’,c7’]
 ----------------------------------- ------------------------------------
 IloIntVar _z IlcIntVar _z’ in 7..29
 IloConstraint c7 = x + y == _z IlcConstraint c0’ = x’ + y’ == _z
 IloCheckWhenBound c6(z,2) IlcCheckWhenBound c6’(z’,2)

TOY > X #>= 5, X #<= 12, Y #>= 2, Y #<= 17, X #+ Y == _Z, Z == 17, X #- Y == _T, _T == 5

Cin { V = [[X,0],[Y,0],[17,1]] ; C = [X#>5,…, X #+ Y == 17] }

 vars = [x,y,_z]
 model = [x,c0,...,_z,c7,c8] solver = [x’,c0’,...,_z’,c7’,c8’]
 ----------------------------------- ------------------------------------
 IloIntVar _z IlcIntVar _z’ in 17..17
 IloConstraint c8 = _z == 17 IlcConstraint c8’ = _z == 17

TOY > X #>= 5, X #<= 12, Y #>= 2, Y #<= 17, X #+ Y == _Z, Z == 17, X #- Y == _T, _T == 5

Cin { V = [[X,0],[Y,0],[17,1],[_T,0]] ; C = […,X #+ Y == 17,X #- Y ==_T]

 vars = [x,y,_z,_t]
 model = [x,...,c8,_t,c9,c10] solver = [x’,...,c8,_t’,c9’,c10’]
 ----------------------------------- ------------------------------------
 IloIntVar _t IlcIntVar _t’ in -7..7
 IloConstraint c9 = x - y == 5 IlcConstraint c9’ = x’ – y’ == 5
 IloCheckWhenBound c10(t,3) IlcCheckWhenBound c10’(t’,3)

R H M

 _Z == 17

R H M

 _Z == 17

Fig. 6. Constraint management with synchronization

[17,0] of V has been changed by [17,1], because the variables associated in
ILOG are now synchronized.

After synchronizing ILOG CP with the equalities produced by the Herbrand
solver, we manage the constraint X #- Y == _T. We can see this in the bottom
of Fig. 6.

T OY continues with the evaluation of the next goal expression. The constraint
_T == 5 is sent to the Herbrand solver H. This will bind the variable _T to the
value 5. The instances of _T in V and C will be unified to 5. This produces a
lack of consistency between _T (now bound to 5) and its associated variables in
ILOG _t and _t’. As there are no more FD constraints, the synchronization
will happen at the end of the T OY goal.

With this last synchronization we create a new IloConstraint c = t == 5
in model. Then solver will translate and propagate this new constraint, binding
the IlcIntVar t’. We modify the pair [5,0] of the list V to [5,1].

40 I. Castiñeiras and F. Sáenz-Pérez

Now the goal is completely finished. As the state of solver remains feasible,
T OY shows the solution of the computation to the user. First we show the FD
constraints by displaying any non-ground term contained in C. Then we show the
values for the FD logic vars by accessing its associated IlcIntVars contained
in ILOG. We do not show the extra variables produced during narrowing.

Toy(FDi)> X #>= 5, X #<= 12, Y #>= 2, Y #<= 17,
X #+ Y == 17, X #- Y == 5

yes
{ X #>= 5

X #=< 12
Y #>= 2
Y #=< 17
X #+ Y == 17
X #- Y == 5
X in 10..12
Y in 5..7 }

Elapsed time: 0 ms.

In Fig. 7. we see the state of T OY(FDi) after the computation.

TOY > X #>= 5, X #<= 12, Y #>= 2, Y #<= 17, X #+ Y == 17, X #- Y == 5

Cin { V = [[X,0],[Y,0],[17,1],[5,1]] ; C = […,X #+ Y == 17,X #- Y == 5] }

 vars = [x,y,_z,_t]
 model = [x,...,c10,c11] solver = [x’,...,c10’,c11’]
 ----------------------------------- ------------------------------------
 IloIntVar x IlcIntVar _x’ in 10..12
 IloIntVar y IlcIntVar _y’ in 5..7
 IloIntVar _z IlcIntVar _z’ in 17..17
 IloIntVar t IlcIntVar t’ in 5..5

R H M

 _Z == 17
 _T == 5

Fig. 7. T OY(FDi) state after computation

3 Measuring Performance

In this section we use two test parametric, scalable (on n) benchmark programs
which model systems of linear equations A ∗ X = b. Each system has n inde-
pendent equations with n variables [X1,...,Xn] whose domains are {1..n}.
Each system has a unique integer solution. The matrix A takes the value i on
its diagonal coefficients Ai,i and the value 1 for the rest of them.

Both benchmark programs have been run in a machine with an Intel Dual
Core 2.4Ghz processor and 4GB RAM memory. The SO used is Windows XP
SP3. The SICStus Prolog version used is 3.12.8. The ILOG CP application used
is ILOG CP 1.4, with ILOG Concert 2.6 and ILOG Solver 6.6 libraries. Microsoft
Visual C++ 6.0. tools are used for compiling and linking the application.

Integrating ILOG CP Technology into T OY 41

We show performance results (expressed in miliseconds) for the following sys-
tems: both T OY(FDs) and T OY(FDi) just described, and also for a C++
program directly modelling the problems using the ILOG CP libraries (denoted
by FDs, FDi and ILOG in the tables, respectively). The latter will help us in
analysing the overhead due to T OY implementation of lazy narrowing.

For each benchmark, we show three instances of n: 4, 12 and 15 variables. In
each case, we present results for the two labeling strategies
IloChooseFirstUnboundInt and IloChooseMinSizeInt (denoted by ff) pre-
sented in the section 1.2.

Also, we show the speedups of T OY(FDi) with respect to T OY(FDs) and
ILOG CP respectively. Specifically, we denote as:

– (a) the speedup of T OY(FDi) with respect to T OY(FDs) using the static
search procedure to solve the problem.

– (b) the speedup of T OY(FDi) with respect to T OY(FDs) using the ‘first
fail’ search procedure.

– (c) the speedup of T OY(FDi) with respect to ILOG CP C++ program
using the static search procedure.

– (d) the speedup of T OY(FDi) with respect to ILOG CP C++ program
using the ‘first fail’ search procedure.

The benchmark programs are:

– First: The solution [X1,...,Xn] holds: ∀i ∈ {1 . . . n} Xi = i. Performance
measurement gives the following results:

n FDs FDsff FDi FDiff ILOG ILOGff (a) (b) (c) (d)
4 0 15 0 0 15 15 1.0 - 0 0
12 31 1.750 156 516 15 281 5.0 0.29 10.4 1.83
15 297 299,312 423 67,376 63 20,578 1.42 0.22 6.7 3.27

For this first benchmark, T OY(FDi) takes more time than T OY(FDs) for
solving with the static search procedure, but less time for the dynamic search
procedure. The solving time difference between them grows as we increase
the number of variables for the benchmarks. Looking at how the domains of
the variables evolve after the initial constraint propagation, we can conclude
that the structure of the solution for this first benchmark fits quite well into
the static search procedure, while it is dramatically harmful to the dynamic
search procedure. This help us to realize that, for problems where the needed
exploration to obtain the solution is really small, then T OY(FDi) is slower
than T OY(FDs). This is because of the time involved in the communication
between the Prolog implementation of T OY(FDi) and ILOG CP. However,
as the nodes needed to be explored increase slightly, this waste of time is
overcome, making T OY(FDi) more efficient than T OY(FDs).

– Second: The solution [X1, ,Xn] holds: ∀i ∈ {1..n} Xi = n−(i−1). The above
conclusions are clearly confirmed in this second benchmark, as T OY(FDi)
is faster than T OY(FDs) for both search procedures. In this case, the struc-
ture of the solution is dramatically harmful for the static strategy, while it

42 I. Castiñeiras and F. Sáenz-Pérez

behaves better for the dynamic strategy. In the former, T OY(FDi) takes
slightly less solving time than T OY(FDs). In any case, these measurements
point out that our first approach to integrate the ILOG CP technology into
T OY(FDi) is encouraging, but also that the management of the additional
data structures used for the interface should be optimized. Performance mea-
surement gives the following results:

n FDs FDsff FDi FDiff ILOG ILOGff (a) (b) (c) (d)
4 16 16 16 31 31 15 1.0 1.93 0.51 2.06
12 531 250 437 126 109 63 0.83 0.50 4 2
15 15,563 21,968 13,937 3,406 843 1,765 0.90 0.16 16.53 1.93

4 Conclusions and Future Work

In this work, we have studied how to integrate the FD ILOG CP technology into
the system T OY . We have shown that this technology offers some advantages
over the existing system T OY(FDs) based on the FD technology of SICStus
Prolog. We have described in detail our implementation, showing that the ap-
plication architecture of T OY and ILOG CP are hard to integrate in terms of
a correct communication between them. We have shown by means of two scal-
able benchmarks that the new system T OY(FDi) is faster than T OY(FDs)
as the benchmark increases its size. However, we have concluded that there
is a performance penalization due to the management of the data structures
that make possible the connection of T OY with its new FD component. There-
fore, optimizing this management will be the target of our immediate future
work. As many practical FD problems covered by T OY(FDs) require the use
of non-deterministic functions, backtracking management will be covered in a
next work. This will also allow us to use labeling enumeration procedures to find
the different extensional solutions of a goal. So, we will be able to deal with an
extended set of benchmarks (as the one seen in [5]) in T OY(FDi) future releases.
Another subject of interest is to test the constraint libraries ILOG Scheduler 6.6
and ILOG Dispatcher 4.6 bundled in ILOG CP 1.4, as well as other constraint
libraries, as Gecode [6].

References

1. Arenas, P., Estévez, S., Fernández, A., Gil, A., López-Fraguas, F., Rodŕıguez-
Artalejo, M., Sáenz-Pérez, F.: T OY . A multiparadigm declarative language. version
2.3.1 (2007); Caballero, R., Sánchez, J. (eds.), http://toy.sourceforge.net

2. del Campo, R.G., Sáenz-Pérez, F.: Programmed search in a timetabling problem
over finite domains. Electronic Notes in Theoretical Computer Science 177, 253–267
(2007)

3. Estévez-Mart́ın, S., Fernández, A., Hortalá-González, M., Sáenz-Pérez, F.,
Rodŕıguez-Artalejo, M., del Vado-Vı́rseda, R.: On the Cooperation of the Con-
straint Domains H , R and FD in CFLP . Theory and Practice in Logic Program-
ming 9(4), 415–527 (2009)

http://toy.sourceforge.net

Integrating ILOG CP Technology into T OY 43

4. Estévez-Mart́ın, S., Fernández, A.J., Sáenz-Pérez, F.: About implementing a con-
straint functional logic programming system with solver cooperation. In: Proc. of
CICLOPS 2007, pp. 57–71 (2007)

5. Fernández, A.J., Hortalá-González, T., Sáenz-Pérez, F., del Vado-Vı́rseda, R.: Con-
straint Functional Logic Programming over Finite Domains. Theory and Practice
in Logic Programming 7(5), 537–582 (2007)

6. Gecode. Gecode, http://www.gecode.org/
7. ILOG. ILOG Solver 6.6, Reference Manual (2008)
8. ILOG. ILOG OPL Studio 6.1, Reference Manual (2009)
9. Microsoft (2005), http://msdn.microsoft.com/en-us/visualc/default.aspx

10. SICStus Prolog. Using SICStus Prolog with newer Microsoft C compilers,
http://www.sics.se/isl/sicstuswww/site/dontpanic.html

11. SICStus Prolog (2007), http://www.sics.se/isl/sicstus

http://www.gecode.org/
http://msdn.microsoft.com/en-us/visualc/default.aspx
http://www.sics.se/isl/sicstuswww/site/dontpanic.html
http://www.sics.se/isl/sicstus

Lecture Notes in Computer Science 5979
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Santiago Escobar (Ed.)

Functional
and Constraint
Logic Programming

18th International Workshop, WFLP 2009
Brasilia, Brazil, June 28, 2009
Revised Selected Papers

13

Volume Editor

Santiago Escobar
Universidad Politécnica de Valencia
Departamento de Sistemas Informáticos y Computación
Camino de vera, s/n, 46022 Valencia, Spain
E-mail: sescobar@dsic.upv.es

Library of Congress Control Number: 2010923100

CR Subject Classification (1998): F.4, F.3.2, D.3, I.2.2-5, I.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-11998-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11998-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains a selection of the papers presented at the 18th International
Workshop on Functional and (Constraint) Logic Programming (WFLP 2009),
held on June 28, 2009 in Braśılia, Brazil. Previous WFLP meetings were held
in Siena (2008), Paris (2007), Madrid (2006), Tallinn (2005), Aachen (2004),
Valencia (2003), Grado (2002), Kiel (2001), Benicassim (2000), Grenoble (1999),
Bad Honnef (1998), Schwarzenberg (1997, 1995, and 1994), Marburg (1996),
Rattenberg (1993), and Karlsruhe (1992).

The aim of the WFLP series is to bring together researchers interested in
functional programming, (constraint) logic programming, as well as the integra-
tion of the two paradigms. It promotes the cross-fertilizing exchange of ideas
and experiences among researchers and students from the different communi-
ties interested in the foundations, applications, and combinations of high-level,
declarative programming languages and related areas.

WFLP 2009 solicited papers in all areas of functional and (constraint) logic
programming, including but not limited to:

– Foundations: formal semantics, rewriting and narrowing, non-monotonic rea-
soning, dynamics, and type theory.

– Language Design: modules and type systems, multi-paradigm languages,
concurrency and distribution, and objects.

– Implementation: abstract machines, parallelism, compile-time and run-time
optimizations, and interfacing with external languages.

– Transformation and Analysis: abstract interpretation, specialization, partial
evaluation, program transformation, and meta-programming.

– Software Engineering: design patterns, specification, verification and valida-
tion, debugging, and test generation.

– Integration of Paradigms: integration of declarative programming with other
paradigms such as imperative, object-oriented, concurrent, and real-time
programming.

– Applications: declarative programming in education and industry, domain-
specific languages, visual/graphical user interfaces, embedded systems,
WWW applications, knowledge representation and machine learning, de-
ductive databases, advanced programming environments and tools.

The WFLP 2009 workshop was part of the Federated Conference on Rewrit-
ing, Deduction, and Programming (RDP 2009), which grouped together different
events such as the 20th International Conference on Rewriting Techniques and
Applications (RTA 2009), the 9th International Conference on Typed Lambda
Calculi and Applications (TLCA 2009), the 4th Workshop on Logical and Se-
mantic Frameworks, with Applications (LFSA 2009), the 10th International
Workshop on Rule-Based Programming (RULE 2009), and the 9th International
Workshop on Reduction Strategies in Rewriting and Programming (WRS 2009).

VI Preface

There were 14 original contributions to the workshop, the Program Commit-
tee selected nine papers for publication, and revised versions of these selected
papers are included in this volume. Each contribution was reviewed by at least
three Program Committee members. This volume also includes two invited con-
tributions by Claude Kirchner from the Centre de Recherche INRIA Bordeaux
- Sud-Ouest, France, and Roberto Ierusalimschy from the Departamento de In-
formática, PUC-Rio, Brazil. I would like to thank them for having accepted our
invitation for both the scientific program and this volume. I am also grateful to
Andrei Voronkov for his extremely useful EasyChair system for automation of
conference chairing.

I would also like to thank all the members of the Program Committee and
all the referees for their careful work in the review and selection process. Many
thanks to all authors who submitted papers and to all conference participants.
I gratefully acknowledge the Departamento de Sistemas Informáticos y Com-
putación of the Universidad Politécnica de Valencia, who supported this event.
Finally, I express our gratitude to all members of the Local Organization of the
Federated Conference on Rewriting, Deduction, and Programming (RDP 2009),
whose work made the workshop possible.

December 2009 Santiago Escobar

Organization

Program Chair

Santiago Escobar
Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia
Camino de vera, s/n
E-46022 Valencia, Spain
sescobar@dsic.upv.es

Program Committee

Maŕıa Alpuente Universidad Politécnica de Valencia, Spain
Sergio Antoy Portland State University, USA
Christiano Braga Universidade Federal Fluminense, Brazil
Rafael Caballero Universidad Complutense de Madrid, Spain
David Déharbe Universidade Federal do Rio Grande do Norte,

Brazil
Rachid Echahed CNRS, Laboratoire LIG, France
Moreno Falaschi Università di Siena, Italy
Michael Hanus Christian-Albrechts-Universität zu Kiel,

Germany
Frank Huch Christian-Albrechts-Universität zu Kiel,

Germany
Tetsuo Ida University of Tsukuba, Japan
Wolfgang Lux Westfalische Wilhelms-Universität Münster,

Germany
Mircea Marin University of Tsukuba, Japan
Camilo Rueda Universidad Javeriana-Cali, Colombia
Jaime Sánchez-Hernández Universidad Complutense de Madrid, Spain
Anderson Santana de Oliveira Universidade Federal do Rio Grande do Norte,

Brazil

Additional Reviewers

Hassan Aı̈t-Kaci
Gloria Alvarez
Demis Ballis
Bernd Braßel
Linda Brodo
Iliano Cervesato
Yukiyoshi Kameyama

Temur Kutsia
Michael Maher
Miguel Palomino
Cody Roux
Albert Rubio
Clara Segura
Peter Sestoft

Nikhil Swamy
Thierry Boy de la Tour
Rafael del Vado Vrseda
Toshiyuki Yamada
Hans Zantema

Table of Contents

Invited Papers

Programming with Multiple Paradigms in Lua . 1
Roberto Ierusalimschy

Constraint Based Strategies . 13
Claude Kirchner, Florent Kirchner, and Hélène Kirchner

Contributed Papers

Integrating ILOG CP Technology into T OY . 27
Ignacio Castiñeiras and Fernando Sáenz-Pérez

Termination of Context-Sensitive Rewriting with Built-In Numbers and
Collection Data Structures . 44

Stephan Falke and Deepak Kapur

Semantic Labelling for Proving Termination of Combinatory Reduction
Systems . 62

Makoto Hamana

A Taxonomy of Some Right-to-Left String-Matching Algorithms 79
Manuel Hernández

Type Checking and Inference Are Equivalent in Lambda Calculi with
Existential Types . 96

Yuki Kato and Koji Nakazawa

Fast and Accurate Strong Termination Analysis with an Application to
Partial Evaluation . 111

Michael Leuschel, Salvador Tamarit, and Germán Vidal

New Results on Type Systems for Functional Logic Programming 128
Francisco J. López-Fraguas, Enrique Martin-Martin, and
Juan Rodŕıguez-Hortalá

A Simple Region Inference Algorithm for a First-Order Functional
Language . 145

Manuel Montenegro, Ricardo Peña, and Clara Segura

A Theoretical Framework for the Declarative Debugging of Functional
Logic Programs with Lambda Abstractions . 162

Rafael del Vado Vı́rseda and Ignacio Castiñeiras

Author Index . 179

	Integrating ILOG CP Technology into $T OY$
	Introduction
	TOY with SICStus Prolog CLP(FD): TOY(FDs)
	ILOG CP to Improve TOY

	TOY with ILOG CP: $TOY(FDi)$
	Connecting SICStus Prolog to C++
	Communication between TOY and ILOG CP
	A $TOY(FDi)$ Example

	Measuring Performance
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

