
A CFLP Approach for Modeling and Solving
a Real Life Employee Timetabling Problem ∗

Ignacio Castiñeiras and Fernando Sáenz-Pérez
Complutense University of Madrid, Spain

ncasti@fdi.ucm.es and fernan@sip.ucm.es

Abstract

In last years the number of applications of timetabling
has grown spectacularly, and different paradigms have
risen to tackle these problems. In this paper we present a
Constraint Functional Logic Programming (CFLP) ap-
proach for modeling and solving a real life optimiza-
tion employee timetabling problem. We describe the
language supported by a particular implementation of
the CFLP paradigm. Then, we present the concrete
model followed to solve the problem, and we enumer-
ate the advantage our framework provides w.r.t. other
approaches. Running results are also reported.

1. Introduction
The Nurse Rostering Problem (NRP) has been extensively
studied for more than forty years (Burke et al. 2004). Due
to its relevance as a real life problem, it represents the most
paradigmatic example of the family of employee timetabling
problems. As it is a complex problem, a wide set of tech-
niques has been applied to tackle it, both on formalization
design and solving techniques terms. Here we mention In-
teger Programming (Burke, Li, and Qu 2010), Evolutionary
Algorithms (Moz and Pato 2007) and Tabu Search (Burke,
Kendall, and Soubeiga 2003) as some approaches. How-
ever, due to the constraint oriented nature of the problem,
the Constraint Satisfaction Problem (CSP) paradigm (Tsang
1993) becomes a quite suitable framework to the formula-
tion and solving of NRPs. Several programming paradigms
have risen to tackle CSPs. First is Constraint Programming
(CP) (Marriot and Stuckey 1998), which provides expres-
sive languages for describing the constraints and powerful
solver mechanism for reasoning with them. While a CP
formulation becomes algebraic (a very abstract program-
ming paradigm) it lacks the benefits of a general constraint
programming language. As CP search space can become
huge, different techniques as decomposition (Meisels and
Kaplansky 2002) and relaxation (Métivier, Boizumault, and
Loudni 2009) has been applied in the solving of NRPs. An-
other programming paradigm is Constraint Logic Program-
ming (CLP) (Jaffar and Maher 1994), which combines Logic

∗This work has been partially supported by the Spanish
projects TIN2008-06622-C03-01, UCM-BSCH-GR58/08-910502,
and S2009TIC-1465

Programming (LP) and CP, providing general purpose lan-
guages also equipped with constraint solving. As constraints
are basically true relations among domain variables, its inte-
gration in the logic field became in a quite natural way.

In this paper we focus on Constraint Functional Logic
Programming (CFLP) as another approach to solve em-
ployee timetabling problems. CFLP adds constraint solv-
ing to the Functional Logic Programming (FLP) frame-
work (Hanus 1994), and attempts to be an adequate frame-
work for the integration of the main properties of Functional
Programming (FP) and CLP. Adequation of CFLP(FD) to
meet timetabling problems was proposed in (Brauner et
al. 2005). The CFLP language presented in (Fernández et
al. 2007) combines functional and relational notation, cur-
ried expressions, higher-order functions, patterns, partial
applications, non-determinism, backtracking, lazy evalua-
tion, logical variables, types, polymorphism, domain vari-
ables and constraint composition as some of its features.
While its declarative semantics is based on a Conditional
Term-Rewriting Logic (CRWL) (González-Moreno et al.
1999), its operational semantics is based on a constrained
demanded narrowing calculus (López-Fraguas, Rodrı́guez-
Artalejo, and Vado-Vı́rseda 2004), making possible to solve
syntactic equality and disequality constraints over the Her-
brand Universe (H domain constraints), as well as FD con-
straints, relying on the use of an external solver. An im-
plementation of the system, named T OY(FD), was also
presented. Another approach to this framework is Curry
(Hanus 1999), and its particular implementation PAKCS
(PAKCS), also supporting FD constraint solving by relying
on an external solver. As it is quite similar to the T OY(FD)
approach, a benchmark comparison between both systems
was done in (Fernández et al. 2007).

This paper presents an application of T OY(FD) to the
modeling and solving of a real life optimization employee
timetabling problem, whose formulation can be seen as a
particular instance of the NRP. The structure of the paper
is the following: while sections 2 and 3 concern both with
language and problem description, Section 4 presents our
approach to the modeling of the problem. Section 5 points
out the advantages a CFLP(FD) approach offers to face up
to this problem, in contrast to using CP(FD) or CLP(FD).
Section 6 presents running results for several instances of
the problem. Finally, Section 7 reports some conclusions.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

63

2. The T OY(FD) Language
We use constructor-based signatures Σ = 〈DC,FS〉, where
DC =

⋃
n∈N

DCn resp. FS =
⋃

n∈N
FSn are respectively

sets of data constructors and defined function symbols with
associated arities. As notational conventions, we will assume
c, d ∈ DC, f, g ∈ FS and h ∈ DC ∪ FS. We also assume
that many countable variables (noted as X , Y , Z, etc.) are
available. Given any set X of variables, we will consider
the set ExpΣ(X) of all terms built from symbols in X ∪
DC∪FS, and also the set TermΣ(X) of all terms built from
symbols in X ∪DC. Terms l, r, e ∈ ExpΣ(X) will be called
expressions, while terms s, t ∈ TermΣ(X) will be called
constructor terms or also data terms. Expressions without
variables will be called ground or closed. Moreover, we will
say that an expression e is in head normal form iff e is a
variable X or has the form c(en) for some data constructor
c ∈ DCn and some n-tuple of expressions en.

A T OY program consists of datatype, type alias and
infix operator definitions, and rules for defining functions.
Its syntax is mostly borrowed from Haskell (Peyton-Jones
2002), with the remarkable exception that variables begin
with upper-case letters whereas constructor symbols use
lower-case, as function symbols do. In particular, functions
are curried and the usual conventions about associativity of
application hold.

Datatype definitions like data nat = zero | suc
nat (which stands as a possible approach to define the
natural numbers), define new (possibly polymorphic) con-
structed types and determine a set of data constructors for
each type.

Types τ, τ ′, . . . can be constructed types, tuples
(τ1, . . . , τn), or functional types of the form τ → τ ′.
As usual, → associates to the right. T OY provides pre-
defined types such as [A] (the type of polymorphic lists,
for which Prolog notation is used), bool (with constants
true and false), int for integer numbers, or char
(with constants ’a’,’b’, . . .).

A T OY program defines a set FS of functions. Each
f ∈ FSn has an associated principal type of the form
τ1 → . . . → τm → τ (where τ does not contain →). Num-
ber m is called the type arity of f and well-typedness implies
that m ≥ n. As usual in functional programming, types are
inferred and, optionally, can be declared in the program.

We distinguish two important syntactic domains: patterns
and expressions. Patterns can be understood as denoting
data values, i.e., values not subject to further evaluation, in
contrast to expressions, which can be possibly reduced by
means of the rules of the program. Patterns t, s, . . . are de-
fined by t ::= X | (t1, . . . , tn) | c t1 . . . tn| f t1 . . . tn, where
c ∈ DCm, n ≤ m, f ∈ FSm, n < m, and ti are also pat-
terns. Notice that partial applications (i.e., application to less
arguments than indicated by the arity) of c and f are allowed
as patterns, which is then called a higher order (HO) pat-
tern, because they have a functional type. Therefore function
symbols, when partially applied, behave as data construc-
tors. HO patterns can be manipulated as any other patterns;
in particular, they can be used for matching or checked for
equality. With this intensional point of view, functions be-
come ‘first-class citizens’ in a stronger sense that in the case

of ‘classical’ FP.
Expressions are of the form e ::= X | c | f | (e1, . . . , en)

| (e1 e2), where c ∈ DC , f ∈ FS , and ei are also expres-
sions. As usual, application associates to the left and paren-
theses can be omitted accordingly. Therefore, e e1 . . . en is
the same as (. . . ((e e1) e2) . . .) en). Of course, expressions
are assumed to be well-typed. First order patterns are a spe-
cial kind of expressions which can be understood as denot-
ing data values, i.e., values not subject to further evaluation,
in contrast to expressions, which can be possibly reduced by
means of the rules of the program.

Each function f ∈ FSn is defined by a set of conditional
rules f t1 . . . tn = e ⇐= l1 == r1, . . . , lk == rk where
(t1 . . . tn) form a tuple of linear (i.e., with no repeated vari-
able) patterns, and e, li, ri are expressions. No other condi-
tions (except well-typedness) are imposed to function defi-
nitions. Rules have a conditional reading: f t1 . . . tn can be
reduced to e if all the conditions l1 == r1, . . . , lk == rk

are satisfied. The condition part is omitted if k = 0.
T OY includes a polymorphic version of the primitive

equality constraint seq :: A → A → bool. The language
provides the equality and disequality constraints == and /=
to abbreviate seq t s →! true and seq t s →! false (resp.)
Both constraints first request their arguments to be computed
to head normal form, obtaining a variable or a total term.
Thus, the symbol == stands for strict equality, which is the
suitable notion (see e.g. (Hanus 1994)) for equality when
non-strict functions are considered. With this notion, a con-
dition e == e’ can be read as: e and e’ can be reduced to
the same pattern. When used in the condition of a rule, ==
is better understood as a constraint (if it is not satisfyable,
the computation fails).

A distinguished feature of T OY is that no confluence
properties are required for the programs, and therefore func-
tions can be non-deterministic, i.e., return several values
for a given (even ground) arguments. For example, the
rules coin = heads and coin = tails constitute
a valid definition for the 0-ary non-deterministic function
coin. Two reductions of coin are allowed, which lead to
the values heads and tails. The system try in the first
place the first rule, but, if backtracking is required by a later
failure or by request of the user, the second rule is tried. An-
other way of introducing non-determinism in the definition
of a function is by adding extra variables in the right side
of the rules, as in z list = [0|L]. Any list of integers
starting by 0 is a possible value of z list. Anyway, note
that in this case only one reduction is possible.

The repertoire of FD constraints contains == and /=,
that are truly polymorphic.Table 1 includes some of the pre-
defined FD functions and operators supported, where re-
lational constraints support reification (Marriot and Stuckey
1998). The propositional constraint implication posts to
the solver a logical implication between the relational con-
straints A and B. belongs supports domain initialization
to a set of values instead of a range as in domain. Finally,
sum List Op B imposes a relational constraint between
B and the sum of the elements of the list, and count A
List Op B imposes a relational constraint between B and
the number of elements in the list to be equal to A.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

64

Table 1: Some of the FD Constraints and Operators
RELATIONAL
(==), (/=), (#>), (#<), (#>=), (#<=) ::

int→ int→ bool
ARITMETICAL
(#+), (#-), (#*), (#/) :: int→ int→ int
sum :: [int]→ (int→ int→ bool) → int→ bool
COMBINATORIAL
all different :: [int]→ bool
count :: int→ [int]→ (int→ int→ bool) →

int→ bool
MEMBERSHIP
domain :: [int]→ int→ int→ bool
belongs :: [int]→ [int]→ bool
PROPOSITIONAL
implication :: int→ (int→ int→ bool) →

int→ int→ (int→ int→ bool)→ int→ bool

3. Problem Description
Once introduced the T OY(FD) system, the rest of the pa-
per describes a real life optimization employee timetabling
problem that can be seen as a particular instance of the
NRP. Modeling and solving of this problem motivates the
T OY(FD) usability. The problem comes from a technical
department of the Spanish public television, where the em-
ployed workers must be scheduled to the requested shifts
for n days. While the problem was formulated before in
(R. González-del-Campo and F. Sáenz-Pérez 2007), here we
present new requirements and problem formulation also em-
bodying optimization.

Each day, several workers work at the company. On a
working day three workers must work, covering shifts of 20,
22 and 24 hours, respectively. On a weekend two workers
must work, covering two shifts of 24 hours. The company
employs thirteen workers. Twelve of them are regular work-
ers, and they are divided into three teams of four workers:
{w1, . . . , w4} belong to t1, {w5, . . . , w8} belong to t2 and
{w9, . . . , w12} belong to t3. The extra worker e belongs to
no team, and he is only selected by demand for coping with
regular workers absences. Optimization arises in the prob-
lem because the company must pay regular workers for each
extra hour they work, and extra worker hours are paid twice.
Optimal schedule minimizes the extra hour payment.

The requirements any valid schedule must hold are the
following: Each of the n days of the timetabling must be
known as either working day or weekend. Each absence of
worker wi on day dj must be provided. Each team must
work each three days, working one day and resting two. Any
shift of a day must be assigned to a unique worker. Each day,
any worker must be assigned to either zero or one of the
available shifts. Assigning no shift can be seen as assigning
a shift of 0 hours. The extra worker can work any day d, but
then he must rest on days d+1 and d+2. Tightt,w is a mea-
sure related to the shifts of kind s (0, 20, 22 or 24 hours) as-
signed to the regular workers of team t. Let us suppose that,
by scheduling the timetabling, workers of t are assigned to
k1, k2, k3 and k4 shifts of kind s. Then, Tightt,w represents

the difference between the maximum and the minimum of
these ks. Shift distribution is constrained by Tight, repre-
senting the maximum value any Tightt,w can take. Sched-
uled timetabling contains Total working hours, to be ac-
complished by regular workers. Assigning Total/12 hours
per worker implies no extra hour payment, minimizing the
optimization function.

4. Problem Implementation
In this section we present our modeling approach for solv-
ing the problem, which can be found at http://gpd.
sip.ucm.es/ncasti/TOY(FD).zip. Due to its dif-
ferences with (R. González-del-Campo and F. Sáenz-Pérez
2007) (problem decomposition, optimization, tightness of
the shifts, etc.) modeling has been started from scratch. The
data of each instance of the problem can be introduced by the
user at command line, as well as to be included in a T OY
file. First, we devote a subsection to describe the identifica-
tion of decision variables. Then, next subsection presents a
four stage process where the nature of the problem is ex-
ploited, decreasing the search space to be explored when
looking for an optimal solution.

4.1. Decision Variables
Decision variables are represented by FD variables in a
13 × n table where the columns represent the concrete days
and the rows the concrete workers. We refer to this table
as timetable. Each variable timetablei,j represents the
shift assigned to worker wi on day dj , and it is initially as-
signed to the domain values {0, 20, 22, 24}.

The problem requirements requesting only one team to
work each day, and each team to work each three days pro-
duces strong dependencies between the timetable vari-
ables. First, there is a dependency between the variables of
day d, as if, for example, ti works on d, the other two teams
are precluded from working this day. Thus, their regular
workers can be assigned to shifts of 0 hours. Second, there
is a dependency between the variables of different days. In
the previous example, ti is also going to work on days d+3,
d+6, etc., binding the variables for the workers of the other
two teams to 0. And, also, ti is not going to work on days
d+1, d+2, d+4, d+5, etc., so their workers can be bound to
0 on those days. These connections reveal an independency
between the different regular working teams. If a variable v1

is susceptible to be bound to 0 by v2 assignment to a shift,
then we can model it with an implication constraint.
However, this approach does not exploit the independency
of the different teams, but treat the whole table as a single
problem, making search space to remain at 413×n. Thus, to
model and solve an instance of the problem we are going to
manage a smaller table, in order to reduce the search space
to be explored by reducing both the number of variables and
the size of their domains.

4.2. Solving Process
Our modeling approach follows a four stage process to
schedule timetable. First stage is Team Assignment, and
it concerns with assigning regular workers teams to days.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

65

It is equivalent to trigger the implication constraints as-
sociated to the variable dependencies explained before. It al-
lows us to detect the workers susceptible of being assigned
to shifts for each day. To explore the whole search space,
each feasible assignment of teams to days must be com-
puted. For each feasible assignment, second, third and forth
stages are performed. Second stage is Timetabling Genera-
tion, and it concerns with the creation of the simpler prob-
lem to be solved. On the one hand, after a team assign-
ment, each day only five workers are susceptible of being
scheduled to cover the shifts: the team regular workers and
e. Thus, this stage creates tt, a 5 × n table which can be
mapped to the sub-table of timetable associated to the
concrete team assignment performed on first stage. On the
other hand, team independence is exploited in tt, obtain-
ing the three sub-problems tt1, tt2 and tt3, which can
be solved independently. Third stage is Timetabling Solving,
and it concerns with scheduling each tti. Finally, fourth
stage is Timetabling Mapping, and it concerns with using
the team assignment and the scheduled tt to construct the
original timetable, which is outcome as a result to the
user.

The main function schedule performs the four stage
process to solve each particular instance of the problem. It
contains six parameters. First four (N, Abs, DClass and
Tight) represent necessary timetabling input data. Last
two (W, SS) specify directives to the FD solver. N repre-
sents the number of days. Abs is a list of pairs (wi, dj)
representing regular workers planned absences. DClass is
a list of N dayType elements representing day classifi-
cation. Tight was already explained in problem descrip-
tion. W is a labelingOrder representing the order of the
variables to be labeled (dayOrder or workerOrder).
SS is a labelingStrategy representing a particular
variable selection strategy for labeling (firstFail or
firstUnbound). Function schedule returns the tu-
ple (Timetabling, ExtraHours) as a result, where
ExtraHours represents the number of extra hours associ-
ated to the optimal schedule. As to explore the whole search
space each team assignment must be computed, collect
is applied to function schedule to get all solutions. We
devote next four sections to describe each stage of the pro-
cess.

Team Assignment In this stage no shift is assigned to a
worker, but regular teams are assigned to days. This allows
us to explore a subset of the timetable search space.
In concrete, as there are three teams working each three
days, there are up to six possible assignments of teams to
days (each of them representing 1/6th of the timetable
search space). Departing from a team assignment, tt is con-
structed, scheduled and mapped to timetable. In order to
find the optimal schedule, all team assignments must be ex-
plored. This behavior is only possible because T OY(FD)
allows reasoning with models, where backtracking and mul-
tiple search strategies (placed at any point of the problem
description) are supported. Let us explain it in detail. Depart-
ing from a team assignment solution, the rest of the stages
imply the use of new variables, constraints and search strate-

gies. Performance of this stage possibly obtain a sub-optimal
schedule (sub-optimal in the sense that it is optimal for that
1/6th timetable search space). Then, next feasible team
assignment must be performed, implying backtracking to
the Team Assignment stage. This also implies the remov-
ing of the variables, constraints and search strategies posted
by second, third and fourth stages. Stage Team Assignment
takes part on reducing the size of the search space of the
timetabling schedule by acting in three different ways:
• By managing tt instead of timetable, up to eight

variables per day are directly saved, which represent the
60% of the total timetable variables.

• By associating tt creation and solving to a team assign-
ment, detection of non-feasible team assignments avoids
exploring 1/6th of the remaining search space. Our main
aim with this stage is to filter only those team assignments
possibly leading to solutions. That is, those that, at least,
provide for each day enough workers to accomplish the
shifts. Thus, we have to take into account both regular
worker absences and the two days resting constraint of e.
On the one hand, let us suppose that Abs = [(w 1,4),
(w 2,4), (w 3,4)] and that day 4 is classified as
workingDay, where 20, 22 and 24 shifts must be as-
signed to workers. Then, it is for sure that t1 can not be
assigned to days 1, 4, etc, as on day 4 there would be only
two available workers (w4 and e) to cover three shifts. On
the other hand, let us suppose that day 4 is classified as
a weekendDay, where two shifts of 24 hours must be
assigned. In this setting, t1 can be assigned to days 1, 4,
etc. assigning the two shifts of day 4 to w4 and e. But,
as t1 requests e for day 4, the latter can not be requested
on days 2, 3, 5, 6, due to its two days resting constraint.
Two of these days are assigned to team t2 and the other
two to team t3. So, for requesting e one day, t1 disallows
teams t2 and t3 to request two days from e. If, due to
Abs planned absences, e needs to be requested on one of
those days, then t1 can not be assigned to days 1, 4, etc.
Last but not least, as for each feasible team assignment
(at least) two of each three days e must be 0, we can not
save but bound (at least) another 5% of the timetable
variables. Thus, tt will only contain as much as the 35%
of the timetable variables.

• As e is susceptible of working any day, it acts as a link
between the three working teams. But, as any feasible
team assignment entails the resting constraint of e in the
whole schedule, we can freely split it into three indepen-
dent sub-problems, and solve independently each one. As
each sub-problem only contains 33% of the variables, we
have replaced the effort of solving a complex problem to
the effort of solving three exponentially simpler problems.
In summary, initial 4k search space is reduced to 40.35k.

But, as we solve the three independent sub-problems inde-
pendently, the search space becomes 3× 40.12k. As we need
to solve the six configurations to find the one minimizing the
extra hour payment, the total search space of our approach
is 6 × (3 × 40.12k) ≡ 18 × 40.12k.

Let us now present our approach for modeling this stage.
First, our main aim is to assign a concrete team to each day

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

66

of the timetabling. Second, we need to ensure that a minimal
number of regular workers are available to cover all shifts
for each day. Third, we need to ensure e resting constraint.
Thus, we need three lists of N new variables: [D1, D2,
D3, ..., Dn], where Di represents the concrete team
assigned to day i, [A1, A2, A3, ..., An], where Ai
represents the number of absences of the regular workers
of the selected team to day i and [E1, E2, E3, ...,
En], where Ei represents if e is requested to work by se-
lected team to day i. At this point we can see that each Ai
and Ei are related to the concrete value Di takes. In par-
ticular, for Ai we are only interested in the number of to-
tal absences of the regular workers of the selected team Di
states. Also, Ei would be bound to 1 only if this team does
not provide enough workers to accomplish shifts of this day.
To build the list of FD variables, the function genVList
is used:

genVList:: [A]
genVList = [X | genVList]

workEach3Days:: [A] -> bool
workEach3Days L = true <==

length L < 4
workEach3Days [L1,L2,L3,L1|R] =

workEach3Days [L2,L3,L1|R]

It generates a polymorphic infinite list, and contains a
unique rule with extra variables on its right side. By applying
take N genVList, lazy evaluation is performed to com-
pute only N new variables. To ensure that each team (D vari-
ables) works each three days, function workEach3Days
is applied. It recursively checks if a list contains more than
three elements, to unify via pattern matching the first and
the fourth ones. Then, D becomes [D1, D2, D3, D1,
D2, ...]. Finally, a domain constraint attributes (D1,
D2, D3) as FD variables with domain value set {1, 2, 3}.
An allDifferent constraint (D1, D2, D3) ensures
each team work each three days.

Now, information contained in Abs is reorganized to
fit it into a new data structure, more suitable for posting
constraints on A and E. Function order abs:: int →
[(int,int)]→ [[int]] converts Abs in OAbs, a list
of lists of integers [[int]] data structure. For each day it
contains a list indicating which regular workers are absent.
To create OAbs, the elements of tuples in Abs are firstly
swapped and then sorted by days. Function sortList or-
ders (with quicksort) its input list:

sortList :: [(int,int)] -> [(int,int)]
sortList [] = []
sortList [(X,Y)|Xs] =

sortList (filter (ord (X,Y)) Xs)
++ [(X,Y)] ++
sortList (filter (not . ord (X,Y)) Xs)

Its second rule uses first element (X,Y), and relies on
both ord and functional composition not . ord to com-
pute lower and greatest elements (resp.):

ord:: (int,int) -> (int,int) -> bool
ord (X,Y) (Z,T) = true <==

(X > Z)\/((X == Z)/\(Y > T)) == true
ord (X,Y) (Z,T) = false <==

(X < Z)\/((X == Z)/\(Y <= T)) == true

In particular, this function is non-deterministic, as its two
rules receive the same argument to compute different results
(depending on the conditions). Once Abs is sorted, it is fil-
tered by days to compute OAbs.

On the one hand, DClass is used to initialize the do-
main of A variables. While workingDay implies a domain
0,..,2, weekendDay implies a domain 0,..,3. With
this, enough workers to accomplish required shifts is en-
sured. On the other hand, E variables are initialized to the do-
main 0,..,1, and the constraint sum [Ei,Ei+1,Ei+2]
<= 1 is posted on each three consecutive elements to ensure
the resting constraint e. To relate D with A and E two new
[[int]] data structures are built, ATD and ETD, comput-
ing absences per team and day and ensuring e per team and
day (resp.) Then, implication constraints relate each
possible value Di takes (1, 2 or 3) with the binding of Ai
to ATD[i,1], ATD[i,2] or ATD[i,3] (resp.) Same sit-
uation happens with Ei and ETD.

Finally, labeling [] (take 3 D) is used to start
searching for feasible team assignments.

Timetabling Generation This stage performs three ac-
tions: create tt, bind to 0 as much as possible of its vari-
ables, and split it into tt1, tt2 and tt3 (in order to reduce
the effort of solving the problem to the effort of solving three
exponentially simpler problems).

Table tt is typed as [[int]]. To create it, take N
(repeat (take 5 genVList)) cannot be used, as
T OY call-time choice would lazily compute the same vari-
ables for each day. This is due to the fact that the argument
of repeat is computed just once. Instead, tt is created by
using the function genTT [] N, which computes a differ-
ent list of variables for each day, by explicitly computing N
times take 5 genVList.
genTT:: [[A]] -> int -> [[A]]
genTT L 0 = L
genTT L N =

genTT [(take 5 genVList)|L] (N-1) <== N > 0

Second, to bind as much variables as possible to 0 we cre-
ate the [[int]] extra data structure ZeroCal. We dis-
tinguish between the regular worker absences and the days
that e is not requested. To identify regular worker absences
OAbs is filtered to deliver only that absences related to the
regular workers of the selected team. To this end, list D is
used. Also, for each day for which e is not requested (Ei
= 0), ZeroCal is increased by 5. Finally, once tt and
ZeroCal are built, both structures are mapped with func-
tion putZeros, which zeroes selected variables.

Third, once tt has been built with the minimum num-
ber of variables, it is splitted into the three different sub-
problems, one per team. As both N and DClass are re-
quested for solving each sub-problem, they must also be
split. Finally, the standard number of hours each regu-
lar worker should ideally accomplish is also requested by
third stage to solve a single sub-problem. It is computed
with the expression (#/12) (foldl workHours 0
DClass) == Hours. On the one hand, T OY(FD) ca-
pability of using both curried functions and constraints is
used. In this case the constraint (#/12) is waiting to be
applied to an int. On the other hand, it is applied to the

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

67

total number of hours of tt, which is computed by us-
ing the FP standard function foldl, and is presented as a
higher order application to make the expression more com-
pact. This foldl uses an initial 0 as accumulator. Func-
tion workHours adds 66 or 48 to the accumulator, de-
pending on whether it deals with a workingDay or with a
weekendDay (resp.) It is important to remark that a com-
mon number of standard hours for the twelve regular work-
ers is maintained, instead of creating a specific number for
the regular workers of each team.

Timetabling Solving As tt, N and DClass are split into
three independent sub-problems, they can be solved sepa-
rately. So, to improve performance, it could be possible to
send the three sub-problems to different threads. Going even
one step further, our solving process could be changed, mak-
ing Team Assignment stage to collect first all the feasible
team assignments, and second stage compute all its tt’s and
sub-problem tables. At that point, we would contain as much
as 18 different sub-problems to be solved, and third stage
could send them to different threads.

However, T OY does not support multi-threading up to
now. Thus, we solve tt by solving sequentially tt1, tt2

and tt3. In any case, as tt optimal schedule is the one
which minimizes the extra hour payment, by monotonicity
it could be computed as the sum of the optimal schedules for
tt1, tt2 and tt3.

Solving each tti implies several tasks. First, an ini-
tial domain on its variables must be imposed. That is,
{0, 20, 22, 24} for workingDay and {0, 24} for
weekendDay. Then, we impose an allDifferent con-
straint for workingDay, and a count constraint for set-
ting two variables to 24 for weekendDay. But, if e is re-
quested this can be simplified. e is only requested when team
working does not provide enough regular workers to accom-
plish all shifts. In those cases we can ensure that both e and
remaining regular workers are going to work (a value differ-
ent from 0). Thus, for workingDay and weekendDay the
case on which either e is requested (an unbound variable) or
not (bound to value 0) is distinguished. If e is requested, on
weekendDay regular workers rows are traversed and the
unique variable not bound, say X, is collected. Then, both X
and e can be bound to 24 without the need of posting FD
constraints.

Second, we take into account Tight, to ensure gener-
ated schedules to maintain an homogeneous distribution of
shifts. Let us suppose that we have two different schedules
implying 36 extra hours. However, while in the first one the
36 extra hours are accomplished by a single regular worker,
the second one divides it into 9 hours for the four regular
workers of a working team. From the point of view of op-
timality, both solutions are equal. However, the second one
is fairer with the distribution of the work. We let Tight
to be an input parameter to be introduced by the user in
order to make homogeneous the distribution of the work.
As we said in problem description, we measure Tight by
each working team and each shift. If we make Tight =
0 then all the regular workers of all the teams must be as-
signed to the same number of 0, 20, 22 and 24 shifts. If

we make Tight = 1, then we allow each regular work-
ing team {wi, wi+1, wi+2, wi+3} to assign different shifts
to their workers. For example, let us suppose that the maxi-
mum number of 20 hours shifts assigned to a worker is k1,
and the minimum is k2. Then Tight = 1 constraints that
the difference between k1 and k2 is not greater than 1. It is
important to remark that we have decided to include Tight
as an input parameter, instead of wrapping it within the cost
function. Our objective is to minimize the extra hour pay-
ment, not Tight.

Function ts is used to constrain with Tight a single
working team and a single shift:

tS T [W1L,W2L,W3L,W4L,EL] S = true <==
count S W1L (#=) A,
count S W2L (#=) B,
count S W3L (#=) C,
count S W4L (#=) D,
domain [A#-B, A#-C, A#-D, B#-C,

B#-D, C#-D] (-T) T

In particular, expression tS T (transpose SubTT)
WS is used to, first, transpose the list tti in order to ac-
cess its variables by workers, instead of by days. tS cre-
ates four new FD variables SW1,...,SW4 representing
the amount of shifts assigned to each of the regular workers
of the working team. Second, to impose an homogeneous
distribution we impose the difference of this variables to be
in the domain (-T),...,T. Here we want to remark the
T OY(FD) functional notation capabilities, that allow us to
directly express the subtraction of each pair of variables in
the domain constraint, instead of creating new variables.
Third, we need to generate the cost function EHours ==
X1 # + X2 # + X3 # + X4 # +(2 # * X5). While
X1,...,X4 represent the extra hours of the regular work-
ers, X5 is the number of extra hours of e. Again we need to
use transpose SubTT as we need to access its variables
by workers. In this setting, X5 is computed with a sum con-
straint of e working hours. In the case of regular workers, we
need four more sum constraints. But, in this case the gener-
ated FD variables must be compared with standard number
of working hours. Thus, we use implication constraints.
If a worker has done extra hours, then Xi represents that
number of extra hours. But, if the worker has done less than
standard hours, then Xi = 0.

Finally, a new labeling over tti is applied. The in-
put parameters W and SS are taken into account to follow
a particular search strategy. SS selects the particular vari-
able selection strategy: firstUnbound or firstFail.
W enumerates the tti variables by days or by workers. The
labelingOrder is relevant for both labeling strategies.
As tti variables contain few values in their domain, many
ties will be produced when selecting variables by first fail,
and the variable enumerated first will be the one selected. All
the cases contain the option toMinimize ExtraHours,
ensuring that optimal schedule (minimizing the extra hour
payment) is selected as a solution.

Timetabling Mapping By scheduling the three tti (bind-
ing all their variables) all the variables of tt are indirectly
bound. We recall here that the user is requested to use

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

68

collect to trigger exploration of all feasible team assign-
ments. Users can then either check each sub-optimal solu-
tion or map a minimum function to the collected solutions
to select the optimal one.

5. Paradigm Comparison
Let us discuss about the benefits of modeling this problem
in CFLP(FD). First, we summarize the advantages the logic
component offer us in CLP(FD) and CFLP(FD) in con-
trast to CP(FD). Then, we point out the advantages the
functional component offer us in CFLP(FD) in contrast to
CLP(FD).

CP(FD) is not thought to reason with models. First, the
constraint set is imposed and then several labeling search
strategies over disjoint variable sets can be declared. On the
one hand, both tasks cannot be mixed. On the other hand, the
set of imposed constraints is static and not meant to change.
Both CLP(FD) and CFLP(FD) add to CP(FD) allow this
task to be dynamic. In addition, the logic component eased
the modeling and solving of the employee timetabling prob-
lem. We have pointed out the benefits of splitting this prob-
lem: Problem division, early detection of unfeasible solu-
tions and reduction of FD variables. Our approach consists
of posting a subset of the constraints of the problem and per-
forms a labeling search strategy (obtaining a feasible team
assignment). Then, departing from each obtained partial so-
lution, we dynamically create the sub-problems to be solved.
Finally, we post the rest of the constraint set over these sub-
problems, and we use parameterized labeling strategies to
find the optimal schedule. Under this scenario, our model
can not be directly translated into a classical CP approach
with a requested isolation between constraint and search de-
scriptions. To follow our CFLP(FD) approach described be-
fore, in CP(FD) we would need to create several CP mod-
els, and a general script to coordinate them. If we decide to
keep it in a single model, then we need to create the table of
13 × n FD variables to represent assigned shifts. But, only
by doing that, we reach again the 413×n initial search space
we depart from in our CFLP(FD) implementation (and that
we reduce dramatically with our approach).

CFLP(FD) provides a sugaring syntax for LP predicates
and thus any pure CLP(FD)-program can be straightfor-
wardly translated into a CFLP(FD) program (Fernández et
al. 2007). But, in addition, CFLP(FD) includes a functional
component. This has helped us easing the task of model-
ing the calendar problem, as some of the extra capabilities
CFLP(FD) enjoys have been used: (a) Types. Our system is
strongly typed, and it has eased the modeling development
and maintenance, by finding bugs at compile-time. (b) Poly-
morphic variables. (c) Lazy evaluation. Function arguments
are evaluated to the required extent (the call-by-value used
in LP vs. the call-by-need used in FP) (Peyton-Jones 1987).
By this, we have managed infinite structures. (d) Call-time
choice, allowing shared terms to be computed just once. (e)
Higher order. Its use has simplified modeling. (f) Currying.
Both curried functions and constraints have been used. (g)
Functional notation, by which we have saved some FD vari-
ables. (h) Non-determinism rules have been used in some

functions. (i) Function composition. It has allowed us to use
more compact expressions.

6. Performance
In this section we present results for solving three instances
of the problem. Each instance is assumed to start on Mon-
day, where any week contains five working days followed
by weekend. The three instances solve one, two and three
weeks respectively, where the planned absences are shared
among the instances: Abs ≡ {(w1, 1), (w2, 1), (w5, 1),
(w5, 6), (w6, 1), (w6, 6), (w7, 1), (w7, 6), (w10, 1), (w10, 6),
(w11, 1), (w11, 6), (w12, 1), (w12, 6)}. Thus, there will be
only two feasible team assignments, as on day 1 only t1 can
work. The two feasible team assignments correspond with
permutation of t2 and t3 over days 2 and 3, respectively.
Each assignment will request e on days 1 and 6. Tight≡ 1
is used allow little differences between the regular workers
of each team. The last two parameters specify the search
strategy to be accomplished, as defined in Section 4.

Section 5 pointed out the benefits of using CFLP(FD) for
modeling the problem. Now we are also interested in mea-
suring the performance impact of its underlying lazy narrow-
ing mechanism, in order to test if the framework maintains
a good trade-off between expressivity and efficiency. Lazy
narrowing elapsed time is computed via subtracting original
instance elapsed time to the FD constraint solving elapsed
time. To compute the latter one we isolate the concrete set
of FD constraints being sent to the solver. Once obtained
this set we re-formulate the instance via a new program,
which only contains a function explicitly posting it. Next ta-
ble summarizes the results. First column represents the num-

Weeks T OY(FD) FD Overhead Strat.
1 1,027 859 20% dO
2 3,404 3,100 10% wO
3 199,359 195,609 2% wO

ber of weeks of the instance. As second and third columns
represent the elapsed time of the original and constraint-only
programs respectively (measured in milliseconds), the lazy
narrowing overhead is presented on fourth column by sim-
ply computing their ratio. While for each measurement we
have applied our four possible combinations of variable or-
der and strategy selection explained in Section 4, in this ta-
ble we only present the results of the fastest, to which we
devote last column. Benchmarks have been run in a machine
with an Intel Dual Core 2.4GHz processor and 4GB RAM
memory and Windows XP SP3. T OY(FD) has been de-
veloped with SICStus Prolog, version 3.12.8, and ILOG CP
1.6, with ILOG Concert 12.2 and ILOG Solver 6.8 libraries.
Microsoft Visual Studio 2008 tools were used for compiling
and linking the T OY(FD) interface to ILOG CP.

Obtained results encourages our approach. On the one
hand, we can solve timetables of up to three weeks in a rea-
sonable amount of time. On the other hand, we can see that
the lazy narrowing overload is also negligible. Its overload
ranges from 20% for the smallest instance being measured
(which is solved in less than one second) to a 2-3% for the

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

69

largest instance being measured (which is solved in more
than three minutes). So, as problem scales, the impact of the
lazy narrowing decreases, becoming very few or instead ir-
relevant for difficult CSPs involving long time during search.

7. Conclusions
CP is a suitable paradigm to tackle timetabling problems,
as it provides expressive languages for describing the con-
straints and powerful solver mechanism for reasoning with
them. However, it neither provides general purpose pro-
gramming features nor a modeling reasoning framework, as
CLP and CFLP frameworks do. In this paper we have pre-
sented an employee timetabling problem that puts some ev-
idence of the benefits these two properties provide for the
modeling and solving of this particular problem. On the one
hand, users can benefit from the extra expressivity those
frameworks provide, without loosing constraint solving ca-
pabilities. On the other hand, modeling framework allows
us to dramatically reduce the search space to be explored
for obtaining the optimal schedule, without supposing a big
overload due to its underlying operational mechanism.

While our problem can not be directly translated to CP us-
ing a classical approach (due to the isolation between con-
straints and search strategies), there exist several ways of
exploiting problem independence, relying on a distributed
framework (Meisels and Kaplansky 2002). As future work
we plan to make an in-depth comparison of CP(FD),
CLP(FD) and CFLP(FD) for solving our problem. We plan
to model the problem in CP, both with a distributed approach
and with the classical approach. Also, we plan to model the
problem in CLP. It would put much more evidence between
the trade-off of expressivity and efficient our framework is.
On the one hand, when modeling in CLP(FD) we can not
take advantage of the expressivity of our system. On the
other hand, as our system is built on top of SICStus, we can
directly assess the impact of our lazy narrowing operational
system.

References
[Brauner et al. 2005] Brauner, N.; Echahed, R.; Finke, G.;
Gregor, H.; and Prost, F. 2005. Specializing narrowing for
timetable generation: A case study. In PADL, 22–36.

[Burke et al. 2004] Burke, E. K.; Causmaecker, P. D.;
Berghe, G. V.; and Landeghem, H. V. 2004. The state of
the art of nurse rostering. J. Scheduling 7(6):441–499.

[Burke, Kendall, and Soubeiga 2003] Burke, E. K.; Kendall,
G.; and Soubeiga, E. 2003. A tabu-search hyperheuristic for
timetabling and rostering. Journal of Heuristics 9:451–470.

[Burke, Li, and Qu 2010] Burke, E. K.; Li, J.; and Qu, R.
2010. A hybrid model of integer programming and variable
neighbourhood search for highly-constrained nurse roster-
ing problems. European Journal of Operational Research
203(2):484–493.

[Fernández et al. 2007] Fernández, A. J.; Hortalá-González,
T.; Sáenz-Pérez, F.; and del Vado-Vı́rseda, R. 2007. Con-
straint Functional Logic Programming over Finite Domains.
TPLP 7(5): 537–582.

[González-Moreno et al. 1999] González-Moreno, J.; Hor-
talá-González, M.; López-Fraguas, F.; and Rodrı́guez-
Artalejo, M. 1999. An approach to declarative programming
based on a rewriting logic. Journal of Logic Programming
40:47–87.

[Hanus 1994] Hanus, M. 1994. The integration of functions
into logic programming: a survey. The Journal of Logic Pro-
gramming 19-20:583–628.

[Hanus 1999] Hanus, M. 1999. Curry: a truly inte-
grated functional logic language. http://www-ps.
informatik.uni-kiel.de/currywiki/.

[Jaffar and Maher 1994] Jaffar, J., and Maher, M. 1994. Con-
straint logic programming: a survey. The Journal of Logic
Programming 19-20:503–581.

[López-Fraguas, Rodrı́guez-Artalejo, and Vado-Vı́rseda 2004]
López-Fraguas, F.; Rodrı́guez-Artalejo, M.; and Vado-
Vı́rseda, R. 2004. A lazy narrowing calculus for declarative
constraint programming. In PPDP’04, 43–54. ACM.

[Marriot and Stuckey 1998] Marriot, K., and Stuckey, P. J.
1998. Programming with constraints. Cambridge, Mas-
sachusetts: The MIT Press.

[Meisels and Kaplansky 2002] Meisels, A., and Kaplansky,
E. 2002. Scheduling agents - distributed timetabling prob-
lems(disttp). In PATAT, 166–180.

[Métivier, Boizumault, and Loudni 2009] Métivier, J.-P.;
Boizumault, P.; and Loudni, S. 2009. Solving nurse
rostering problems using soft global constraints. In CP,
73–87.

[Moz and Pato 2007] Moz, M., and Pato, M. V. 2007. A
genetic algorithm approach to a nurse rerostering problem.
Computers & OR 34(3):667–691.

[PAKCS] PAKCS. http://www.informatik.
uni-kiel.de/pakcs.

[Peyton-Jones 1987] Peyton-Jones, S. 1987. The implemen-
tation of functional programming languages. Englewood
Cliffs, N.J.: Prentice Hall.

[Peyton-Jones 2002] Peyton-Jones, S. 2002. Haskell 98 lan-
guage and libraries: the revised report. Technical report.
http://www.haskell.org/onlinereport/.

[R. González-del-Campo and F. Sáenz-Pérez 2007] R.
González-del-Campo and F. Sáenz-Pérez. 2007. Pro-
grammed search in a timetabling problem over finite
domains. ENTCS 177: 253–267.

[Tsang 1993] Tsang, E. 1993. Foundations of constraint sat-
isfaction. London and San Diego: Academic Press.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

70

