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ncasti@fdi.ucm.es, fernan@sip.ucm.es
Dept. Sistemas Informáticos y Computación 1
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Abstract: In this work we focus on the CFLP system T OY (FD), implemented in
SICStus Prolog and supporting FD constraints by interfacing the external CP(FD)
solvers of Gecode and ILOG Solver. We extend T OY (FD) with new search
primitives, in a setting easily adaptable to other Prolog CLP or CFLP systems. We
describe the primitives from a solver-independent point of view, pointing out some
novel concepts not directly available in any CP(FD) library we are aware of, as
well as how to specify some search criteria at T OY (FD) level and how easily
these strategies can be combined to set different search scenarios. We describe the
implementation of the primitives, presenting an abstract view of the requirements
and how they are targeted to the Gecode and ILOG libraries. We evaluate the result-
ing T OY (FD) architecture and we use some benchmarks to prove that the use of
the search strategies improve its solving performance.
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1 Introduction

The use of ad hoc search strategies has been identified as a key point for solving Constraint Sat-
isfaction Problems (CSP’s) [Tsa93], allowing the user to interact with the solver in the search
of solutions (exploiting its knowledge about the structure of the CSP and its solutions). Differ-
ent paradigms provide different expressivity for specifying search strategies: Constraint Logic
Programming CLP(FD) [JM94] and Constraint Functional Logic Programming CFLP(FD)
[Han07] provide a declarative view of this specification, in contrast to the procedural one of-
fered by Constraint Programming CP(FD) [MS98] systems (which make the programming of
a strategy to depend on low-level details associated to the constraint solver, and even on the con-
crete machine the search is being performed). Also, due to their model reasoning capabilities,
CLP(FD) and CFLP(FD) treat search primitives as simple expressions, making possible to:
(1) Place a search primitive at any point of the program, (2) Combine several primitives to de-
velop complex search heuristics, (3) Intermix search primitives with constraint posting, and (4)
Use indeterminism to apply different search scenarios for solving a CSP.

The main contribution of this paper is to present a set of search primitives for CLP(FD) and
CFLP(FD) systems implemented in Prolog, and interfacing external CP(FD) solvers with a
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C++ API. The motivation of this approach is to take advantage of: (i) The high expressivity
of CLP(FD) and CFLP(FD) for specifying search strategies, and (ii) The high efficiency of
CP(FD) solvers. The paper focuses on the CFLP(FD) system T OY (FD) [FHSV07], more
precisely in the system versions T OY (FDg) and T OY (FD i) [CS12], interfacing the ex-
ternal CP(FD) solvers (with C++ API) of Gecode 3.7.3 [STL12] and IBM ILOG Solver 6.8
[IBM10], resp. T OY (FD) is completely developed in SICStus Prolog [Mat12]. Their pro-
grams follow a syntax mostly borrowed from Haskell [PJ02], with the remarkable exception
that program and type variables begin with upper-case letters whereas data constructors, types
and functions begin with lower-case. Instead of using an abstract machine for running byte-
code or intermediate code from compiled programs, the T OY compiler uses SICStus Prolog
as an object language [LLR93]. Regarding search, T OY (FD) offers two possibilities up to
now: (1) Defining a new search from scratch at T OY (FD) level (with a T OY (FD) func-
tion that use reflection functions to represent the search procedure), and, (2) Using the search
primitive labeling, which simply relies on predefined search strategies already existing in
Gecode and ILOG, resp. The use of external CP(FD) solvers (with C++ API) opens a third
possibility, which we exploit in this paper: Enhancing the search language of T OY (FDg) and
T OY (FD i) with new parametric search primitives, implementing them in Gecode and ILOG
by extending their underlying search libraries.

The paper is organized as follows: Section 2 presents an abstract description of the new pa-
rameterizable T OY (FD) search primitives, pointing out some novel concepts not directly
available in any CP(FD) library we are aware of, as well as how to specify some search criteria
at T OY (FD) level and how easily these strategies can be combined to set different search
scenarios. Section 3 describes the implementation of the primitives in T OY (FD), presenting
an abstract view of the requirements, how they are targeted to the Gecode and ILOG libraries
and a evaluation of the resulting architecture of the system. Section 4 presents some prelimi-
nary although encouraging case studies, showing that the use of the search strategies improve
the solving performance of both T OY (FDg) and T OY (FD i). Finally, Section 5 presents
some conclusions and future work.

2 Search Primitives Description

This section presents eight new T OY (FD) primitives for specifying search strategies, allow-
ing the user to interact with the solver in the search for solutions. These primitives bridge the
gap between the other two classical approaches available in T OY (FD): Defining a whole
search procedure at T OY level (by using reflection functions), and relying on the set of pre-
defined search strategies available in the solver library. Each primitive has its own semantics,
and it is parameterizable by several basic components. The search primitives are considered by
the language as simple expressions, so intermixing search strategies with the regular posting of
constraints is allowed. The section describes the primitives and their components (including its
type declaration) from an abstract, solver independent point of view. It emphasizes: (1) Some
novel search concepts arisen, which are not available in the predefined search strategies of any
CP solver, (2) How easy and expressive it is to specify some search criteria at T OY (FD)
level, and (3) The appealing possibilities T OY (FD) offers to apply different search strategies
for solving a CP problem.
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2.1 Labeling Primitives

Primitive lab
lab :: varOrd -> valOrd -> int -> [int] -> bool

This primitive collects (one by one) all possible combination of values satisfying the set of con-
straints posted to the solver. It is parameterized by four basic components. The first and second
ones represent the variable and value order criteria to be used in the search strategy, resp. To ex-
press them we have defined in T OY the enumerated datatypes varOrd and valOrd, covering
all the predefined criteria available in the Gecode documentation [STL13]. They also include a
last case (userVar and userVal, resp.) in which the user implements its own variable/value
selection criteria at T OY (FD) level. The third element N represents how many variables of
the variable set are to be labeled. This represents a novel concept not available in the predefined
search strategies of any CP solver. The fourth argument represents the variable set S. Thus, the
search heuristic uses varOrd to label just N variables of S.

Next T OY (FD) program (top) and goal (bottom) show how expressive, easy and flexi-
ble is to specify a search criteria in T OY (FD). In the example, the search strategy of the
goal uses the userVar and userVal selection criteria (specified by the user in the functions
myVarOrder and myValOrder, resp.) The lab search strategy computes partial solutions to
the T OY (FD) goal domain [X,Y, Z] 0 4, Y /= 1, Y /= 3, Z /= 2. Then, “rest
of T OY (FD) goal” is processed to compute complete solutions. Our search strategy acts over
the set of variables [X,Y,Z], but it is only expected to label one of them.

myVarOrder:: [int] -> int
myVarOrder V = fst (foldl cmp (0,0) (zip (take (length V) (from 0))

(map (length . get_dom) V)))
%
myValOrder:: [[int]] -> int | from:: int -> [int]
myValOrder D = head (last D) | from N = [N | from (N+1)]
%
cmp:: (int,int) -> (int,int) -> (int,int)
cmp (I1,V1) (I2,V2) = if (V1 >= V2) then (I1,V1) else (I2,V2)
----------------------------------------------------------------------
TOY(FD)> domain [X,Y,Z] 0 4, Y /= 1, Y /= 3, Z /= 2,

lab userVar userVal 2 [X,Y,Z], ... (REST OF TOY(FD) GOAL)

The function myVarOrder selects first the variable with more intervals on its domain. It
receives the list of variables involved in the search strategy, returning the index of the selected
one. To do so it uses: (i) The auxiliary functions from and cmp. (ii) The predefined functions
fst, foldl, zip, take, length, map, head, last and (.) (all of them with an equivalent
semantics as in Haskell). (iii) The reflection function get dom, which accesses the internal state
of the solver to obtain the domain of a variable (this domain is presented as a list of lists, where
each sublist represents an interval of values).

The function myValOrder receives as its unique argument the domain of the variable, re-
turning the lower bound of its upper interval. So, in conclusion, the first two (partial) solutions
obtained by the lab strategy are: (X in 0..4, Y -> 4, Z -> 3) and (X in 0..4,
Y -> 4, Z -> 4).
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Figure 1: Applying labB and fragB to the n-queens problem

Primitive labB
labB :: varOrd -> valOrd -> int -> [int] -> bool

This primitive uses the same four basic elements as lab. However, its semantics is different,
as it follows the varOrd and valOrd criteria to explore just one branch of the search tree, with
no backtracking allowed. Let us explain it by using the 4-queens example.

Using lab unassignedLeftVar smallestVal 0 [X1,X2,X3,X4] (where 0 in
the third argument stands for labeling all the variables) we obtain two solutions: X1 -> 1,
X2 -> 3, X3 -> 2, X4 -> 4 and X1 -> 2, X2 -> 4, X3 -> 1, X4 -> 3. However,
if we use labB unassignedLeftVar smallestVal 0 [X1,X2,X3,X4] the strategy fails,
getting no solutions. Left hand side of Fig. 1 (4× 4 square Board and tree) shows the com-
putation process. First, the selected criteria assigns X1 -> 1 at root node (1), leading to node
2. Propagation reduces search space to (X2 in 3..4, X3 in 2 ∨ 4, X4 in 2..3),
pruning nodes 3 and 4. Then, computation assigns X2 -> 3 (leading to node 5), and propaga-
tion leads to an empty domain for X3. So, the explored tree path leads to no solutions, and so it
does the computation. As we have seen, propagation during search modifies the intended branch
to be explored (in our example, it explores the branch 1-2-5 instead of the 1-2-3).

Primitive labW
labW :: varOrd -> bound -> int -> [int] -> bool
This primitive performs an exhaustive breadth exploration of the search tree, storing the satis-
fiable leaf nodes achieved to further sort them by a specified criteria. Let us consider a first
example to understand the semantics of labW. The following T OY (FD) goal has four vari-
ables, where two implication constraints relate X and Y with V1 and V2, resp.

TOY(FD)> domain [X,Y] 0 1, post_implication X (#=) 1 V1 (#>) 1,
domain [V1,V2] 0 3, post_implication Y (#=) 0 V2 (#>) 0,
labW unassignedLeftVar smallestSearchTree 2 [X,Y,V1,V2], ...

If we had used a lab unassignedLeftVar smallestVal 2 [X,Y,V1,V2] strategy
(instead of the labW one) to label the first two unbound vars of [X,Y,V1,V2], then the search
would have explored the search tree obtaining (one by one) the next four feasible solutions:
X -> 0, Y -> 0, X -> 0, Y -> 1, X -> 1, Y -> 0 and X -> 1, Y -> 1. Fig
3 represents the exploration of the search tree for obtaining those four solutions, where each
black node represents a solution, and the triangle it has below represents the remaining size of
the search space (product of cardinalities of V1 and V2). As we see, whereas the first solution
computed by lab leads to compute the “rest of the T OY (FD) goal” from a 12 candidates
search space, the third solution leads to a 6 candidates one.

The primitive labW explores exhaustively the search tree in breadth, storing in a data structure
DS each feasible node leading to a solution. Once the tree has been completely explored, the
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Figure 2: Search Tree

solutions are obtained (one by one) by using a criteria to select and remove the best node from
DS. In the example, the selected criteria smallestSearchTree selects first the node with
smaller product of cardinalities of V1 and V2 (returning first the solution of the 6 candidates).
The order in which the labW strategy of the goal delivers the solutions is presented in Fig. 2.

Coming back to the definition of labW, the first parameter represents the variable selection
criteria (no value selection is necessary, as the search would be exhaustive for all the values of the
selected variables). The second parameter represents the best node selection criteria. To express
it we have defined in T OY the enumerated datatype ord, ranging from the smallest/largest
remaining search space of the product cardinalities of the labeling/solver-scope variables. Again,
a last case (userBound) allows to specify the bound criteria at T OY (FD) level. The third
parameter sets the breadth level of exhaustive exploration of the tree (represented as a horizontal
black line in Fig. 2). Finally, as usual, the last parameter is the set of variables to be labeled.

Next T OY (FD) program (top) and goal (bottom) presents a second example, with a bound
criteria specified in the user function myBound. The best node procedure selection traverses
all the obtained nodes in DS, selecting first the one with minimal bound value. In this context,
the user criteria specified in myBound assigns to each node (minus) the number of its singleton
value search variables. Once again, the function myBound also relies on auxiliary, prelude
and reflection functions. The first two obtained solutions are (X -> 1, Y -> 1, A -> 0,
B -> 0, C -> 0) and (X -> 2, Y -> 1, A in 0..1, B -> 0, C -> 0), resp.

isBound:: [[int]] -> bool
isBound [[A,A]] = true
isBound [[A,B]] = false <== B /= A
isBound [[A,B] | RL] = false <== length RL > 0
%
myBound:: [int] -> int
myBound V = - (length (filter isBound (map get_dom V)))
----------------------------------------------------------------------
TOY(FD)> domain [X,Y] 1 2, domain [A,B,C] 0 5, A #< X, B #< Y, C #< Y,

labW unassignedLeftVar userBound 2 [X,Y,A,B,C]

In summary, labW represents a novel concept not available in the predefined search strategies
of any CP solver. However, it must be used carefully, as exploring the tree very deeply can lead
to a explosion of feasible nodes, producing memory problems for DS and becoming very ineffi-
cient (due to the time spent on exploring the tree and selecting the best node).

Primitive labO
labO :: optType -> varOrd -> valOrd -> int -> [int] -> bool

This primitive performs a standard optimization labeling. The first parameter optType contains
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the optimization type (minimization/maximization) and the variable to be optimized. The other
four parameters are the same as in the lab primitive.

2.2 Fragmentize Primitives

frag :: domFrag -> varOrd -> intervalOrd -> int -> [int] -> bool
fragB :: domFrag -> varOrd -> intervalOrd -> int -> [int] -> bool
fragW :: domFrag -> varOrd -> bound -> int -> [int] -> bool
fragO :: domFrag->optType->varOrd->intervalOrd->int->[int]->bool

These four new primitives are mate to the lab* ones, but each variable is not labeled (bound)
to a value, but fragmented (pruned) to a subset of the values of their domain. Let us consider an
introductory example to motivate the usefulness of these new primitives. We suppose that: (i)
A goal contains V variables and C constraints, with V’ ≡ {V1, V2, V3} a subset of V, (ii) The
constraint domain V’ 1 9 belongs to C, (iii) No constraint of C relates the variables of V’
by themselves, but some constraints relate V’ with the rest of variables of V.

The left and right hand sides of Fig. 3 present the search tree exploration achieved by frag*
and lab* search primitives, resp. In the case of frag*, the three variables of V’ have been
fragmented into the intervals (1,. . .,3), (4,. . .,6) and (7,. . .,9), leading to exponentially less leaf
nodes (27) that the lab* exploration (729). On the one hand, if it is known that there is only
one solution to the problem, the probabilities of finding the right combination of V’ values is
thus bigger in frag* than in lab*. On the other hand, the remaining search space of the leaf
nodes of lab* are expected to be exponentially smaller than the ones of frag*, due to the
more propagation in V’ (also expecting to lead to more pruning in the rest of V variables). Thus,
the frag* search strategies can be seen as a more conservative technique, where there are less
expectations of highly reducing the search space, as variables are not bound, but there is more
probability of choosing a subset containing values that lead to solutions (in what can be seen as
a sort of generalization of the first-fail principle [MS98]).

Coming back to the definition of each frag* primitive, two differences arise w.r.t. its
mate lab* primitive: (1) It contains as an extra basic component (first argument) the datatype
domFrag, which specifies the way the selected variable is fragmented. The user can choose
between partition n and intervals. The former fragments the domain values of the
variable into n subsets of the same cardinality. The latter looks for already existing inter-
vals on the domain of the variables, splitting the domain on them. For example, let us sup-
pose that a goal computes domain [X] 0 16, X /= 9, X /= 12. Whereas applying
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Figure 3: frag vs lab Search Tree
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partition 3 to X fragments the domain in the subsets S1 ≡ {0. . .4}, S2 ≡ {5. . .8}∪{10}
and S3 ≡ {11}∪{13. . .16}, applying intervals fragments the domain in the subsets S1’ ≡
{0. . .8}, S2’ ≡ {10. . .11} and S3’ ≡ {13. . .16}. (2) An enumerated datatype intervalOrd
(replacing the lab* argument valOrd), to specify the order in which the different intervals
should be tried: First left, right, middle or random interval.

In summary, we claim the frag* primitives to be an interesting tool, to be taken into account
in the context of search strategies as an alternative or a complement to the use of exhaustive
labelings. Also, its use in T OY (FD) represents a novel concept not available in the predefined
library of any CP solver.

2.3 Applying Different Search Scenarios

T OY (FD) supports non-deterministic functions, with possibly several reductions for given,
even ground, arguments. The rules are applied following their textual order, and both failure and
user request for a new solution trigger backtracking to the next unexplored rule. In this setting,
different search strategies can be sequentially applied for solving a CP problem. For example,
after posting V and C to the solver, the T OY (FD) program (top) and goal (bottom) presented
below uses the non-deterministic function f to specify three different scenarios for the solving
of the CP problem described in Section 3.5. Each scenario ends with an exhaustive labeling of
the set of variables V. However, the search space s this exhaustive labeling has to explore can be
highly reduced by the previous evaluation of f.

f:: [int] -> bool
f [V1,V2,V3] = true <==

fragB (partition 4) unassignedLeftVar random 0 [V1],
labB unassignedLeftVar smallestVal 0 [V2,V3]

f [V1,V2,V3] = true <==
fragW (partition 4) unassignedLeftVar smallestTree 0 [V1],
labB unassignedLeftVar smallestTotalVars 0 [V2,V3]

f [V1,V2,V3] = true
--------------------------------------------
TOY(FD)> Post of (V,C), f V’, lab userVar userVal 0 V

Scenario 1: The first rule of f performs the search heuristic h1 over V’ ≡ {V1,V2,V3}. (1)
h1 fragments the domain of V1 into 4 subsets, selecting one randomly. If propagation succeeds,
(2) then h1 bounds V2 and V3 to their smallest value. If propagation succeeds (with a remaining
search space s1), (3) then h1 succeeds, and the exhaustive labeling explores s1. If propagation
fails in (1) or (2), or the exhaustive labeling does not find any solution in s1, then h1 completely
fails (as so the first rule of f), as both the labB and fragB primitives just explore one branch.

Scenario 2: The second rule of f is tried, performing the heuristic h2 over V’. Here a fragW
primitive is first applied. So, if further either labB of h2 or the exhaustive lab (acting over s2)
fails, backtracking is done over fragW, providing the next best interval of V1 (according to the
smallest search tree criteria, as in Fig. 2). If, after trying all the intervals a solution is not found,
then h2 completely fails (as so the second rule of f).

Scenario 3: If both h1 and h2 fail, the third rule of f trivially succeeds, and the exhaustive
labeling is performed over the original search space obtained after posting V and C to the solver.
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3 Search Primitives Implementation

The integration of the eight new search primitives into T OY (FD) is based on the scheme pre-
sented in [CS12], which supported the coexistence in the goal computations of T OY (FDg)
and T OY (FD i) of multiple labeling primitives (using the predefined search strategies
provided in Gecode and ILOG) interleaved with the posting of constraints. To achieve the inte-
gration, the scheme: (1) Uses the Prolog-C++ connection provided by SICStus, to gain access
from the Prolog predicate which manages the labeling primitive to the C++ function which
implements the search (by accessing to the API of Gecode and ILOG). (2) Relies on a vector of
auxiliary search managers ss1 . . . ssl to perform the search of the labelings l1 . . . ll arisen
along the goal computation. This includes synchronizing the constraint store of the main solver
with ssi before performing li for first time, and vice versa each time ssi finds a solution.

In this work we reuse this scheme, but, instead of relying on the predefined search strategies of
Gecode and ILOG, we use their underlying search mechanisms to model new search strategies
implementing the intended behavior of the primitives. As the implementation of a new search
strategy is different in Gecode and ILOG, we present first an abstract specification of the require-
ments the new search strategies must fulfill, and then we present separately the adaptation of this
specification to the technological framework provided by each library. The current versions of
T OY (FDg) and T OY (FD i) are available at: http://gpd.sip.ucm.es/ncasti/TOY(FD).zip

3.1 Abstract Specification of the Search Strategy

We specify a single entry point (C++ function) for the different primitives. Its proposed algo-
rithm is parameterizable by the primitive type and its basic components. It fulfills the following
requirements: (1) The algorithm explores the tree by iteratively selecting a variable var and a
value v, creating two options: (a) Post var == v. (b) Post var /= v to continue the explo-
ration taking advantage of the previously explored branch, recursively selecting another value to
perform again (a) and (b). (2) For frag* strategies it selects an interval i instead of a value,
posting in (a) both var #>= i.min and var #<= i.max. However, the (b) branch can not
take advantage by posting var #< i.min and var #> i.max, as the constraint store would
become inconsistent. Thus, (b) just removes i from the set of intervals, and continue the search
by selecting a new interval. (3) For labB and fragB strategies only the (a) option is tried. (4)
For labO and fragO strategies branch and bound techniques are used to optimize the search.
(5) Specific functions are devoted to: (i) Variable and (ii) value/interval selection strategies, as
well as to (iii) the bound associated to a particular solution found by labW and fragW. Those
functions include the possibility of accessing Prolog, to follow the criteria the user has speci-
fied at T OY (FD) level (using T OY (FD) functions compiled to mate Prolog predicates).
(6) The primitives labW and fragW perform the breadth exploration of the upper levels of the
search tree, storing all the satisfiable leaf nodes to further give them (one by one) on demand.
Thus, ss contains: (i) An entity performing the search, (ii) A vector DS (cf. Section 2.3) contain-
ing the solutions. The notion of solution is abstracted as the necessary information to perform
the synchronization from ss to the main constraint solver. (iii) A status indicating whether the
exploration has finished or not. (7) The algorithm finishes (successfully) as it founds a solution,
except for labW and fragW strategies, where it stores the solution node and triggers an explicit

Improving the Search Capabilities of a CFLP(FD) System8 8 / 15



Search Concept Gecode ILOG Solver
Search trigger Search Engine IloGoal stack

Tree node Space IloGoal attributes
Node exploration Brancher Commit IloGoal execution
Child generation Brancher Choice IloGoal constructor
Solution check Brancher Status Stack with no pending IloAnd

Solution abstraction Space Tree path (var,value) vector register

Table 1: Different Search Concept Abstractions in Gecode and ILOG Solver

failure, continuing the breadth exploration of the tree. (8) A counter is used to control that only
the specified amount of variables of the variable set is labeled/pruned.

Next two sections adapt this specification to Gecode and ILOG Solver, resp. Table 1 summa-
rizes the different notions provided by both libraries.

3.2 Gecode

We have selected Gecode 3.7.3 as the external solver for T OY (FDg) as it is a free software
constraint solver with state-of-the-art performance. Search strategies in Gecode are specified
via Branchers, which are applied to the constraint solver (Space) to define the shape of the
search tree to be explored. The Space is then passed to a Search Engine, whose execu-
tion method looks for a solution by performing a depth-first search exploration of the tree. This
exploration is based on cloning Spaces (two Spaces are said to be equivalent if they con-
tain equivalent stores) and hybrid recomputation techniques to optimize the backtracking. As
Spaces constitute the nodes of the search tree, a solution found by the Search Engine is
a new Space. The library allows to create a new class of Brancher by defining three class
methods: (1) status, which specifies if the current node is a solution, or their children must
be generated, to continue with their exploration. (2) choice, which generates an object o con-
taining the number of children the node has, as well as all the necessary information to perform
their exploration. (3) commit, which receives o and the concrete children identifier to perform
its exploration (generating a new Space to be placed at that node).

Adaptation to the Specification. The search strategies are implemented via two layers: (I)
A new class of Brancher MyGenerate, which carries out the tree exploration by the combi-
nation of the status, choice and commit methods. As each node of the tree is a Space,
the methods are applied to it. (II) A Search Engine, controlling the search by receiving the
initial Space and making the necessary clones to traverse the tree. Regarding (1), the choice
method deals with the selection of: (i) The variable var and (ii) The value v, creating an object
o with them as parameters, as well as the notion of having two children. The variable selec-
tion must rely on an external register r, being controlled by the Search Engine and thus
independent on the concrete node (Space) the choice method is working with. The register
is necessary to ensure that, whether a father generates its right hand child by posting var /=
v, this child will reuse r to select again var (as a difference to the left hand child, which re-
moves the r content to select a new variable). Regarding (2), for frag* strategies, instead of
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passing val to o, the choice method generates a vector with all the different intervals to be
tried, and the size of this vector is passed as its number of children. Regarding (3), for labB
and fragB only one child is considered. Regading (4), for labO and fragO we use a spe-
cialized branch and bound Search Engine provided by Gecode. Regarding (6), the search
entity is the Search Engine and the notion of solution is a Space. Regarding (7), for labW
and fragW the Search Engine uses a loop, requesting solutions one by one until no more
are found (the breadth exploration of the search tree has finished). Regarding (8), only the left
hand child of lab* strategies increments the counter value, and the status method checks the
counter to stop the search at the precise moment.

3.3 ILOG Solver

We have selected IBM ILOG Solver 6.8 as the external solver for T OY (FD i) as it is an indus-
trial market leader for solving generic FD problems. It belongs to the ILOG CP 1.6 package,
which contains the ILOG Concert 12.2 modeling library and two other solver libraries for spe-
cific scheduling and routing problems. Thanks to the IBM academic initiative these products are
free for academic purposes. Search strategies in ILOG Solver are performed via the execution
of IloGoals. An IloGoal is a daemon characterized by its constructor and its execution
method. The constructor creates the goal, initializing its attributes. The execution method trig-
gers the algorithm to be processed by the constraint solver (IloSolver), and can include more
calls to goal constructors, making the algorithm processed by IloSolver to be the conse-
quence of executing several IloGoals. We say that an IloGoal fails if IloSolver be-
comes inconsistent by running its execution method; otherwise the goal succeeds. The library
allows to create a new class of IloGoal by defining its constructor and execution method.
Four basic goal classes are provided for developing new goals with complex functionality. Goals
IlcGoalTrue and IlcGoalFalse make the current goal succeed and fail, resp. Goals
IlcAnd and IlcOr, both taking two subgoals as arguments, make the current goal succeed
depending on the behavior of its subgoals. While IlcAnd succeeds only if its two subgoals
succeed, IlcOr creates a restorable choice point which executes its first subgoal, restores the
solver state at the choice point on demand, and executes its second subgoal.

Adaptation to the Specification. The search strategies are implemented via the new IloGoal
classes MyGenerate and MyInstantiate. Whereas the former deals with the selection of a
variable, the latter deals with its binding/prunning to a value/interval. Regarding (1), the control
of the tree exploration is carried out by MyGenerate, which selects a variable and uses the re-
cursive call IlcAnd(MyInstantiate, MyGenerate) to bind it and further continue pro-
cessing a new variable. In MyInstantiate, the alternatives (a) and (b) are implemented with
an IlcOr(var == val, IlcAnd(var /= var, MyInstantiate)). Regarding (2),
it dynamically generates a vector with the available intervals on each different MyGenerate
call. Regarding (3), only the goal var == val is tried. Regarding (4), we explicitly imple-
ment the branch and bound. Thus, before selecting each new variable, we check if the current
optimization variable can improve the bound previously obtained; otherwise an IloGoalFail
is used to trigger backtracking (as well as if, after labeling the required variables, the obtained
solution does not bind the optimization variable). Regarding (6), the entity performing the search
is an IloSolver. Also, the notion of solution is given by: (i) A vector of integers, representing

Improving the Search Capabilities of a CFLP(FD) System10 10 / 15



the indexes of the labeled/pruned variables. (ii) A vector of pairs, representing the assigned value
or bounds of these variables. This explicit solution entity is built towards the recursive calls of
MyGenerate, which adds on each call the index of the variable being labeled. Once found the
solution, it stores (i) and (ii) in DS. Regarding (7), after storing a solution in labW or fragW an
IloGoalFalse is used, triggering backtracking to continue the breadth exploration. Regard-
ing (8) each call to MyGenerate increments the counter value.

3.4 TOY(FD) Architecture

The resulting T OY (FD) architecture supporting the search primitives is presented in Fig. 4.
It contains five different layers:

(1) The T OY (FD) interpreter. It allows to impose the user commands. In Fig. 4 the
goal proposed in Section 3.1 is to be solved. Besides its FD constraints domain and /=,
there is a lab strategy. The user is specifying its own variable and value selection criteria by

TOY(FD)> domain [X,Y,Z] 0 4, Y /= 1,Y /= 3, Z /= 2, lab userVar userVal 2 [X,Y,Z]

TOY

SICStus

C++

  bool post_constraint(…) {…}
   bool start_search(…) { … }   
   bool get_next_solution (…) {…}

MyProgram.toy

from:: int  [int]
myVarOrder:: [int]  int
myValOrder:: [[int]]  int

FD.toy

domain:: [int]  int  int  bool 
lab:: varOrd  valOrd int  [int]  bool
get_dom:: int  [[int]]

PROMPT

MyProgram.pl

myVarOrder(…) :-
     get_dom … .

FD.pl

get_dom ( …) :-  
   p1, 
   pl_get_dom, …
   p2.

solver.pl

pl_domain  cpp_domain
pl_get_dom  cpp_get_dom
pl_search_strategy 
         cpp_search_strategy

   ….

solver.cpp

void cpp_domain( … ) { … } 
void cpp_get_dom( … ) { … }
void cpp_search_strategy( … ) { … }

solver_glue.c
    ….

solver_glue.h
    ….

int selectVar(…) { … }
int selectVal(…) { … }
int get_best_node(…) { … }

                     Solver Search Methods

SOLVER API

Figure 4: T OY (FD i) Architecture
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using the functions myValOrder and myVarOrder, resp., which rely on auxiliary, prelude
and reflection functions (as, for example, from, get dom and map, respectively).

(2) The T OY (FD) files defining the language. They include: (i) A file Prelude.toy,
to specify the prelude functions (as map), (ii) A devoted file FD.toy, specifying the set of FD
constraints supported, and (iii) A file MyProgram.toy with the user definitions (including
from and myVarOrder).

(3) The SICStus implementation of T OY (FD). It includes Prolog mate files for (i), (ii)
and (iii), implementing all the T OY (FD) datatypes, functions and operators supported by the
system and defined by the user. The file solver.pl supports the communication from SICStus
to C++ by specifying the set of SICStus predicates S being implemented in C++ functions.

(4) The C++ interface to the solver. It includes: (a) The file solver.cpp, containing the
set of C++ functions implementing S, and (b) The auxiliary files containing the extra C++ func-
tions, data structures and new solver specific classes extending the library (needed to implement
S). This includes the new C++ class MyGenerate in Gecode and ILOG Solver (the latter also
including MyInstantiate). They are devoted to implement the lab strategy, and contain
methods for the variable and value selection. Fig. 4 shows how these methods can access either
to the solver API (if a predefined criteria is being selected), or (focusing on the variable selec-
tion criteria) come back to the SICStus file MyProgram.pl, executing the SICStus predicate
myVarOrder (implementing the user T OY (FD) function myVarOrder). In our example,
the latter case holds, and we can see how the execution traverses the SICStus and C++ layers, as a
cycle is performed between the SICStus predicate myVarOrder, its auxiliary SICStus predicate
get dom (which belong to S) and its C++ implementation in solver.cpp.

(5) The C++ API of the solver. Accessed by the C++ methods interfacing the solver. In the
case of Gecode, this layer also includes the proper solver implementation, as it is open software.

4 Performance Analysis

In this section we present a preliminary although encouraging performance analysis of the
T OY (FD) search primitives, devoting a specific case study for each novel concept already
presented. On each case we select a constraint satisfaction/optimization problem (either a pure
classical CP(FD) benchmark from the CSPLib [CSP12] or a real-life problem) and we describe
how the use of a concrete search strategy increases the solving efficiency of the problem.

labB: n-magic sequence. When n ≥ 9 the sequence follows the pattern: L ≡ [(n− 4),2,1,0,
0, . . . ,1,0,0,0]. Although the use of first-fail (labeling [ff] L) turns the solving of any
n-sequence into ' 0ms, the initial search space this search departs from can be huge. For
example, n = 9 contains an initial search space of 77,760 candidates. In this context, for
each n ≥ 9, applying before labB unassignedRightVar smallestVal 3 L, labB
unassignedRightVar largestVal 1 L captures the last four variable 1,0,0,0 pattern,
whose propagation lead to L≡ [(n−4),A,B,C,0, . . . ,1,0,0,0] (with A in 1..3, B in 0..1 and C in
0..1), dramatically reducing the search space the labeling has to deal with. However, we are
interested in examples in which search space reduction (because of the application of our search
strategies) also implies a better solving efficiency for the problem.

Employee Timetabling Problem. The real-life problem [CS13] optimizes the timetabling of
a department. Relying on the seed approach presented in [R. 07] for solving a former non-
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optimization version of the problem, we use now the labB strategy to find an optimal seed, i.e.,
a variable-subset-binding (a different one for each of the independent subproblems being solved)
which matches the one of the optimal timetabling solution. For example, for the 21 timetabling
instance of the [CS13] T OY (FD) model, applying labB unassignedLeftVar small-
estVal 2 (extract TCal) before performing the labeling of each subproblem: (1)
Finds an optimal seed, (2) Reduces the solving time of the problem to a 94% in Gecode.

labW: langford’s number problem. A deep breath exploration of the search tree with labW
supposes a tradeoff between: (1) Obtaining an ordered hierarchy of interesting intermediate tree-
level nodes and (2) The computational effort to obtain such this hierarchy. In this context, apply-
ing labW smallestMinValueVar smallestSearchTree 3 L to langFord (2,4)
directly finds a solution, i.e., not even a further labeling is necessary. However, the time
labW spends is bigger than the one of running labeling to the whole search tree, so the use
of labW does not pay-off. Fortunately it does when applying labW largestMinRegretVar
smallestSearchTree 2 L to langFord (3,19), where the use of labW does not find
directly a solution, but the sum of time for obtaining the hierarchy and applying the labeling
to the remaining space takes a 65% of time less in Gecode than applying straight the labeling.

fragB: n-queens. The formulation of the n-queens problem based on global (all di f f erent)
constraints becomes much more efficient than the one using single disequality constraints, with
some n-queens instances for which the former finds a solution in a few seconds whereas the lat-
ter can not find anyone after hours. The right hand side of Fig. 1 (cf. Section 2.1) presents an
intuitive way for reducing the initial search space of the problem: (1) Split the n variables into
k variable sets (vs1,vs2, . . . ,vsk) (where consecutive variables are placed in different variable
sets), (2) Split the initial domain 1 . . .n into k different intervals (1..(n/k), . . . ,(n/k) ∗ (i− 1)+
1..(n/k)∗ i, . . . ,(n/k)∗ (k−1)+1..n), (3) Assign the variables of vsi to the ith interval. The ap-
plication of split into 3 L ([],[],[]) == (K1,K2,K3), fragB (partition 3)
unassignedLeftVar firstRight 0 K1, fragB (partition 3) unassigned-
LeftVar firstMiddle 0 K2, fragB (partition 3) unassignedLeftVar first-
Left 0 K3 implements the approach with k = 3 sets, solving the 75-queens instance in just one
second in Gecode (whereas it is not solved after twelve hours without using the strategy).

fragW: n-Golomb rulers. The classical formulation of the problem leads to a huge initial
search space. The initial domain of the last three rulers in 11-Golomb is H in 36..1020, I in
45..1021 and J in 55..1023 (with know optimal solution 64, 70 and 72, resp.) whereas the one of
the first three rulers is 0, A in 1..977 and B in 3..987 (with know optimal solution 0, 1 and 4, resp.)
In this context, an intuitive way of reducing the initial search space is by reducing so much the up-
per bound of these variables. Applying fragW (partition 3) unassignedRightVar
smallestSearchTree 3 L, fragW (partition 15) unassignedLeftVar larg-
estSearchTree 2 L fragments first the last three variables and then the first three. Note that,
whereas the former selects as best intermediate node the one minimizing the remaining search
space, the latter select the one maximizing it (which intuitively makes sense, as the smaller in-
terval is the one pruning the less the upper bound of the first three variables). The use of these
strategies reduces the solving time of the problem to a 88% in Gecode.

Results: The obtained results are summarized in Table 2. The first column represents the
problem being solved. Next two blocks of three columns represent respectively the results of
Gecode and ILOG: Elapsed time (measured in milliseconds) without/with using the strategy and
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Problem G G* G*/G I I* I*/I G/I G*/I*
ETP 24,710 1,465 0.06 54,351 4,570 0.08 0.45 0.32

Langford 624 218 0.35 1,014 827 0.82 0.62 0.26
Golomb 42,869 5,320 0.12 75,365 9,687 0.13 0.57 0.55
Queens - 1,622 ' 0.00 - 4,306 ' 0.00 ' 0.00 ' 0.00

Table 2: Case Studies of T OY (FD) Search Strategies Application

slow-down of the latter w.r.t. the former, resp. Finally, columns 8 and 9 represent the slow-down
of Gecode w.r.t. ILOG Solver without/with using the search strategy, resp.

The results show that the use of the search strategies improve the solving performance of the
case studies both in Gecode and ILOG Solver (making them from 1.25 to 20 times faster, or even
solving instances that were not possible before). However, the impact of the search strategies
is not the same in both systems, i.e., Gecode is faster than ILOG Solver both with/without the
search strategies, but the ratio is bigger when using the search strategies. As both systems are
running exactly the same T OY (FD) model, we claim that the approach Gecode offers to
extend the library with new search strategies is more efficient than the ILOG Solver one.

Benchmarks are run in a machine with an Intel Dual Core 2.4Ghz processor and 4GB RAM
memory. The OS used is Windows 7 SP1. The SICStus Prolog version used is 3.12.8. Mi-
crosoft Visual Studio 2008 tools are used for compiling and linking the T OY (FD i) and
T OY (FDg) C++ code. The different models being used as case studies are available at:
http://gpd.sip.ucm.es/ncasti/models.zip.

5 Conclusions and Future Work

We have described the integration of new parametric search primitives in the systems T OY (FDg)
and T OY (FD i). Our approach benefits both from the high expressivity of T OY (FD) and
of the high efficiency of Gecode and ILOG Solver, and can be easily adapted to other CLP or
CFLP systems implemented in Prolog and interfacing external CP(FD) solvers with a C++ API.

We have described the primitives, pointing out novel concepts they include, as perform an
exhaustive breadth exploration of the search tree further sorting the satisfiable solutions by an
specified criteria, fragment the variables pruning each one to a subset of its domain values instead
of binding it to a single value, and applying the labeling or fragment strategy only to a subset
of the variables involved. We have seen how expressive, easy and flexible it is to specify some
search criteria at T OY (FD) level, as well as how easy is to combine some search strategies
to set different search scenarios. We have described an abstract view of the eight requirements
needed to integrate the search strategies in T OY (FD). We have presented the implementation
in Gecode and ILOG Solver, by matching each abstract concept to the concrete one provided
in the library. We have seen the resulting architecture of the system, pointing out its five layers
and the interaction between them. We have presented five case studies (using classical CP(FD)
benchmarks and a real-life problem) to point out that the use of the search strategies improve the
T OY (FDg) and T OY (FD i) solving performance, and that the approach Gecode offers to
extend the library with new search strategies is more efficient than the ILOG Solver one.
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As future work, we will use scripting for applying the search strategies to classical CP(FD)
benchmarks under multiple and very precisely controlled scenarios. We will use data mining
techniques over the obtained results, to find out some patterns about the relation between the
structure of a problem and the concrete search strategies to be applied.
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[CS12] I. Castiñeiras, F. Sáenz-Pérez. Improving the Performance of FD Constraint Solving
in a CFLP System. In FLOPS’12, 88–103. LNCS 7294. Springer, 2012.
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