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Abstract: The constraint satisfaction and optimization problems (CSP's and COP's,
respectively) have been extensively studied in the last decades because of their im-
portance in industry. They might imply either a complex formulation or a high com-
putational effort, or even both. The knowledge area of Constraint Programming over
Finite Domains (CP(FD)) has been identified as successful for modeling and solving
these problems, as it captures their constraint-oriented nature in a succinct way. Within
CP(FD), the four different paradigms Algebraic CP(FD), C++ CP(FD), Constraint Logic
Programming (CLP(FD)) and Constraint Functional-Logic Programming (CFLP(F D)) rely
on a constraint solver, but they differ in the modeling language being used. In partic-
ular, CFLP(FD) provides highly expressive languages, supporting and even increasing
the modeling capabilities of the declarative logic and functional languages. However,
although CFLP(FD) is thus a suitable paradigm for tackling CSP's and COP’s, the litera-
ture lacks case studies if compared to Algebraic CP(FD), C++ CP(FD) and CLP(FD).

The main goal of this thesis is to encourage the use of CFLP(FD) for tackling real-
life CSP’s and COP's. To do so, the research is divided into three parts. First, the perfor-
mance improvement of CFLP(FD). Second, showing real-life applications of CFLP(FD).
And, third, performing an in-depth modeling and solving comparison of CFLP(FD) w.r.t.
Algebraic CP(FD), C++ CP(FD) and CLP(FD). The state-of-the-art CFLP(FD) system
TOY(FD) is selected, which is implemented in SICStus Prolog and supports FD con-
straint solving.

The first part of the research successfully improves the solving performance of
TOY(FD) by developing a generic scheme for interfacing external C++ CP(FD) solvers.
Two new versions of the system are implemented by instantiating the scheme with
Gecode and ILOG Solver. Also, the TOY(FD) language is enhanced with new search
primitives, allowing a better specification of ad hoc search strategies and exploiting the
structure of a problem, thus requiring less search exploration to find solutions.

Once improved the solving performance of TOY(FD), the second part of the re-
search presents two successful real-life applications of TOY(FD). First, an Employee
Timetabling Problem (ETP), coming from the communication industry, and which is
modeled and solved with TOY(FD). And, second, an empirical analysis of the hard-
ness of the classical Bin Packing Problem (BPP), for which both heuristics and CP(FD)
techniques are used (the latter including TOY(FD)) to solve a generated benchmark
suite. This problem is quite well suited to generalized BPP instances coming from the
data centre optimization industry.

Finally, the third part of the research uses the real-life problem to perform an in-
depth modeling and solving comparison among the state-of-the-art algebraic CP(FD)
systems Minizinc and ILOG OPL, the C++ CP(FD) systems Gecode and ILOG Solver, the
CLP(FD) systems SICStus Prolog and SWI-Prolog, and the CFLP(FD) systems PAKCS and
TOY(FD), showing that TOY(FD) is competitive w.r.t. any of the them.



Keywords: Constraint Programming over Finite Domains, Constraint Functional
Logic Programming, Constraint Solver Integration, Search Strategies, Real-Life Employee
Timetabling Problem, Bin Packing Problem, Parameterized Benchmark Generator, Al-
gebraic Constraint Programming, Object Oriented Constraint Programming, Constraint

Logic Programming.



Part I

Introduction and Preliminaries



This part of the thesis motivates and introduces the research being accomplished.
Chapter [1] motivates the research, describing the contributions achieved in the three

parts it is divided. Chapter [2] presents some preliminary concepts for each of these
research parts.



Chapter 1

Introduction

The technological evolution, influenced by economic necessities, have turned logistics
into a key issue for the success of any company or organization. Behind this abstract
idea there are concrete problems, whose combinatorial nature often makes them NP-
complete (i.e., with no general polynomial time solution methods applicable to them)
[76]. Thus, time and expertise are required, both in the problem specification and in
the design of the algorithm solving it.

Constraint Satisfaction and Optimization Problems (CSP's and COP's, respectively)
[192] provide an abstract formalization for the problems related to the allocation and
scheduling of resources, and they are present in manufacturing and service industries,
such as procurement, production, transportation, distribution, information processing
and communication [149]. A CSP is defined by the tuple (V, D,C), where V is the
variable set {vy,...,v,}, D is the set of n domains {d;,...,d,} (each d; representing
the possible values that v; can take), and C is the constraint set (each of them placed
over a subset of V, and intensionally stating the feasible combination of values these
variables can take). A solution of the problem is an assignment of variables V' to values
of D, in such a way that the constraints of C are entailed. Similar to CSP's, a COP is
defined by the tuple (V, D, C, F), where the additional parameter F represents a cost
function (i.e., an expression to be minimized/maximized). A solution of a COP is an
assignment of variables V to values of D, in such a way that the constraints of C are
entailed and the cost function F' is minimized/maximized.

CSP's and COP's have been extensively studied in the last decades, and different
approaches have been applied to tackle them: The knowledge area of Mathematical
Programming (MP) have applied both Linear Programming (LP) [179] and (Mixed) In-
teger Programming (MIP) [113] techniques. When applying an exhaustive search be-
come impractical (due to a huge search space), the knowledge area of Heuristics have
applied incomplete search-based approaches, as ad hoc strategies [146] or even hyper-
heuristics [39] (providing heuristics to determine the final heuristics to apply to the
problem).



The literature contains multiple applications of these knowledge areas to real-life
CSP’s and COP’s. For example, just focusing on the last three years and on scheduling
problems, some MP publications include [102], [185] and [55], and some Heuristics
publications include [34], [37] and [165].

Besides MP and Heuristics, the area of knowledge of Constraint Programming over
Finite Domains (CP(FD)) [63], [163] has been identified as specially successful for mod-
eling and solving CSP's and COP’s, as it captures their constraint-oriented nature in
a succinct way. CP(FD) distinguishes between the modeling language being used to
specify the problem and the techniques applied to solve it.

Any CP(FD) system is based on the notion of an FD constraint solver. It results
from the combination of a constraint store, home for the (V,D,C) or (V,D,C, F) of
the CSP or COP being specified, and a constraint engine, applying both constraint prop-
agation and search exploration techniques to find feasible or optimal solutions to the
problem. Briefly, the propagation of a constraint ¢, involving the variables [v;1, ..., vz,
is an inference process removing these domain values not satisfying the constraint. As
the reasoning mechanism considers each constraint of the network C separately, not
all values that remain in the domains necessarily are part of some solution. Thus, the
solving process is enhanced with a search exploration, modifying the initial CSP or COP
by adding new constraints and reason again on it. Systematic search explorations are
referred to as backtracking search algorithms, and they can be seen as traversing a
search tree, where each node contains a modified version of the original CSP or COP.
A tree node represents either a solved CSP (in which case the search stops, and the
solution is reported), a failed one (in which case, the search process backtracks in the
tree), or a stable CSP still containing some unbound variables (in which case, an un-
bound variable is selected, and the children of the node are generated and explored in
a mutually exclusive and exhaustive way).

The way in which variables, domains, constraints and cost functions are specified
depends on the modeling language being used. Depending on the context the problem
is modeled for, there are different weights for collateral issues, such as expressivity,
scalability, maintenance, integration into larger applications, etc. Most of these tasks
are mutually exclusive, and thus each single modeling language provides a tradeoff
among them. To present the set of paradigms identified as successful for tackling CSP's
and COP's, a first distinction is done between declarative languages and imperative lan-
guages. A declarative program describes the properties a solution of the problem must
hold, whereas an imperative program describes a sequence of steps to be performed
in order to build-up a solution of the problem.

The integration of CP(FD) into the imperative object oriented paradigm [33], more
specifically into the C++ language, has set up the C++ CP(FD) paradigm. Problem spec-
ification takes advantage of modeling features such as abstraction, encapsulation, in-
heritance and polymorphism. Also, the high efficiency of C++ [36] allows the CP(FD)
libraries implemented in this language to obtain a higher solving performance. In any



case, it must be pointed out that a CP(FD) model is declarative, even when built via an
imperative language. Two state-of-the-art C++ CP(FD) systems are Gecode [78] and
IBM ILOG Solver [12].

Within declarative programming, a distinction is done between general purpose
languages (being thus Turing complete [101]) and the specific purpose ones (or Tur-
ing incomplete). The integration of CP(FD) into specific purpose languages based on
algebraic formulations has set up the algebraic CP(F¥D) paradigm. Problem specifica-
tion takes advantage of modeling features such as the combination of basic constraints
to obtain complex ones, new constraint definitions via predicates, enumerated types,
array and set data structures, and an isolation from the general model to the instance-
dependent input data. Also, the CSP or COP specification is abstracted from the con-
crete solver being used, thus allowing to try the same model over different solvers with
no extra effort. Two state-of-the-art algebraic CP(FD) systems are MiniZinc [142] and
IBM ILOG OPL [193].

Within general purpose declarative languages, the integration of CP(FD) into Logic
Programming [120] has set up the Constraint Logic Programming: CLP(F¥D) paradigm
[111]. Problem specification takes advantage of a high expressivity, including logic fea-
tures such as relational notation, non-determinism, backtracking, logical variables, do-
main variables, and the capability of reasoning with models (to dynamically retract and
repost the CSP or COP to the constraint store). Two state-of-the-art CLP(FD) systems
are SICStus Prolog [178] and SWI-Prolog [190], each of them integrating CP(FD) via a
host library c1pfd.

Finally, the integration of CP(FD) into the multi-paradigm Functional Logic Pro-
gramming (FLP) [161], [91], [19], resulting from the integration of LP and Functional Pro-
gramming (FP) [128], has set up the Constraint Functional-Logic Programming: CFLP(FD)
paradigm. In terms of modeling, the languages provided by CFLP(FD) represent prob-
ably the most complete approach within CP(FD) systems. First, their declarative nature
abstracts the sequence of steps to be performed in order to build-up a solution of the
problem, representing an advantage w.r.t. imperative C++ CP(FD) systems. Second,
their general purpose nature allows the integration of the model into larger applica-
tions, in contrast to algebraic CP(FD) systems. Third, their high expressiveness in-
creases the one of CLP(FD) systems, by adding FP features such as functional notation,
curried expressions, higher-order functions, patterns, partial applications, lazy evalua-
tion, types, polymorphism and constraint composition. Two state-of-the-art algebraic
CFLP(FD) systems are PAKCS [93] (one of the available system versions of the Curry
[92] language) and TOY(FD) [72], [124], [40Q].

With such huge variety of paradigms available, nowadays there is a big and alive
CP(FD) community, building up a large number of systems and applications. Sev-
eral conferences and journals include CP(FD) among their topics, with the following
as some representative examples: Constraints, International Conference on Principles
and Practice of Constraint Programming: CP, International Conference on Integration



of Artificial Intelligence (AI) and Operations Research (OR) techniques in Constraint Pro-
gramming: CPAIOR, Theory and Practice of Logic Programming: TPLP, International
Joint Conferences on Artificial Intelligence: IJCAL European Conference on Artificial In-
telligence: ECAL

These CP(FD) related conferences and journals present multiple real-life applica-

tions.

However, whereas they are more or less split among algebraic CP(FD), C++

CP(FD) and CLP(FD) approaches, it seems that CFLP(FD) has not attracted the atten-
tion of the CP(FD) community. For example, by selecting the last two years editions of
these conferences and journals, no single CFLP(FD) application is found. With respect
to the algebraic CP(FD) system MiniZinc, applications include:

MiningZinc [88]: A general framework for constraint-based pattern mining (one
of the most popular tasks in data mining). It provides a novel library of func-
tions and constraints to support modeling pattern mining tasks in the MiniZinc
language.

Subproblem Dominance [56]: A catching technique for detecting and storing no-
goods to improve the search exploration. The experiments rely on a set of
MiniZinc models, which are catched and executed in CHUFFED [57].

Embarrassingly Parallel Search [156]: A method for solving CP problems in par-
allel. It uses a benchmark of non-trivial problems modeled in MiniZinc to show
the goodness of the approach.

MiniZinc Globalizer [118]: A method that, given a constraint model, suggests
global constraints to replace parts of it (helping non-expert users to write higher-
level models). It is implemented for the MiniZinc language.

MiniZinc with Functions [189]: An extension of the MiniZinc language to support
functions (allowing to develop more elegant and readable models).

Optimization for Software Developers [73]: An alternative interface to CP tech-
nology based in Java, hiding from the user all reference to CP specific concepts.
It is based in a compilation from this Java model to a MiniZinc one.

Similarly, w.r.t. the C++ CP(FD) system Gecode, applications include:

Balancing Bike Sharing [77]: A CP and a Large Neighborhood Search algorithms
implemented in Gecode for tacking a Balancing Bike Sharing System.

Laser Cutting Path Planning [117]: A Gecode approach for tacking a problem
coming from the sheet metal industry.

Atom Mapping [129]: A Gecode approach for tacking a problem coming from the
chemical industry.

Multidimensional Binpacking [87]: A Gecode decomposition for the Multidimen-
sional Binpacking Constraint, based on a bin_packing constraint for each di-
mension plus a setof all_different constraints automatically inferred.
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e CFG [97]: A Gecode improved propagator for the Context-Free Grammar con-
straint.

e Bandit Search for Constraint Programming [125]: A Gecode adaptation of the
Monte Carlo Tree-Search to the specifics of CP search trees.

Finally, w.r.t. the CLP(FD) system SICStus clpfd, applications include:

e FDCC [22]: ASICStus clpfd approach for solving constraint systems involving ar-
rays (with accesses, updates and size constraints) and FD constraints over their
elements and indexes.

e The Painting Fool [59]: An automated painter with several features, using SICStus
clpfd for scene construction (by considering the requests of the user as a CSP).

e Matrix CP Models [24]: A SICStus clpfd approach including two methods for
improving propagation in matrix CP models (evaluated under Nurse Rostering
benchmarks).

e AScalable Sweep Algorithm for the Cumulative Constraint [119]: A SICStus c1pfd
and Choco filtering algorithm for the cumulative global constraint.

e Improving all_different + sum [25]: A SICStus clpfd filtering algorithm for the
combination ofan all_different global constraint and an inequality between
a sum of variables and a constant.

e 25 Years of SICStus Prolog [44]: An overview of the first 25 years of SICStus Pro-
log, enumerating some of their real-life applications, which includes the use of
clpfd for the optimization engine of the logistics RedPrairie Corporation.

Given this lack of real-life applications for CFLP(FD), this thesis is focused on an
empirical evaluation of the applicability of CFLP(FD) to tackle real-life CSP's and COP's.
A CFLP(FD) modeling language and the overhead of its solving performance are ana-
lyzed in detail. These modeling and solving results are also compared to those of other
state-of-the-art algebraic CP(FD), C++ CP(FD) and CLP(FD) systems.

The research being accomplished is focused on the CFLP(FD) system TOY(FD),
implemented in SICStus Prolog, and solving syntactic equalities and disequalities (via
a Herbrand solver: #), as well as FD constraints (via a CP(FD) solver). The first part
of the research focuses on the performance improvement of 7OY(FD) (maintaining
and even increasing the expressiveness of its language) by interfacing the C++ CP(FD)
solvers of Gecode and ILOG Solver, and specifying ad hoc search strategies. Then, re-
lying on the higher performance achieved, the second part of the research focuses on
describing two real-life applications of TOY(FD), an Employee Timetabling Problem
(coming from the communication industry) and an empirical analysis of the hardness of
the classical Bin Packing Problem (to further solve generalized instances coming from
the data centre industry). Finally, the third part of the research focuses on position-
ing TOY(FD) w.r.t. the algebraic CP(FD) systems MiniZinc and ILOG OPL, the C++
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CP(FD) systems Gecode and ILOG Solver and the CLP(FD) systems SICStus Prolog and
SWI-Prolog (also including in the analysis the other state-of-the-art CFLP(FD) system,
PAKCS).

Next, Sections(1.1and [1.2| present the contributions and publications achieved on
each of the three research parts. Then, Section[1.3|presents the structure of the thesis,
giving an overview of the content of each chapter.

1.1 Contributions

The first part of the research seeks the improvement of the solving performance of
TOY(FD). Initially, the system uses the host solver SICStus c1pfd (denoting the sys-
tem version as TOY(FDs)). In this thesis, the state-of-the-art C++ CP(FD) solvers
Gecode and ILOG Solver are interfaced to 7TOY(FD), developing the new system ver-
sions TOY(FDg) and TOY(FDi), respectively. For them, the TOY(FD) language is
enhanced to allow the specification of ad hoc search strategies. The contributions are
the following:

e Develop a scheme for interfacing C++ CP(FD) solvers into TOY(FD), in a setting
applicable to other CLP(FD) and CFLP(FD) systems implemented in Prolog. The
scheme is shown to be generic enough, interfacing Gecode and ILOG Solver by
finding no extra interface difficulties but the ones described in the scheme.

- The different commands 7OY(FD) requests to the CP(FD) solver (to co-
ordinate it) are identified, creating an abstract and extensible interface be-
tween system and solver (which includes gluing the Prolog and C++ compo-
nents). The management of the mismatch between the system and solver
different variable, constraint and type representations is described. The
C++ CP(FD) solver is adapted to fulfill the CFLP(FD) requirements of model
reasoning, multiple search strategies (interleaved with constraint posting)
and both incremental and batch propagation modes.

e Enhance the language of the new developed TOY(FDg) and TOY(FDi) ver-
sions with eight new parameterized search primitives (as they are the ones pro-
viding better solving performance), providing a more detailed search specifica-
tion to the solver (in a setting applicable to other CLP(FD) and CFLP(FD) systems
implemented in Prolog and interfacing external C++ CP(FD) solvers).

- The primitives include novel search concepts (allowing incomplete search)
not directly available in the primitives provided by Gecode and ILOG Solver
(obviously, these libraries can be extended, so that new search primitives
can be implemented on them): Performing an exhaustive breadth explo-
ration of the search tree (further sorting the satisfiable solutions by a spec-
ified criterion). Fragmenting the variables by pruning each one to a subset
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of its domain values (instead of binding it to a single value). Applying the
labeling or fragment strategy only to a subset of the variables involved.
Also, some of the search criterion of the primitives can be directly specified
at TOY(FD) level. Moreover, the use of TOY(FD) allows to easily com-
bine several primitives (to built up complex search strategies), as well as
use model reasoning to apply different search scenarios to the solving of a
problem.

e Measure the performance of the different TOY(FD) versions, using a mini-
mal benchmark based on three classical CSP's (Magic Series, Queens and Lang-
ford's Number) and a classical COP (Golomb Rulers). The results reveal that
TOY(FDg) and TOY(FDi) clearly outperform TOY(FDs) in terms of solving
performance. Moreover, the new search primitives allow to improve the perfor-
mance of TOY(FDg) and TOY(FDi).

- The set of problems is complete enough, as it covers the whole repertoire of
FD constraints supported by TOY(FD). Also, by using different instances
per problem the experiments analyze the TOY(FD) performance as the
hardness of the problem scales. Finally, the analysis of the search primitives
to be applied for each problem is based on the structure of their solutions
found before.

The second part of the research presents two real-life applications of TOY(FD), an
Employee Timetabling Problem (ETP) and an empirical analysis of the hardness of the
classical Bin Packing Problem (BPP). The contributions are the following:

e Describe a non-monolithic algorithm for specifying a generic version of the ETP,
where the workers (which denote the employees) are split into different teams.
Compare its solving performance results with the ones of the classical bench-
marks used before.

- The complex formulation exploits the high expressivity of TOY(FD). This
formulation is fully parametric in different aspects of the problem, as the
number of days of the timetable, number of teams (and number of workers
per team), periodicity the extra worker can be selected (and the extra factor
its working hours must be paid), number of different kinds of working days
(and the concrete shifts requested on each of them), absences of the regular
workers of the teams and the tight the shifts must be distributed among the
workers of a team.

- The solving approach presented is based in problem decomposition, split-
ting the search space into as many possible assignments of teams to days,
exploring only those ones that are feasible and, for each of them, splitting
again its search space subset into as many independent problems (expo-
nentially easier to be solved) as teams there are.
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- The performance results (both in terms of the concrete TOY(FD) version
and of the application of an ad hoc strategy) are similar to the ones for the
classical benchmark problems, but the differences between the instances
are greater.

e Solve a parametric generated BPP benchmark (based on the well known Weibull
distribution [201]), applying two equivalent CP(FD) models (Gecode and
TOY(FDg)) and four heuristics.

- Weibull generates a great variety of item size distributions, as its flexibility
allows to represent nearly any unimodal distribution. Its parametric model
is used to very accurately fit real-life BPP instances. Maximum Likelihood
Fitting and Quantile-Quantile plots are used to observe the quality of the fit.
The Kolmogorov-Smirnov and y? statistical tests rigorously ensure it.

- The benchmark is built up using 199 combinations of the Weibull param-
eters (generating 100 instances per combination). Also, eleven different
scenarios are proposed, setting the size of the bin to the size of the high-
est item of the instance times a factor ranging from 1.0 to 2.0 (increasing it
0.1 on each new scenario). Finally, scripting techniques are used to set up
benchmark solving sessions for the CP(FD) systems and the heuristics.

- The analysis results reveal that both CP(FD) and the heuristics are suit-
able to solve the problem, as depending on the concrete instance (Weibull
parameters) and bin size (scenario) chosen, both techniques provide a dif-
ferent tradeoff between the elapsed time for solving the instance and the
quality of the solution achieved.

The third part of the research positions TOY(FD) w.r.t. the state-of-the-art algebraic
CP(FD) systems MiniZinc and ILOG OPL, the C++ CP(FD) systems Gecode and ILOG
Solver, the CLP(FD) systems SICStus Prolog and SWI-Prolog, and the CFLP(FD) system
PAKCS. It encourages the use of TOY(FD) (and the use of the paradigm CFLP(FD) it-
self), showing that it is competitive w.r.t. any of the other systems for the modeling and
solving of two COP’s, the classical Golomb and the real-life ETP one. The contributions
are the following:

e Perform an in-depth modeling comparison of the two COP’'s among MiniZinc,
ILOG OPL, Gecode, ILOG Solver, SICStus Prolog, SWI-Prolog, PAKCS and TOY(FD).

- The Golomb benchmark, with a simple formulation, provides general in-
sights about the abstraction of the constraint solver, the specification of the
FDvariables, D constraints and search strategies, as well as the output of
the solutions. The ETP, with a complex formulation (fully parametric, non-
monolithic and including CP(FD) independent components), exploits the
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expressive power of the different paradigms, allowing to analyze in detail
the strengths and drawbacks of each of them.

- The comparison includes several code examples, to put in context the ideas
being presented. Besides that, the whole code of each model (per COP and
system) is provided. Thus, the expressiveness comparison also includes the
amount of lines of code being used.

e Perform an in-depth solving comparison of the two COP’s among MiniZinc, ILOG
OPL, Gecode, ILOG Solver, SICStus Prolog, SWI-Prolog, PAKCS, TOY(FDy),
TOY(FDi) and TOY(FDs).

- Set a common framework for running the experiments, considering the
system versions, the global constraints being used (and their filtering al-
gorithms) and the measurement of the elapsed time. Three instances per
problem (solved in tenths of second, seconds and minutes, respectively) are
considered.

- Compare the solving performance of the ten systems, analyzing their rank-
ing and slow-downs, and discussing the performance order existing among
the systems using the same constraint solving library. Specialize the solv-
ing comparison for the Gecode, ILOG Solver and SICStus related systems,
devoting an isolated analysis for each of them.

- Provide a head-to-head comparison between TOY(FDg) and the native
Gecode model (respectively TOY(FDi) and the native ILOG Solver model,
and TOY(FDs) and the native SICStus model), to analyze the overhead of
each TOY(FD) version, justifying it.

1.2 Publications

The first part of the research has lead to the following publications:

1. Improving the Performance of FD Constraint Solving in a CFLP System [48].
It has been presented in the 11th International Symposium on Functional and
Logic Programming: FLOPS'12. It has been published by Springer, LNCS 7294,
pages 88-103.

2. Integrating ILOG CP Technology into TOY [46].
It has been presented in the 18th International Workshop on Functional and
(Consraint) Logic Programming: WFLP'09. It has been published by Springer,
LNCS 5979, pages 27-43.

3. Improving the Search Capabilities of a CFLP(FD) System [51].
It has been presented in the XIII Spanish Conference on Programming and Com-
puter Languages: PROLE'13, and it has been invited for its submission to the
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Electronic Communications of the EASST. It has been published in the online pro-
ceedings of the conference, pages 273-287.

The second part of the research has lead to the following publications:

4. A CFLP Approach for Modeling and Solving a Real Life Employee Timetabling
Problem [47].
It has been presented in the 6th International Workshop on Constraint Satisfac-
tion Techniques for Planning and Scheduling Problems: COPLAS'11. It has been
published in the online proceedings of the conference, pages 63-70.

5. Weibull-Based Benchmarks for Bin Packing [45].
It has been presented in the 18th International Conference on Principles and
Practice on Constraint Programming: CP'12. It has been published by Springer,
LNCS 7514, pages 207-222.

The third part of the research has lead to the following publications:

6. Applying CP(FD), CLP(FD) and CFLP(FD) to a Real-Life Employee Timetabling
Problem [49].
It has been presented in the 13th International Conference on Computational
Science: ICCS'13. It has been published by Procedia Computer Science, 18(0),
pages 531-540.

7. Comparing TOY(FD) with State-of-the-Art Constraint Programming Systems
[50]. It has been published as the technical report DSIC-14.13 to the Departa-
mento de Sistemas Informaticos y Computacién (DSIC) of the Complutense Uni-
versity of Madrid (UCM), pages 1-135.

1.3 Structure

This thesis performs an empirical evaluation of the applicability of TOY(FD) to tackle
real-life CSP's and COP's, analyzing in detail the expressiveness of its modeling language
and the overhead of its solving performance, and comparing both of them to the mod-
eling and solving results of other state-of-the-art algebraic CP(FD), C++ CP(FD) and
CLP(FD) systems. The document is organized as follows:

Part[ motivates the proposed research, and presents some preliminary concepts.

Chapter [T|presents the three parts of the research being accomplished. Section][T.1
describes the contributions for each of them, and Section[1.2|enumerates the publica-
tions they lead to. Section presents the organization of the thesis, which is being
described right now.

Chapter[2|presents some preliminary concepts. Section[2.7]presents a CSP and COP
example. Section[2.2]presents an overview of the constraint propagation and search ex-
ploration solving techniques used by any CP(FD) constraint solver. Section[2.3|presents
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the different modeling paradigms available in CP(FD), providing a description of each
of the state-of-the-art systems to be further considered. Section presents an intro-
duction to TOY(FD), including some program examples and goals for an overview of
the modeling features of the language and its operational semantics.

Part[Il presents the first part of the research being accomplished, which focuses on
the performance improvement of TOY(FD).

Chapterdescribes the integration of external C++ CP(FD) solvers, with state-of-
the-art performance, into TOY(FD). Section[3.1]describes the architecture of
TOY(FD), focusing on the interface to its 7D solver and identifying the requirements
to coordinate it. Section describes the scheme for interfacing C++ CP(FD) solvers,
and Section 3.3]instantiates it with Gecode and ILOG Solver. Section [3.4 analyzes the
new 7 OY(FD) performance achieved by using a set of classical benchmark problems.
Section[3.5] presents some related work, and Section[3.6]reports conclusions.

Chapter [4| describes the development of new search primitives, implemented in
the new TOY(FD) versions interfacing C++ CP(FD) solvers. Section presents an
abstract description of the new parameterizable 7OY(FD) search primitives, pointing
out some novel concepts not directly available neither in Gecode nor in ILOG Solver.
Also, it points out how to specify some search criterion at TOY(FD) level and how
easily the strategies can be combined to set different search scenarios. Section[4.2] de-
scribes the implementation of the primitives, presenting first an abstract view of the
TOY(FD) requirements, and how they are targeted to the Gecode and ILOG Solver
libraries. It also evaluates the impact of the search strategies implementation in the ar-
chitecture of the system. Section[4.3|analyzes the new TOY(FD) performance achieved,
revisiting the classical benchmark problems used before. For each CSP and COP, it
shows that the use of the search strategies improve the solving performance. Section
[.4] presents some related work, and Section[4.5|reports conclusions.

Part[II] presents the second part of the research being accomplished, which focuses
on two real-life applications of TOY(FD).

Chapter[5describes the modeling and solving of an Employee Timetabling Problem.
Section[5.1]presents a description of the problem and Section|[5.2|describes the solving
approach to tackle it. Section presents a parametric algorithm implementing the
solving approach, which is the one being followed by TOY(FD) to model the problem.
Section presents the results of running different instances of the problem in the
different TOY(FD) versions, and compares these results with the ones obtained for
solving the classical benchmark problems. Section[5.5|presents some related work, and
Section|5.6|reports conclusions.

Chapter [6] describes the application of both CP(FD) and heuristics techniques to
an empirical analysis process to test the hardness of the Bin Packing Problem. Section
discusses the parametrical statistical model provided by the Weibull distribution,
showing the variety of item size distributions that can be generated with it. It proves
the model to be successful on fitting real-life generalized instances coming from the
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data centre optimization and education industries. Section presents the empirical
analysis process layout. It describes the set of instances created (which gives support
for very controlled experiments) and both the heuristics and CP(FD) models used to
run the instance set. Section [6.3] analyzes the results by the CP(FD) and heuristics
methods, focusing on the relation between the Weibull parameters of the instances
and the quality of the solutions. Section presents some related work, and Section
[6.5|reports conclusions.

Part[I[V] presents the third part of the research being accomplished, which focuses
on positioning 7TOY(FD) w.r.t. state-of-the-art algebraic CP(FD), C++ CP(FD) and
CLP(FD) systems for the modeling and solving of two COP’s, the classical Golomb
benchmark and the real-life timetabling previously described.

Chapter [7] describes an in-depth modeling comparison of the two COP’s between
the algebraic CP(FD) systems MiniZinc and ILOG OPL, the C++ CP(FD) systems Gecode
and ILOG Solver, the CLP(FD) systems SICStus Prolog and SWI-Prolog, and the CFLP(FD)
systems PAKCS and TOY(FD). Section|/.1|uses the Golomb problem to provide gen-
eral insights about the abstraction of the constraint solver, the specification of the 7D
variables, 7D constraints and search strategies, as well as the output of the solutions.
Then, next sections use the real-life timetabling problem to discuss in detail how each
paradigm tackles a concrete modeling issue: Section [7.2] analyzes the coordination of
the different stages. Section[7.3|focuses on the data structures. Section[7.4on the va-
riables. Section[7.5/on the constraints, and Section provides a final expressiveness
comparison. To end the chapter, Section [7.7| examines the amount of lines of code
needed by each system for both COP's. Section presents some related work, and
Section[7.9|reports conclusions.

Chapter [8performs an in-depth solving comparison of the same problems and sys-
tems (in the case of TOY(FD), considering the different system versions). Section
[8.1] sets the context for the solving comparison. Section presents the performance
of all the systems, analyzing the ranking and slow-down results. It also discusses the
performance ranking among the Gecode, ILOG Solver, SICStus clpfd and SWI-Prolog
clpfd constraint solvers, gathering the related systems into different sets. Section|8.3
presents a dedicated ranking and slow-down analysis of the Gecode related systems
MiniZinc, Gecode and TOY(FDg). It discusses the search statistics of the different
systems, and provide a low-level monitoring of the search exploration performed by
the TOY(FD) version and the Gecode native one, discussing their differences. Sec-
tions [8.4] and [8.5] are similar to Section but they focus on the ILOG Solver and
SICStus clpfd related systems, respectively. Section presents some related work,
and Section[8.7]reports conclusions.

Part[V|summarizes the accomplished research.

Chapter 9 presents the main conclusions achieved, with Sections and
devoted to the first, second and third parts of the research, respectively. Finally, Section
presents some perspectives for them.
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Chapter 2

Preliminaries

This chapter presents some preliminary concepts for the three parts of the research
being accomplished. It is organized as follows: Section presents a brief introduc-
tion to CSP's and COP's. Section[2.2]presents an overview of the constraint propagation
and search exploration solving techniques used by any CP(FD) constraint solver. Sec-
tion presents the different modeling paradigms available in CP(FD), providing a
description of each of the state-of-the-art systems to be further considered. Finally,
Section presents an introduction to TOY(FD), including some program and goal
examples to illustrate its language and its operational semantics.

2.1 Constraint Satisfaction and Optimization Problems

Nowadays, Constraint Satisfaction and Optimization problems (CSP's and COP's, re-
spectively) [192] are present in manufacturing and service industries, such as procure-
ment, production, transportation, distribution, information processing and communi-
cation. This section presents a brief introduction to these problems.

2.1.1 Constraint Satisfaction Problems

A CSP is defined by the tuple (V, D, C), where V is the variable set {vq,...,v,}, D is
the set of n domains {di,...,d,} (each d; being the finite set of possible values that
v; can take), and C is the constraint set (each of them placed over a subset of V, and
intensionally stating the feasible combination of values these variables can take). A
solution of the problem is an assignment of variables V' to values of D, in such a way
that the constraints of C are entailed. The search space S (set of candidates to be a
solution) is represented by each possible value combination of the variables.

A paradigmatic CSP example is the N Queens problem, consisting of a puzzle plac-
ing N chess queens on an N x N chessboard, so that no two queens attack each other
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(i.e., no two queens share the same row, column, or diagonal). As an example, top
part of Figure 2.T]presents a CSP specification of the Queens-4 problem instance (with
four queens), with the bottom part presenting the initial search space (highlighting in
boldface its two feasible solutions, and providing a graphical representation for them).
On it, the domain of each variable v; is constrained to be in a..b (where a and b are
the lower and upper bounds of a range of integers), and the symbol != stands for a
disequality constraint.

Instead of using a couple of variables vy;, vi; to represent the coordinates (i, j) each
queen k takes, the specification uses a single variable per queen. With this, it directly
matches the problem requirement of placing N queens on an N x N chessboard, with
no two queens placed on the same column. The j-th queen is directly assigned to
column ¢, with the variable v; representing its row. The initial domain of each variable
is setto 1..V, as each queen can be placed at any row.

The remaining problem requirements are specified by using 3 x (N = (N —1))/2
constraints. A third of these constraints follow the pattern v; != v;, ensuring that no
two queens are placed in the same row. Another third of them follow the pattern v,
!=v;44 +t, ensuring that no two queens share the same decreasing diagonal. The last
third part follow the pattern v; !=v;_, — t, ensuring that no two queens share the same
increasing diagonal.

The combinatorial nature of the problem gives rise to a search space of NV can-
didates (as the problem contains N variables, each one with an initial domain of N
values). Even in a tiny instance as Queens-4, this leads to 256 candidates, for which
only 2 are feasible solutions. As it can be seen in Figure[2.1] the two feasible solutions
are, in some sense, symmetric, as they represent exactly the same positions for the dif-
ferent queens, just turning the chess board. Thus, a symmetry breaking constraint as,
for example, v; < v4, would have removed the symmetry, leading to a single solution
(which is better than mixing up the user with two solutions that are in fact the same
one).

2.1.2 Constraint Optimization Problems

A COP is defined by the tuple (V, D, C, F), where the additional parameter F represents
a cost function (i.e., an expression to be minimized/maximized). A solution of a COP is
an assignment of variables V' to values of D, in such a way that the constraints of C are
entailed and the cost function F' is minimized/maximized.

A paradigmatic COP example is the NV Golomb Rulers problem, which is said to have
many practical applications including sensor placements for x-ray crystallography and
radio astronomy [65]. It consists of a puzzle placing N marks (0 =mg < m; < ... <
my—1) in a ruler, such that the distances d; ; = m; — m, for 0 <i < j < N are pairwise
distinct. An optimal ruler is the one minimizing the mark my_;. As an example, top part
of Figure 2.2 presents a possible COP specification of the Golomb-5 problem instance
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V = {v1, vo, v3, v };

D={v1inl.4,vin1..4,v3in1..4,v4in 1.4},

C ={v1 1= v9, v1 1= v3, v1 1= vy, vy 1= w3, vy 1= vy, V3 1= vy,
v1 =g+ 1,01 1=v3+ 2, v1 =04 + 3,
vo+11=v34+2,v0+11=0v4+3,
vg + 2 1= 04 + 3,
vy 1=vg — 1,01 5w — 2,01 =0y — 3,
Ug—l!=1}3—2,v2—1!=v4—3,
vy —21=v4 —3};

S={(nr1=1wva=1v3=1v4=1),...,(v1 =1, va=1,v3=1,v4 =4),
(’01—1 vy = 12}3 21}4 1) (’U1—1 02—1 vy = 21}4 4)

w1 =2,v9=4,v3=1, v4—3) (W =3,19=1,13=4,0v,=2), ...

(1)1—4 vy = 4U3—4 Vg4 = 1) (’U1—4 vy = 4U3—4 U4—4)}

Vi V2 V3 WV Vi V2 V3 V4
1 X 1 X
21X 2 X
3 X 31X
4 X 4 X

Figure 2.1: CSP Specification and Feasible Solutions for Queens-4

(with five rulers), with the bottom part presenting the initial search space (highlighting
its optimal solution, and providing a graphical representation for it).

Besides using N variables to represent the ruler marks [my, ... my_1], N*(N—1)/2
additional variables are used to represent the distances between each pair of marks
[dio, -\ dn=1),0, d2,1, .-, d(n—1),(v—2)] (leading to a total amount of (N? + N)/2
variables). An upper bound of 2V¥~! — 1 for m variables is known [173]. It relies in
the fact that, if the distance between m; and m; is always 27*1, then each m; can
be assigned to 2¢ — 1. Thus, the bit representation of any d;; = m; - m; contains zero
in the least i bits, followed by j — i ones. As it can be seen, this bit representation is
different for each each of the d variables, so their values are different as well [173].
By setting m variables to an initial domain of 0..(2V~! — 1), the distance of each pair
of marks must be in this domain as well, so d variables are set to an initial domain
of 0..(2N~! — 1) too. The remaining problem requirements are specified by using the
following N2 constraints: One constraint is used to assign mg to 0. N — 1 constraints
state each m, to be smaller than m;;,. N x (N — 1)/2 constraints assign each d; ; to
the subtraction of its two associated marks. Finally, a same amount of constraints state
that d variables are pairwise different.

In addition to these N2 constraints, the specification contains some more
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V = [mg, m1, ma, ms, my,

di,0, d2,0, d3,0, dao, d2,1, d3 1, da1, d32, da2, da3);
D = [mg in 0..15, my in 0..15, ms in 0..15, my in 0..15, ma in 0..15,
d170 in 0..15, d270 in 0..15, d3’0 in 0..15, d470 in 0..15, d271 in 0..15,
d371 in 0..15, d4,1 in 015, d372 in 0..15, d472 in 0..15, d4’3 in 015],
C=[my=0,
mo <my, my <mg, Mz < Mg, M3 < My,
dy 0 =my - mo, d2,0 = ma - mo, d3o = m3 - mg, dgp = my - Mo,
da =mg-mq,d3; =m3-my,dyy = my-my,
d3 2 =m3-ma, ds2 = my-mo
dy3=my-m3
dio 1= dayp, dip = dsp, dip = dsg, dro!=do1,dio!=d31, dio!=dss, dig!=
d3 2, d10 = dypo,
di1,0!=dy3, dop = d3, dop = dyp, doo !=da1, dog = d3 1, dop 1= da1, dap =
d3 2, dog = dy o2,
doo!=das, d3g!=dspo, d3o!=dar,d3o!=ds,dso!=dsg, dso!=dsp, d3pg!=
da2, d3p!=dyg3,
dyp!=doq,dap!=dz1,dag!=dyr, dao!=dsp, dao!=dso, dso!=dsgz, doq!=
d3j, doy '=da,

doy!=dzo,doy =dyo,doy=dys, d31!=dyy,d3i'=dspo, d3i 1=dsp, dsq =
da3, ds1 1= dspe,

dyg '=da2,dai!=daz, dzo=dyo, d3o!=dss, dao!=dys3,

dl,O >=1, dQ’(] >=3, d370 >=0, d4’0 >=10,

do1>=1,d31>=3,ds1 >=6,

d3p>=1,dy2>=3,

d473 >=1

dio <dsgsl;

F = minimize my;

S = [(m0=0,m1 =0,m2=0,m3=O,m4=0,d1,0=O,d270=0,d3,0=0,...d4,3=0),
...,(m0=0, mi =1,m2 =4,m3 =9,m4=11,d170=1,d270=4,
d30=9,dio=11,d21=3,d31=8,d41=10,d32=5,ds2=7,d43=2), ...
(mo =15, mp =15, mo = 15, ms = 15, my =15, dLQ =15, ... d473 = 15)}

01 4 9 11
N O I O

my my m; m3 my

PPt/ —>

dl,O d2,1 d3,2 d4,3

Figure 2.2: COP Specification and Optimal Solution for Golomb-5
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redundant constraints, improving the performance for finding the solutions of the prob-
lem. For example, N« (N —1)/2 redundant constraints are used to apply a lower bound
to d variables [183]: Each distance d;; = m; - m, satisfies the property of being equal
to the sum of all the distances between marks m; and m; (i.e., d; ; = (m; - m;_1) +
(mj—1-mj_2)+ ...+ (m;y1 - m;)). As all these distances are pairwise distinct, their sum
must be, at least, the sum of the first j — i integers. As an additional constraint, d; o <
d(n—2),(n—1) breaks a few symmetries in the solutions being found.

Finally, the cost function specifies that, among all the feasible solutions of the prob-
lem, only the one (or ones) containing a minimal value for m,4 should be taken into
account. That is, the combinatorial nature of the problem gives rise to a search space
of (2NV-1)(N*+N)/2 candidates (as the problem contains (N2 + N)/2 variables, each
of them with an initial domain of 2V~ values). Even in a tiny instance as Golomb-5,
this leads to an enormous amount of 16*® = 1,152,921,504,606,846,976 candidates, for
which only 81 of them are feasible solutions. Regarding m,: 38 solutions assign it to
the value 15. 21 solutions to 14. 14 solutions to 13. 7 solutions to 12. Finally, only 1
solution to 11 (being thus the optimal one).

2.2 CP(FD) Solving Techniques

Constraint Programming over Finite Domains (CP(FD)) is a suitable knowledge area for
tackling CSP’s and COP's, as it captures their constraint-oriented nature in a succinct
way. It distinguishes between the modeling language being used to specify the prob-
lem and the techniques applied to solve it. Regarding the latter, any CP(F¥D) system
is based on the use of a constraint solver, which applies constraint propagation and
search exploration to find solutions. Sections[2.2.]and present a brief introduc-
tion to these two techniques. They reuse some of the definitions and examples used in
Chapters 3 and 4 of [163], which provide an extensive survey to propagation and search
algorithms, respectively. More alternatives to the combination of the two techniques
can be found in [23].

2.2.1 Constraint Propagation

A constraint ¢ can be seen as a relation defined on a sequence of variables [v;1, ...,
vix], whose declarative semantics is the subset of Z* containing the combinations of
values (tuples) = € Z* that satisfy c¢. In the context of a CSP, where each variable
v;; contains an associated domain d,;, the constraint propagation of ¢ represents the
inference process of removing the concrete values from d;; precluding ¢ from being
satisfied. For example, in the following CSP ([v1, v2], [v1 in 1..10,v9 in 1..10], [Jv1 — va| >
5]), the constraint propagation of |v; — v2| > 5 removes the values 5 and 6 from the
domain of v; and wvq, as, by taking any of these values, the constraint can never be
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satisfied.

Extending this process to a CSP with C = [¢4, .. ., ¢, the constraint propagation of
the network is the process of propagating each ¢ € C as many times as needed, until
the CSP is found unfeasible (because the domain of a variable v;; becomes empty) or
the CSP is found stable (because the domains of its variables are no longer pruned by
propagating the whole constraint set).

More specifically, the propagation of ¢ (pruning the domains of [v;1, ..., v;x]) is seen
from two different perspectives: The local consistency and the rule iteration. The for-
mer defines the local property the domains of [v;1, . . ., v;] hold after propagating c. The
notion of ‘local’ is due to the fact that each constraint ¢ of the network is checked sep-
arately. The latter defines the concrete situations in which propagators are triggered,
and the way they prune the domains of the variables.

The most used local consistency is arc consistency. Given ¢, defined on [v;1, . . ., vix]
(with concrete domains [d;1, . . ., d;i]), arc consistency iterates on each domain value d;;;
of each variable v;;, checking that there is a concrete valuation 7 (mapping of variables
to singleton values of their domains, with v;; obviously assigned to d,;;) satisfying c.
Otherwise, the value d;;; is removed from v;;. Thus, arc consistency algorithms are
asked to return the arc consistent closure of a network, that is, a sub-domain being
arc consistent, and such that any larger sub-domain is not arc consistent. For example,
in the following CSP ([v1,v2,vs3], [v1 in 1..3,v2 in 1..3,v3 iNn 1..3], [v; = ve,v2 < vs]),
the propagation of v; = v leads to no domain pruning, as 7, = (v = 1,v2 = 1),
T = (v1 = 2,v2 = 2) and 13 = (v; = 3,vy = 3) are (respectively) found for values 1, 2
and 3 of both v; and v,. Then, the propagation of v < v3 prunes the value 3 from v,
and 1 from w3, as no feasible = can be found for them. As the domain of v, has been
modified, the constraint v; = v, is propagated again, as it includes v,. In this case, the
value 3 of vy is pruned, as no feasible = can be found for it. As v; is involved in no more
constraints, the propagation of the constraint networks successfully finishes, finding
the new stable CSP ([v1,v2, v3], [v1 In 1..2,v2 in 1..2,v3 N 2..3], [u1 = v2,v2 < v3]).

The most well-known algorithm for ensuring arc consistency is AC3 [127]. It is pre-
sented in Figure with D(z;) representing the domain of variable z;, X(c) repre-
senting the sequence of variables [v;1, ..., v;] involved in a constraint ¢, and Q being
the queue of pairs (variable, constraint) waiting to be propagated. Whereas the func-
tion AC3 enqueues each pair (variable, constraint) until no more domain values are
removed, the function Revise3 is in charge of finding the satisfiable  for each pair.

Unfortunately, arc consistency algorithms require an expensive processing. Consid-
ering the constraints on their extensional form, AC3 runs in ©(er3d"*1) time (where e
is the number of constraints, r the largest arity of a constraint and d the largest domain
size) and ©(er) space. Multiple improvements to AC3 have been performed, included
in the algorithms AC4 [74], AC6 [27], AC7 [28] and AC2001 [29]. However, the best
complexity that can be achieved for an algorithm enforcing arc consistency on a net-
work with any kind of constraints is in ©(erd"). Thus, more relaxed local consistencies
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function Revise3 (in xz;: variable;c: constrain}: Boolean;
begin

1 CHANGE <« false
2 foreachv; € D(z;) do
3 if AT € cNmx () (D) with 7[z;] = v; then
4 removev; from D(z;);
5 CHANGE <« true;
6 returnCHANGE ;
end
function AC3/GAC3(in X: sed: Boolean;
begin

[* initalisation */;

7 Q<+ {(zi,0)|ceCixs € X(0)};
[* propagation */;

8 while @ # 0 do

9 select and removér;, c¢) from Q;
10 if Revi se(x;, c) then
11 if D(z;) = () thenreturnfalse;
12 elseQ + QU {(zj,c) | € CN #£cAhxi,z; € X()NG#£1i};
13 returntrue ;
end

Figure 2.3: Algorithm AC3

have been presented, pruning less the variable domains, but running the propagation
algorithm faster.

In Figure it can be seen that there are two sources of computational effort
that can be relaxed. The first one is the events triggering a pair (variable, constraint)
to be enqueued for constraint propagation. In the proposed algorithm, the pruning
of a single value in variable v; (due to constraint ¢) directly enqueues any pair (v;, ')
for any constraint ¢ (different from c¢) involving both to v; and v;. For example, in
the CSP proposed before, the pruning of value 3 from the domain of v, (due to the
constraint vy < w3), enqueues the pair (v1, v1 = v). Whereas this is very convenient
(as the further propagation of v; = vy prunes the value 3 from v), it is not as clear
on the other way round. That is, regarding v < w3, once it performed propagation
once, the only events that would trigger the pruning of new variable domain values
are: Increasing the minimum value of vy (or bound its domain to a singleton), and
decreasing the maximum value of v3 (or bound its domain to a singleton). Thus, the
constraint v < vz should be only enqueued when any other constraint of the network
(in this case, just v; = vy) matches one of these events.

Constraint solvers usually recognize different events, as: onDomain (when a value
is removed from the domain of a variable), onBound (when the value being removed
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is either the lower or upper bound of the domain) and onValue (when the domain of
the variable is bound to a singleton). These solvers might allow their different kinds of
primitive constraints to be parameterizable on the kind of events that enqueue them
(as well as to allow the specification of events that will enqueue any new constraint
being programmed by the user).

The second source of computational effort that can be relaxed is the local consis-
tency ensured for each pair (v;, c) being checked (with [v;1, ..., v;;] being the sequence
of variables involved on ¢). A first option, called bound(D) consistency, is to look for a
feasible 7 only for the bounds (minimum and maximum value) of each v;;. A second op-
tion, called range consistency, is to still check any domain value d;;; of each variable v;;,
but, when looking for an associated 7, consider the domain of the remaining variables
[vi1, ..., vi] as if they actually contained all the values in the range from their mini-
mum and maximum values). A third option, called bound(Z) consistency, is to combine
the first and the second options. Constraint solvers might allow their different kind
of primitive constraints to be parameterizable on the local consistency algorithm they
use, as well as defining different local consistency algorithms for any new constraint
being programmed by the user.

Anyway, arc consistency is strictly stronger than range and bound(D) consistencies,
which are themselves strictly stronger than bound(Z) consistency. Regarding bound(D)
and range, they are incomparable. For example, the following CSP ([vy, va, v, v4, vs, vs],
[vr in {1,2},vs in {1,2},v5 in {2,3,5,6},v4 in {2,3,5,6},v5 in {5},v6 in {3,4,5,6,7}],
[all_different(vq, va, v3,v4,v5,v6)]) CONStrains its six variables to be pairwise different.
However, instead of using multiple binary constraints (as in Sections [2.1.1]and [2.1.2),
it uses the well-know all_different global constraint. Global constraints are specialized
constraints containing a parameterizable number of variables. They encapsulate a set
of other (possibly primitive) constraints, and can be associated with more powerful
consistency algorithms, as they can take into account the simultaneous presence of
simple constraints to further reduce the domains of the variables [154].

In the particular example, the propagation achieved by each local consistency is:

e bound(Z): D = [vyin {1,2},v2in {1,2},v5in {3,5,6},v4 in {3,5,6},v5 in {5}, ve iN
{3,4,5,6,7}].

e range: D = [vyin{1,2},v2in{1,2},v3in {3,6},v4in{3,6},v5in {5}, v6in {3,4,6,7}.

e bound(D): D = [vyin {1,2},vein {1,2},v3in {3,5,6},v4in {3,5,6},v5 in {5}, ve iN
{4,5,6,T}].

e Arc consistency: D = [vy in {1,2},vg in {1,2},v3in {3,6},v4 in {3,6}, v5 in {5}, vg
in {4,7}].
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2.2.2 Search Exploration

Local consistency prunes the variable domains, ensuring that a value being removed
does not participate in any solution to the problem. However, not all values that re-
main in the domains necessarily are part of some solution. For example, applying arc
consistency to Golomb-5, the variable domains are pruned to: [mg in 0, my in 1..8, mo
in 3..12, m3 in 6..13, my in 10..15, dy o in 1..8, da g in 3..12, d3 0 in 6..13, dy o in 10..15,
do1in1.11,ds1in 3..12,dy 1 in 6..14, d3 2 in 1..10, dg 2 in 3..12, dy 5 in 2..9]. The search
space S has been reduced to 11,678,515,200,000 candidates (a 0.00001% of the initial
1,152,921,504,606,846,976). However, it is still very far away from finding the optimal
solution (or, at least, any of the 82 feasible ones). Moreover, for Queens-4, applying arc
consistency does not prune any of the 256 initial candidates of S. Thus, the solving of
a CSP or a COP requires a search algorithm, looking for valid assignments.

CP(FD) provides both systematic backtracking search algorithms, and
non-systematic /ocal search ones. The former guarantees that a solution will be found
if one exists, and can be used to show that a problem does not have a solution. The
latter are stochastic-based, and thus do neither guarantee an optimal solution, nor can
be used to show a CSP does not have a solution. However, sometimes such algorithms
are more effective (with better solving performance) at finding a solution if one exists,
as well as at finding a good approximation to an optimal solution. In any case, in this
thesis only systematic search is considered.

A backtracking search can be seen as performing a traversal of a search tree (e.g.
a depth first traversal). It is generated as the search progresses, and represents alter-
native choices that may have to be examined in order to find a solution. Extending a
node in the tree is often called a branching strategy. When a node is generated, its
exploration is used to check whether it leads to a solution, and also to prune subtrees
containing no solutions.

More specifically, a node p, placed in the j-th level of the search tree, can be seen
as anew CSP' = (V, D', C"). Itis similar to the original CSP = (V, D, C) being solved, but
C’" = CU{by,...,b;} enlarges the original constraint network with a set of branching
constraints, where each b; is the constraint posted at level 4 in the search tree. Extend
a node p (to generate the next tree level) is done by generating new nodes ps, ..., px,
where each p; is a new CSP” = (V, D", C"), with C"” = C" U {b;41_;}. To ensure com-
pleteness, the branching constraints [bj 1 1,..., b1 i) respectively added topy, ... ,px
must be mutually exclusive and exhaustive. Without loss of generality, in this thesis
only unary branching constraints are considered, which can be classified into: Enu-
meration, where variable v; is instantiated in turn to each value in its domain. Binary
choice points, where left path b;,1 1 = v; = a, and right path b;,1 > = v; != a (in [106]
it was shown that this branching technique is exponentially more powerful than the
enumeration one). Domain splitting, where b; 1 1 =v; <=aandbj;1 2 =v; > a.

By considering each node p as a CSP, its exploration just consists of maintaining a
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local consistency property on it. For example, the arc consistency constraint propaga-
tion for Golomb-5 and Queens-4 presented before (roughly following the algorithm of
Figure [2.3) can be seen as the propagation achieved in the root tree node. However,
for the rest of the search, only small changes occur between successive calls to the
constraint propagation algorithm (i.e., for any node of the tree, the difference between
its C" and the one of its father C is just the last branching constraint being posted).
Thus, the computational effort for maintaining local consistency on each node becomes
cheaper. In any case, as described in Section[2.2.7] different consistency levels can be
used, with the corresponding tradeoff between time and pruning. In general, it is com-
monly accepted that the local consistency level chosen depends on the concrete CSP,
and that different choices may be made for different constraints within a same CSP.
The constraint propagation of a node p leads to three possible situations:

1. The CSP becomes stable, and all its variables are bound to singleton domains.
Then, a solution has been found, and the search exploration stops.

2. The CSP becomes stable, but its search space S still contains different candidates.
Then, the search exploration continues, extending the node by generating its chil-
dren [nq,...,ng]. An unistantiated variable v, is selected, posting the associated
branching constraint b; to each n,; being created.

3. The CSP becomes unfeasible. Then, a fail has been found, and the subtree of p
is not even generated for its exploration. The next node (once again, performing
a depth first traverse of the tree) is selected to be explored.

When solving a COP, a few modifications must be done in the scheme just pre-
sented. Assuming that the cost function F has been assigned to variable v;, a common
approach is to explore the tree implementing a constraint-based version of branch-
and-bound [100]. On it, a backtracking search is used to find a solution s (for which
v; takes value val). Then, instead of stopping, the search continues, but an additional
constraint v; < val is added to the network, enforcing further solutions to improve the
achieved bound for the cost function. This process is repeated until the resulting CSP
is unsatisfiable, in which case the last solution is said to be the optimal one.

Finally, besides domain consistency, another efficiency factor being considered in
this thesis is the variable and value selection heuristics. They determine the shape
of the tree, and there are many case studies showing the performance impact of se-
lecting a suitable variable and value ordering [79], [83]. A variable ordering can be
either static, where the ordering is fixed and determined prior to search, or dynamic,
where the ordering is determined as the search progresses. Some examples of fixed
selection criterion are textual order or most/less constrained variable. Some exam-
ples of dynamic criterion are smallest/largest domain (also known as first fail [94]),
smallest/largest minimum/maximum value, smallest/largest difference between the
two smallest/largest values or random selection. Regarding value ordering, some se-
lection criterion are increasing/decreasing order, mean, median and random selection.
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Also, the variable and value selection heuristics are relevant to encourage or dis-
courage the use of symmetry breaking constraints, as the ones used in the Queens and
Golomb problems. That is, breaking the symmetries of a problem reduces the search
space of a problem. However, picking out particular solutions in each symmetry class
may conflict with the tree exploration order followed by the variable and value selec-
tion heuristics [198].

To finish the section, two examples are used, showing the performance impact of
the variable/value heuristics and the local consistency algorithms being used, respec-
tively.

First, the variant Queens-6 of the CSP of Figure [2.1] (using all_different global con-
straints and a v; < v, symmetry breaking constraint) is solved. Figures and
present the search exploration for achieving a first feasible solution. The former la-
bels the variables [vy, ..., v,] in their textual order (selecting the domain values of
each variable in an increasing order). The latter labels the variables selecting first the
variable v; with less domain values (selecting first the greatest value not greater than
the median). As it can be seen, the search of Figure [2.5just needs to explore 7 nodes
to find the solution (achieving just 1 fail). The constraints posted in the solution path
(nodes [2,3,4,5,7]) are [v; =4, vg =6, v3 =5, vs = 1, vg = 7|, leading to the solution
[4,8,5,3,1,7,2,6]. On the other hand, the search of Figure needs to explore 49
nodes to find the solution (achieving 23 fails). The constraints posted in the solution
path (nodes [2,16,36,37,41,45,49]) are [vy =1, v 1= 3, va 1= 4, v =5, v3 1= 2, v3 1= 7, vy
1= 2], leading to the solution [1,5,8,6,3,7,2,4]. As it can be seen, some wrong decisions
lead to explore subtrees containing no solutions: v, = 3, subtree with root node 3, 13
nodes. vy = 4, subtree with root node 17, 19 nodes. v; = 2, subtree with root node 38,
3 nodes. v3 = 7, subtree with root node 42, 3 nodes. v, = 2, subtree with root node 46,
3 nodes.

Second, Golomb-5 (COP of Figure but using an all_different global constraint)
is solved. Figures[2.6|and present the search exploration for achieving the optimal
solution. The former applies value consistency for the ali_different constraint, which
treats it as a sequence of pairwise binary disequality constraints. The latter applies arc
consistency for the ali_different constraint. As it can be seen, whereas the search of
Figure [2.7] just needs to explore 11 nodes to find the solution (achieving just 4 fails),
the search of Figure[2.6]explores 21 nodes (achieving 9 fails). Both search explorations
find a first feasible solution in the path [2, 3,4, 5], by posting [m; =1, ma =3, m3 =7, my
= 12]. At this solution node 6, the constraint m4 < 12 is added to the network. Then,
the search continues, and a new solution [m; =1, ms =4, mg = 9, my = 11] is found.
The constraint my < 11 is added, and the search concludes without finding any new
solution, turning [0, 1,4, 9, 11] into the optimal one.
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Figure 2.4: Queens-6 with Lexicographic Variable and Value Order

Figure 2.5: Queens-6 with First Fail and Medium Values First
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Figure 2.6: Golomb-5 with ali_different Value Consistency

Figure 2.7: Golomb-5 with ali_different Arc Consistency
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2.3 CP(FD) Modeling Paradigms

This section presents an introduction to the different modeling paradigms available in
CP(FD). It provides a brief description of each of the state-of-the-art systems consid-
ered in the third part of the research of the thesis. It justifies the system set being
selected, with the aim of covering the different modeling features available, but rely-
ing on a minimal set of different constraint solver libraries. Moreover, the use of two
systems per paradigm allows to widen the conclusions for a paradigm.

2.3.1 Algebraic CP(FD)

The first modeling paradigm being considered is Algebraic CP(FD). It sets a context for
high-level specific purpose languages based on algebraic formulations. It abstracts the
CSP or COP specification from the concrete solver or algorithm used to solve it. It pro-
vides a high expressivity to the user, including the use of basic constraints (which can be
combined to obtain complex ones), new constraint definitions (via predicates), combi-
nators, enumerated types, array and set data structures, predefined and user-defined
search strategies, and an isolation from the general model to the instance-dependent
input data. The abstraction from the model to the solver allows to try the same model
over different solvers with no extra effort. However, the use of specific purpose lan-
guages makes more difficult the modeling of constraint-independent components (i.e.,
the tasks that are not strictly constraint modeling), as well as the development of non-
monolithic problems and the integration of the model into larger applications.

Some algebraic CP(FD) systems are MiniZinc [142], IBM ILOG OPL [193], Comet
[60], Minion [81] and Numberjack [98]. To position TOY(FD) w.r.t. algebraic CP(FD),
the state-of-the-art systems MiniZinc and ILOG OPL are considered. MiniZinc has been
selected because it is high-level enough to express most constraint problems easily, but
low-level enough that it can be mapped onto existing solvers easily and consistently.
To do so, the MiniZinc interpreter includes FlatZinc, a low-level solver input language
that is the target language for MiniZinc. It is designed to be easy to translate into
the form required by a solver. In fact, any MiniZinc targeted-solver can customize its
own global constraint compilation from MiniZinc to FlatZinc. Currently, MiniZinc might
be seen as the standard algebraic CP(¥D) modeling language. Most state-of-the-art
constraint solver libraries include an interface to FlatZinc, and the MiniZinc challenge
[7] is organized every year to compare various constraint solvers on the same problems
sets, as well as to build up a library of interesting problem models.

ILOG OPL has been selected because it is an industrial market leader, being the
modeling language selected by most of the companies for CSP and COP solving during
the last decade. It can be seen as the pioneering algebraic CP(FD) language, from
which the rest of languages have departed from. Thanks to the IBM academic initiative
[107] these products are free for academic purposes. ILOG OPL is not as much generic
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as MiniZinc is, in the sense that an OPL model can only be targeted to the different
constraint solvers that ILOG provides.

2.3.2 Object Oriented CP(FD)

The second modeling paradigm being considered is Object Oriented (O0) CP(FD). As
the need for solving CSP's and COP's increased, the industry requested new general-
purpose modeling languages. The aim was to integrate the CP(FD) techniques into
other programming communities, also making possible the coexistence of CP(FD) mod-
els and other constraint independent components within larger applications. Thus, the
integration of CP(FD) into the OO paradigm (and in concrete into the C++ language)
was quite natural and interesting, both in terms of the problem specification and its
solving. First, the high efficiency of C++ [36] allows the CP(FD) libraries implemented
in this language to obtain a higher solving efficiency. Second, as now this libraries must
provide a C++ API, users can take advantage of features such as the abstraction, en-
capsulation, inheritance and polymorphism [33]. Modeling using the C++ API interface
of a CP(FD) library provides a tradeoff between efficiency and abstraction, as models
become solver-specific (and thus more efficient), but the user has to explicitly manage
all these constraint elements that algebraic CP(FD) languages already abstracted.

Some C++ CP(FD) libraries are Gecode [78], IBM ILOG Solver [12] and Cacao [41].
Also, due to the new standard JSR 331 [112], some Java CP(FD) libraries have been
developed, with JaCoP [110], Choco [54] and YACS [206] as some examples. To position
TOY(FD)w.r.t. 00 CP(FD), the C++ CP(FD) state-of-the-art systems Gecode and ILOG
Solver are considered.

Gecode has been selected because it is a free software CP(FD) library with state-
of-the-art performance (awarded with the best results in the 2008-2012 editions of
the MinizZinc Challenge). Relying on an exhaustive documentation and with an alive
community (which goes far beyond the education training), it provides a wide set of
templates allowing users to be first class citizens in the development of new variable
domains, constraints and search procedures (which follow exactly the very same tech-
niques that Gecode itself provides). Besides that, Gecode interfaces FlatZinc, as it is
thus possible to make a modeling and solving comparison between programming in
MiniZinc (interfaced to Gecode) and directly in Gecode.

ILOG Solver has been selected because it is the constraint solver targeted by OPL
when solving generic 7D problems. It belongs to the ILOG CP package, which contains
the ILOG Concert modeling library and two other solver libraries for specific schedul-
ing and routing problems. As it happened with ILOG OPL (where a translation to ILOG
Solver was done), modeling with ILOG Concert also needs a translation to ILOG Solver
(in the context of C++ CP(FD) programming). Thus, a modeling and solving comparison
between programming in ILOG OPL and ILOG Concert (and thus between both transla-
tions to ILOG Solver) turns to be quite interesting, as well as to compare this gap with
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the one produced between MiniZinc (against Gecode) and Gecode.

2.3.3 Logic Programming CP(FD)

The integration of CP(FD) techniques into declarative languages has also been quite
interesting from an industrial point of view. These languages offer a higher abstraction
level for programming, easing the development of secure and maintainable programs
[121]. They are based on an strong formalism, with a clear distinction between its
declarative and operational (execution model) semantics. Thus, the paradigm of Logic
Programming (LP) [120] has been used in a vast range of application domains. Whereas
the declarative semantics of LP treats programs as logic theories based on a set of (pos-
sibly non-deterministic) clauses, its operational semantics is based in the SLD calculus
of Robinson [160] for solving logic goals via unification.

The integration of CP(FD) into LP sets up the framework for the paradigm of Con-
straint Logic Programming over Finite Domains (CLP(F D)), which is the third modeling
paradigm being considered. On the one hand, in terms of CSP and COP modeling,
the new paradigm takes most of the advantages of both algebraic and C++ languages:
First, it abstracts the model from the concrete solver. This allows to plug-in the same
model over different solvers, as in algebraic languages. This also allows to avoid ex-
plicit handling of a constraint solver object (managing the control of its decision varia-
bles, constraints, objective function, constraint store, constraint propagation, search
engine, search control, as well as the garbage collection of all these elements), as OO
must do. Second, it provides high expressivity, even enhancing the one of algebraic and
C++ languages by adding logic features such as relational notation, non-determinism,
backtracking, logical variables, domain variables, and the capability of reasoning with
models. Third, by using a logic general-purpose programming language, it also has
the same capabilities of C++ languages for modeling constraint-independent compo-
nents, tackling non-monolithic models and integrate them into larger applications. On
the other hand, in terms of CSP and COP solving, CLP(FD) systems decrease the C++
CP(FD) efficiency, as they must intermix constraint solving with its SLD resolution op-
erational semantics (an inherent overhead comes from interfacing the constraint solver
to the system and coordinating it). To alleviate the effects of this overhead, and make
the interface to the constraint solver more clean and elegant, most CLP(FD) systems
have implemented its own host solver, attached to the underlying system architecture.

Some CLP(FD) systems are SICStus Prolog [178], SWI-Prolog [190], GNU Prolog [5],
Ciao Prolog [4], B-Prolog [31] and ECLiPSe [16], all of them using Prolog as host language
(and the latter interfacing Gecode for FD constraint solving). To position TOY(FD)
w.r.t. CLP(FD), the state-of-the-art systems SICStus Prolog and SWI-Prolog are consid-
ered.

SICStus Prolog has been selected because it is an ISO standard compliant, Pro-
log development system with state-of-the-art performance [71]. It is built around a

32



high performance Prolog engine that can use the full virtual memory space, and is ef-
ficient and robust for large amounts of data and large applications. Moreover, SICStus
is the host language of the CFLP(FD) systems being considered. Thus, a comparison
between their modeling and solving performance and the one of SICStus turns to be
quite interesting. Also, SICStus provides a Prolog-C++ (also Prolog-Java) communica-
tion framework allowing to define a Prolog predicate prototype whose implementation
is contained in a C++ function. This includes a conversion between Prolog and C++
parameters, which also contains a C++ representation of Prolog terms.

SWI-Prolog has been selected because it is an efficient free software CLP(FD) sys-
tem, that has been driven by the needs for real-world applications. It is widely used
in research and education, as well as for many commercial applications [203]. Thus, a
modeling and solving comparison between SICStus and SWI-Prolog turns to be quite
interesting.

2.3.4 Functional Programming CP(FD)

The paradigm of Functional Programming (FP) [128] sets the context for a second fam-
ily of declarative languages. Whereas the declarative semantics of FP treats programs
as theories based on a set of deterministic functions, its operational semantics is based
in reducing expressions via rewriting [20]. The integration of CP(FD) into FP sets up
the framework for the paradigm of Constraint Functional Programming over Finite Do-
mains (CFP(FD)). In terms of CSP and COP modeling, the three advantages presented
for CLP(FD) languages (w.r.t. algebraic and C++ ones) also apply to CFP(FD), where
the higher expressivity of the paradigm comes from the addition of functional features
such as functional notation, curried expressions, higher-order functions, patters, par-
tial application, lazy evaluation and the use of types and polymorphism. Also, as func-
tions are first-class citizens, they can be used as any other object in the language (i.e.,
results, input arguments and elements of data structures), giving CFP(FD) a greater
flexibility than CLP(FD). In terms of solving, FP provides efficient and (under particular
conditions) optimal evaluation strategies using demand-driven evaluation. However,
as in CLP(FD), intermixing constraint solving with the rewriting-based operational se-
mantics implies an inherent overhead for CFP(FD) performance. Thus, the integration
of CP(FD) techniques into FP seems to be at least as interesting as in LP. However, the
literature lacks of mature proposals in this sense.

Some FP CP(FD) libraries are Alice ML [10] and FaCiLe [69]. On the one hand,
they provide some functional features, such as higher-order functions, type inference,
strong typing, user-defined constraints and the manipulation of potentially infinite data
structures by using explicit delayed expressions (lazyness is not an inherent character-
istic of their resolution mechanism). However, they do not provide general-purpose
functional programming languages, as they are based on a low-level and imperative
APL
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More recently [169] developed a Monadic Constraint Programming (MCP) frame-
work, integrating CP(FD) techniques in the pure functional programming language
Haskell [148]. It illustrates how the abstractions and mechanisms from FP such as mon-
ads, higher-order functions, continuations and lazy evaluation are valuable notions for
defining and building CP(FD) systems. The FD-MCP framework [205] implements an
embedded domain-specific language in Haskell for constraint programming, abstract-
ing the concrete CP(FD) solver being used. They also focus in solving performance,
providing an interface to Gecode, which can be accessed either directly from the sys-
tem (intermixing constraint solving with rewriting), or by compiling the Haskell model
to a C++ Gecode one. Thus, the use of FD-MCP seems to be quite interesting. Un-
fortunately, the system seems to be at a beta version, as it does not provide neither
a user nor a reference manual to learn how to use it. Besides that, none of the pro-
vided examples do compile in the recent versions of Gecode (they do not mention the
Gecode version they are using), and some of them directly do not even generate any
C++ code. For these reasons the use of FP CP(FD) systems is not considered in this
thesis, although they provide some strengths for CSP and COP modeling and solving.

2.3.5 Multi-paradigm Declarative Programming CP(FD)

Each single declarative paradigm provides relevant programming features. FP empha-
sizes generic programming, using higher-order functions and polymorphic typing. Also,
the use of lazy or demand-driven computation strategies provide efficient and, under
particular conditions, optimal evaluation of expressions. LP supports the computation
with partial information (logic variables) and the non-deterministic search for solutions
(with model reasoning implemented via non-deterministic predicates and backtrack-
ing). Thus, the integration of both paradigms into a Functional Logic Programming (FLP)
[161], [91], [19] framework obtains both the higher flexibility of LP and the higher effi-
ciency of FP. Moreover, all the good properties achieved on the integration of CP(FD)
into LP also holds for FLP, setting up the framework for the paradigm of Constraint
Functional Logic Programming over Finite Domains (CFLP(FD)).

In terms of modeling, CFLP(FD) represent one of the most complete approaches
within CP(FD) systems. First, its declarative nature abstracts the problem specification,
allowing the user to model a problem by simply describing the properties its solutions
must hold. This represents an advantage w.r.t. imperative languages (as the ones of
C++ CP(FD) systems), where the way the model is built is procedural (although the
paradigm is still declarative, i.e., the C++ objects are used to describe a declarative
model). Second, its general purpose nature allows the integration of the model into
larger applications, in contrast to specific-purpose languages (as the ones of algebraic
CP(FD) systems). Third, as mentioned before, its high expressiveness includes the
main features from both LP and FP languages (as the ones of CLP(FD) and CFP(FD)
systems, respectively). The logic component includes features such as relational no-
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tation, non-determinism, backtracking, logical variables, domain variables and the ca-
pability of reasoning with models. The functional component includes features such
as functional notation, curried expressions, higher-order functions, patterns, partial
applications, lazy evaluation, types, polymorphism and constraint composition.

In terms of solving, CFLP(FD) has the same kind of overhead as CLP(FD), i.e., com-
ing from intermixing constraint solving with the operational semantics (an inherent
overhead comes from interfacing the constraint solver to the system and coordinating
it). Unfortunately, CFLP(FD) cannot decrease this inherent overhead (as CFP(FD) can
do via compiling the native language model to a host constraint solver language one).
The problem comes from the logic feature of reasoning with models. With it, the sys-
tem can retract from the constraint store some of the regular constraints of the model
(not to mix them up with the constraints retracted due to the inherent backtracking as-
sociated to a search exploration). Thus, any CFLP(FD) native model must be executed
on its native framework.

A first approach to set up a CFLP(FD) framework consists of extending a logic lan-
guage with FP features. As functions can be considered as specific relations, the lan-
guage is extended with syntactic sugar to allow functional notation. Two systems of
this family are HAL [62] and Oz [194]. The former is explicitly designed to support the
experimentation with different constraint solvers and the development of new ones. It
allows to call solvers written in other languages (e.g. C) with little overhead, as well as
to “plug and play” with different constraint solvers over the same domain. The latter
generalizes the CLP(FD) and concurrent constraint programming paradigms, including
first-class functions and constraints (which are also treated as functions). However,
both HAL and Oz rely on strict operational semantics that do not support optimal eval-
uation as in FP.

A second approach to set up a CFLP(FD) framework consists of extending a func-
tional language with LP features. It combines the SLD resolution mechanism of LP
with the lazy or demand-driven function evaluation of FP. Two systems of this family
are PAKCS [93] (one of the available system versions of the Curry [90] language) and
TOY(FD) [72], [124], [40].

Regarding their declarative semantics, PAKCS and TOY(FD) programs have a syn-
tax mostly borrowed from Haskell, and can be seen as theories based on a set of func-
tions, possibly higher order, non-deterministic and with conditional rules. Both sys-
tems rely on a Constructor-based Rewriting Logic: CRWL [85]. It provides a basis for
FLP with non-strict functions (not all its arguments are needed to be evaluated to apply
a function rule) non-deterministic functions (with possibly several reductions for given,
even ground, arguments) and call-time choice (arguments are shared to avoid multiple
evaluations of the same subterm).

Regarding their operational semantics, whereas TOY(FD) implements lazy nar-
rowing, PAKCS integrates it with residuation [91]. The execution model of residuation
suspends function calls until they are instantiated enough for deterministic reduction.

35



Thus, in this setting, non-determinism must be expressed by explicit disjunctions. Nar-
rowing overcomes this restriction, allowing to apply the rule of a function with unknown
arguments by instantiating them. As it can be seen, narrowing combines the pure FP
mechanism of rewriting with the pure LP mechanism of unification. On the operational
side, the LP resolution principle must be extended to deal with replacements of sub-
terms, so that a function rule is unified (instead of rewritten) with the subterm under
evaluation.

Under the condition that the function rules of a program form an Inductively Se-
quential Term Rewriting System [20], a lazy narrowing strategy is ensured to be optimal
(i.e., performing only the strictly necessary narrowing steps to compute a result). The
discrimination between needed and non-needed narrowing steps is given by the notion
of definitional trees [18]. In TOY(FD), the operational semantics is based on a Con-
straint Lazy Narrowing Calculus: CLNC(FD) [123], which relies on the use of definitional
trees to implement lazy narrowing for goal solving.

Finally, regarding implementation, both TOY(FD) and PAKCS are implemented in
SICStus Prolog. There are several approaches to compile FLP languages with demand-
driven evaluation strategies into Prolog (relying on the Prolog backtracking mechanism
to implement non-deterministic search) [122], [52]. Whereas narrowing strategies can
be compiled into pure Prolog, residuation demands for coroutining. Thus, instead
of using an abstract machine for running byte-code or intermediate code from com-
piled programs, both TOY(FD) and PAKCS use SICStus Prolog as their object language
(which includes SICStus c1pfd for FD constraint solving).

In summary, the state-of-the-art CFLP(FD) systems TOY(FD) and PAKCS purely
integrate the FP and LP paradigms, both in their language expressivity and in their solv-
ing mechanisms. They rely on the same declarative and operational semantics, besides
being implemented in the same language. Thus, PAKCS is the system being consid-
ered to position TOY(FD) w.r.t. the CFLP(FD) paradigm itself. Moreover, besides a
comparison between the PAKCS and TOY(FD) modeling and solving capabilities, a
comparison with the ones of SICStus c1pfd turns interesting.

24 TOY(FD)

This section presents a formal definition of the TOY(FD) language, supporting the
solving of syntactic equalities and disequalities (via a Herbrand solver: #), as well as
the solving of FD constraints (via a connected CP(FD) solver). Then, some introduc-
tory TOY(FD) examples are provided, giving a brief overview of both the modeling
features and the goal solving mechanism of the system. The system is available at:
http://gpd.sip.ucm.es/ncasti/TOY(FD).zip.
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2.4.1 Language

To provide a formal definition of the TOY(FD) language, the constructor-based signa-
tures ¥ = (DC, F'S) are used, where DC = |J,, .y DC™ and F'S = |, F'S™ are sets of
data constructors and defined function symbols with associated arities, respectively.
As notational conventions, it is assumed that ¢,d € DC, f,g € FSand h € DC U FS.
It is also assumed that countably many variables (noted as X, Y, Z, etc.) are available.
Given any set X of variables, Expx(X) denotes the set of all terms built from symbols
in X UDC UFS, and also the set Termyx(X) of all terms built from symbols in X U DC.
Whereas terms [,r,e € Exzpx(X) are called expressions, terms s,t € Termx(X) are
called constructor terms or also data terms. Expressions without variables are called
ground or closed.

ATOY(FD) program or model consists of datatype declarations, type aliases, infix
operator definitions and rules for defining functions. The syntax is mostly borrowed
from Haskell [148], with the remarkable exception that, whereas variables begin with
upper-case letters, constructor and function symbols use lower-case. In particular,
functions are curried, and the usual conventions about associativity of application hold.

Datatype definitions define new (possibly polymorphic) constructed types. For ex-
ample, the datatype definition data nat = zero | suc nat defines a constructed
type for natural numbers. This definition also determines the set of data constructors
for the type (in the example, there are two possible data constructors to be used when
generating a nat).

Types 7,7',... can be constructed types, tuples (ri,...,7,), or functional types of
the form = — 7/. As usual, — associates to the right. The language includes prede-
fined types, such as [A] (the type of polymorphic lists, for which Prolog notation is
used), bool (with constants true and false), int for integer numbers, or char (with
constants 'a’,’b’,...).

Each defined function f € F'S™ has an associated principal type of the form ; —
... = 1, = 7 (Where 7 does not contain —). As usual in functional programming, types
are inferred and, optionally, can be declared in the program.

The two syntactic domains patterns and expressions must be distinguished. Pat-
terns can be understood as denoting data values, i.e., values not subject to further
evaluation, in contrast to expressions, which can be possibly reduced by means of the
rules of the program. Patterns ¢,s,... are defined by t ::= X | (¢t1,...,tn) | ct1...tp| f
t1...tn, Wwherece DC™, n <m, f € FS™, n <m, and t; are also patterns. Notice that
partial applications (i.e., applications to less arguments than indicated by the arity) of
cand f are allowed as patterns, which are then called a higher order (HO) pattern, be-
cause they have a functional type. Therefore, function symbols, when partially applied,
behave as data constructors. HO patterns can be manipulated as any other patterns. In
particular, they can be used for matching or checked for equality. With this intensional
point of view, functions become ‘first-class citizens’ in a stronger sense that in the case
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of ‘classical’ FP.

Expressions are of the forme := X |c | f | (e1,...,en) | (e1 €2), Where ¢ € DC,
f € FS, and ¢; are also expressions. As usual, application associates to the left and
parentheses can be omitted accordingly. Therefore, ee; ...e, isthesameas (... ((ee1)
es)...)en). Of course, expressions are assumed to be well-typed. First order patterns
are a special kind of expressions which can be understood as denoting data values,
i.e., values not subject to further evaluation, in contrast to expressions, which can be
possibly reduced by means of the rules of the program.

Each function f € FS™ is defined by a set of conditional rules f ¢;...t,=e <
ly==ry,...,lx==r; where (¢, ...t,) form a tuple of linear (i.e., with no repeated varia-
ble) patterns, and e, ;, r; are expressions. No other conditions (except well-typedness)
are imposed to function definitions. Rules have a conditional reading: f ¢;...t, can
be reduced to e if all the equality conditions i; == ry,...,l;, == r; are satisfied (the
condition part is omitted if £ = 0). A predefined set of basic functions (as map, foldl,
take, repeat, zip, etc.) is included, all of them with an equivalent semantics as in
standard functional programming.

A distinguished feature of TOY(FD) is that no confluence properties are required
for the programs, and therefore functions can be non-deterministic, i.e., return several
values for a given (even ground) arguments. For example, the rules coin = 0 and
coin = 1 constitute a valid definition for the 0-ary non-deterministic function coin.
Two reductions are allowed, which lead to the values 0 and 1. The system tries in the
first place the first rule, but, if backtracking is required by a later failure or by request
of the user, the second rule is tried. Another way of introducing non-determinism in
the definition of a function is by adding extra variables in the right side of the rules, as
inz_list = [0|L] (where the usual list constructors [] and (:) are used). Any list of
integers starting by 0 is a possible value of z_list. Anyway, note that in this case only
one reduction is possible.

The language provides the polymorphic equality and disequality constraints == and
/=, where A == B (respectively A /= B) succeeds if A and B can be reduced to the
same first order pattern (respectively to different first order patterns). The repertoire
of D constraints is presented in Table 2.1] The relational constraints support reifica-
tion [132]. Once again, == and /= are truly polymorphic, i.e., with the same operators
for both # and FD solvers. Thus, 7D variables are implicitly attributed to identify
whether these equality and disequality constraints must be managed by either the H
or the FD solver. The rest of relational constraints #>, #>=, #< and #<= post inequality
constraints to the FD solver. Their arguments can be built with constraint operators,
as #+, #-, #+ and #/. To evaluate constraint expressions, each arithmetic constraint
operator generates a new fresh variable Aux, which is constrained with the operation
between the two constraint arguments. Thus, typical sum or product of a list of va-
riables [vy,...,v,] is decomposed into n — 1 primitive constraints of two arguments,
generating n — 1 auxiliary new variables.
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] Type Constraints & Operators

Relational Constraints ==, /=, #>, #>=, #<, #<=
Arithmetic Operators H#, #-, H#x, #/
Propositional Constraint post_implication
Domain Constraints domain, domain_valArray
Global Constraints all_different, count, sum, scalar_product

Table 2.1: Repertoire of 7D Constraints and Operators

The propositional constraint post_implication A B poststo the solver alogical
implication between the relational constraints A and B. The constraint domain List
Lb Ub takes each variable X of List, and posts X #>= Lband X #<= Ub. Differently,
the constraint domain_valArray Vars Vals supports domain initialization of each
variable of Vars to the set of values Vals.

The global constraint sum List Op B (where B can be an integer or an FD varia-
ble) improves the sum of n variables presented before, by saving the n—1 auxiliary new
variables. Moreover, Op is a relational constraint symbol, and the relational constraint
between B and the sum of the elements of List is also posted to the solver. Similarly,
scalar_product Vals Vars Op B posts arelational constraint between B and the
scalar product of the equally sized lists of variables and integer values Vars and Vals,
respectively. count A List Op Bimposes a relational constraint between B and the
number of elements in List being equal to A. Finally, all_different List con-
strains all the variables of List to take different values.

2.4.2 FLP Program Example and Goals

This section presents a first TOY(FD) program in Figure [2.8} and several goals (i.e.,
goal-reduction procedures) in Figure They give a brief overview of the pure FLP
modeling features and goal solving mechanism of the system. CP(FD) issues are con-
sidered in next section.

Regarding the TOY(FD) program, it contains the operator (//), as well as the
functions repeat, take, gen_v_1ist, is_true and loop:

e The operator (//) includes a polymorphic principal type A -> A -> A, with its
two arguments being of any type A (but both of the very same one). The operator
is non-deterministic, as its definition includes two rules with the same pattern
matching for its two arguments. The rules return as a result the first and the
second argument, respectively.

e The function repeat contains just one rule, generating an infinite list of repeti-
tions of its input argument.

39



(/7)y:: A ->A ->A
F//7S=F
F//S5S=S

%

repeat:: A -> [A]

repeat X = [X | repeat X]

%

take:: int -> [A] -> [A]

take 0 Xs = []

take N [] =[] <== N> 0

take N [X|Xs] = [X]| take (N-1) Xs] <== N > 0
0

%

gen_v_list:: [A]

gen_v_list = [X | gen_v_list]
%

is_true:: bool -> int

is_true true = 1

%

loop:: A

loop = loop

Figure 2.8: A First TOY(FD) Program

e The function take includes conditional rules. It receives the integer N an the
list Xs, generating as a result a new list with the first N elements of Xs. The
condition N > 0 in the second and third rules are just to distinguish them from
the first rule. Otherwise, the arguments 0 [] will match (pattern matching and
unification) with the first two rules, and the arguments 0 [A|L] will match with
the first and third rules (in both cases, turning take into a non-deterministic
function).

e The function gen_v_1ist contains a single ground rule, which generates an in-
finite list of new fresh variables (by using the extra variable X on the right hand
side of the rule).

e The function is_true contains a single rule, which is applicable just if its argu-
ment is true.

e The function loop contains a single ground rule, which iterates causing the non
termination of the computation.

Regarding the goals solved in the TOY(FD) session, they show the system sup-
port for: Types, polymorphism, principal type, curried expressions, non-deterministic
functions, backtracking, lazy evaluation, conditional rules and call-time choice.

e Goal 1 shows a very basic non-deterministic computation. It solves3 // 5 ==
X, obtaining a first solution in which X is unified to 3 by applying the first rule of
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% Goal 1
TOY(FD)> 3 // 5 ==

{X->31}

sol.1, more solutions (y/n/d/a) [yl?
{X->51%

sol.2, more solutions (y/n/d/a) [yl?
no

% Goal 2

TOY(FD)> 3 // is_true Y == X
{X->31}

sol.1, more solutions (y/n/d/a) [yl?
{Y -> true,

X ->113

sol.2, more solutions (y/n/d/a) [yl?
no

% Goal 3

TOY(FD)> (take 3) // (take 2) == P
{ P -> (take 3) }

sol.1, more solutions (y/n/d/a) [yl?
{ P -> (take 2) }

sol.2, more solutions (y/n/d/a) [yl?
no

% Goal 4

TOY(FD)> (take 3) // is_true ==

TYPE ERROR: Wrong type calling function or constructor symbol (// (take 3)
is_true) in goal. Argument 2 has type bool -> int but [ _ A ] -> [ _A ] was
expected. Variable type is assumed to go on the inference.

% Goal 5

TOY(FD)> L == take 2 (repeat (0 // 1))
{L->[0,011%}

sol.1, more solutions (y/n/d/a) [yl?
{L->[1,11%}

sol.2, more solutions (y/n/d/a) [yl?
no

% Goal 6

TOY(FD)> L == take 2 (repeat (take 1 gen_v_list))
{L>TT A, T ATT}

sol.1, more solutions (y/n/d/a) [yl?
no

% Goal 7
TOY(FD)> X /= true, is_true X == 1, loop
no

Figure 2.9: Solving Different Goals
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(/7). Then, if the user requests another solution, backtracking is performed, to
apply any pending rule of (//).

Goal 2 shows that evaluation of functions in TOY(FD) is not strict. The second
argument of 3 // is_true Y is not a pattern, but a expression that can be
reduced. However, the first rule of (//) does not demand its second argument,
and thus the rule can be applied without evaluating it (obtaining a first solution
to the goal).

Then, if the user requests another solution, backtracking is performed, and the
exploration of the second rule of (//) demands the evaluation of the expression
is_true Y. Lazy narrowing makes pattern matching of it with the single rule of
is_true, unifying Y to true. As it can be seen, in the second solution found,
both X and Y are unified to 1 and true, respectively.

Goal 3 shows that any pattern value can be an argument of (//). In this case,
both (take 3) and (take 2) are patterns (they both instantiate the type A
with ([B] -> [B])), as they are partial applications of the function take.

Goal 4 shows that TOY(FD) is a strong typed system, performing type check-
ing both at compilation and run time. In this case, the type (bool -> int) of
is_trueis not compatible with ([B] -> [B])).

Goal 5 shows an example of lazy evaluation, as the infinite list generated by re-
peat is partially computed on demand. Moreover, TOY(FD) follows a call-time
choice semantics, where different occurrences of an expression in the rule of a
function are shared, avoiding its evaluation more than once. In this case, (0 //
1) is computed just once, and shared for all the elements generated by repeat.
As it can be seen, due to call-time choice only the solutions [0,0] and [1,1] are
computed (instead of the four solutions [0,0], [0,1], [1,0] and [1,1]).

Goal 6 shows a similar situation to Goal 5. In this case, the variable list (take
1 gen_v_list) used as an argument is computed just once, and then shared
at any point of the computation. The underline in _A means that it is an extra
variable, not taking place in any of the constraints of the proposed goal.

Finally, Goal 7 shows that lazy narrowing tackles the constraints arisen in a
TOY(FD) goal in textual order. First, the constraint X /= true is managed.
Then, the management of is_bool X == 1 triggers the evaluation of the single
rule of is_true. However, lazy narrowing fails trying to unify X to true, as X was
constrained to be different to it before. Thus, the goal fails, instead of looping (as
it never reaches the evaluation of loop).
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2.4.3 CFLP(FD) Program Examples and Goals

This section presents TOY(FD) as a CFLP(FD) system, providing two introductory ex-
amples dealing with 7D constraints. First, the TOY(FD) model of the Queens specifi-
cation (cf. Section[2.7.1) is presented in Figure[2.T0] Then, the TOY(FD) model of the
Golomb specification (cf. Section is presented in Figure[2.11] The models are de-
scribed next, and to ease this task the figures artificially include the lines of code. The
figures also include a TOY(FD) session solving the instances Queens-4 and Golomb-5,
respectively. As it can be seen, the two feasible solutions of Queens-4 and the optimal
solution of Golomb-5 (cf. Sections [2.7.7|and[2.1.2) are obtained by the TOY(FD) goal
computations.

Both Queens and Golomb models include the files cflpfd.toy and misc.toy
(lines 1 and 2, respectively). The former contains the 7D constraints of Table[2.1} The
latter contains a sort of prelude, including the TOY(FD) version of FP standard prim-
itive functions. The functions map, foldl, zipWith, scanl, iterate, head, last
and take are used, as well as the operators (++) and /\. All of them have the same
semantics as in standard FP [96], and their implementation as TOY(FD) functions are
shown in Figure[2.12]

The main function queens (Figure [2.70] lines 3-10) models the CSP. Its single rule
receives the input parameter N, representing the amount of queens to be placed. It
computes as a result the list L -> [vq,...,vy], Where v; represents the row taken by
the queen placed in the j-th column. To compute each feasible solution, the rule is
turned into a conditional one, with six conditions (lines 5-10) to be hold:

e Line 5 generates a list of N new fresh logic variables, by using the extra function
gen_v_list (lines 13-14).

e Line 6 constrains the domain of these variables to be in the range 1. .N.

e Line 7 constrains the variables to take different values, thus ensuring that no two
queens are placed in the same row.

e Lines 8 and 9 constrain the variables to be placed in different decreasing and
increasing diagonals, respectively. To do so, the lists [v; +0,...,vx + (N — 1)]
and [v; — 0,...,uy — (N — 1)] are constructed and constrained to take different
values. In particular, the extra function fromis used (lines 11-12), which receives
the input argument N and computes the infinite list [N, N + 1, N +2,..].

e Finally, line 10 uses the FD primitive 1abeling to specify a search strategy. The
second argument specifies L as the variable list to be labeled. The first argu-
ment specifies a first fail variable selection criterion (i.e., select first the variable
with smallest amount of domain values), using textual order for ties. As no value
selection criterion is specified, the domain of each variable is labeled in an in-
creasing order.
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%

%

(01) include "cflpfd.toy"
(02) include "misc.toy"
%

%

(03) queens :: int -> [int]

(04) queens N = L <==

(05) take N gen_v_list ==L,

(06) domain L 1 N,

(07) all _different L,

(08) all different (zipWith (#+) L (take N (from 0))),
(09) all different (zipWith (#-) L (take N (from 0))),
(10) labeling [ff] L

%

%

(11) from:: int -> [int]

(12) from N = N : from (N+1)

%

(13) gen_v_list:: [A]

(14) gen_v_list = [X | gen_v_list]
%

%

TOY(FD)> queens 4 == L
{L->[2,4,1,3113

sol.1, more solutions (y/n/d/a) [yl?
{L->[3,1,4,211}

sol.2, more solutions (y/n/d/a) [yl1?
no

Figure 2.10: Queens Model and System Session
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%

%

(01) include "cflpfd.toy"
(02) include "misc.toy"
%

%

(03) golomb :: int -> [int]

(04) golomb N = M <==

(05) M == take N [0 | gen_v_list],
(06) order (M ++ [trunc(2~A(N-1))]1) == true,
(07) gen_difs M == Ds,

(08) foldl (++) [] Ds == D,

(09) all_different D,

(10) lbound Ds sums_nats == true,
11) (head D) #< (last D),

(12) labeling [toMinimize (last M)] M
%

%
(13) order:: [int] -> bool
(14) order [X] = true
(15) order [X,Y|Xs] = (X #< Y) /\ order [Y]|Xs]
%
(16) gen_difs:: [int] -> [[int]]
(17) gen_difs [] = [1]
(18) gen_difs [X|Xs] = [map (#- X) Xs|gen_difs Xs]
%
(19) lbound:: [[int]] -> [int] -> bool
(20) lbound Xss Is =
foldl (/\) true (foldl (++) [] (map (zipWith (#<=) Is) Xss))
%
(21) sums_nats:: [int]
(22) sums_nats = scanl (+) 1 (iterate (+1) 2)
%
(23) gen_v_list:: [A]
(24) gen_v_list = [X | gen_v_list]
%

%

TOY(FD)> golomb 5 ==
{L->[0,1,4 9,111}

sol.1, more solutions (y/n/d/a) [yl?
no

Figure 2.11: Golomb Model and System Session
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map:: (A -> B) -> [A] -> [B]

map F [1 = []

map F [X|Xs] = [(F X)|(map F Xs)]

%

foldl:: (A ->B ->A) -> A -> [B] -> A
foldl FZ [] =2Z

foldl F Z [X|Xs] = foldl F (F Z X) Xs

%

zipWith:: (A -> B -> C) -> [A] -> [B] -> [C]
zipWith Z []1 Bs = []

zipWith Z [A]As] [1 = []

zipWith Z [A|As] [B|Bs] = [Z A B| zipWith Z As Bs]
%

scanl:: (A -> B -> A) -> A -> [B] -> [A]
scanl F Q [] = [Q]

scanl F Q [X|Xs] = [Q]|scanl F (F Q X) Xs]
%

iterate :: (A -> A) -> A -> [A]

iterate F X = [X]|iterate F (F X)]

%

head:: [A] -> A

head [X|_] = X

%

last:: [A] -> A

last [X] = X

last [_, Y|Xs] = last [Y]|Xs]

%

take:: int -> [A] -> [A]

take 0 Xs = []
take N [] =[] <== N >0
take N [X|Xs] = [X]| take (N-1) Xs] <== N > 0

%

(++) :: [A] -> [A] -> [A]
[T ++ Ys = ¥Ys

[X|Xs] ++ Ys = [X|Xs ++ Ys]
%

(/\):: bool -> bool -> bool
false /\ _ = false

true /\ X = X

Figure 2.12: Fragment of the File misc. toy
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The main function golomb (Figure[2.11]} lines 3-12) models the COP. Its single rule
receives the input parameter N, representing the amount of marks to be placed in the
ruler. It computes as a result the listM -> [My,..., My_1], where M; represents the
i-th mark of the ruler. To compute the optimal solution, the rule is turned into a condi-
tional one, with eight conditions (lines 5-12) to be hold:

e Line 5 generates the list M, composed of an initial 0 (ensuring the problem re-
quirement of M, =0) and N-1 new fresh logic variables, by using the extra func-
tion gen_v_list (lines 23-24).

e Line 6 uses the extra function order (lines 13-15) to constrain each element of
M to be smaller than the following one. The function also sets a lower bound to
the variables of M, as the first element of M is already 0. Moreover, by calling to
order withM ++ [trunc(2A(N-1))] (where ++ represents the concatenation
operator of lists), it also sets an upper bound for the mark variables.

e Line 7 uses the extra function gen_difs (lines 16-18) to generate the list of varia-
bles representing the differences between each pair of M variables. It computes
the [[int]] Ds =[[Di o,...,Dn-1)—0), [D2-1,---s D(n=1)=1]; -+ -»
[D(n—1)—(n—2)]]- Each D;_; is implicitly generated as the Aux variable of the
arithmetic constraint A/; — M; (cf. the definition of the constraint operator #- in
Section. As both M; and M; already have an associated domain, gen_difs
also serves for domain initialization of the new generated variables.

e Line 8 converts Ds into the plain [int] D =[D;_o,...,Dn-1)—0, D2—1,- -,
Dn—1y=1, -+ Div—1y—(n—2)]-
e Line 9 constrains the variables of D to take different values.

e Line 10 uses the extra function 1bound (lines 19-20) to constrain the lower bound
of each D,_; (considering that, as all the distances are pairwise distinct, their
sum must be, at least, the sum of the first j — i integers). The second argument
of 1bound uses another extra function sums_nats (lines 21-22). It computes
the infinite list [s1, s2 .. .], where each s; represents the sum of the first i natural
numbers.

The single rule of 1bound applies zipWith (#<=) [s1,s2...] to each element of
Ds, lazily computing [s1, s2 .. .] and sharing it for the different elements of Ds. Tak-
ing as an example the first element of Ds, the computation of zipWith (#<=)
[51,82,80-1] [D1-0, ..., D(ny—1)—0] CONStrains Dy _¢ >= s1, ..., D(n_1)—0 >= Sn_1.
The higher-order application of map ensures that zipWith is applied to each el-
ement of Ds. As relational constraints support reification, assigning the result to
no variable is a syntactic sugar for stating that just the true result is expected.
Thus, the resulting list of applying (map (zipWith (#<=) sum_nats) Ds)is
[[bool]] (with all the elements of the list being true). Then, foldl (++) []
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converts [[bool]] into a plain [bool]. Finally, foldl (/\) true takes the
[bool] list, returning true as a result (thus holding the equality constraint of
line 10).

e Line 11 constrains the first variable of D to be smaller than the last one.

e Finally, line 12 uses the FD primitive 1abeling to specify a search strategy. The
second argument specifies M as the variable list to be labeled. The first argument
specifies a cost function for the search, stating that the optimal solution will be
the one minimizing the last variable of M. As neither variable nor value selection
criterion are specified, the variables are labeled in textual order, and the domain
of each variable is labeled in an increasing order.

This finishes the preliminary concepts for the three research parts being accom-
plished in the thesis. Next parts present each of them.
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Part 11

Improving the Performance of
TOY(FD)



The first research part of the thesis is focused in improving the solving performance of
TOY(FD). Chapter 3] describes the integration of external C++ CP(FD) solvers, with
state-of-the-art performance, into TOY(FD). Chapter [4] describes the development
of new search primitives, implemented in the new 7TOY(FD) versions interfacing C++
CP(FD) solvers.



Chapter 3

Interfacing External C++ CP(FD)
Solvers

The CFLP(FD) system 7T OY(FD) provides a very suitable approach for modeling CSP’s
and COP's, as constraints are integrated into a declarative general-purpose language
as FLP. First, the language provided is quite expressive: The logic component includes
features such as relational notation, non-determinism, backtracking, logical variables,
domain variables and the capability of reasoning with models. The functional compo-
nent includes features such as functional notation, curried expressions, higher-order
functions, patterns, partial applications, lazy evaluation, types and polymorphism. Sec-
ond, constraint solving is simply added to the system by interfacing a constraint solver.
The original TOY(FD) version this thesis is departing from [72] interfaces the native
CP(FD) library SICStus c1lpfd. The use of an interface penalizes the performance of
the system, which must now intermix constraint solving with lazy narrowing (and thus
an inherent overhead comes from coordinating the solver).

The Amdahl's law establishes that the improvement in the performance of a system
due to the alteration of one of its components is limited by the fraction of time the
component is used. Due to the combinatorial nature of the CSP's and COP's tackled
with TOY(FD) it is expected that, as long as the instances scale up enough, most of
the CPU time the system requires to solve them is devoted to 7D solver computations.
Thus, a suitable approach to improve the solving efficiency of TOY(FD) is to develop
new system versions which, instead of rely on the underlying SICStus c1pfd solver, rely
on other external solvers with state-of-the-art performance. That is, stick to the same
TOY(FD) model of the problems (same FD constraint network and search strategy)
and rely on new constraint solvers capable of dealing with these computations faster.

The main contribution of this chapter is to present the development of two new
TOY(FD) versions: TOY(FDg) and TOY(FDi), relying on the external solvers of
Gecode and ILOG Solver (respectively). Also, the functionality of the original TOY(FD)
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version (referred to as TOY(FDs) from now on, as it relies on SICStus clpfd) is en-
hanced with new propagation mode capabilities also implemented for TOY(FDg) and
TOY(FDi). More generally, the chapter describes a generic scheme for interfacing
C++ CP(FD) solvers to TOY(FD), in a setting easily adaptable to any other CLP(FD)
or CFLP(FD) system implemented in Prolog. Section 3.1 describes the architecture of
the system, focusing on the interface to its 7D solver and identifying the requirements
to coordinate it. Section describes the scheme for interfacing C++ CP(FD) solvers,
and Section [3.3]instantiates it with Gecode and ILOG Solver. Section [3.4 analyzes the
new 7TOY(FD) performance achieved by using a set of benchmark problems. Section
.5 presents some related work and, finally, Section reports conclusions.

3.1 TOY(FD) Architecture

TOY(FD)isimplemented in SICStus Prolog [126] and, instead of using an abstract ma-
chine for running byte-code or intermediate code from compiled programs, the TOY
compiler uses SICStus Prolog as an object language [122]. Its architecture contains a
Herbrand (#) constraint solver, dealing with syntactic equality/disequality constraints,
and an FD constraint solver, dealing with Finite Domain constraints. More specifically,
each solver can be characterized by a constraint store and a constraint engine: The
store contains the set of constraints to be satisfied and the engine solves it.

Whereas the FD solver is interfaced to the system, the A solver is implemented
on plain Prolog (easing its integration as an inherent component of the architecture).
Only disequality constraints (/=) are maintained in an explicit store (store?), and thus
its engine consists of explicitly controlling store consistency when processing each new
goal constraint. Equality constraints (==) are processed via Prolog unification, taking
into account the store of disequality constraints [72].

Figure[3.1|presents a TOY(FD) program (top) and goal (bottom), showing how lazy
narrowing performs goal solving relying on the % and FD solvers. The function bin
contains a single rule returning true by constraining the list of variables received as its
argument to be binary. The non-deterministic and polymorphic operator (//) is de-
fined by two rules, returning either its first or its second argument. Then, the TOY(FD)
goal proposed consists of the conjunction of two syntactic equality constraints over ex-
pressions, for which three solutions are found.

The solving process followed by the system to find those solutions proceeds as fol-
lows: First, the constraint bin [X] == true is selected. Whereas its right argument
true is a constant (pattern), its left argument bin [X] is an expression. Thus, lazy
narrowing triggers the first rule of the function bin, performing the unification of L1
and [X] (where L1 is an instance of variable L in bin rule). It also posts the constraint
domain [X] O 1 to the FD solver. The bin rule returns true, and the initial con-
straint becomes the primitive one true == true. It is then posted to the H solver,
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include "cflpfd.toy"

%

bin:: [int] -> bool

bin L = true <==
domain L 0 1

%

(/7) 12 A -> A -> A

F//S =

F//S=S5S

TOY(FD)> bin [X] == true, (X // Y) #> 5 ==

sol1: {R -> false} /\ {X in 0..1} ? ;

sol2: {R -> true} /\ {X in 0..1, Y in 6..sup} ? ;

sol3: {R -> false} /\ {X in 0..1, Y in -inf..5} ? ;

no

Figure 3.1: TOY(FD) Program and Goal Example

which straightforwardly success.

Then, the constraint (X // Y) #> 5 == Risselected. Whereas R is a variable
(pattern), (X // Y) #> 5 is an expression, which needs its first argument to be re-
duced (in order to post the constraint to the 7D solver). Thus, lazy narrowing triggers
the first rule of (//), using a new fresh variant of each variable of the rule (in this case,
F1 for F and S1 for S), and performing the unification of F1 and X (respectively of S1
and Y). The rule returns X as a result. The constraint #> supports reification, and thus
either X #> 5 or X #<= 5 can be applied (respectively returning true and false).
The system selects first X #> 5, but then the 7D solver fails to find a solution, as X
was previously constrained to be binary. Thus, the system backtracks to #> (removing
the constraint X #> 5 from the 7D solver) and selects X #<= 5, returning false.
Constraint propagation succeeds, and computation continues. The initial constraint
becomes the primitive one false == R, which is posted to the # solver, unifying R.

Afirst solution has been obtained, consisting in the non-ground constraints of the H#
and FD stores. If a new solution is requested, the system backtracks to the application
of (X // Y), and both H and FD stores are restored to the contents they had before
(X // Y) #> 5was processed. The unexplored second rule of (//) is then applied,
continuing the computation in a similar way.

3.1.1 Coordinating the CP(FD) Solver

The FD solver must be interfaced to the system, coordinating its execution within
the lazy narrowing operational semantics. Figure presents the interface allowing
TOY(FD) to interact with engine”? by sending the following commands to it:

e Posting a new constraint C to store”P. If the constraint is not a primitive one,

53



TOY(FD)
Cc SC VD com

P X S
| *VC’ iéterface V
store™ engine’ store” P | engine” P

T

Figure 3.2: TOY(FD) Interface to its 7D Solver

its arguments must be previously narrowed (transforming C into one or more
primitive constraints C’). For example, the constraint C = (#>5) (X // Y)
must narrow its second argument, sending the constraint ¢’ = X #> 5 to the
solver. Also, the constraint C = domain [X #+ Y, X #- Y] 0 1 must nar-
row its first argument, sending to the solver C’ = {X#+Y == _A, X#-Y == _B,
domain[_A, _B] 0 1}

e Due to the polymorphism of == and /=, FD variables are attributed [105] to
identify whether these equality and disequality constraints must be managed by
the FD solver or by the # one.

That it, the constraints of a goal are processed in their textual order. Each time
lazy narrowing processes a == constraint: It is managed by engine”7? iff both of
its arguments are FD variables; Otherwise, it is managed by engine®. Similarly,
each time lazy narrowing processes a /= constraint: It is managed by engine”?
iff both of its arguments are FD variables, or one of its arguments is an integer
and the other one is a non FD attributed variable; Otherwise, it is managed by
engine®.

However, there is one more issue as, due to order in which the constraints
of a goal are processed, it is possible that disequality constraints initially sent
to store” must be further transferred to store”P. For example, Figure
presents a goal in which the first four constraints are posted to the H solver
(in particular, unifying Y with 1). However, when processing X #> 0, the sys-
tem attributes X as an FD variable, and the constraints of store”™ X /= 1
and X /= Z become relevant for the 7D solver, so they must be transferred
to store’P (attributing also Z as an FD variable, which recursively transfers
1 /= Zto store’P).

e Removing remaining constraints C” of store’?, keeping it consistent with the
computational point the system has backtracked to.

e Performing constraint propagation over store”?, simplifying it or detecting fail-
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TOY(FD)> X /=Y, X
sol1l: {Y->1} /\ {Z
no

, X # 0
in(inf..0)\/(2..sup)} ? ;

c
o 1
N —

Figure 3.3: TOY(FD) Second Goal Example

ure in advance.

e Performing a search strategy over store’?, looking for a feasible/optimal new
solution.

e Getting the non-ground constraints of store”? SC and the domains of its asso-
ciated 7D variables VD, to show them in the solution.

3.1.2 Implementing the Interface

The interface access to the 7D solver consists of a set of Prolog predicates (Figure
B.4|presents interface as the set of Prolog predicates preds, . . ., predy, each of them
implementing a system command by using the solver API) In TOY(FDs), TOY and
clpfd variables have a unique representation as Prolog logical variables. Also, c1pfd
provides an implicit management of backtracking (restoring store”? to the computa-
tional point the system has backtracked to) and of multiple searches interleaved with
constraint posting (each search acting only over its associated constraint network). Fi-
nally, c1pfd implicitly performs incremental propagation mode (the engine performs
constraint propagation each time a new constraint is posted to the store [197]).

TOY(FD)
C SC VD com
7 [T % b ]

l I={ predl, pred2, predK}
store™ engine’ store” P | engine” P

‘CII

Figure 3.4: TOY(FD) Interface Set of Prolog Predicates
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3.2 Generic Scheme for Interfacing External Solvers

An approach to improve the constraint solving performance of TOY(FD) consists of
integrating new state-of-the-art C++ CP(FD) solvers, more efficient than clpfd. How-
ever, their integration into 7TOY(FD) increases the complexity of interface. The
first difficulty comes from the communication between system and solver (which now
requires connecting components implemented in different languages). Also, variables,
constraints and types differ between systems (impedance mismatch). Three additional
difficulties come from adapting a C++ CP(FD) solver to the requirements of a CFLP(FD)
system. First, model reasoning (associated to the non-determinism of logic program-
ming) is not a target in the constraint language. Thus, the solver API does not provide a
method for removing a single constraint from the store. Second, a single search strat-
egy is expected to be applied to the whole constraint network. To use multiple searches
interleaved with constraint posting it is necessary to generate several solvers (storeFD
and engineFD). Third, incremental propagation [197] may not be supported, as a first
constraint propagation is expected to be performed over the whole constraint network
just before the search starts. The following subsections present how to overcome such
difficulties.

3.2.1 Communication

The Prolog predicates preds, ..., predy acting as an interface to the solver API require
now communication with C++ code. SICStus provides a Prolog-C++ communication
framework allowing to define a Prolog predicate prototype whose implementation is
contained in a C++ function. The prototype includes the number of arguments, speci-
fying its mode (input/output) and type. There is a conversion between Prolog and C++
parameters, including a C++ representation of Prolog terms.

Figure 3.5 presents the modified interface, where the functionality of the
TOY(FD) commands is implemented by a set of C++ functions fi,..., f,, accessing
to the solver APL For example, f; can create a new FD variable, f; can post a domain
constraint and f, can perform constraint propagation. These C++ functions are then
made accessible to the Prolog code by their mapping to the Prolog prototype predicates
p1,-..,pn. Finally, any predicate pred; of interface can use p;, p; and p, as many
times as needed to coordinate engine’?.

Orthogonally, the interface must be extended with Prolog and C++ data structures,
visible to the Prolog predicates and acting as a glue for solver integration. Whereas
C++ data structures are stored as global variables, Prolog ones are stored in the term
fd_glue. store® is modified to be the pair (store*, fd_glue), where its second
component represents the current Prolog data structures.

The rest of the section presents the different issues being tackled, analyzing for
each of them the interaction with these data structures.
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p2/m2(+argl,..., - argn2) f2(argl,...,argn2)
p;;;;nm(+arg1,,,_, - argnm) .fil.l.(argl,...,argnm

Figure 3.5: Map of Prolog Predicates to C++ Functions

3.2.2 Representation

Each C++ CP(FD) solver provides its own constraint and decision variable representa-
tions, different from those of TOY(FD). Thus, at implementation level, each variable
and constraint contain two different but mate representations, and the interface must
supply such representation mapping. For each new system constraint pC; arisen in the
goal (see Figure3.6), the interface generates a mate solver constraint cC;, posting it to
store”P. Also, 7D variables are explicitly attributed on each 7D constraint arisen to
further detect equality or disequality constraints belonging to 7D.

Variable communication is bidirectional. On the one hand, when processing pC;,
its logic variables pV; ... pV, must be mapped to mate decision variables cV; ... cVy,
posting cC; over them. However, both the Prolog engine and store”? lack API meth-
ods for obtaining their stored variables. Thus, the vectors pV and cV are used, with pV;
and cV; representing the mate logic and decision representations of the i-th variable
arisen in the goal computation. On the other hand, variable domains and non-ground
constraints of the stores are shown in TOY(FD) solutions (cf. Section[3.1), using the in-
formation of pV and pC (respectively). First, it is thus necessary that cV variables bound
by constraint propagation trigger the unification of their mate pV variables. To do so,
the unary daemon constraint class d is defined, which posts a constraint to store’?
on each decision variable cV; created, and propagates when the variable is bound to
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Figure 3.6: Data Structures

value Kk, storing the pair (1, k) into the C++ data structure cV_bound. It is emptied
before constraint propagation, and traversed then to collect cV variables which had
become bound, generating a Prolog term used by the Prolog interface predicates to
unify mate pV variables. Second, given a variable as argument, the solver API provides
a method for returning its domain. Thus, cV is traversed, requesting the domain of
each unbound cV;,. Finally, whereas c1pfd provides a method for retrieving the whole
content of store”?, a C++ solver does not. Thus, each processed pC; to be made ex-
plicit in the Prolog vector pC, to show them as part of TOY(FD) solutions. Regarding
pV and cV consistency, pC is traversed, showing only any non-ground constraints.

3.2.3 Backtracking

Model reasoning offers appealing possibilities for constraint model design (see [134] for
an example where chronological backtracking plays a key role on improving the perfor-
mance of solving an academic timetabling problem). It is supported in TOY(FD) via
non-deterministic functions, whose multiple rules are explored by backtracking, restor-
ing store™ and store”P. The TOY(FD) operational mechanism processes the con-
straints of a goal in order, from left to right. Thus, backtracking consists of removing
the k processed primitive constraints from store™ and store”? since the last choice
point. For example, in the goal bin [X] == true, (#>5) (X // Y) == R back-
tracking removes {F1 == X,S1 == Y,R == false}from# and {X #<= 5} from FD
before starting to explore the second rule of // (cf. Section[3.1). A backtracking affects
the 7D solver if the last k1 € {1,...,k} FD primitive constraints are removed, also
involving the last k2 > 0 FD variables created (associated only to those k1 constraints).

store” and fd_glue are automatically restored by the Prolog engine, but both
store”? and C++ data structures are not. Figure 3.7 presents an example where pV
and pC elements which are automatically removed are shown in dashed lines. Only
Prolog interface predicates identify a backtracking affecting 7D solver by simply com-
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Figure 3.7: Backtracking Identification and Restoration

paring store”? and pV+pC sizes. In this setting, some new A constraints can be
processed with an unsynchronized 7D solver, but as soon as any interaction with the
solver is requested, the associated Prolog predicate will detect the backtracking and
trigger the necessary command to synchronize the solver.

To remove the remaining k2 variables of cV, the sizes of pV and cV must be first
compared. To remove remaining k1+k2 constraints of store”?, it is first cleared and
then i+j constraints are posted again (rebuilding the whole model, as the solver API
does not provide a method for removing a single constraint from store”?). Whereas
cV is traversed to create and post again the unary daemon d constraints (cf. Section
B.2.2), for posting the primitive constraints two possibilities are considered. The first
one traverses pC, translating again from each pC; to its mate cC;. The second one
replicates the primitive constraints posted to store in the vector cC. This second op-
tion is selected, as in general managing cC is faster than translating pC; constraints.
To remove the remaining k1 constraints of cC, the sizes of pC and cC must be first
compared. Finally, cC is traversed to post again the constraints over store’?.

3.2.4 Search Strategies

Multiple labelings interleaved with posting of constraints offer new possibilities for con-
straint model design (see [207] for an academic timetabling of two consecutive stages,
each of them with a set of constraints and a labeling). In TOY(FD), this feature is
supported (a 1labeling is just an expression), but in most C++ CP(FD) solvers the API
method for posting new constraints to store”? is precluded while engine”? exe-
cutes the search. For example, Figure 3.8 presents a goal in which, after posting do-
main [X,Y] 0 2, labeling [] [X] triggers the search mode of engine”?. The
search finds a first solution (X -> 0), but the goal solving process must continue (pro-
cessingY #> X, labeling [] [Y])with engine’P in active search mode, as there
is still remaining search space of labeling [] [X] (which, in fact, contains another
feasible solution, with X -> 1).
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TOY(FD)> domain [X,Y] 0 2, labeling []1 [X1, Y#>X, labeling [] [VY]
soll: {X ->0, Y ->1} /\ {} ? ;

sol2: {X ->0, Y ->2} /\ {} ? ;

sol3: {X ->1, Y ->2} /\ {} ?;

no

Figure 3.8: TOY(FD) Third Goal Example

Thus, interface must be adapted to handle this situation, further supporting the
posting of Y #> X to store”? and the new labeling [] [Y]. The search explo-
ration of the latter leads to the first two solutions displayed. Then, the system back-
tracks to labeling [] [X], finding a new value for X and continues the computation
by posting again Y #> X and labeling [] [Y], which finds the third solution.

To support these scenarios, store”? is devoted to constraint posting and a vector
of auxiliary solvers ss is used for managing the labelings 1, ... 1, arisen along a goal
computation (see Figure [3.9). Thus, engine”P never executes a labeling (and thus
never reaches an active search mode), and ss; just cares about 1;, not managing any
of the regular constraints arisen in the goal after that particular labeling (they will be
managed by engine’?P).

In this setting, multiple labelings can be performed interleaved with constraint
posting by simply synchronizing store”? with each store_ss;:

e When creating a new solver ss;, cCis traversed, posting its constraints to
store_ss;. No daemon d constraints are needed as, during search, those paths
leading to no solutions will bind variables to wrong values. Thus, store_ss;
is consistent with the current state of goal computation and 1, is passed to
engine_ss;, which looks for its solutions.

e As a labeling is an enumeration process, the path leading engine_ss; to a so-
lution consists of a set of (variable, value) equality constraints, which are added
to store_ss;. This solution path (set of constraints) must be posted to cC and
store’ P, to make them consistent with the effect of performing the search, and
then continue goal computation. To do so, cV is traversed, requesting
engine_ss; for each cV; domain, and posting the equality constraint if it is
bound to a value.

Regarding interface, the Prolog predicate devoted to manage labeling expres-
sions takes 1; as argument, and uses a repeat loop to request engine_ss; to look
for its solutions one by one. To distinguish the first invocation to 1; (requesting the
creation of ss;) from further ones (requesting just another solution by backtracking)
the size of ss is replicated in fd_glue, being automatically restored on backtracking.
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Figure 3.9: Labeling Management

On each loop iteration, the Prolog predicate compares both sizes. If no more solutions
are found, ss; is deleted and the whole loop fails.

3.2.5 Incremental and Batch Propagation

Incremental propagation mode is usual in systems supporting reasoning with models,
as they can detect failure along goal computations as soon as possible. However, batch
propagation mode (the engine performs constraint propagation on demand) is more
usual in C++ CP(FD) applications, and can enhance solving performance by saving con-
straint store propagations. However, it is possible that the evaluation of goals leading
to no solutions continues until a propagation is demanded [197]. TOY(FD) primitives
batch_on and batch_off are defined, enabling and disabling batch mode (respec-
tively). The latter reestablishes incremental mode, triggering a store”? constraint
propagation before processing any new constraint. Both primitives can be freely used
in TOY(FD) programs, and users can decide which parts of the goal are to be solved
with incremental or batch modes.

When interfacing C++ CP(FD) solvers, batch mode implies that constraints are
posted to cC but not to store’?. Also, no d(cV;) is created and posted for each
new cV; created. When incremental mode is enabled, the remaining constraints must
be posted to store”? before performing constraint propagation. Thus, the tuple of
integers (b, bcV, bcC) is added to fd_glue. Whereas b is a binary value representing
the propagation mode, bcV and bcC represent the number of d and cC constraints
posted to store”? (respectively). First, when a batch_on primitive is processed, b is
setto 1, and bcV/bcC are set to the current cV/cC sizes. Top of Figure[3.10] describes
this situation. Second, when a batch_off primitive is processed, b is set to 0, and
bcV/bcC are compared to cV/cC sizes, posting to store” P the remaining constraints.
Middle of Figure describes this situation, where cVj-1 and cVj are posted to
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Figure 3.10: Batch and Incremental Propagation Modes

storeFD and cV1i also triggers the posting of d(cVi). Third, when a backtracking
is performed to a point where b is set to 1, restored sizes of bcV and bcC are used to
post to store”P only those constraints processed before last batch_on primitive was
processed. Bottom of Figure 3.10] describes this situation, where backtracking to i-1
(respectively j-2) triggers the posting of d(cV1),...,d(cVi-1), but not of d(cVi)
(respectively cC1,...,cCj-2, but not of cCj-1 and cCj).

Batch mode has been also implemented in TOY(FDs), using SICStus delayed goals.
store™ is modified to be the pair (store*, B), including B as the current propaga-
tion mode. When a batch_on primitive is processed, a new logic variable is placed on
B, freezing the posting of each constraint on its grounding. When a batch_off primi-
tive is processed, B is bound to a ground term, and frozen constraints are automatically
posted to store’ P,
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3.3 Instantiating the Scheme

By interfacing two different C++ CP(FD) solvers to TOY(FD), the described scheme is
shown to be generic enough. The solvers Gecode 3.7.3 [78] and IBM ILOG Solver 6.8 [12]
are selected to develop the new versions TOY(FDg) and TOY(FDi) (respectively).
Both these new versions and the original TOY(FDs) one are available at: http://
gpd.sip.ucm.es/ncasti/TOY(FD).zip.

Regarding TOY(FDyg), Gecode 3.7.3 has been selected as it is an open source con-
straint solver with state-of-the-art performance (awarded with the best results in the
last five editions of the MiniZinc Challenge [7]). It provides a wide set of templates
allowing users to be first class citizens in the development of new variable domains,
constraints and search strategies. Regarding 7TOY(FDi), ILOG Solver 6.8 has been se-
lected as it is an industrial market leader for solving generic 7D problems. It belongs
to the ILOG CP 1.6 package, which contains the ILOG Concert 12.2 modeling library and
two other solver libraries for specific scheduling and routing problems. Thanks to the
IBM academic initiative these products are free for academic purposes.

3.3.1 Integration of Gecode: 7TO)Y(FDyg)

Gecode provides a single library for solving CP(FD) problems. Its constraint catalogue
includes integer, Boolean, set, scheduling and graph constraints. An object Space
contains a store and an engine, thus being a solver. An application must define its
own class inheriting from Space, and constraint network and search strategies are
specified directly on it. First, a variable is explicitly represented as an IntVar ob-
ject, and IntVarArgs and IntVarArray are provided as dynamic and static varia-
ble containers (respectively), to be part of the class attributes. Second, a constraint
is implemented as a set of propagators applied to variables. There is not an explicit
constraint object, but several API methods, each of them devoted to a different type
of constraint, posting the suitable propagators implementing it. For optimization prob-
lems, the cost function must be associated to a variable, to apply branch and bound
techniques [100] on it. Third, a Branch object represents a labeling to be applied to a
Space. A SearchEngine object performs the search by first wrapping a Space con-
taining at least one labeling. It uses hybrid recomputation techniques based on cloning
Spaces, instead of trailing (see [157] for a comparison). Two Spaces are equivalent if
they contain equivalent stores. A method for cloning an IntVarArray is provided (not
for IntVarArgs), including the propagators posted on them. Thus, cloning the Int-
VarArray suffices to clone the whole Space. If search succeeds, the SearchEngine
returns the Space obtained from applying the solution path.

The scheme of Section[3.2]is instantiated to develop TOY(FDg), with Gecode 3.7.3
as its FD solver. First, a Solver class inheriting from Space is defined, represent-
ing store”? and engine”P. As it must deal with any constraint network arisen in
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a TOY(FD) goal, the number of needed variables is not known in advance. Thus,
an IntVarArgs container is used as a Solver attribute to represent cV. Second, as
there is no native constraint representation to be stored in cC, then a representation
consisting of a vector of integers is defined, representing the kind of the constraint,
the variable indexes or values involved in the constraint, and some other features (e.g.
lower/upper bound in domain constraints). Also, a translation method from each cC;
to store’? is defined. Third, Space does not support the store”’? clearing. Thus,
to manage backtracking, Solver must be replaced by a new empty instance, whose
cVis created as a new IntVarArgs containing as many new variables as the restored
size of pV. Fourth, when managing a labeling, the number of variables is known and
fixed. As cloning is not supported for IntVarArgs, a Solver ' class is defined, similar
to Solver but with an IntVarArray attribute. To manage multiple search strategies,
a vector of SearchEngine(Solver ') is created, representing ss. When managing a
new 1_1i, the IntVarArray of Solver_i' is initialized, containing as many new va-
riables as the current size of Solver cV. If a new Solver’ is returned as solution, its
IntVarArray is traversed, posting the equality constraints to cC and Solver.

3.3.2 Integration of ILOG Solver: TOY(FDi)

The main object of each IBM ILOG CP 1.6 application is a pool (IloEnv object), con-
taining the rest of the application objects. Each of the three package libraries provides
their own solver object, containing a store and an engine. The solver handles its own
native representation for variables, constraints and search strategies, attached to the
concrete solving techniques the engine apply on them. Solver, variables, constraints
and search strategies are represented in ILOG Solver 6.8 via I1loSolver, IlcIntVar,
IlcConstraint and I1cGoal objects (respectively). ILOG Concert 12.2 provides the
pool and isolates the modeling of an application from the representation/solving tech-
niques of a concrete solver. It provides generic IloIntVar, IloConstraint and
IloGoal objects to model the problem, as well as the vectors I1oModel (IloIntVar
Array) to gather the constraint network (and its associated variables). An IloGoal
represents a single labeling, and is defined over an I1oIntVar set. Each solver pro-
vides a method to translate the content of I1oModel to its internal store. I1oSolver
traverses I1oModel, generating and posting a mate I1cConstraint for each
IloConstraint (aswellasamate IlcIntVar foreach IloIntVar of the constraint).
Also, it translates each I1oGoal to perform the search on the mate I1cIntVar set.
IloModel explicitly represents the store, as after translating its content, it provides
access to native objects throughout mate modeling ones.

The scheme of Section [3.2]is instantiated to develop 7OY(FDi), with ILOG Solver
6.8 as its 7D solver. Whereas an instance of I1oSolver represents store”? and
engine’?, aninstance of I1oModel and IloIntVarArray represent cC and cV (re-
spectively). Thus, there are three different representations for the variables and con-
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straints of a goal: Prolog, Concert and Solver ones. Replication of Concert and Solver
objects is mandatory because the API method for posting an I1lcConstrainttoIlo-
Solver requests an IloConstraint previously posted to I1oModel as an argument
(an IlcConstraint can be posted straight to I1oSolver, but only in the context of a
search or I1cGoal). When backtracking is detected, store”? is cleared and the whole
content of I1oModel is dumped to it (with an implicit translation to the I1oSolver in-
put). To specify d constraints, a new class (inheriting from I1cConstraint)is defined.
Then, Concert templates are used to specify its mate IloConstraint representation
and the Concert to Solver object translation.

3.4 Performance

The performance of the TOY(FD) versions is measured by solving four of the pure
CP(FD) benchmarks problems available at CSPLib [103]: The CSP's Magic Sequence,
N-Queens and Langford’s number, as well as the COP of Golomb Rulers. N-Queens
and Golomb Rulers were previously described in Sections[2.1.1]and [2.1.2} respectively.
Regarding Magic Sequence, it consists of finding a sequence of integers [vo, ..., v,_1]
such that for all 0 < ¢ < n, the number 7 occurs exactly v; times in the sequence. For
example, the two feasible solutions of Magic-4 are [1,2,1,0] and [2,0,2,0]. Regarding
Langford's number, it consists of a sequence of M x N integers (ranging in 1..N), so
that each appearance of the number 7 is i numbers on from the last. For example, the
two feasible solutions of Langford's-(2,4) are [2,3,4,2,1,3,1,4] and [4,1,3,1,2,4, 3, 2].

This set of problems is representative enough. First, all the problems are para-
metric, and thus they allow to test the performance of the TOY(FD) versions as the
instances of each problem scale up. Second, they include the whole set of 7D con-
straints of the TOY(FD) repertoire. More specifically:

e Langford’'s and Golomb include the relational constraints #>, #< and #>=, as well
as the arithmetic operator #-.

e Langford's includes the propositional constraint post_implication.

e All the problems include explicit domain constraints to set initial values for their
variables.

e All the problems include global constraints, with Queens, Langford’s and Golomb
using an all_different constraint, and Magic using a distribute one (be-
sides also using redundant sum and scalar_product constraints to increase
the propagation).

e Finally, the model of each problem ends with a 1labeling search strategy. In
the case of Golomb, it includes a minimization function to perform branch and
bound during search. The TOY(FD) models of the four problems are available
at: http://gpd.sip.ucm.es/ncasti/models.zipl
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Taking advantage of the scalability of the problems, for each of them three differ-
ent instances have been selected, whose solving times (for all the TOY(FD) versions)
are of tenths of seconds, seconds and minutes, respectively. From now on, each in-
stance is identified by the capital letter of the name of the problem (m, ¢, [ and g for
Magic, Queens, Langford's and Golomb, respectively) and the parameter values: 400
and 900 sequence’s length for Magic (not a single instance solved in minutes has been
found, as TOY(FD) runs out of memory before posting the whole constraint network
to storeFD), 90, 105 and 120 for Queens, (2,119), (2,127) and (2,131) for Langford's
and 9, 10 and 11 for Golomb.

Table [3.1] presents the results. Column Instance represents the instance being
run (the concrete 7OY(FD) version solving it is represented by FDs, FDg and FD1i for
TOY(FDs), TOY(FDg) and TOY(FDi), respectively). Next block of three columns
represent results for incremental propagation mode. Column Incremental repre-
sents the CPU solving time, measured in milliseconds (for each problem, the best
search strategy between first unbound and first fail is first selected, and this this same
strategy is applied to the three TOY(FD) versions). Column Perc_I represents the
percentage of the CPU solving time devoted to 7D search exploration. To compute it, a
new variant of the model (equivalent to the original one, but containing no labeling
primitive) is also run. Thus, by comparing the CPU times of the original and the vari-
ant models is easy to obtain the CPU time spent in performing the 1labeling primitive
(i.e., the search exploration). Column Sp-Up_I represents the speed-up of TOY(FDyg)
and TOY(FDi) w.rt. TOY(FDs). Next block of three columns are the same, but for
batch propagation. Finally, column I/B represents the speed-up of using batch mode
instead of the incremental one.

Benchmarks are run in a machine with an Intel Dual Core 2.4Ghz processor and
4GB RAM memory. The OS used is Windows 7 Professional SP1 (32 bits.) The SICS-
tus Prolog version used is 3.12.8. (including the clpfd library used for TOY(FDs)).
Microsoft Visual Studio 2008 tools are used for compiling and linking the TOY(FD3)
and TOY(FDg) C++ code. Each instance has been executed five times (to avoid any
particular side effect associated to the OS affecting the achieved time on a single run).
Then, the best and worse times have been discarded, computing as a final result (to be
displayed in the tables) the mean of the remaining three.

The results allow to draw the following conclusions:

First of all, the approach of enhancing the TOY(FD) performance by focusing on
its 7D solver is encouraging. For all the instances, TOY(FDg) and TO)Y(FDi) out-
perform TOY(FDs) (with the single exception of L-119, for which TOY(FDi) with
incremental propagation is slower than 7TO)Y(FDs)). However, the improvement that
TOY(FDg)and TOY(FDi) achieve rangesin a 1.15-3.57 times faster than TOY(FDs),
so a more detailed analysis by problems and instances is required.

For Magic and Golomb instances, the improvement of TOY(FDg) and TOY(FD3)
w.r.t. TOY(FDs) remains stable as the instances scale up. For Magic instances,
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Instance || Incremental [ PercI | Sp-Up_I || Batch | Perc B | Sp-Up_B [ I/B

M-400 FDs 0.609 411 1.00 0.608 43.6 1.00 || 1.00
M-400 FDg 0.422 22.3 1.45 0.405 22.0 1.49 || 1.04
M-400 FDi 0.530 26.8 1.15 0.468 30.3 1.30 || 1.14
M-900 FDs 3.00 39.1 1.00 2.93 40.4 1.00 || 1.02
M-900 FDg 2.00 25.6 1.49 1.98 26.6 1.47 || 1.01
M-900 FDi 2.53 22.9 1.19 2.20 31.2 1.33 || 1.15
Q-90 FDs 0.142 45.1 1.00 0.141 67.4 1.00 || 1.01
Q-90 FDg 0.078 42.0 1.81 0.056 54.6 2.50 || 1.39
Q-90 FDi 0.110 29.1 1.30 0.078 39.7 1.81 || 1.41
Q-105 FDs 3.45 97.3 1.00 3.43 97.7 1.00 || 1.01
Q-105 FDg 1.05 96.6 3.33 1.02 97.2 3.33 || 1.03
Q-105 FDi 1.25 92.6 2.78 1.17 94.7 2.94 || 1.06
Q-120 FDs 454.43 99.9 1.00 || 453.18 99.9 1.00 || 1.00
Q-120 FDg 129.88 99.9 3.45 || 128.83 99.9 3.57 || 1.01
Q-120 FDi 154.00 99.9 2.94 || 153.83 99.9 2.94 || 1.00
L-119 FDs 0.406 42.1 1.00 0.406 50.0 1.00 || 1.00
L-119 FDg 0.296 47.6 1.37 0.296 58.1 1.37 || 1.00
L-119 FDi 0.530 26.6 0.76 0.296 52.7 1.37 || 1.79
L-127 FDs 12.07 97.7 1.00 12.03 98.0 1.00 || 1.00
L-127 FDg 4.62 96.3 2.63 4.60 96.3 2.63 || 1.00
L-127 FDi 4.35 88.9 2.78 4.09 95.8 2.94 || 1.06
L-131 FDs 251.43 99.9 1.00 || 250.15 99.9 1.00 || 1.01
L-131 FDg 98.53 99.8 2.56 97.80 99.8 2.56 || 1.01
L-131 FDi 87.00 99.4 2.86 86.07 99.8 2.94 || 1.01

G-9 FDs 0.842 98.1 1.00 0.842 98.2 1.00 || 1.00
G-9 FDg 0.250 98.8 3.33 0.250 93.6 3.33 || 1.00

G-9 FDi 0.421 97.9 2.00 0.407 96.3 2.08 || 1.03
G-10 FDs 7.35 99.6 1.00 7.27 99.8 1.00 || 1.01
G-10 FDg 2.1 99.1 3.45 2.1 99.2 3.45 || 1.00
G-10 FDi 3.56 99.2 2.08 3.49 99.5 2.08 || 1.02
G-11 FDs 153.05 99.9 1.00 || 151.48 99.9 1.00 || 1.01
G-11 FDg 42.01 99.9 3.57 41.92 99.9 3.57 || 1.00
G-11 FDi 72.65 99.9 2.13 72.55 99.9 2.08 || 1.00

Table 3.1: Performance of the Different 7OY(FD) Versions

67



TOY(FDg)is a1.45-1.49 times faster than TOY(FDs), and TOY(FDi) 1.15-1.33 times.
For Golomb instances, the improvement is even greater, with TOY(FDg) being 3.33-
3.58 times faster and 7TOY(FDi) 2.00-2.13.

For Queens and Langford’s instances, the improvement achieved is different for
the instances solved in tenths of seconds (Q-90 and L-119) than the one for both the
instances solved in seconds and minutes (Q-105, Q-120, L-127 and L-131). In Queens,
whereas the improvement of TOY(FDg) goes from 1.81-2.50 (for Q-90) to 3.33-3.57
(for Q-105 and Q-120), the improvement of TOY(FD:) goes from 1.30-1.81 to 2.78-
2.94. In Langford, whereas the improvement of TOY(FDg) goes from 1.37 (for L-119)
to 2.56-2.63 (for L-127 and L-131), the improvement of TOY(FDi) goes from 1.37 to
2.78-2.94 (being even faster than TOY(FDg)).

Second, interestingly, when solving an instance there is a clear correlation between
the time the TOY(FD) versions devotes to search exploration and the improvement
TOY(FDg) and TOY(FDi) achieve w.r.t. TOY(FDs).

For Magic and Golomb instances, the improvement achieved remains stable as the
instances scale up, and the time the systems devote to search exploration remain sta-
ble as well. In Magic instances, TOY(FDs) devotes around a 40%-43%, 7TO)Y(FDg)
around a 20%-25%, and TOY(FDi) around a 23%-30%. In Golomb instances, all the
versions devote around a 98%-100%.

For Queens and Langford's instances, the percentage of CPU solving time devoted
to search exploration clearly grows from Q-90 and L-119 to Q-105, Q-120, L-127 and
L-131 (and the improvement achieved grows as well). Whereas for Q-90 and L-119 the
percentage is small and very different for the three systems (ranging in 29%-67% for
Q-90 and in 26%-58% for L-119), for Q-105, Q-120, L-127 and L-131 the percentage of
each TOY(FD) version is above 90% for the other instances.

Finally, the fact that batch propagation mode devotes more time to search explo-
ration than incremental one makes perfect sense, as batch mode starts the search by
propagating for the first time the whole set of constraints posted to the solver (which in
incremental mode is already done). However, the time spent in this initial propagation
is smaller than propagating the constraint network incrementally, as it can be seen that
batch mode is faster than incremental one for all the instances.

But, in general, the differences achieved between both propagation modes are re-
ally small, about an order of magnitude smaller than the CPU solving time of the in-
stance. Thus, for the instances solved in minutes, the differences in TOY(FDg) and
TOY(FDi) are smaller than a second, and about 1.0-1.5 seconds for TOY(FDs). For
the instances solved in seconds, TOY(FDs) and TOY(FDg) have differences rang-
ing in 0.2-0.8 tenths of seconds, and 7TOY(FD:) increase these differences to 2.3 and
2.6 tenths of seconds for M-900 and L-127, respectively. For the instances solved in
tenths of seconds, TOY(FDs) and TOY(FDg) match both propagation mode times,
but TOY(FDi) requires 3.3 tenths of seconds more for solving L-119 with incremental
mode, which is nearly the double of the CPU time spent with batch mode (and, once
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again, even 0.1 seconds slower than TOY(FDs)).

3.5 Related Work

First, as a CFLP(FD) system, TOY(FD) is positioned w.r.t. to other existing multi-
paradigm declarative programming systems:

As mentioned in Section[2.3.5] the most related approach to our framework is Curry
[90], and more specifically its PAKCS implementation [93]: Both TOY(FD) and PAKCS
provide pure FLP languages, including characteristics of pure LP and FP paradigms.
The operational semantics of both systems is based on lazy narrowing, integrating the
LP and FP solving mechanisms of unification and rewriting, respectively. Also, both
systems are implemented in Prolog (PAKCS also includes a SWI-Prolog back-end) and
their programs are compiled to Prolog. Finally, both TOY(FDs) and PAKCS rely on
SICStus clpfd for FD constraint solving. A detailed comparison about modeling and
solving CSP’s and COP's in PAKCS and TOY(FD) is presented in Chapters [7] and
respectively.

Another CFLP(D, S, £) scheme is proposed in [130]. It formalizes a family of lan-
guages parameterized by a constraint domain D, a strategy S which defines the coop-
eration of several constraint solvers over D, and a constraint lazy narrowing calculus
L for solving constraints involving functions defined by user given constrained rewrit-
ing rules. This approach relies on solid work on higher-order lazy narrowing calculi
and has been implemented on top of Mathematica [131]. However, its main limitation
(compared to TOY(FD)) is the lack of a declarative semantics.

Also, the system Oz [194] provides salient features of FP such as compositional
syntax and first-class functions, and features of LP and CP(FD) including logic variables
and constraints. The Mozart Programming System [139] is the primarily implementa-
tion of Oz. However, it is quite different to TOY(FD), as it generalizes the CLP(FD)
and concurrent CP(FD) paradigms (and thus its computation mechanism is not based
on lazy narrowing). Functions and constraints are not really integrated, in the sense
that they do not have the same category. It supports a class of lazy functions (based
on a demand-driven computation), but this is not an inherent feature of the language
(functions have to be made lazy explicitly via the concept of futures).

Second, the approach of interfacing external state-of-the-art CP(FD) solvers to
improve the solving performance of TOY(FD) has been also used by other (mono-
paradigm) declarative programming systems:

The LP language Mercury [184] is considerably faster than traditional Prolog im-
plementations, but lacks support for full unification. The CLP(FD) system HAL [62]
compiles to Mercury, and it is specifically designed to support the construction of and
experimentation with constraint solvers. It provides a well-defined solver interface,
mutable global variables for implementing a constraint store, and dynamic schedul-
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ing for combining, extending and writing new constraint solvers. It also allows to call
solvers written in other languages (e.g. C) with little overhead, as well as to “plug and
play” with different constraint solvers over the same domain.

The literature proposed numerous CLP(FD) approaches, as SICStus Prolog, SWI-
Prolog, GNU Prolog [5], Ciao Prolog [4] and B-Prolog [31]. All these systems are based
on Prolog and, as TOY(FDs), they provide a clean and elegant interface to their native
Prolog 7D constraint solver library. Thus, as already mentioned, the scheme presented
in Section[3.2can be easily adaptable to them. For example, the new version of ECLiPSe
[16] interfaces Gecode as its 7D solver.

Finally, the Monadic Constraint Programming (MCP) [169] framework illustrates
how the abstractions and mechanisms from FP such as monads, higher-order func-
tions, continuations and lazy evaluation are valuable notions for defining and building
CP(FD) systems. The FD-MCP framework [205] supports the integration of CP(FD)
solvers in Haskell. It introduces an extra layer between the language and the concrete
CP(FD) solver being used, in order to support the integration of different solvers. The
current version of the system includes an interface to Gecode, which can be accessed
either directly from the system (intermixing constraint solving with rewriting), or by
compiling the Haskell model to a C++ Gecode one.

3.6 Conclusions

Within CP(FD) systems, the functional-logic language provided by TOY(FD) repre-
sents an appealing approach for modeling CSP's and COP's. First, its declarative nature
abstracts the problem specification, allowing the user to model a problem by simply
describing the properties its solutions must hold. This represents an advantage w.r.t.
imperative languages (as the ones of C++ CP(FD) systems), where the way the model
is built is procedural (although the paradigm is still declarative, i.e., the C++ objects
are used to describe a declarative model). Second, its general purpose nature allows
the integration of the model into larger applications, in contrast to specific-purpose
languages (as the ones of algebraic CP(FD) systems). Third, its high expressiveness
includes the main features from both logic and functional languages (as the ones of
CLP(FD) and CFP(FD) systems, respectively), and its 7D constraint catalogue includes
relational, arithmetic, propositional, domain and global constraints.

Unfortunately, the solving performance of TOY(FD) is slightly penalized by the in-
herent overhead coming from the integration of a CP(FD) solver within its operational
semantics. However, due to the combinatorial nature of the CSP’s and COP's being
tackled, it is expected that, as long as the instances scale up enough, most of the CPU
time for solving them is spent in FD solver computations. Thus, a suitable approach
for improving the system performance is by replacing its D solver (currently based
on the underlying SICStus clpfd, and thus naming the system version as TOY(FDs))

70



by the state-of-the-art C++ CP(FD) solvers of Gecode and ILOG Solver. That is, keeping
the same TOY(FD) model for solving a problem (specifically, keeping the same FD
constraint network and search strategy), and rely on new solvers capable of solving it
faster.

This chapter has presented the architecture of TOY(FD), using an example to
describe how goal computations are achieved by relying both on symbolic computation
and FD constraint solving. It has focused on the interface between the system and its
FD solver, which is implemented as a set of Prolog predicates. It has identified the
commands the system requires to coordinate the solver, and the posting of a concrete
constraint has been used to describe this coordination.

Then, a scheme for interfacing C++ CP(FD) solvers into TOY(FD) has been pre-
sented (which can be easily adapted to other CLP(FD) or CFLP(FD) systems imple-
mented in Prolog). It has focused on the extra difficulties arisen in terms of commu-
nication with the solver and different variables, constraints and types representations.
Also, it has described how to adapt a C++ CP(FD) solver to the CFLP(FD) requirements
of model reasoning, multiple search strategies (interleaved with constraint posting)
and both incremental and batch propagation modes. The scheme has been shown
to be generic enough, interfacing Gecode and ILOG Solver (leading to the new versions
TOY(FDg) and TOY(FDi), respectively) by finding no extra interface difficulties but
the ones described in the scheme.

Finally, the performance of the three TOY(FD) versions has been measured by
using a subset of problems from the classical CP(FD) benchmarks of CSPlib, complete
enough as it contains three CSP's and a COP, also covering the whole repertoire of
FD constraints supported by TOY(FD). It has been shown that TOY(FDyg) and
TOY(FDi) outperform TOY(FDs), but the improvement achieved (ranging in 1.15-
3.57 times faster) is dependent on the concrete problem and instance solved. There
is a clear correlation between the percentage of CPU solving time devoted to search
exploration and the improvement achieved. This turns the performance of TOY(FD)
into purely CP(FD) dependent. That is, the CPU time of each version directly comes
from the performance of its concrete solver in achieving the pure CP(FD) mechanism
of performing a search exploration by propagating basic and global constraints. Thus,
the next step to improve the TOY(FD) performance is to focus on the search strategy,
enhancing the capabilities of the language to specify ad hoc strategies requiring less
search exploration to find solutions.
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Chapter 4

Developing new Search
Strategies

The use of ad hoc search strategies has been identified as a key point for solving CSP’s
and COP's, as they exploit the knowledge about the structure of the problem and its
solutions. The performance experiments on classical CP(FD) benchmarks (cf. Section
have shown that, as long as the instances of these problems scale up enough,
most of their CPU solving time is devoted to search exploration. Thus, following again
the Amdahl's law, a suitable approach to improve the solving efficiency of TOY(FD)
is by modifying the models for the problems, replacing the basic labeling search
strategies by ad hoc ones.

CLP(FD) and CFLP(FD) systems as TOY(FD) provide a declarative view of a search
strategy specification, in contrast to the procedural view of C++ CP(FD) libraries as
Gecode or ILOG Solver (which make the programming of a strategy to depend on low-
level details associated to the constraint solver, and even on the concrete machine the
search is being performed). Also, due to their model reasoning capabilities, TOY(FD)
treats search primitives as simple expressions, making possible to place a search primi-
tive at any point of the program, combine several primitives to develop complex search
heuristics, intermix search primitives with constraint posting, and use indeterminism
to apply different search scenarios for solving a problem.

The main contribution of this chapter is to present a set of new parametric search
primitives for the TOY(FDg) and TOY(FDi) versions previously developed (in a set-
ting easily adaptable to other CLP(FD) or CFLP(FD) systems implemented in Prolog
and interfacing external C++ CP(FD) solvers). The motivation of this approach is to
take advantage of both the high expressivity of TOY(FD) for specifying search strate-
gies, and of the high efficiency of Gecode and ILOG Solver. Thus, the TOY(FD) lan-
guage is enhanced for TOY(FDg) and TOY(FDi) with new parametric search prim-
itives, implementing them in Gecode and ILOG Solver by extending their underlying
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search libraries. Besides that, the two other search approaches already supported by
TOY(FDs), TOY(FDg) and TOY(FDi) remain available. The first one consists of
defining a new search from scratch at TOY(FD) level, relying on reflection functions
(which retrieve information about the constraint store at the particular moment of their
execution) to represent the search procedure. The main drawback of reflection func-
tions is that they have associated a notion of state, thus making their result dependent
of their execution order (and breaking the declarative nature of TOY(FD) programs).
The second search approach consists of using the search primitive labeling (simply
relying on the predefined search strategies already existing in SICStus c1pfd, Gecode
and ILOG Solver, respectively).

The chapter is organized as follows: Section presents an abstract description
of the new parameterizable TOY(FD) search primitives, pointing out some novel con-
cepts not directly available neither in Gecode nor in ILOG Solver. Also, it points out how
to specify some search criterion at TOY(FD) level and how easily the strategies can
be combined to set different search scenarios. Section [4.2|describes the implementa-
tion of the primitives, presenting first an abstract view of the TOY (FD) requirements,
and how they are deployed on the Gecode and ILOG Solver libraries. It also evaluates
the impact of the search strategies implementation in the architecture of the system.
Section[4.3|analyzes the new TOY(FD) performance achieved. The benchmark set of
CP(FD) problems of Section [3.4]is revisited, showing that the use of the search strate-
gies improve the solving performance of both TOY(FDg) and TOY(FDi). Section|4.4
presents some related work. Finally, Section reports conclusions.

4.1 Search Primitives Description

This section presents eight new 7TOY(FD) primitives for specifying search strategies,
allowing the user to interact with the solver in the search for solutions. These primi-
tives bridge the gap between the other two classical approaches available in TOY(FD):
Defining a whole search procedure at 7TOY level (by using reflection functions), and
relying on the set of predefined search strategies available in the solver library. Each
primitive has its own semantics, and it is parameterizable by several basic components.
As described in Section [3.2.4} the search primitives are considered by the language as
simple expressions, so intermixing search strategies with the regular posting of con-
straints is allowed. The section describes the primitives and their components (includ-
ing its type declaration) from an abstract (solver independent) point of view. It em-
phasizes some novel search concepts arisen, which are not available in the predefined
search strategies of Gecode and ILOG Solver. It also shows how easy and expressive it
is to specify some search criterion at TOY(FD) level, and the appealing possibilities
TOY(FD) offers to apply different search strategies for solving a CP(FD) problem.
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4.1.1 Labeling Primitives

In this section four search primitives are described: 1ab, which represents a variation
of the classical labeling, including new variable and value selection criterion, as well
as the possibility of labeling just a subset of the variables involved. 1abB, which rep-
resents a variation of lab, but exploring just a branch of the search tree (i.e., leading
to a first failed or solution node, and then stopping the search, with no backtracking
allowed). labW, which performs an exhaustive breadth exploration of some levels of
the search tree, further sorting the satisfiable solutions by a specified criterion. 1ab0,
which represents the optimization variation of 1ab.

Primitive lab

lab:: varOrd -> valOrd -> int -> [int] -> bool

This primitive collects (one by one) all possible combinations of values satisfying the
set of constraints posted to the solver. It is parameterized by four basic components.
The first and second ones represent the variable and value order criterion to be used in
the search strategy, respectively. To express them the enumerated datatypes varOrd
and valOrd have been defined in 7O)Y, covering all the predefined criterion avail-
able in the Gecode documentation [173]. They also include a last case (userVar and
userVal, respectively) in which the user implements its own variable/value selection
criterion at TOY(FD) level. The third element N represents how many variables of the
variable set are to be labeled. This represents a novel concept which is not available
in the predefined search strategies of Gecode and ILOG Solver. The fourth argument
represents the variable set S. Thus, the search heuristic labels just the first N variables
of S being selected by the varOrd criterion.

Figure[d. 1] presents a TOY(FD) program (top) and goal (bottom) showing how ex-
pressive, easy and flexible it is to specify a search criterion in TOY(FD). In the exam-
ple, the search strategy of the goal uses the userVar and userVal selection criterion,
specified by the user in the functions myVarOrder and myValOrder, respectively (as
it can be seen, in this setting just one user variable and value selection criterion per
program is allowed).

The lab search strategy is applicable to the constraint network posted by the
TOY(FD) goal domain [X,Y,Z] 0 4,Y /=1,Y /= 3,Z /= 2.Then, the com-
putation continues by processing rest of goal for each feasible solution found by
the 1ab strategy. It acts over the set of variables [X,Y,Z], but it is only expected to
label two of them.

The function myVarOrder selects first the variable with more intervals in its do-
main. It receives the list of variables involved in the search strategy, returning the
index of the selected one. To do so it uses the auxiliary functions from and cmp, the
predefined functions fst, foldl, zip, take, length, map, head, last and (.) (all
of them with an equivalent semantics as in Haskell), and, finally, the reflection func-
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include "cflpfd.toy"
%
myVarOrder:: [int] -> int
myVarOrder V = fst (foldl cmp (0,0)
(zip (take (length V) (from 0))
(map (length . get_dom) V)))
%
myValOrder:: [[int]] -> int | from:: int -> [int]
myValOrder D = head (last D) | from N = [N | from (N+1)]
%
cmp:: (int,int) -> (int,int) -> (int,int)
cmp (I1,V1) (I2,V2) = if (V1 >= V2) then (I1,V1) else (I2,V2)
TOY(FD)> domain [X,Y,Z] 0 4, Y / Y /=3, 2Z /=2,
lab userVar userVal 2 [ 1, ... (rest of goal)

Figure 4.1: Variable and Value User-Defined Criterion

tion get_dom, which accesses the internal state of the solver to obtain the domain of
a variable (this domain is presented as a list of lists, where each sublist represents an
interval of values).

The function myValOrder receives as its unique argument the domain of the va-
riable, returning the lower bound of its upper interval. So, in conclusion, the first two
(partial) solutions the lab strategy leads to are: {X in 0..4, Y -> 4, Z -> 3}
and {X in 0..4,Y -> 4, Z -> 4}.

Primitive labB

labB:: varOrd -> valOrd -> int -> [int] -> bool

This primitive uses the same four basic elements as 1lab. However, its semantics is
different, as it follows the varOrd and valOrd criterion to explore just one branch of
the search tree, with no backtracking allowed. The Queens problem is used to explain
this behavior.

Using lab unassignedLeftVar averageVal2 [X1,X2,X3,X4] two solutions

are found: {X1 ->2,X2 -> 4,X3 -> 1,X4 -> 3}and {X1 -> 3,X2 -> 1,
X3 -> 4, X4 -> 2} (cf. Figure [2.1|for a graphical representation of both solutions).
If 1abB unassignedLeftVar averageVal 2 [X1,X2,X3,X4] is used, then only the
first solution {X1 -> 2, X2 -> 4, X3 -> 1, X4 -> 3} is found, as, after exploring
the successful search path, no backtracking is allowed.

Moreover, if 1labB unassignedLeftVar smallestVal 2 [X1,X2,X3,X4] is used,
then the strategy fails, getting no solutions. Figure (4 x 4 square Board and tree)
shows the computation process. First, the selected criterion assigns X1 -> 1 at root
node (1), leading to node 2. Propagation reduces search space to (X2 in 3. .4,
X3 in 2 v 4, X4 in 2..3), pruning nodes 3 and 4. Then, computation assigns
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Figure 4.2: Applying 1abB to the Queens problem

X2 -> 3 (leading to node 5), and propagation leads to an empty domain for X3. So,
the explored tree path leads to no solutions. As it can be seen, propagation during
search modifies the intended branch to be explored (in the goal example, it explores
the branch 1-2-5 instead of the 1-2-3).

Primitive labw

labW:: varOrd -> bound -> int -> [int] -> bool

This primitive performs an exhaustive breadth exploration of the search tree, storing
the satisfiable leaf nodes achieved to further sort them by a specified criterion. The first
parameter represents the variable selection criterion (no value selection is necessary,
as the search would be exhaustive for all the values of the selected variables). The sec-
ond parameter represents the best node selection criterion. To express itin TOY(FD),
the enumerated datatype ord has been defined, taking as possible values the small-
est/largest remaining search space of the product cardinalities of the labeling/solver-
scope variables. Again, a last case (userBound) allows to specify the bound criterion at
TOY(FD) level. The third parameter sets the breadth level of exhaustive exploration
of the tree. Finally, as usual, the last parameter is the set of variables to be labeled.

A first example is considered to understand the semantics of labW. Figure
presents a TOY(FD) goal with four variables, where two implication constraints re-
late X and Y with V1 and V2, respectively.

Ifa lab unassignedLeftVar smallestVal 2 [X,Y,V1,V2] strategy had been
used to label the first two unbound vars of [X,Y,V1,V2], then the search would have
explored the search tree obtaining (one by one) the next four satisfiable nodes: {X -
>0, Y ->01L{X->0, Y ->1}y,{X->1, Y ->0}and{X -> 1, Y -> 1}.
As it can be seen, whereas the first solution computed by lab leads to compute the
“rest of goal” from a 12 candidates search space, the third solution leads to a 6 candi-
dates one.

Figure[4.4represents the exploration if a 1abW unassignedLeftVar smallest-
SearchTree 2 [X,Y,V1,V2] strategy is used. An horizontal black line represents the
depth the tree is explored, each black node represents a solution, and the triangle each
node has below represents the remaining size of the search space (product of cardinali-
ties of V1 and V2). The primitive 1abW explores exhaustively the search tree in breadth,
storing in a data structure DS each satisfiable node. Once the tree has been completely
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TOY(FD)> domain [X,Y] 0 1, post_implication X (#=) 1 V1 (#) 1,
domain [V1,V2] 0 3, post_implication Y (#=) 0 V2 (#>) O,
labW unassignedLeftVar smallestSearchTree 2 [X,Y,V1,V2],

. (rest of goal)

Figure 4.3: 1abW Example

explored, the satisfiable nodes are obtained (one by one) by using a criterion to select
and remove the best node from DS. In the example, the selected criterion smallest-
SearchTree selects first the nodes with smallest product of cardinalities of V1 and V2
(returning first the solution of the 6 candidates). The order in which the 1abW strategy
of the goal delivers the satisfiable nodes is presented in Figure[4.4]

Figure presents a TOY(FD) program (top) and goal (bottom) with a bound
criterion specified in the user function myBound. The best node procedure selection
traverses all the nodes in DS, selecting first the one with minimal stored value. Thus,
the user criterion specified in myBound assigns to each node (minus) the number of
its singleton value search variables. Once again, the function myBound also relies on
auxiliary, prelude and reflection functions. The first two solutions are (X -> 1,Y -
>1,A ->0B ->0,C->0)and (X ->2,Y ->1,A in 0..1,B -> 0, C -
> 0), respectively.

In summary, labW represents a novel concept which is not available in the prede-
fined search strategies of Gecode and ILOG Solver. However, it must be used carefully,
as exploring the tree very deeply can lead to a explosion of satisfiable nodes, produc-
ing memory problems for DS and becoming very inefficient (due to the time spent on
exploring the tree and selecting the best node).

Primitive labO
lab0O: :optType -> varOrd -> valOrd -> int -> [int] -> bool
This primitive performs a standard optimization labeling. The first parameter

/ :
Y%k =1

A 8

Figure 4.4: 1abW Search Tree Exploration
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include "cflpfd.toy"
%
isBound:: [[int]] -> bool
isBound [[A,A]] = true
isBound [[A,B]] = false <== /
isBound [[A,B] | RL] = false <=
%
myBound:: [int] -> int
myBound V = - (length (filter isBound (map get_dom V)))
TOY(FD)> domain [X,Y] 1 2, domain [A,B,C] 0 5,

A #< X, B #<Y, C#<Y,

labW unassignedLeftVar userBound 2 [X,Y,A,B,C]

A
length RL > 0

Figure 4.5: Bound User-Defined Criterion

optType contains the optimization type (minimization/maximization) and the variable
to be optimized. The other four parameters are the same as in the 1ab primitive.

4.1.2 Fragmentize Primitives

frag:: domFrag -> varOrd -> intervalOrd -> int -> [int] -> bool
fragB:: domFrag -> varOrd -> intervalOrd -> int -> [int] -> bool
fragW:: domFrag -> varOrd -> bound -> int -> [int] -> bool

frag0:: domFrag->optType->varOrd->intervalOrd->int->[int]->bool

These four new primitives are mate to the lab ones (where the * stands for any of
them), but each variable is not labeled (bound) to a value, but fragmented (pruned) to
a subset of the values of their domain. An introductory example is used to motivate the
usefulness of these new primitives. On it a goal contains V variables and C constraints,
with V' ={V1, V2, V3} a subset of V. The constraint domain V' 1 9 belongsto C. No
constraint of C relates the variables of V' by themselves, but some constraints relate
V' with the rest of variables of V.

Figure[d.6)presents the search tree exploration achieved by frag+ and lab+ search
primitives, respectively. In the case of frag=, the domain of each variable of V' is frag-
mented into three intervals: A first one with the values 1, 2 and 3. A second one with
the values 4, 5 and 6. A third one with the values 7, 8 and 9. Due to fragmenting
the domain of each variable (instead of labeling it), frag+ leads to exponentially less
nodes (27) than lab+ (729). On the one hand, if it is known that there is only one so-
lution to the problem, the probabilities of finding the right combination of V' values is
thus greater in frag+ than in Lab+. On the other hand, by assigning variables to sin-
gle values (instead of pruning their domains to ranges of values), the remaining search
space achieved by a 1ab+ strategy is expected to be smaller than the one achieved by a
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Figure 4.6: frag vs lab Search Tree

fragx strategy. Thus, the frag+ search strategies can be seen as a more conservative
technique, where there are less expectations of highly reducing the search space, as
variables are not bound, but there is more probability of choosing a subset containing
values leading to solutions (in what can be seen as a sort of generalization of first-fail).
Coming back to the definition of each fragx= primitive, two main differences arise w.r.t.
its mate lab+ primitive: First, it contains as an extra basic component (first argument)
the datatype domFrag, which specifies the way the selected variable is fragmented.
The user can choose between partition nand intervals. The former fragments
the domain values of the variable into n subsets of the same cardinality. The latter
looks for already existing intervals on the domain of the variables, splitting the domain
on them. For example, in the goal domain [X] 0 16, X /= 9, X /= 12 whereas
applying partition 3 to X fragments the domain in the subsets S1 = {0.. .4}, S2 =
{5...8}u{10} and S3 = {11}{13...16}, applying intervals fragments the domain in
the subsets S1’ ={0...8}, S2' = {10...11}and S3’' = {13...16}. As a second differ-
ence, it contains an enumerated datatype intervalOrd (replacing the 1ab argument
valord), to specify the order in which the different intervals should be tried: First left,
right, middle or random interval.

In summary, it is claimed that frag+ primitives are a remarkable tool, to be taken
into account in the context of search strategies as an alternative or a complement to
the use of exhaustive labelings. Also, its use in TOY(FD) represents a novel concept
which is not available in the predefined search strategies of Gecode and ILOG Solver.

4.1.3 Applying Different Search Scenarios

TOY(FD) supports non-deterministic functions, with possibly several reductions for
given, even ground, arguments. The rules are applied following their textual order,
and both failure and user request for a new solution trigger backtracking to the next
unexplored rule. In this setting, different search strategies can be sequentially ap-
plied for solving a CP(FD) problem. For example, after posting V and C to the solver,
the TOY(FD) program (top) and goal (bottom) presented in Figure 4.7 uses the non-
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include "cflpfd.toy"
%
f:: [int] -> bool
f [V1,V2,V3] = true <==
fragB (partition 4) unassignedLeftVar random 0 [V1],
labB unassignedLeftVar smallestVal 0 [V2,V3]
f [V1,V2,V3] = true <==
fragW (partition 4) unassignedlLeftVar smallestTree 0 [V1],
labB unassignedLeftVar smallestTotalVars 0 [V2,V3]
f [V1,V2,V3] = true
TOY(FD)> ... (rest of goal, posting the constraint network
C on the variable set V = [V1,V2,V3,...,Vk]),
f [V1,V2,V3], lab userVar userVal 0 V

Figure 4.7: Applying Different Search Strategies

deterministic function f to specify three different scenarios for solving the goal de-
scribed in Section Each scenario ends with an exhaustive labeling of the set of
variables V. However, the search space s this exhaustive labeling has to explore can be
highly reduced by the previous evaluation of f.

Scenario 1: The first rule of f performs the search heuristic h; over V' ={V1,V2,V3}.
hy fragments the domain of V1 into 4 subsets, selecting one randomly. If propagation
succeeds, then hy bounds V2 and V3 to their smallest value. If propagation succeeds
(with a remaining search space s;), then h; succeeds, and the exhaustive labeling ex-
plores s;. If propagation fails in one of those points, or the exhaustive labeling does
not find any solution in s;, then h; completely fails (as well as the first rule of f), as
both the 1abB and fragB primitives just explore one branch.

Scenario 2: The second rule of f is tried, performing the heuristic h, over V'. Here
a fragW primitive is first applied. So, if further either 1abB of h, or the exhaustive 1ab
(acting over so) fails, backtracking is performed over fragW, providing the next best
interval of V1 (according to the smallest search tree criterion, as in Figure[4.4). If, after
trying all the intervals a solution is not found, then h, completely fails (as well as the
second rule of f).

Scenario 3: If both h; and hs fail, the third rule of f trivially succeeds, and the
exhaustive labeling is performed over the original search space obtained after posting
V and C to the solver.

4.2 Search Primitives Implementation

To integrate the eight new search primitives into TOY(FD), the scheme of Section
3.2.4{is reused. Obviously, it is slightly modified for supporting the store”? synchro-
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nization with the solution found by engine_ss; for a frag+ strategy. In this case cV
is traversed, requesting engine_ss; for the lower and upper bounds of each cV;, and
posting the associated #>= and #<= constraints to cC.

Besides that, the new search primitives rely on the Gecode and ILOG Solver un-
derlying search mechanisms. First, an abstract specification of the requirements the
new 7TOY(FD) search strategies must fulfill is presented. Then, it is described how
to adapt those requirements to Gecode and ILOG Solver. The modified versions of
TOY(FDg) and TOY(FDi) supporting these search strategies are available at: http:
//gpd.sip.ucm.es/ncasti/TOY(FD).zip

4.2.1 Abstract Specification of the Search Strategy

A single entry point (C++ function) for the different primitives is specified. Its proposed
algorithm is parameterizable by the primitive type and its basic components. It is de-
scribed as follows:

1. The algorithm explores the tree by iteratively selecting a variable var and a value
v, creating two options: (a) Post var == v. (b) Post var /= v to continue the
exploration taking advantage of the previously explored branch, recursively se-
lecting another value to perform again (a) and (b).

2. For frag= strategies it selects an interval i instead of a value, posting in (a)
both var #>= i.minand var #<= 1i.max. However, the (b) branch cannot take
advantage by posting var #< i.minand var #> 1i.max, as the constraint store
would become inconsistent. Thus, (b) just removes i from the set of intervals,
and continue the search by selecting a new interval.

3. For 1abB and fragB strategies, only the (a) option is tried.

4. For 1ab0 and fragO strategies, branch and bound techniques are used to opti-
mize the search.

5. Specific functions are devoted to variable and value/interval selection strategies,
as well as to the bound associated to a particular solution found by 1abW and
fragW. Those functions include the possibility of accessing Prolog, to follow the
criterion the user has specified at TOY(FD) level (using TOY(FD) functions
compiled to mate Prolog predicates).

6. The primitives 1abW and fragW perform the breadth exploration of the upper
levels of the search tree, storing all the satisfiable leaf nodes to further give them
(one by one) on demand. Thus, ss contains an entity performing the search
and a vector DS (cf. Section containing the solutions. Each solution must
be synchronized from ss to the main constraint solver. Also, a status indicates
whether the exploration has finished or not.
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7. The algorithm finishes (successfully) when it finds a solution, except for 1abW
and fragW strategies, where it stores the solution node and triggers an explicit
failure, continuing the breadth exploration of the tree.

8. A counter is used to control that only the specified amount of variables of the
variable set is labeled/pruned.

The next two sections adapt this specification to Gecode and ILOG Solver, respec-
tively. Table[4.1]summarizes the different notions provided by both libraries.

4.2.2 Gecode

Search strategies in Gecode are specified via Branchers, which are applied to the con-
straint solver (Space) to define the shape of the search tree to be explored. The Space
is then passed to a Search Engine, whose execution method looks for a solution
by performing a depth-first search exploration of the tree. This exploration is based
on cloning Spaces (two Spaces are said to be equivalent if they contain equivalent
stores) and hybrid recomputation techniques to optimize the backtracking. As Spaces
constitute the nodes of the search tree, a solution found by the Search Engineis a
new Space. The library allows to create a new class of Brancher by defining three
class methods: status, which specifies if the current node is a solution, or their chil-
dren must be generated to continue with their exploration. choice, which generates
an object ‘o’ containing the number of children the node has, as well as all the nec-
essary information to perform their exploration. commit, which receives o and the
concrete children identifier to perform its exploration (generating a new Space to be
placed at that node).

Adaptation to the Specification. The search strategies are implemented via two
layers. First, a new class of Brancher MyGenerate, which carries out the tree ex-
ploration by the combination of the status, choice and commit methods. As each
node of the tree is a Space, the methods are applied to it. Second, a Search Engine,
controlling the search by receiving the initial Space and making the necessary clones
to traverse the tree. In this setting, the abstract description presented before is instan-
tiated to Gecode as follows:

1. The choice method deals with the selection of the variable var and the value
v, creating an object o with them as parameters, as well as the notion of having
two children. The variable selection must rely on an external register r, being
controlled by the Search Engine and thus independent on the concrete node
(Space) the choice method is working with. The register is necessary to ensure
that, whether a father generates its right hand child by posting var /= v, this
child will reuse r to select again var (as a difference to the left hand child, which
removes the r content to select a new variable).
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| Search Concept | Gecode \ ILOG Solver \

Search trigger Search Engine IloGoal stack
Tree node Space IloGoal attributes
Node exploration | Brancher Commit IloGoal execution
Child generation Brancher Choice IloGoal constructor
Solution check Brancher Status Stack with no I1o0And
Solution abstraction Space Tree path (var,value) vector

Table 4.1: Different Search Concept Abstractions in Gecode and ILOG Solver

2. For frag= strategies, instead of passing val to o, the choice method generates
a vector with all the different intervals to be tried, and the size of this vector is
passed as its number of children.

3. For 1abB and fragB, only one child is considered.

4. For 1abOand fragO0, a specialized branch and bound Search Engine provided
by Gecode is used.

6 The search entity is the Search Engine and the notion of solution is a Space.

7 For labWand fragW, the Search Engine uses a loop, requesting solutions one
by one until no more are found (the breadth exploration of the search tree has
finished).

8 Only the left hand child of 1ab+ strategies increments the counter value, and the
status method checks the counter to stop the search at the precise moment.

4.2.3 ILOG Solver

Search strategies in ILOG Solver are performed via the execution of I1oGoals. An
IloGoal is a daemon characterized by its constructor and its execution method. The
constructor creates the goal, initializing its attributes. The execution method triggers
the algorithm to be processed by the constraint solver (IloSolver), and can include
more calls to goal constructors, making the algorithm processed by I1oSolver to
be the consequence of executing several I1oGoals. An I1oGoal fails if I1oSolver
becomes inconsistent by running its execution method; otherwise the goal succeeds.
The library allows to create a new class of I1oGoal by defining its constructor and
execution method. Four basic goal classes are provided for developing new goals with
complex functionality. Goals I1cGoalTrue and I1lcGoalFalse make the current goal
succeed and fail, respectively. Goals I1cAnd and I1cOr, both taking two subgoals as
arguments, make the current goal succeed depending on the behavior of its subgoals.
While I1cAnd succeeds only if its two subgoals succeed, I1cOr creates a restorable
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choice point which executes its first subgoal, restores the solver state at the choice
point on demand, and executes its second subgoal.

Adaptation to the Specification. The search strategies are implemented via the
new IloGoal classes MyGenerate and MyInstantiate. Whereas the former deals
with the selection of a variable, the latter deals with its binding/prunning to a value/in-
terval. In this setting, the abstract description presented before is instantiated to ILOG
Solver as follows:

1. The control of the tree exploration is carried out by MyGenerate, which selects
a variable and uses the recursive call IlcAnd(MyInstantiate,
MyGenerate) to bind it and further continuing processing a new variable.

In MyInstantiate, the alternatives (a) and (b) are implemented with an
IlcOr(var == val, IlcAnd( var /= var, MyInstantiate)).

2. It dynamically generates a vector with the available intervals on each different
MyGenerate call.

3. Only the goal var == val is tried.

4. The branch and bound is explicitly implemented. Thus, before selecting each new
variable, it is checked if the current optimization variable can improve the bound
previously obtained; otherwise an I1oGoalFail is used to trigger backtracking
(as well as if, after labeling the required variables, the solution does not bind the
optimization variable).

6 The entity performing the search is an I1oSolver. Also, the notion of solution
is given by a vector of integers (representing the indexes of the labeled/pruned
variables) and a vector of pairs, representing the assigned value or bounds of
these variables. This explicit solution entity is built towards the recursive calls of
MyGenerate, which adds on each call the index of the variable being labeled.
Once found the solution, it stores it in DS.

7 After storing a solution in 1abW or fragW an I1oGoalFalse is used, triggering
backtracking to continue the breadth exploration.

8 Each call to MyGenerate increments the counter value.

4.2.4 Resulting Architecture

The resulting TOY(FD) architecture supporting the search primitives is presented in
Figure[4.8] It contains five different layers:

1. The TOY(FD) interpreter. It allows to submit user commands and goals at the
system prompt. In Figure[4.8] the goal proposed in Section[4.1.1]is to be solved.
Besides its 7D constraints domain and /=, there is a 1ab strategy. The user is
specifying its own variable and value selection criterion by using the functions
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PROMPT TOY(FD)> domain [X,Y,Z] 04, Y /= 1,Y /=3, Z /= 2, lab userVar userVal 2 [X.Y,Z]
TOY MyProgram.toy FD.toy
from:: int - [int] domain:: [int] = int > int = bool
myVarOrder:: [int] = int lab:: varOrd - valOrd - int = [int] = bool
myValOrder:: [[int]] = int get_dom:: int > [[int]]
y A
SICStus MyProgram.pl FD.pl solver.pl
myVarOrder(...) :- get_ dom (...):- pl_domain =» cpp_domain
et dom.... . > pl, pl_get_dom =>» cpp_get_dom
K pl_get_dom, ... pl_search_strategy =»
= p2. cpp_search_strategy
C++ Solver Search Methods"’r.u_,_m solver.cpp
int selectvar(...) { ... } - void cpp_domain( ... ) { ... }
intselectval(...){ ... } s L]
int get_best_node(...) { ... } -.]N void cpp_get_dom(...) { ... }
get_best.| void cpp_search_strategy( ... ) { ... }
solver_glue.c solver_glue.h
SOLVER API bool post_constraint(...) {...}
bool start_search(...){ ... }
bool get_next_solution (...) {...}

Figure 4.8: Resulting TOY(FD) Architecture

myValOrder and myVarOrder, respectively, which rely on auxiliary, primitive
and reflection functions (as, for example, from, map and get_dom, respectively).

The TOY(FD) files defining the language. They include a file Prelude. toy
(to specify the prelude functions as, for example, map), a devoted file FD. toy
(specifying the set of 7D constraints supported) and a file MyProgram. toy (with
the user definitions as, for example, both from and myVarOrder).

The SICStus implementation of 7TOY(FD). It includes Prolog mate files for
all these kinds of functions, implementing all the TOY(FD) datatypes, func-
tions and operators supported by the system and defined by the user. The file
solver.pl supports the communication from SICStus to C++ by specifying the
set of SICStus predicates S being implemented in C++ functions.

The C++ interface to the solver. It includes the file solver.cpp, containing
the set of C++ functions implementing S. Also, it contains the auxiliary files con-
taining the extra C++ functions, data structures and new solver specific classes
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extending the library (needed to implement S). This includes the new C++ class
MyGenerate in Gecode and ILOG Solver (the latter also including
MyInstantiate). They are devoted to implement the lab strategy, and con-
tain methods for the variable and value selection. Figure 4.8/ shows how these
methods can access either to the solver API (if a predefined criterion is being se-
lected), or (focusing on the variable selection criterion) come back to the SICStus
file MyProgram.pl, executing the SICStus predicate myVarOrder (implement-
ing the user TOY(FD) function myVarOrder). In the example, the latter case
holds, and it is shown how the execution traverses the SICStus and C++ layers,
as a cycle is performed between the SICStus predicate myVarOrder, its auxiliary
SICStus predicate get_dom (which belong to S) and its C++ implementation in
solver.cpp.

5. The C++ API of the solver. Accessed by the C++ methods interfacing the solver.
In the case of Gecode, this layer also includes the solver implementation, as it is
open software.

4.3 Performance

This section analyzes the new performance achieved by TOY(FDg) and TOY(FD3).
The benchmark set of CP(FD) problems of Section [3.4]is revisited. For each problem,
the structure of its solutions is discussed, and it is pointed out how the use of the
proposed search strategies allows to reduce the search exploration to find them. Thus,
for each problem, two TOY(FD) models are created: The one named problem_bs.toy,
which was the one used in Section [3.4} and applies a single 1labeling primitive as
its search strategy. Another one named problem_is.toy, which is created now for this
section, and improves the search strategy of its mate bs model with some of the new
proposed search primitives .

All the TOY(FD) models are available at: http://gpd.sip.ucm.es/ncasti/
models.zipl For the sake of simplicity, from now on the different versions of the
models will be simply referred to as bs and is.

4.3.1 Analyzing the Applied Search Strategies

Magic Sequence. The bs model used a single labeling [ff] L as its search strat-
egy. Analyzing the solutions of the problem it is observed that, if the parameter n > 9
then the sequence follows the pattern: L = [(n — 4),2,1,0, 0,...,1,0,0,0]. The new
search strategy of the is model first applies 1labB unassignedRightVar smallestVal
3L, labBunassignedRightVar largestVal 1 L, which matches the last four va-
riable 1,0, 0,0 pattern. At that point, propagation leadsto L = [(n—4), A, B,C,0,...,1,0,
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0,0] (with Ain 1..3, Bin 0..1 and C'in 0..1), highly reducing the search space the further
labeling has to deal with.

Queens. The bs model used a single labeling [ff] L as its search strategy.
Analyzing the solutions of the problem, an intuitive way for reducing the initial search
space of the problem consists of: Splitting the n variables into k variable sets (vsy, vsa, . ..
vsy) (where consecutive variables are placed in different variable sets). Splitting the
initial domain 1...n into k different intervals (1..(n/k),...,(n/k) * (i — 1) + 1..(n/k) *
i,...,(n/k)x (k—1) + 1..n). Assigning the variables of vs; to the i'* interval.

Thus, the new search strategy of the is model first applies split_into_3 L ([],
[1,[]1)==(K1,K2,K3), fragB (partition 3) unassignedLeftVar
firstRight 0 K1, fragB (partition 3) unassigned- LeftVar firstMiddle
0 K2, fragB (partition 3) unassignedLeftVar first- Left 0 K3. This splits
into three sets the variables and their domains, highly reducing the search space the
further 1labeling has to deal with.

Langford's Number. The bs model used a single labeling [ff] L asits search
strategy. Analyzing the solutions of the instances proposed, it is observed that they fol-
low the pattern: L = [X1,X2,..., A, B,C, D, E, F], with an inductive mapping between
the set of variables {A,B, E, F} and the set of values {1,2,3,4}. Thus, the new search
strategy of the is model first applies fragB (partition ((round ((MxN)/4))- 1))
unassigned- RightVar firstLeft O0[A,B,E,F], labWunassigned- RightVar
smallestTotalDomain O [A,B,E,F].

The fragB fragments the domain of [A,B,E, F] inthe (MxN) /4 intervals of values
1..4,5..8, ..., MxN-3. . M%N. It selects the first interval starting from the left (i.e.,
the smallest one), and it precludes any further backtracking to explore the remaining
intervals. Then, with the domain of [A,B,E,F] pruned to be in 1. .4, 1abW labels
them, exploring all their feasible combinations before selecting the one leading to the
smallest search space for L. Thus, it is clear that the use of the previous fragB is
crucial for the success of the 1labW strategy (although the use of the proper fragB
might cause a loss of completeness for other instances of the problem). A deep breath
exploration with 1abW supposes a tradeoff between obtaining an ordered hierarchy
of relevant intermediate tree-level nodes and the computational effort to obtain this
hierarchy. With an initial domain of 1. .M=%N, the feasible combinations of values for
[A,B,E,F] is unaffordable in terms of time and memory. However, with a domain
of 1..4 (and knowing that they are constrained with an ali_different) the amount of
feasible combinations is reduced to, at most, 24 (which is clearly affordable).

Golomb Rulers. The bs model used a single 1abeling [toMinimize Mn] Mas
its search strategy. Analyzing the solutions of the instances proposed, it is observed
that the initial domain of their variables is huge, and that the value they take in the
optimal solution is not far away from their initial lower bound. For example, in G-11
(for which M = [0, A, B, ..., H, I, J]), the initial domain of the last three variables is H
in 36..1020, I in 45..1021 and J in 55..1023 (with known optimal solution 64, 70 and 72,
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respectively) and the initial domain of the first three variables is 0, Ain 1..977 and B in
3..987 (with know optimal solution 0, 1 and 4, respectively).

Thus, an intuitive way of reducing the initial search space is by reducing as much as
possible the upper bound of these variables. The new search strategy of the is model
first applies fragW (partition 3) unassignedRightVar
smallestSearchTree 2 L, fragW (partition 12) unassignedLeftVar
largestSearchTree 2 L, fragmenting first the last two variables and then the first
two. Note that, whereas the former selects as best intermediate node the one min-
imizing the remaining search space, the latter selects the one maximizing it (which
intuitively makes sense, as the smaller interval is the one pruning the least the upper
bound of the first two variables, thus pruning the least the rest of the variables).

4.3.2 Running the Experiments

Table[4.2] revisits the experiments of Section [3.4] comparing the performance of mate
bs and is instances. Columns bs and is represent the CPU solving time of bs and is
(respectively), both of them using incremental propagation mode. Column Sp-Up_bs
represents the speed-up (of the CPU times) of TOY(FDg) w.r.t. TOY(FDi) for running
the bs models. Similarly, column Sp-Up_is represents the speed-up (of the CPU times)
of TOY(FDg) w.rt. TOY(FDi) for running the is models. Finally, column off/on
focuses on each concrete TOY(FD) version, representing the speed-up of is w.r.t. bs.

The results allow to draw the following conclusions:

- First, the use of the new search strategies is encouraging, as the performance
of TOY(FDg) and TOY(FDi) for solving is instances is better than the achieved for
solving bs ones (besides Q-90 and L-119, where TOY(FDi) spends about 0.4 seconds
more in solving is). In any case, the differences range from 1.05 times faster to more
than 1000 times, so a more detailed analysis by problems and instances is required.

For Queens and Langford’s is instances, the better performance achieved by

TOY(FDg) and TOY(FDi) clearly scales as the sizes of the instances scale. More
specifically, for Q-90 and L-119 (solved in tenths of seconds) TOY(FDg) achieves an
improvement of 1.28 times and 1.05, respectively. This improvement grows an order of
magnitude for Q-105 and L-127 (with an improvement of 12.50) and two orders of mag-
nitude for Q-120 and L-131 (with an improvement of 1443.11 and 298.58, respectively).
In TOY(FDi), it is observed the same growing pattern, but it is less noticeable. For
Q-90 and L-119 the is performance is even worse than the bs one. Then, for Q-105 and
L-127 the is performance improves a 1.61 and a 3.70, respectively, but still in the same
order of magnitude as bs. Finally, for Q-120 and L-131 the is performance reaches the
two orders of magnitude improvement w.r.t. bs (138.74 and 73.11, respectively).

For Magic is instances, the better performance achieved by TOY(FDg) and
TOY(FDi) remains stable as the size of the instances scale (with around a 1.49-1.52
for TOY(FDg) and a 1.30-1.32 for TOY(FDzi)). Last, for Golomb is instances the
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| Instance || bs | Sp-Up_bs || is | Sp-Up_is || off/on |

M-400 FDi 0.530 1.00 || 0.402 1.00 1.32
M-400 FDg || 0.422 1.25 || 0.280 1.43 1.52
M-900 FDi 2.53 1.00 1.95 1.00 1.30
M-900 FDg 2.00 1.27 1.34 1.45 1.49
Q-90 FDi 0.110 1.00 || 0.514 1.00 0.21
Q-90 FDg 0.078 1.41 || 0.061 8.33 1.28
Q-105 FDi 1.25 1.00 1.28 1.00 1.61
Q-105 FDg 1.05 1.19 0.08 10.00 12.50
Q-120 FDi || 154.00 1.00 1.11 1.00 138.74
Q-120 FDg || 129.88 1.19 0.09 12.50 || 1443.11
L-119 FDi 0.530 1.00 || 0.984 1.00 0.54
L-119 FDg 0.296 1.79 || 0.282 3.45 1.05
L-127 FDi 4.35 1.00 1.17 1.00 3.70
L-127 FDg 4.62 0.94 || 0.39 3.03 12.50
L-131 FDi 87.00 1.00 1.19 1.00 73.11
L-131 FDg 98.53 0.88 0.33 3.57 298.58

G-9 FDi 0.421 1.00 || 0.109 1.00 3.85

G-9 FDg 0.250 1.69 || 0.062 1.75 4.00
G-10 FDi 3.56 1.00 1.47 1.00 2.44
G-10 FDg 2.1 1.69 0.84 1.75 2.50
G-11 FDi 72.65 1.00 || 43.98 1.00 1.64
G-11 FDg 42.01 1.72 || 24.85 1.75 1.69

Table 4.2: Performance of TO)Y(FD) using the Search Strategies

better performance achieved by TOY(FDg) and TOY(FDi) decreases around as the
instances scale up, with a 4.00, 2.50 and 1.69 improvement of TOY(FDy) for G-9, G-10
and G-11, respectively, and a 3.85, 2.44 and 1.64 of TOY(FD:i).

- Second, it is clearly observed that the improvement achieved by TOY(FDg) for is
instances is greater than the one achieved by TOY(FDi), revealing that the approach
Gecode offers to extend the library with new search strategies is more efficient than
the one of ILOG Solver. That is, for any is instance, the speed-up of TOY(FDg) w.r.t.
TOY(FDi) is greater than the achieved for its mate bs instance.

For each problem, the impact of is obviously depends on how well its improved
search strategy captures the structure of the problem solutions. Two different behav-
iors are observed: First, for Queens and Langford's is instances the speed-up improve-
ment achieved w.r.t. bs instances increases as the instances scale up: An increasing
from 1.41 to 8.33, from 1.19 to 10.00 and from 1.19 to 12.50 for Q-90, Q-105 and Q-120,
respectively. An increasing from 1.79 to 3.45, from 0.94 to 3.03 and from 0.88 to 3.57
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for L-119, L-127 and L-131, respectively. Second, for Magic and Golomb is instances
the speed-up improvement achieved w.r.t. bs instances remains stable as the instances
scale up: From 1.25 to 1.43 and from 1.27 to 1.45 for M-400 and M-900, respectively.
From 1.69 to 1.75 for both G-9 and G-10, and from 1.72 to 1.75 for G-11.

4.4 Related Work

Regarding the search capabilities provided by other multi-paradigm programming sys-
tems, it should be pointed out that PAKCS and Mozart respectively provide the primi-
tives labeling and distribute, implementing a depth first search exploration of the
tree. They perform domain labeling or domain splitting on each node (var = val \/
var != val or var <= val \/ var > val, respectively). For variable selection,
they provide first unbound and first fail. For value selection, they provide min, middle
and max values.

Thus, the search capabilities of TOY(FD) offer appealing possibilities for CFLP(F D).
First, all the functionality of PAKCS and Mozart is also achieved in TOY(FD) by using
its labeling primitive. Besides that, the new primitives presented in Section [4.1] for
TOY(FDg) and TOY(FDi) provide novel concepts for search, as performing an ex-
haustive breadth exploration of the search tree, further sorting the satisfiable solutions
by a specified criterion, fragmenting the variables pruning each one to a subset of its
domain values instead of binding it to a single value, and applying the labeling or frag-
ment strategy only to a subset of the variables involved. Finally, regarding variable
and value selection, a wide range of criterion is offered, which includes specifying a
user-criterion directly via TOY(FD) functions.

The approach of taking advantage of both the high expressivity of TOY(FD) (for
specifying search strategies) and of the high efficiency of Gecode and ILOG Solver (to
accomplish them) can be related to the one followed in Search Combinators [170]. It
provides a lightweight and solver-independent method bridging the gap between a con-
ceptually simple search language (high level, functional and naturally compositional)
and an efficient implementation (low-level, imperative and highly non-modular). It al-
lows to define application tailored strategies from a small set of primitives, resulting in
a rich search language for the user and a low implementation cost for the developer of
a constraint solver.

The search language of TOY(FD) is more rigid than the one of [170], but some of
the features provided by the search combinators can be matched with the new set of
primitives presented in Section The basic primitive heuristics base_search and
prune can be obtained with the primitive lab, controlling the exact number of varia-
bles to be labeled (which allows TOY(FD) to support composite search strategies).
Regarding the set of combinators proposed, TOY(FD) matches {let, assign, post}
via intermixing search procedures with constraint posting, and {and, or} via the com-
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posed search strategies presented in Section Finally, the TOY(FD) primitives
are also extensible, as users can program their own criterion at TOY(FD) level with
no extra implementation effort at the SICStus and C++ layers of the architecture (as it
can be seen in Figure[4.8).

Similar approaches to search combinators are proposed for FP, with Monadic Con-
straint Programming, and for LP, with the library TOR [171] (available in SWI-Prolog).
They decouple the notion of defining the search tree from the notion of defining the
search method. In TOY(FD), itis not possible to specify the way to explore the search
tree (as, for example, by limited discrepancy search). However, the primitives 1abW
and fragW perform a breadth search exploration. Moreover, at least in TOY(FDy) it
would not be difficult to support new ways of exploring the search tree, as the Gecode
library provide the mechanisms to implement them.

4.5 Conclusions

The combinatorial nature of the CSP's and COP's tackled with TOY(FD) turn the search
exploration into a key factor for the performance of the system. The analysis of chapter
has revealed that, as long as the instances of these problems scale up enough, the
percentage of CPU time devoted to search exploration tends to converge to almost the
100%. Thus, the performance of TOY(FD) becomes purely CP(FD) dependent, i.e., its
CPU time directly comes from the performance of its concrete solver in achieving the
pure CP(FD) mechanism of performing a search exploration by propagating basic and
global constraints. This leads to two different approaches to improve the TOY(FD)
performance: A first one, focusing on the solver accomplishing the search, replacing
the current 7D solver of the system by new state-of-the-art ones. That is, keeping the
same TOY(FD) model for a problem (specifically, keeping the same FD constraint
network and search strategy), rely on new solvers capable of solving it faster. A second
one focusing on the search to be accomplished, replacing it by an ad hoc one which
exploits the knowledge about the structure of the problem and its solutions. That is,
keeping the same solver to accomplish the search, modify the TOY(FD) model to
specify a search strategy requiring less search exploration to find the solutions.
Chapter[3has followed the first approach, interfacing the state-of-the-art C++ CP(F D)

solvers of Gecode and ILOG Solver into TOY(FD), giving rise to the new versions
TOY(FDg) and TOY(FDs), respectively. Departing from these system versions, this
chapter has followed the second option, enhancing the TOY(FD) language with new
search primitives allowing a better specification of ad hoc search strategies. The mo-
tivation of this approach has been to take advantage of both the high expressivity of
TOY(FD) (for specifying search strategies), and of the high efficiency of Gecode and
ILOG Solver (for accomplishing them). The techniques used can be easily adapted to
other CLP(FD) or CFLP(FD) systems implemented in Prolog and interfacing external
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C++ CP(FD) solvers.

The chapter has presented eight new 7OY(FD) search primitives, describing their
declarative semantics from a solver independent point of view, and using examples to
show their application. It has emphasized the novel concepts those primitives include,
as performing an exhaustive breadth exploration of the search tree further sorting the
satisfiable solutions by a specified criterion, fragmenting the variables pruning each
one to a subset of its domain values instead of binding it to a single value, and applying
the labeling or fragment strategy only to a subset of the variables involved. It has also
pointed out how expressive, easy and flexible it is to specify some search criterion at
TOY(FD) level, as well as how easy is to use model reasoning to apply different search
strategies (setting different search scenarios) to the solving of a CP(FD) problem.

A new version of TOY(FDg) and TOY(FDi) including these search primitives has
been presented. It has been described their implementation in Gecode and ILOG
Solver, by extending their libraries relying on their underlying search mechanisms.
It has been observed that these search mechanisms are quite different in Gecode
(Search Engine, Brancher methods, hybrid recomputation) and ILOG Solver
(IloGoal, goal constructor, goal stack). Thus, an abstract view of the requirements
needed to integrate the search strategies in TOY(FD) has been first presented (with
the scheme further instantiated to Gecode and ILOG Solver). Also, the impact of the im-
plementation of the search primitives on the system architecture has been analyzed,
revealing that the specification of search criterion at TOY(FD) level has an inherent
overhead due to the recursive interaction between the SICStus Prolog and C++ layers.

Finally, the benchmark of Chapter 3| has been revisited, discussing the structure of
the solutions of each problem, and pointing out how the use of the proposed search
strategies allow to reduce the search exploration to find them. Mate TOY(FD) models
with an improved ad hoc search strategy have been developed. It has been shown that
the use of the new search strategies improve the performance of both TOY(FDg) and
TOY(FDi), but the improvement achieved (ranging in 1.05 times faster to more than
1000 times) is dependent on the concrete problem and instance solved: Whereas for
Queens and Langford's instances the better performance achieved clearly scales as the
sizes of the instances scale, for Magic ones it remains stable, and for Golomb ones it
decreases. Moreover, the speed-up of TOY(FDg) w.r.t. TOY(FDi) is greater for the
new improved 7TOY(FD) models, revealing that the approach Gecode offers to extend
the library with new search strategies is more efficient than the one of ILOG Solver.
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Part 111

Real-Life Applications of
TOY(FD)



The second research part of the thesis is focused in describing real-life applications of
TOY(FD). Chapter[5|describes the modeling and solving of an Employee Timetabling
Problem coming from the communication industry. Chapter[g]describes the application
of TOY(FDg) to an empirical analysis process (based on real-life benchmarks) to test
the hardness of the Bin Packing Problem.



Chapter 5

An Employee Timetabling
Problem

The use of the classical CP(FD) benchmarks in Chapters 3| and |4] has shown that in-
terfacing external C++ CP(FD) solvers and applying ad hoc search strategies have im-
proved the solving performance of TOY(FD). However, the modeling of these prob-
lems is purely CP(FD) dependent and, moreover, quite naive. That is, there are no
extra difficulties for modeling the problems but the ones for expressing their associ-
ated FD constraint networks, and the formulation of these constraint networks can
be considered easy enough (in the sense that they do not require a high expressivity).
Thus, itis claimed that the classical CP(FD) benchmarks do not exploit the capabilities
of a general-purpose language as TOY(FD), with a high expressivity coming from the
functional and logic features the language provides.

The main contribution of this chapter is to apply 7TOY(FD) to a real-life Employee
Timetabling Problem (from now on, just ETP), exploiting both the high expressivity of
the language and the higher solving performance achieved with the techniques pre-
viously described in Chapters[3|and 4 An ETP is concerned with assigning a number
of employees to a given set of shifts over a fixed period of time, taking into account
the employees qualifications, constraints and preferences. Probably the most paradig-
matic example of an ETP is the Nurse Rostering Problem (NRP), which has been exten-
sively studied in the last decades [38].

The proposed ETP comes from the communication industry, and it can be seen as
a particular case of the NRP. A first formulation of the problem was proposed in [153].
On it, a partial solution was constructed (based on the knowledge about a complete
solution structure) and was used as a seed for triggering the search looking for fea-
sible complete solutions. Then, the problem was reformulated from scratch in [47],
with the aim to tackle a concrete instance (with a fixed structure), which included a
new solving approach (based on problem decomposition) as well as new requirements
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(also embodying optimization). Maintaining both the formulation of [47] (which is non-
monolithic and includes CP(FD) independent components) and its solving approach,
this chapter presents a new parameterizable version of the ETP, now applicable to a
wide set of different instances.

The chapter is organized as follows: Section[5.1|presents a description of the prob-
lem and Section describes the solving approach to tackle it. Section presents
a parametric algorithm implementing the solving approach, which is the one being
followed by TOY(FD) to model the problem. Section 5.4 presents the results of run-
ning different instances of the problem in the three TOY(FD) versions, and compares
these results with the ones obtained for solving classical CP(FD) benchmarks. Section
[5.5| presents some related work. Finally, Section[5.6|reports conclusions.

5.1 Problem Description

A department is filling its employee timetable for the next nd days. The timetabling
contains different kinds of working days ws = {ws, ..., ws;}, each one with an as-
sociated amount of shifts ws; = [swsi1,-- -, Swsim]- The days dec = [dcy, ..., dcpg] Of
the timetabling are identified by the kind of working day they are (i.e., each dc_i takes
a value among {wsy,..., wsg}). If ws; provides m shifts, then for each day dec, =
ws; there must be m available workers at the department (each shift is assigned to
a single worker). The department employs w workers. nt x ntw of them are regu-
lar workers divided into nt teams of ntw workers: {w, ..., wu,} belong to team ¢,
{Wntw+1, - - Wasntw } DelONg to team t,, and so on. Note that, obviously, this also in-
cludes the possibility of having just one team containing all the regular workers. In any
case, there is an extra worker ew, which belongs to no team and is only selected by
demand for coping with regular workers absences. Whereas ew must be available for
the nd days, regular workers must be absent some days, which is provided (in advance)
by abs = {(w;1,d;1), ..., (wi,dj;)}, of pairs (regular worker, day).

Each team ¢, is selected once every nt days. If ¢, is selected on day dc; only
{wi—1)sntws1s - - - Wisnew } (the regular workers of that team) and ew are able to work
at the department on that day. The extra worker ew can be selected to work just one
out of each er consecutive days. Note that, obviously, this also includes the possibility
of working every day, by simply setting er to one. For each day dc;, the selected ¢;
provides (due to absences) 0 < a < ntw available workers to be assigned to the m
available shifts of the day. This gives rise to up to three different situations: First, if
a > m then ew and any possible remaining regular worker do not have to work (they
are assigned to shifts of 0 hours). Second, if a = m — 1 then ew is selected to work,
coping with one of the m shifts of dc;. Third, if @ < m — 1 then there is no possible
assignment, and ¢; cannot be selected for dc;.

Given s = {s1,...,s,} as the set of different shift types that ws provides, T;, . is a
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measure of the distribution of shifts of type s, to the regular workers of ¢;. Supposing
that each worker of the team w; is assigned to a certain amount cv; of shifts of type s,
during the nd days, then T}, ;. represents the difference between the maximum and
minimum of these cv values. Shift distribution is constrained by T, representing the
maximum value any T; , can take. Note that this constraint can be easily disregarded
by setting T" to (nd/nt)+ 1 or higher: Team ¢; works each nt days, so it will work (nd/nt)
or (nd/nt) + 1 days during the timetable (where / stands for the integer division). As
each worker is assigned to a single shift each of those days, the highest possible 73, ..
would be the one in which one worker of ¢; is only assigned to shifts of kind s, whereas
another worker of the team is assigned to none of them.

Scheduled timetabling contains i working hours, so each regular worker is ex-
pected to work h/(nt x ntw) hours. Any more worked hour is considered as an extra
hour. Optimization arises in the problem because the department must pay regular
workers for each extra hour they work, and any hour that ew works is paid as ef extra
hours of a regular worker. Note that ew can be treated as a regular worker by setting ef
to one. An optimal schedule minimizes the extra hour payment. It is important to point
out that T does not belong to the optimization function. The objective is to minimize
the extra hour payment, not 7. However, T represents a measurement of the fairness
of the scheduled timetabling, and it is parameterizable by the user. For example, two
different schedules implying 16 extra hours (one assigning them to a worker and the
other one dividing them among the workers of a team) can be equivalent regarding
optimality, but the second is fairer.

Instance Example: A timetabling is scheduled for next week, which starts on Mon-
day. Whereas each working day contains three shifts to be accomplished (of twenty,
twenty two and twenty four hours, respectively), each weekend day contains just two
(both of them of twenty four hours). The department employs thirteen workers: Twelve
of them regular workers, divided into three teams of four workers. Some of these reg-
ular workers are not available all days, with their absences described by abs = [(w1, d1),
(w2, d1), (w5, d1), (ws, dg), (we, d1), (we, de), (w7, d1), (w7, ds), (W10, d1), (wr0,ds), (w11, d1),
(w11,ds), (w12,dy), (w12, ds)]. The department also employs an extra worker, which can
be selected to work at most one out of each three consecutive days, and whose extra
hours are paid the double. Finally, small deviations (of one per kind of shift) are allowed
between the different workers of a team. Table[5.7 summarizes the list of parameters
used in the problem description. Whereas columns Variable Name and Variable
Description represent the variable name and its informal description (respectively),
column Example represents the value of the variable for the concrete instance pre-
sented.
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Variable Name

| Variable Description | Example

nd Number of days nd =17
dc Day classification dc =
[1,1,1,1,1,2,2]

ws Different kind of work- | ws = [[20, 22, 24],
ing days [24, 24]]

w Number of workers w=13

nt Number of teams nt =3

ntw Number of team work- | ntw = 4

ers

w(i—l)*ntw—i—lr

Workers of team ¢;

t1; to; t3 = {wy,

Wisntw w1, W11, W12};

ew Extra worker ew = w13

er Period of consecutive | er =3
days on which ew can
work at most one of
them

abs Absences of (regular | abs = [(1,1),
workers, days) (2,1),...,(12,6)]

s Different kind of shifts | s = |0, 20 22, 24]

Ty, s. Measure of the distri- | T}, 5, = 1
bution of shifts of kind
s; to the regular work-
ers of team ¢;

CU1, . . ., CUntw Number of shifts of | cv; = 2; cvy = 1;
kind s = 0 the regular | cv3=1;cvy =1
workers of t; are as-
signed to

T Maximum value forthe | T =1
Tti,Sj

ef Factor for the working | ef =

hours of ew

Table 5.1: List of Variables used in the Problem
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5.2 Solving Approach

The proposed description abstracts the problem as an entity receiving nd, nt, ntw, er,
ef, ws, abs, dc and T as its input parameters, and computing the pair (timetabling, eh)
as a result. timetabling is an w x nd assignment that can be represented by a matrix,
where each position (i, j) represents the shift assigned on day j to worker i (e.g., in the
instance example, timetabling is @ 13 x 7 matrix). eh represents the total amount of
extra hours of this assighment.

An intuitive way to model the problem is to use ¢timetabling as the set of FD varia-
bles, with dc and ws being used to determine the initial domain of the variables of each
kind of day. However, the problem requirements requesting only one team to work
each day, and each team to be selected each nt days produces strong dependencies
between the timetable variables: As soon as a regular worker wy, (belonging to team ¢;)
is selected for working on day d; (by assigning it to a working shift s;, > 0) then it is
known that ¢; is going to be selected to work as well for days d;, djint, dj4(24nt), and SO
on. This precludes the other teams from working on these days, as well as precludes
t; from working on days d; 1, d;j(mt—1)s djt(nt+1)r dj+(2¢nt—1), and so on. Figure
presents these dependencies for the instance example, showing the implications of as-
signing timetabling; » = 20. Thus, although these dependencies are perfectly modeled
(for example, by using propositional implication constraints), a more efficient approach
to model the problem is to use Table instead of timetabling. Table is an (ntw + 1) x nd
matrix where, for each d;, the first ntw rows represent the regular workers of the team
t; selected for working on d;. The row (ntw + 1) represents ew. To use this approach,
bidirectional mappings between timetabling and Table are needed. They require an
additional register tda (teams to days assignment), indicating which team works each
day. Figure presents such mapping for the instance example, where the first four
rows refer to {wy, wy, w3, wa} on days 1, 4 and 7, to {wg, w1o, w11, w1z} on days 2 and 5,
and to {ws, wg, wr, wg} on days 3 and 6.

As it can be seen, a single Table does not explore the whole search space of
timetabling, but only the subset associated to the concrete tda selected. Thus, the
solution found in Table can only be considered suboptimal, in the sense that it is only
optimal w.r.t. this timetabling search space subset. In fact, the nt teams lead to up to nt!
possible tda = {tday, ..., tda,y } (each of them with its associated Table to be explored).
To find the optimal solution, not all the different Table must be explored, but only those
ones associated to feasible ¢da. More specifically, a tda; is said to be satisfiable if, for
each day, there are enough workers of the selected team to accomplish the scheduled
shifts, and ew is never selected to work more than one out of each er consecutive days.
Finding an unfeasible tda; allows to save the exploration of 1/nt! of the search space of
timetabling. In the instance example, only two of the six ¢da are feasible, as due to the
absences provided by abs, only team ¢; can work on d;. The two feasible assignments
are then assigning ¢ (respectively ¢3) to ds and t3 (respectively ¢5) to ds.
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Figure 5.1: Team Dependencies in timetable

Figure 5.2: Mapping from timetable to Table
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Last but not least, the nt teams are initially linked by the fact that, if needed, ew can
only be selected to work one out of each er consecutive days. However, as a feasible
tda entails the resting constraint of ew, its associated Table can be split into nt inde-
pendent subproblems (exponentially easier to be solved). In the instance example, the
associated Table of Figureis splitinto t¢; (with columns 1, 4 and 7), tt, (with columns
2 and 5) and tt5 (with columns 3 and 6).

In summary, the natural modeling based on timetabling requires w x nd variables
(in the instance example it is 13 x 7 = 91). Supposing that, due to the requested shifts,
the initial domain of each variable was {0, 20, 22, 24}, then the initial search space
would contain 4°! = 6,12x10°* candidates. Thus, the proposed solving approach based
on tda improves the solving efficiency by:

e Using a Table of (ntw+ 1) x nd variables, saving ntw * (nt — 1) x nd variables w.r.t.
the timetabling approach. In the instance example, Table is 5 x 7, saving a 61%
of the timetabling variables, and thus reducing the search space to 49-39*91 =

2.32 % 10! (cf. Figure[5.2).

e Splitting Tuble into nt independent subproblems, exponentially easier to be
solved. In the instance example, there are three independent teams (cf. Figure
columns green, orange and blue, respectively), and thus the search space of
each of them is 49-13*91 = 1.32 x 107. As the three subproblems must be solved,
then the search space being explored turns into 3,96 = 10”.

e Exploring only any T'able; associated to a feasible tda;. In the instance example,
only two tda of the 3! = 6 possible ones are feasible. Thus, to find the optimal
solution the search space being explored turns into 7.92 x 107, which is much
smaller than the original 6,12 % 1054 one.

5.3 Algorithm

In this section, a parametric timetabling p_tt algorithm implementing the solving ap-
proach of Section is presented. It computes an optimal assignment for timetabling
by: Finding any feasible tda;, mapping it to T'able;, splitting T'able; into nt independent
subproblems tt;1, ..., tt;n:, Solving them sequentially, and mapping the suboptimal
computed Table; to (timetabling;, eh;).

Thus, the algorithm relies on a four stage process: team_assign, tt_split, tt_solve
and tt_map. The stage team_assign just concerns with finding any feasible bijection
tda; and creating its associated Table;. Starting from a feasible bijection tda;, the stages
tt_split, tt_solve and tt_map are executed, splitting Table into tty, . . ., tt,, solving the dif-
ferent tt; sequentially and mapping the computed suboptimal Table; to (timetabling;,
eh;), respectively. Then, backtracking is triggered to team_assign, finding a new tda;
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and executing again the stages t¢_split, tt_solve and ti_map to obtain a new subopti-
mal (timetabling;, eh;). Finally, when backtracking to team_assign produces no more
feasible tda, the computed (timetabling,, ehy), ..., (timetablingy, ehs) are compared,
outputting as a result the one with minimum eh.

The call p_tt nd nt ntw er ef ws abs de T P W SS = (timetabling, eh) runs the
algorithm. The special input parameters P, W and SS are provided to configure the
FD constraint solver. Once again, P sets the propagation mode to incremental or
batch. W and SS set the search strategy to order the variables by workers or days, and
label the variables by first unbound or first_fail, respectively. Focusing on the instance
example, and setting the solver to use incremental propagation mode and label the
variables by workers in a textual order, the call to p_t¢ results to be:
p_tt 7343 2[[20,22,24], [24,24]] [(1,1), (2,1), (5,1), (5,6), (6,1), (6,6), (7,1), (7,6),
(10,1), (10,6), (11,1), (11,6), (12,1), (12,6)] [1, 1,1, 1,1, 2, 2] 1 true workers fst_unb =

([10,0,22,24,0,0,0,0,0,0,0,0,20],
[0,0,0,0,0, 20,22, 24,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,20,22,24,0],

[0, 20,24, 22,0,0,0,0,0,0,0,0,0],
[0,0,0,0,24, 22, 20,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,24,0,0,0,24],
[24,24,0,0,0,0,0,0,0,0,0,0,0]],133)

Next, p_tt is described in detail. The different stages are presented separately and,
for each of them, the steps being followed are enumerated. Each step is univocally
identified as “p_tt_stagename_stagestep” (where team_assign is named ta, tt_split
is named sp, tt_solve is named so and tt_map is named ma). The execution of the
instance example is used to guide this p_tt description. In particular, it is pointed out
the computation of any data structure, as well as the posting of any FD constraint to
the solver.

5.3.1 Stage team_assign:

The call team_assign nd nt ntw er ws abs de P = (d, e, oabs, Table) runs the stage. In the
instance example, this call results to be:

team_assign 7 3 4 3 [ [20, 22, 241, [24, 24] 1 [ (1, 1), (2, 1),
(5, 1), (5, 6), (6, 1), (6, 6), (7, 1), (7, 6), (10, 1), (10,
6), (11, 1), (11, 6), (12, 1), (12, 6), [1, 1, 1,1, 1, 2, 2]
true = (d, e, oabs, Table)

Two feasible tda; and tdas are obtained:

sol1:
d=1[1,2,3,1, 2,3, 11;
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e =[1, 0, O, 0, O, 1, 0];
oabs = [ [1,2,5,6,7,10,11,12]1, [1, [1,
(1, 1, [5,6,7,10,11,121, [1 1;
Table = [ [v1, v2, v3, v4, v5], [v6, v7, v8, v9, v10], [v11, v12,
v13, v14, vi15], [v16, v17, v18, v19, v20], [v21, v22, v23, v24,
v25], [v26, v27, v28, v29, v30], [v31, v32, v33, v34, v35] ];

sol2:
d=[1, 31 2! 131 21 1];
e=1[1, 0,0 , 0, 1, 01;

1
, 0,0
oabs = [ [1,2,5,6,7,10,11,12]1, [1, [1,
(1, 1, [5,6,7,10,11,127, [1 1;
Table = [ [v1, v2, v3, v4, v5], [v6, v7, v8, v9, v10], [v11, vi2,
v13, v14, vi15], [v16, v17, v18, v19, v20], [v21, v22, v23, v24,
v25], [v26, v27, v28, v29, v30], [v31, v32, v33, v34, v35] 1];

The following steps are performed to compute the solution:
p_tt_ta_1. Table, an {(ntw + 1) x nd} matrix of fresh variables is created. In the
instance example:

Table = [ [v1, v2, v3, v4, v5], [v6, v7, v8, v9, v10], [v11, vi2,
v13, v14, vi15], [v16, v17, v18, v19, v20], [v21, v22, v23, v24,
v25], [v26, v27, v28, v29, v30], [v31, v32, v33, v34, v35] ]

p_tt_ta_2. abs is fit to oabs (a list of lists representing the absences ordered per
day). Also, atd (a list of lists representing the absences per day and team) and etd (a list
of lists representing the request of ew per day and team) are created. In the instance
example:

oabs = [ [1, 2, 5, 6, 7, 10, 11, 121, [1, [1, [1, [1,
[5, 6, 7, 10, 11, 121, []1 1;
[ r2, 3, 31, o, o, ojl, o, o, o1, ro, o, oj, [fo, o, 01,
(o, 3, 31, [o, o, 01 1;
etd = [ [1, 1, 11, [O, O, O], [O, O, O], [0, O, O], [0, O, O],
(o, 1, 11, [0, 0, 01 1;

atd

p_tt_ta_3. The arrays of nd FD variables d (d; = team assigned to dc¢;), a (a; =
amount of regular worker absences on dc;) and e (e; = is ew requested on d¢;) are
created. In the instance example:

d = [d1, d2, d3, d4, d5, d6, d7]
a = [al, a2, a3, a4, a5, a6, a7]
e = [el1, e2, e3, e4, e5, e6, e7]
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p_tt_ta_4. d is initialized to {1,...,nt}. Itis constrained by d; == d;;:, and by
an all_different constraint over {di,...,d,:} to ensure that only one team works
each day, and that each team is selected once every nt days. In the instance example:
dl == d4; d4 == d7; d2 == d5; d3 == d6
{d1, d2, d3, d4, d5, d6, d7} in 1..3
{d1, d2, d3} are different

p_tt_ta_5. « is initialized to {0,...,ntw}. The amount of shifts to be covered on
each dc; is used to prune the upper bound of each a;. This precludes the assignment of
ateam to a day in case it does not provide enough available workers to accomplish the
requested set of shifts. Also d, a and atd are linked, to constrain each a; to be assigned
to atd; 4;. In the instance example:

{al, a2, a3, a4, a5, a6, a7} in 0..4

al <= 2; a2 <= 2; a3 <= 2; a4 <= 2; a5 <= 2; a6 <= 3; a7 <= 3;
(d1==1) => (a1==2); (d1==2) => (al1==3); (d1==3) => (al1==3);
(d2==1) => (a2==0); (d2==2) => (a2==0); (d2==3) => (a2==0);
(d3==1) => (a3==0); (d3==2) => (a3==0); (d3==3) => (a3==0);
(d4==1) => (a4==0); (d4==2) => (a4==0); (d4==3) => (ad==0);
(d5==1) => (a5==0); (d5==2) => (a5==0); (d5==3) => (a5==0);
(d6==1) => (a6==0); (d6==2) => (a6==3); (d6==3) => (a6==3);
(d7==1) => (a7==0); (d7==2) => (a7==0); (d7==3) => (a7==0);

p_tt_ta_6. e is initialized to 0,1. The sum of each array subset {e;,...,e;1cr} IS
constrained to be < 1, to ensure the resting constraint of ew. Also, d, e and etd are
linked, to constrain that each e; is assigned to etd; 4. In the instance example:

{e1, e2, e3, e4, e5, e6, €7} in 0..1

sum [el, e2, e3] <=1, sum [e2, e3, e4] <=1,
sum [e3, e4, e5] <= 1, sum [ed, e5, e6] <= 1
sum [e5, e6, e7] <=1,

(d1==1) => (e1==1); (d1==2) => (el1==1); (d1==3) => (el==1);
(d2==1) => (e2==0); (d2==2) => (e2==0); (d2==3) => (e2==0);
(d3==1) => (e3==0); (d3==2) => (e3==0); (d3==3) => (e3==0);
(d4==1) => (ed4==0); (d4==2) => (e4==0); (d4==3) => (ed==0);
(d5==1) => (e5==0); (d5==2) => (e5==0); (d5==3) => (e5==0);
(d6==1) => (e6==0); (d6==2) => (e6==1); (d6==3) => (e6==1);
(d7==1) => (e7==0); (d7==2) => (e7==0); (d7==3) => (e7==0);

p_tt_ta_7. The variables {dy,...,d,:} are labeled to obtain the feasible {tday, ...,
tday}. In the instance example:

label [d1, d2, d3] in order
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5.3.2 Stage tt_split:

The call tt_split nd nt ntw ws oabs dc d e Table = (tt, dc_list, h) runs the stage. In the

instance example, just considering the first solution of team_assign tday, the call results

to be:

tt_split 7 3 4 [ [20, 22, 241, [24, 241 1 [ [1, 2, 5, 6, 7, 10,
11, 121, 1, 1, 11, 11, 15, 6, 7, 10, 11, 121 ,[1 111, 2, 3,
1, 2, 3, 1111, 0, 0, O, O, 1, O] [ [v1, v2, v3, v4, v5], [v6,
v7, v8, v9, v10], [v11, vi12, v13, v14, v15], [v16, v17, V18,
v19, v20], [v21, v22, v23, v24, v25], [v26, v27, v28, v29,
v30], [v31, v32, v33, v34, v35] ] == (tt, dc_list, h)

A single solution is obtained:

tt=[T[ [0, O, @, b, c], [1, m, n, o, 0], [v, w, X, y, 0] 1,
[ [d, e f, g 0], [p,q r,s, 011,
[ [h, 1, j, k, O, [t, O, O, O, ul 11

dc_list = [ [1,1,2], [1,11, [1,2] 1]

h = 35

The following steps are performed to compute the solution:
p_tt_sp_1. Receive Tuble, d, e and oabs from team_assign. In the instance example:

Table = [[v1,v2,v3,v4,v5],[v6,v7,v8,v9,v10],[v11,v12,v13,v14,
v15],[v16,v17,v18,v19,v20],[v21,v22,v23,v24,v25],[v26,v27,
v28,v29,v30],[v31, v32,v33,v34,v35]];

d=11,2,3,1,2,3,1]; e = [1,0,0,0,0,1,0];

oabs = [[1,2,5,6,7,10,11,12]1,(1],[1,1[1,(1.,[5,6,7,10,11,12],[11]

p_tt_sp_2. TotZ (a list of lists representing the selected worker absences per day)
is computed, using d; and oabs; to know which selected regular workers are absent on
de;, and e; to know if ew is selected for dc;. In the instance example:

Totz = [ [1,2], [5], [51, [51, [51, [2,3,4], [5] 1]

p_tt_sp_3. For each dc; Table; is traversed, binding to zero each variable indexed
by T'otZ;. In the instance example:
Table = [[0,0,a,b,c],[d,e,f,g,0],[h,1i,j,k,0],[1,m,n,0,0],
(p.q,r,s,0]1,[t,0,0,0,ul,[v,w,x,y,0]]

p_tt_sp_4. Tuble is split into the independent subproblems {¢t4,...,tt,:}, each of
them consisting of a matrix {(ntw + 1) x (nd/nt)}. In the instance example:

tt = [ [ [OIOIaIbIC]I [llmlnlolo]l [VIWIXIyIO] ]I
[ [d,e,f,g,01, [p.q,r,s,0] 1,
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[ [h,i,j,k,0], [t,0,0,0,u] ] 1
tt1 [ [0,0,a,b,c], [1,m,n,0,0], [Vv,w,X,y,0] ]
tt2 [ [d,e, f,g,0]1, [p,q,r,s,0] 1]
tt3 = [ [h,i,j,k,0], [t,0,0,0,u] ]

dc is split as well, to obtain the day classification associated to each ¢¢;:
dc_list = [ [1,1,2], [1,11, [1,2]1 1]

dc_list1 = [1, 1, 2]
dc_list2 = [1, 1]
dc_list3 = [1, 2]

Finally, the number of hours that each regular worker is expected to work is com-
puted. In the instance example, according to ws, each day of dec = ws; (respectively
wsz) implies 66 (respectively 48) working hours. So, for de = [1, 1, 1, 1, 1, 2, 2] the
timetable contains a total of 426 working hours. As there are 12 regular workers, each
one is expected to work 35 hours:

h =35

5.3.3 Stage tt_solve:

The call tt_solve ntw ws ef T h P W SS tt dc_list = eh runs the stage. In the instance
example, considering just the solving of ¢¢; (from now on named #t), the call results to
be:

tt_solve 4 [ [20, 22, 24], [24, 241 1 2 1 35 true fst_unb
workers [ [0, O, a, b, c], [1, m, n, o, O], [v, w, x, y, 0] ]
[1, 1, 2] == eh

A single solution is obtained:

tt [ [0, O, 22, 24, 20], [0, 20, 24, 22, 0], [24, 24, 0, 0, 0] 1]
eh = 71

The following steps are performed to compute the solution:
p_tt_so_1. ttis transposed to obtain trans_tt, a matrix {(nd/nt) x (ntw+1)} ordered
by workers instead of by days. In the instance example:

trans_tt = [ [0,1,v], [O,m,w], [a,n,x], [b,o,y], [c,0,0] ]

p_tt_so_2. For each day dc; = ws; of tt the ws; is parsed, obtaining the different
shifts or working slots. These set of shifts is represented by their values (say v) and their
cardinalities (say c). tt; is initialized with domain v, and a global constraint is posted to
ensure the distribution of the ¢¢; variables with (v, ¢). In the instance example:
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{OI OI a’ bl

c} in [0, 20, 22, 24]

distribute [2, 1, 1, 11 [0, 20, 22, 24] {0, 0, a, b, c}

{1, m, n, o,

0} in [0, 20, 22, 24]

distribute [2, 1, 1, 1] [0, 20, 22, 24] {1, m, n, o, O}

{v, w, X, vy,

0} in [0, 24]

distribute [3, 2] [0, 24] {v, w, x, y, 0}

p_tt_so_3. s (a list of the different kind of shifts s, to be scheduled in ¢t) is com-
puted. In the instance example:

1s = [0, 20,

22, 24]

p_tt_so_4. in (a mate list for Is, where each In; contains the number of shifts of
type ls; to be scheduled in ¢t) is computed. In the instance example:

In = [7, 2, 2, 4]

p_tt_so_5. For each Is; new (ntw + 1) FD variables cv are created, where each cvy,
is assigned to the amount of shifts of type is; the worker ¢rans_tt, is assigned to. The
sum of these cv variables is redundantly constrained to in;, to ensure that all the shifts
are assigned to a worker. In the instance example:

count 0 [0, 1, v] == cv0_1; count O [0, m, w] == cv0_2;
count 0 [a, n, x] == cv0_3; count 0 [b, o, y] == cv0_4;

count 0 [c,
sum [cvO0_1,

count 20 [O,
count 20 [a,
count 20 [c,
sum [cv20_1,

count 22 [O,
count 22 [a,
count 22 [c,
sum [cv22_1,

count 24 [0,
count 24 [a,
count 24 [c,
sum [cv24_1,

0, 0] == cv0_5;

cv0_2, cv0_3, cv0_4, cv0_5] == 7
1, v] == cv20_1; count 20 [0, m, w] == cv20_2;
n, x] == cv20_3; count 20 [b, o, y] == cv20_4;

0, 0] == cv20_5;
cv20_2, cv20_3, cv20_4, cv20_5] == 2

1, v] == cv22_1; count 22 [0, m, w] == cv22_2;
n, x] == cv22_3; count 22 [b, o, y] == cv22_4;
0, 0] == cv22_5;

cv22_2, cv22_3, cv22_4, cv22_5] == 2

1 ] == cv24_1; count 24 [0, m, w] == cv24_2;
n, x] == cv24_3; count 24 [b, o, y] == cv24_4;
0 ] == cv24_5;

cv24_2, cv24_3, cv24_4, cv24_5] ==

p_tt_so_6. The fairness of the distribution is tightened with T by constraining the
differences of cv to be in the domain {—T,...,T}. In the instance example:
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aux0_1 == cv0_1
aux0_3 == cv0_1

- ¢cv0_2; aux0_2 ==
- cv0_4; aux0_4 ==

aux0_ 5 == ¢cv0_2 - cv0_4; aux0_6 ==

{aux0_1, aux0_2, aux0_3,

aux20_1 == cv20_1
aux20_3 == cv20_1

aux20_5 == cv20_2 - cv20_4; aux20_6

{aux20_1, aux20_2, aux20_3,

aux22_1 == cv22_1
aux22_3 == cv22_1
aux22_5 == cv22_2 - cv22_4;
{aux22_1, aux22_2, aux22_3,

aux24_1 == cv24_1
aux24_3 == cv24_1

- CV22_2; aux22_2
- Cv22_4; aux22_4

- cv24_2; aux24_2
- cv24_4; aux24_4

aux24_5 == cv24_2 - cv24_4; aux24_6

{aux24_1, aux24_2, aux24_3,

cv0_1

- cv20_2; aux20_2 == cv20_1
- ¢cv20_4;

== cv22_

- ¢cv0_3;
cv0_2 - cv0_3;
cv0_ 3 - cv0_4;
aux0_4, aux0_5, aux0_6} in (-1)..1

- cv20_3;

aux20_4 == cv20_2 - cv20_3;
== cv20_
aux20_4, aux20_5, aux20_6} (-1)..1

3 - cv20_4;

1 - cv22_3;

== cv22_2 - cv22_3;

== cv24_

aux22_6 == cv22_3 - cv22_4;
aux22_4, aux22_5, aux22_6} (-1)..1

1 - cv24_3;

== cv24_2 - cv24_3;
== ¢cv24_3 - cv24_4;

aux24_4, aux24_5, aux24_6} (-1)..1

p_tt_so_7. The extra hours of ¢t is computed via the sum of the hours of the reg-
ular workers (implication constraints are used to take into account only those workers
performing more than i hours) plus the sum of the hours of ew * ef. In the instance

example:

sum [0, 1, v] == hoW1l;
(eWL1 >= 0) => (eH1

sum [0, m, w] == hoW2;
(eWL2 >= 0) => (eH2 ==

sum [a, n, X] == hoW3;
(eWL3 >= 0) => (eH3

sum [b, o, y] == hoW4;
(eWLd >= 0) => (eH4 ==

sum [eWL1, eWL2, eWL3,

sum [c, 0, 0] ==

hoW1 - 35 ==
eWL1); (eWL1
how2 - 35 ==
eWL2); (eWL2
hoW3 - 35 ==
eWL3); (eWL3
hoW4 - 35 ==
eWL4); (eWL4
eWL4] == tot_

eh = tot_EWL + (2 * eWL5)

eWL1;
< 0) =>

eWL2;
< 0) =>

eWL3;
< 0) =>

eWL4;
<0) =>

EWL;

(eH1 == 0);
(eH2 == 0);
(eH3 == 0);
(eH4 == 0);

p_tt_so_8. it variables are labeled to find the assignment that minimizes the extra
hours. In the instance example:
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label [0,1,v,0,m,w,a,n,x,b,0,y,c,0,0] in order, minimizing eh

5.3.4 Stage tt_map:

The call tt_map nt ntw d tt = timetabling runs the stage. In the instance example, the
call results to be:

tt_map 347101, 2,3,1,2,3, 1[I0, 0, 22, 24, 20], [0, 20,
22, 24, 01, [0, 20, 22, 24, 01, [0, 20, 24, 22, 01, [24, 22,
20, 0, 0], [24, 0, 0, O, 241, [24, 24, 0, 0, 0] ]

== timetabling

A single solution is obtained:
timetabling = [ [ 0, O, 22, 24, 0, 0, O, O, O, O, O, O, 20
[ 0o, ob 0,0 00 0, 20, 22, 24, 0, 0, 0O, O,
o, o, 0o, 0, 0, 0, 0, O, O, 20, 22, 24,
0, 20, 24, 22, 0, 0, 0, O, 0, O, O,
0 0
0

1.
01,
01,
0, 01,

, 0, 0, O, 24, 22, 20, O, O, O, O, O, O ]
, 0, 0,060,000, 24, 0, O, O, 24 1],
]

24, 24, 0, 0, 0, O, O, O, O, O, O, O, O

I !

Lo T o I s T e N |

]

The following steps are performed to compute the solution:
p_tt_ma_1. The solved Tuble is received, mapping it to (timetabling, eh).

5.4 Performance

The modeling and solving of the ETP in TOY(FD) and other state-of-the-art CP(FD)
systems is deeply analyzed in Chapters[7]and[8] respectively. However, from the solving
point of view, the ETP results are compared first with the ones of Sections and
discussing if the conclusions for solving classical CP(FD) benchmarks also hold for
solving the real-life ETP. This section focuses on this comparison. The two TOY(FD)
models p_tt_bs.toy and p_tt_is.toy (respectively used for Sections and are
available at: http://gpd.sip.ucm.es/ncasti/models.zipl

5.4.1 Performance of the Different 7O)(FD) Versions

As it happened with the benchmarks of Section[3.4] it is claimed now that the ETP just
formulated is representative enough for testing the performance of TOY(FD).

First, it is also a parametric problem, and thus the three different instances ETP-7,
ETP-15 and ETP-21 (whose solving times for all the TOY(FD) versions are of tenths of
seconds, seconds and minutes, respectively) have been selected. These three instances
follow the same input parameters as the instance example presented in Section [5.1
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varying just the parameter nd in 7, 15 and 21, to consider a timetable of one, two and
three weeks, respectively. The achieved solving times are relevant for comparing the
results with those of Table [3.1] turning ETP-7 into a mate instance for M-400, Q-90, L-
119 and G-9; ETP-15 into a mate instance for M-900, Q-105, L-127 and G-10; ETP-21 into
a mate instance for Q-120, L-131 and G-11.

Second, the ETP also includes the whole set of 7D constraints of the TOY(FD)
repertoire. More specifically: Relational constraints, as #<=, posted in p_tt_ta_5 (cf. Sec-
tion . Arithmetic constraints, as #-, posted in p_tt_so_6. Propositional constraints,
as post_implication, posted in p_tt_ta_5 and p_tt_so_7. Domain constraints, as
domainanddomain_valArray, postedinp_tt_ta_3 and p_tt_so_2, respectively. Global
constraints, as all_different, distribute, count and sum, posted in p_tt_ta_4,
p_tt_so_2, p_tt_so_5 and p_tt_so_6, respectively. Finally, both stages team_assign and
tt_solve end with a 1abeling search strategy. Whereas the former relies on a satisfi-
ability search exploration (to find any feasible tda) the latter relies on an optimization
one (to find the ¢t assignment minimizing the amount of extra hours).

Table[5.2presents the results for running the ETP instances in the different TOY(FD)
versions. These results are compared to the ones of Table[3.1] Column Instance rep-
resents the instance being run (the concrete 7O)Y(FD) version solving it is represented
by FDs, FDg and FD1i for TOY(FDs), TOY(FDg) and TOY(FDi), respectively). Next
block of three columns represent results for incremental propagation mode. Column
Incremental represents the CPU solving time, measured in milliseconds. Column
Perc_I represents the percentage of the CPU solving time devoted to FD search ex-
ploration. Column Sp-Up_I represents the speed-up of TOY(FDg) and TOY(FDi)
w.r.t. TOY(FDs). Next block of three columns are the same, but for batch propa-
gation. Finally, column I/B represents the speed-up of using batch mode instead of
incremental one. The following conclusions are drawn:

e The approach of enhancing the TOY(FD) performance by focusing on its 7D
solver is still encouraging for TOY(FDyg), but this is not as clear when consider-
ing TOY(FDi). Thus, both versions are discussed separately.

| Instance [[ Incremental | PercI | Sp-Up.I || Batch [ Perc B | Sp-Up B [| I/B |

ETP-7 FDs 0.248 35.5 1.00 0.248 37.6 1.00 || 1.00
ETP-7 FDg 0.192 2.1 1.30 0.186 4.0 1.33 || 1.03
ETP-7 FDi 1.380 0.3 0.18 0.998 0.5 0.25 || 1.39
ETP-15 FDs 3.22 91.9 1.00 2.72 92.7 1.00 || 1.19
ETP-15 FDg 0.90 60.0 3.57 0.88 63.3 3.13 || 1.02
ETP-15 FDi 3.28 51.2 0.98 2.56 69.9 1.06 || 1.28
ETP-21 FDs 338.16 99.9 1.00 || 261.68 99.9 1.00 || 1.25
ETP-21 FDg 50.04 99.1 6.67 49.92 99.1 5.26 || 1.00
ETP-21 FDi 109.02 98.6 3.13 || 107.96 99.3 244 || 1.01

Table 5.2: ETP Performance Results
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Regarding TOY(FDg), it improves the performance w.r.t. TOY(FDs) for all the
ETP instances, in a range of 1.30-6.67 times faster. This range is even wider than
the 1.37-3.57 achieved for the classical CP(FD) benchmarks (where four different
problems were run).

Moreover, the improvement of TOY(FDg) w.r.t. TOY(FDs) increases as the in-
stances scale up. This already happened for Queens and Langford's (a 1.81-2.50
improvement for Q-90 to a 3.33-3.57 one for Q-105 and Q-120; a 1.37 improve-
ment for L-119 to a 2.56-2.63 one for L-127 and L-131) but, once again, in ETP this
improvement increase is wider (with a 1.30-1.33 for ETP-7, a 3.13-3.57 for ETP-15
and a 5.26-6.67 for ETP-21). As it can be seen, this also includes a gap between
the instance solved in seconds and the instance solved in minutes (which did not
happen neither in Queens nor in Langford's).

Regarding TOY(FDi), three different situations happen for solving the three
ETP instances. First, for ETP-7, its performance (w.r.t. the one of TOY(FDs))
is clearly worse, ranging in 4.0 and 4.5 times slower. Second, for ETP-15, its
performance is similar to the one of TOY(FDs) (ranging in a 0.98-1.06 times
better). Finally, for ETP-21, its performance clearly improves (a 2.44-3.13 times
faster) the one of TOY(FDs). Thus, as it happened with TOY(FDy), it is clear
than the improvement of TOY(FDi) w.r.t. TOY(FDs) increases as the instances
scale up, even much more than it did for Queens and Langford's instances (where
the improvement increased from a 1.30-1.81 for Q-90 to a 2.78-2.94 for Q-105
and Q-120; 1.37 for L-119 to a 2.78-2.94 for L-127 and L-131).

The clear correlation between the time the 7TOY(FD) versions devote to search
exploration and the improvement TOY(FDg) and TOY(FDi) achieve w.r.t.
TOY(FDs) still remains for ETP. Moreover, it justifies the different behavior
(w.r.t. classical CP(FD) benchmarks) presented before.

ETP behaves as Queens and Langford's, where the CPU time devoted to search
exploration increases as the instances scale up. However, whereas TOY(FDs)
maintains a similar increasing pattern for ETP, Queens and Langford’s, in
TOY(FDg) and TOY(FDi) the increasing pattern for ETP is quite different.

This leads to two mismatches between TOY(FDs) and both TOY(FDyg) and
TOY(FDi): First, the percentage devoted to search exploration of TOY(FDy)
and TOY(FDi) for ETP-7 (2.1%-4% and 0.3%-0.5%, respectively) is much smaller
than the one for TOY(FDs) (35.5%-37.6%). Moreover, this small percentage
of TOY(FDg) and TOY(FDi) is not even comparable to the ones they achieve
either for Q-90 and L-119. A second mismatch is that the percentage devoted
to search exploration of TOY(FDyg) and TOY(FD:) for ETP-15 (60%-63% and
51%-69%, respectively) is much smaller than the one for TOY(FDs) (92%-93%).
Moreover, this small percentage of TOY(FDyg) and TOY(FDi) is not even com-
parable to the ones they achieve either for Q-105 and L-127, but comparable to
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the ones for Q-90 and L-119 (whose solving times are an order of magnitude
smaller than the ones for ETP-15).

With these mismatches for ETP-7 and ETP-15, it is normal than the performance
improvement of TOY(FDg) and TOY(FDi) (w.r.t. TOY(FDs)) differs from the
ones for Q-90 and Q-105 (respectively L-119 and L-127), as the search explo-
ration times are not comparable. Also, as in TOY(FDg) and TOY(FDi) the
percentage of time devoted to search exploration clearly increases from ETP-15
to ETP-21, the improvement achieved also increases (in contrast to Q-105 and
Q-120 or L-127 and L-131, where both the percentage of search exploration and
the improvement achieved remain more or less stable).

e The selected propagation mode becomes relevant for ETP, as the differences
achieved between batch mode (faster for all the instances) and incremental one
are much greater than those achieved when solving classical CP(FD) bench-
marks. This does not happen for TOY(FDg), where the 6ms, 20ms and 280ms
differences respectively achieved for ETP-7, ETP-15 and ETP-21 (cf. columns
Incremental and Batch) are always two orders of magnitude smaller than the
CPU solving time. However, in TOY(FDi), the 382ms and 720ms differences
for ETP-7 and ETP-15 represent a 1.39 and a 1.28 (respectively) improvement of
batch w.r.t incremental. And, finally, in TOY(FDs), the 500ms and 76.480ms
differences for ETP-15 and ETP-21 represent a 1.19 and 1.25 (respectively) im-
provement of batch w.r.t. incremental. The latter is specially remarkable, as it
represents the difference between solving the problem in 4.5 minutes or in 5.5
minutes.

In summary, it can be seen that the performance results of ETP are similar to the
ones of Queens and Langford’s. However, ETP is said to be a more extreme problem,
where the performance results are much more dependent on the concrete instance
being run than when running any classical CP(FD) benchmark.

5.4.2 Performance of Applying the Search Strategies

The bs model uses in p_tt_so_8 a single labeling [toMinimize eh] TransTT as its
search strategy. Analyzing the solutions of the three instances ETP-7, ETP-15 and ETP-
21 being proposed (more specifically, analyzing the solutions of ¢t, ¢t2 and tt; for the
two feasible tda; and tdas, as well as the initial search space of these tt4, tt; and tt3) it
is observed that there is a higher pruning of the search space if some of the weekend
variables are labeled first to the highest value (24) of their domains. Intuitively, it makes
sense, as weekend variables have a smaller domain {0, 24} than working days ones
{0, 20, 22, 24}. Thus, due to the distribute constraint posted on the variables of
each day (see p_tt_so_2), the binding of some variables in a weekend day may lead
to the binding of the whole working team for that concrete day. However, if this is
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not the case, due to the redundant count constraint posted on each kind of shift (see
p_tt_so_5) and to the structure of the solutions (which contain more 0 hour shifts than
24 ones), the binding of some weekend variables to 24 prunes more the search tree
than the binding of those same variables to 0.

Thus, the new search strategy of the is model applies 1abB smallestDomainVar
largestVal 2 (foldl (++) [] TransTT) first. This binds to 24 two of the weekend
variables of each team ¢t;, highly reducing the search space the further optimization
labeling has to deal with (although it might cause a loss of completeness). Also, as
labB precludes any further backtracking to explore other bindings for those weekend
variables, the optimization search exploration is triggered just once per each team t¢;
(as it happened in bs when using the original search strategy).

Table presents the results for running the ETP instances in TOY(FDg) and
TOY(FDi) by using the is models. These results are compared to the ones of Table
Columns bs and is represent the CPU solving time of bs and is (respectively), both
of them using incremental propagation mode. Columns Sp-Up_bs and Sp-Up_is
represent the speed-up of TOY(FDg) w.r.t. TOY(FDi) for bs and is, respectively.
Finally, column off/on focuses on each concrete TOY(FD) version, representing the
speed-up of is w.r.t. bs. The following conclusions are drawn:

e The use of the new search strategies is encouraging, as the performance of
TOY(FDg) and TOY(FDs) for solving is instances is better than the achieved
for solving bs ones. In this setting, once again, the behavior of ETP is similar to the
one of Queens and Langford’s, as the better performance achieved clearly scales
as the size of the instances scale. However, the impact of applying the new search
strategies is smaller in ETP than in Queens and Langford's. This makes sense, at
least for ETP-7 and ETP-15, as their devoted time to search exploration are much
smaller than the ones for Q-90, Q-105, L-119 and L-127.

In ETP-7 both TOY(FDg) and TOY(FDi) have a worse performance in is than in
bs. However, whereas in TOY(FDi) the 0.97 worst performance is smaller than
the 0.21 and 0.54 worst performance 7OY(FDi) achieved for Q-90 and L-119
(respectively), in TOY(FDg) the 0.95 worst performance supposes a difference
w.r.t. the 1.28 and 1.05 improvement 7OY(FDyg) achieved for Q-90 and L-119,
respectively. In any case, in Table it has been seen that the percentage of
CPU time devoted to search exploration of TOY(FDg) and TOY(FDs) for ETP-
7 is just 2.1% and 0.3%, respectively. Thus, the reason of this 0.97 and 0.95 worse
performance for is relies on the variable selection method smallestDomainVar
(i.e., first fail) of 1abB, whose implementation in the search strategy infrastruc-
ture of TOY(FDyg) and TOY(FDi) is much less optimized than the one in the
original Gecode and ILOG Solver API.

In ETP-15 and ETP-21, this overhead for the variable selection method still plays
its role, but the high pruning of the search space achieved by 1abB overcomes
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| Instance || bs | Sp-Up_bs || is | Sp-Up_is || off/on |

ETP-7 FDi 1.380 1.00 || 1.420 1.00 0.97
ETP-7 FDg 0.192 7.14 || 0.202 7.14 0.95
ETP-15 FDi 3.28 1.00 2.64 1.00 1.25
ETP-15 FDg 0.90 3.70 0.48 5.56 1.89
ETP-21 FDi || 109.02 1.00 || 22.90 1.00 4.76
ETP-21 FDg 50.04 2.17 9.56 2.38 5.26

Table 5.3: ETP Performance Using the Search Strategies

it. Whereas TOY(FDg) achieves a 1.89 and 5.26 improvement for ETP-15 and
ETP-21 (respectively), TOY(FD:) achieves a 1.25 and 4.76.

e Second, the fact that the improvement achieved by TOY(FDy) for is is greater
than the one achieved by TOY(FDi) still remains for ETP. However, whereas
for Queens and Langford's the gap between TOY(FDg) and TOY(FDi) for is
instances increased as the instances scale up, for ETP it does not (0.97 and 0.95
of TOY(FDi) and TOY(FDyg) for ETP-7, respectively; 1.25 and 1.89 for ETP-15;
4.76 and 5.26 for ETP-21).

5.5 Related Work

As it was said, the ETP being proposed can be seen as a particular case of the NRP,
the most paradigmatic example of an Employee Timetabling Problem, in which an as-
signment of the nurse roster to the working shifts of a hospital must be scheduled.
The NRP has been extensively studied in the last decades, and different Mathematical
Programming, Heuristics and CP(FD) approaches have been tried to tackle it [38].

Within Mathematical Programming, recent applications include Linear Program-
ming [200] (applied to a hospital in The Netherlands), Integer Programming [164] (ap-
plied to the International Nurse Rostering Competition [144]) and Mixed Integer Pro-
gramming [162] (applied to a typical Swedish nursing ward). Within Heuristics recent
applications include Evolutionary Algorithms [204] (applied to a typical hospital envi-
ronment) and Hybrid Methods [21] (hybridizing an stochastic ranking method with a
Simulated Annealing heuristic within a Local Search and a Genetic Algorithm frame-
work, and applying it to a problem based on a hospital in United Kingdom).

Within CP(FD) recent applications include C++ CP(FD) [152] (using ILOG Solver to
find satisfiability solutions to a problem based on a hospital in The Netherlands) and the
use of ad hoc soft constraints [137], which are integrated into a Variable Neighborhood
Search [89] with reconstruction based on Limited Discrepancy Search [95] (applied to
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the instances of the University of Nottingham). Finally, regarding CFLP(FD) there are
no previous applications of NRP, but so there are for other timetabling problems [32].

5.6 Conclusions

The classical CP(FD) benchmarks used in Chaptersand@]have shown that interfacing
external C++ CP(FD) solvers and applying ad hoc search strategies have improved the
solving performance of TOY(FD). However, the modeling of these problems is quite
simple, and thus they have not exploited the high expressivity of TOY(FD). Thus,
in this chapter a real-life ETP coming from the communication industry has been pro-
posed, with the aim of exploiting both the high expressivity of TOY(FD) and its higher
solving performance just achieved.

A description of the ETP has been presented, which is parametric in the number of
days of the timetable, number of teams (and number of workers per team), periodicity
the extra worker can be selected (and the extra factor its working hours must be paid),
number of different kinds of working days (and the concrete shifts requested on each
of them), absences of the regular workers of the teams and the distribution of the shifts
among the workers of a team. Also, an instance example has been proposed to clarify
all these concepts. Then, a solving approach to tackle the ETP has been presented,
which is based on splitting the initial search space into as many different assignments
of teams to days there are, exploring only those ones that are feasible and, for each
of them, decomposing this search space subset into as many independent problems
(exponentially easier to be solved) as teams there are.

Then, a parametric timetabling algorithm implementing the solving approach has
been described. It is based on a four stage process: team_assign, tt_split, tt_solve and
tt_map. First stage team_assign just concerns with finding any feasible assignment of
teams to days. Starting from it, the stages tt_split, tt_solve and tt_map are executed, de-
composing this search space subset into the independent subproblems, solving them
and fitting the format of the solution, respectively. The sequence of stages is repeated
for each feasible assignment. Finally, the computed solutions are compared, outputting
as a result the one with minimum extra hours. The stages of the algorithm have been
presented separately, enumerating for each of them the steps being followed and in-
stantiating those steps to the instance example.

Finally, the results of Sections[3.4]and [4.3| have been revisited, and the ETP-7, ETP-
15 and ETP-21 instances have been used (whose solving times are as well of tenths of
seconds, seconds and minutes, respectively) to discuss if the conclusions for solving
classical CP(FD) benchmarks also hold for solving the real-life ETP. It has been shown
that ETP behaves similarly to Queens and Langford's: The TOY(FDg) and TOY(FDs)
improvement w.r.t. TOY(FDs) increases as the instances scale up, as well as the CPU
solving time devoted to search exploration and the impact of the improved search strat-
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egy applied.

However, the ETP has been claimed to be a more extreme problem, where the
results are more dependent on the concrete instance being run than when solving
Queens or Langford's. There are some remarkable issues to be pointed out:

TOY(FDg) still outperforms TOY(FDs), but the range of its improvement
achieved is wider than the one for Queens and Langford’s.

TOY(FDi) behaves respectively worse, equivalent or better than TOY(FDs) for
the three ETP instances.

The search exploration percentage of TOY(FDg) and TOY(FDi) for ETP-7 and
ETP-15 is much smaller than the one for TOY(FDs), and the ones of TOY(FDg)
and 7TOY(FDi) for the mate Queens and Langford's instances.

The batch propagation mode clearly improves incremental mode in TOY(FDi)
for ETP-7 and ETP-15, and in TOY(FDs) for ETP-15 and ETP-21 (the latter achiev-
ing a remarkable difference of minutes).

The impact of applying the improved search strategy is smaller in ETP instances
than in Queens and Langford's instances. Moreover, the speed-up of TOY(FDg)
w.r.t. TOY(FDi) does not increase as the instances scale up.
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Chapter 6

Bin Packing Problem

The application of TOY(FD) to the real-life ETP of Chapter [5| has exploited all the
expressive power of the system, as well as the better solving performance achieved (by
using the techniques of Chapters[3|and ). In this case, the relation of TOY(FD) with
the real-life problem to be tackled has been direct: A department needed to schedule
a timetabling, and TOY(FD) was applied to model and solve it.

In this chapter, a second real-life application of TOY(FD) is presented. But, in
this case, the relation of the system with the real-life problem to be tackled is indi-
rect: TOY(FD) is applied to the classical Bin Packing Problem [2] (from now on just
BPP), contributing to the future development of portfolio solvers to tackle configuration
problems (which can be seen as generalizations of the BPP) coming from the industry
of the data centre optimization. A more detailed explanation of the entire process and
the role TOY(FD) plays on it is given next.

The classical BPP can be defined as follows: Given a set S = {s1,...,s,} of n indi-
visible items (each of a known positive size s;) and a number of bins (each of capacity
(), the goal is to pack the items into the minimal number m of bins (such that the sum
of sizes of the items in each bin does not exceed C).

A data centre have to tackle several configuration problems, which can be seen as
BPP’s as they consist of assigning a group of objects to a set of containers [155]. For
example, workload consolidation involves ensuring that the total amount of resources
required by the set of jobs assigned to a server does not exceed the capacity of that
resource. An even simpler example is the assignment of the servers to power units.
Unfortunately, these configuration problems are more general than the classical BPP,
as minimizing the number of servers or power units can cost less energy, but other
side effects as agility, reliability or sustainability (among others) must be considered.
Moreover, the success on the application of a concrete Mathematical Programming,
Heuristics or CP(FD) approach to the problem is dependent on the concrete instance
to be solved (that is, the application of a same technique to the solving of two differ-
ent instances can lead to very different performance results). In summary, computing
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optimized deployment plans requires to solve a hard planning problem and that plan
may be subject to the addition of side requirements that cannot be defined in advance.
Therefore, a robust method is needed to tackle it.

In this chapter an empirical analysis of the solving hardness of the classical BPP is
presented. It will serve as the basis for the future development of portfolio solvers,
useful for tackling generalized BPP real-life problems arisen in the optimization of a
data centre. In the empirical analysis, both heuristics and CP(FD) systems (the latter
including TOY(FDyg)) are applied to the solving of a parametric generated benchmark
of BPP instances, which is of particular interest as it accurately fits different aspects of
the real-life generalized BPP instances. The experiments rely on first fixing the set of
algorithms proposed (heuristics and CP(FD) models), and then running the instances
of the benchmark, analyzing the existing relations between the parameters of the gen-
erated instances and the success of the different techniques for solving them. The
conclusions provide a basis for the future development of portfolio-based solvers for
the generalized BPP instances. These solvers will rely on the structure of an instance
(the parameters that generated it) to learn their best configuration and apply the most
suitable technique for solving it.

The chapter is organized as follows: Section [6.1] discusses the parametrical statis-
tical model provided by the Weibull distribution [201], showing the variety of item size
distributions that can be generated with it. It proves the model to be successful on fit-
ting real-life generalized BPP instances coming from the data centre optimization and
education industries. Section presents the empirical analysis process layout. It
describes the set of instances created (which gives support for very controlled experi-
ments) and both the heuristics and CP(FD) models used to run the instance set. Section
[6.3]analyzes the results by the CP(FD) and heuristics methods, focusing on the relation
between the Weibull parameters of the BPP instances and the quality of the solutions.
Section [6.4] presents some related work. Finally, Section[6.5|reports conclusions.

6.1 Weibull-Based Benchmark Approach

The relevance of the BPP (it is a ubiquitous problem that arises in many practical ap-
plications) and its difficulty to be solved (it is NP-complete) turns it into a deeply stud-
ied problem. The literature contains numerous approaches to tackle it and, interest-
ingly, each proposed method attaches its own benchmark to show its performance
[70] [115] [168] [175] [176] [199]. Thus, a first difficulty to carry out the empirical analysis
proposed in this chapter comes from the lack of standardized benchmarks for BPP.
Moreover, it is a must for the benchmark finally proposed to be representative
enough of the real-life generalized BPP instances, as the conclusions in the empiri-
cal analysis will be applied to the further development of specialized techniques for
tackling these real-life instances. A big gap between the benchmark and the real-life
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instances would make the empirical analysis meaningless. Unfortunately, the different
BPP benchmark suites proposed in the literature are all artificial and lacking a practi-
cal basis. Typically, as for example in the benchmarks by Scholl and Klein [167], item
sizes are generated using either uniform or normal distributions. As it was pointed out
in [80Q], current benchmark suites in this area are often unrealistic and trivial to solve.
Thus, the use of more realistic BPP benchmark suites for their study in large-scale data
centre problems are demanded [155].

In this chapter a new BPP benchmark suite is proposed, which is based on the
well known Weibull parametric continuous probability distribution. It is named after
Waloddi Weibull, who presented the distribution in a seminal paper in 1951 [201], and
is defined by both a shape (k > 0) and a scale (\ > 0) parameters. Figure[6.1] presents
the probability density function, f(x; A, k), of a random variable z distributed according
to Weibull. The parameters give rise to a great flexibility, allowing to represent many
distributions that naturally occur in a variety of problem domains involving distribu-
tions of time horizons, time slots or lot sizes [201]. Figuresand present several
examples of different distributions that can be obtained by instantiating the Weibull
distribution. The former presents four different distributions for small values (0.5, 1.0,
1.5 and 5.0) of the shape parameter, k. Clearly very different regimes are possible,
some exhibiting extremely high skew around the value specified by the distribution’s
scale parameter, \. In the latter, larger values of the shape parameter (9.0, 12.0, 15.0
and 18.0) are considered, and it can be seen that the distribution exhibits lower varia-
tion as shape increases.

A BPP benchmark suite based on the Weibull distribution successfully represents
the real-life generalised BPP instances coming from the industry of the data centre
optimization. To ensure it, a first subsection shows, visually, the quality of the fit that
can be obtained. Then, a second subsection presents a more rigorous analysis of the
goodness of fit by using two standard statistical tests.

6.1.1 Fitting Data Centre Real-life Instances

The 2012 ROADEF/EURO Challenge [1] is concerned with the problem of machine reas-
signment, with data and sponsorship coming from Google. The subject of the challenge
is to find a best-cost mapping of processes, which have specific resource requirements,
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Figure 6.1: Weibull Probability Density Function
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onto machines, such that a variety of constraints is satisfied. A core element of the
problem are bin packing constraints stating that the total amount of a given resource
required by the processes assigned to a machine does not exceed the amount avail-
able. An important element of this challenge is the mapping of processes to machines
such that the availability of each resource on the machine is not exceeded by the re-
quirements of the set of services assigned to it. This subproblem is a multi-capacity
BPP: Each machine is a bin with many elements defined by the set of resources avail-
able, and each process corresponds to an item that consumes different amounts of
each resource. A publicly available set of problem instances that contains many BPP is
provided. In particular, the instance a2(5) is used to show how well a Weibull-based
benchmark model fits the BPP of this challenge.

Figure presents the probability distribution for the resource 10 of this a2(5)
instance. The probability density function that corresponds to the actual data is plotted
as a line. It is clearly seen that the distribution is extremely skewed, with the majority
of the probability mass coming from smaller items (values from 0 and 20,000). Then,
the range of likely item sizes spans several orders of magnitude (over 100,000), and
there is a very small possibility of encountering extremely large items.

R, the open-source statistical computing platform [8], has been used to fit a Weibull
distribution to the data of this resource, by using Maximum Likelihood Fitting (MLF)
[186]. Specifically, the R Weibull Distribution MLF implementation by Wessa has been
used, which is available as an online service [202]. The resulting Weibull is presented
in Figure [6.4] as the circles imposed on the density function from the data. A deeper
visual analysis of the quality of the fit can be done by using a Quantile-Quantile plot (Q-
Q plot). These plots are a simple tool to determine whether two data sets come from
the same underlying distribution. In a Q-Q plot, each point corresponds to a particular
quantile from both data sets. If, in the resultant plot, the set of points sit on a line of
slope 1 then it can be concluded that the underlying distributions are the same. Figure
presents the Q-Q plot (generated by R) for the resource 10 of a2(5).

By observing both figures, it can be seen that the Weibull distribution computed
by MLF fits very accurately the actual data of the instance. In particular, for the values
ranging from 0 to 20,000 (which, once again, represent the majority of the probability
mass) the fit is quite close. Then, for the outliers values spanning several orders of
magnitude the fitting is worse, but it makes sense, as the probability of this values is
nearly 0. However, besides this graphical observation, to ensure more rigorously the
quality of the fitting of Weibull to a2 (5) and other real-life instances, next section uses
two statistical tests.

6.1.2 Verifying the Goodness of Fit

The whole set of instances from the 2012 ROADEF/EURO Challenge are gathered. In
addition to those, a set of real-life examination timetabling (from now on just ETT)
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benchmarks from the OR library [151] are considered, which involve scheduling ex-
aminations (items) involving specified numbers of students (item sizes), into rooms of
specified capacity (bin capacities) within time-slots (number of bins). Two goodness of
fit tests are performed on the whole set of instances, to ensure Weibull to be successful
in fitting their distribution of item sizes.

The first one is the two-sided Kolmogorov-Smirnov (KS) [6] test. It is a non-parametric
test for the equality of continuous, one-dimensional, probability distributions. As im-
plemented in R, it requires two sample sets: One representing the observed data, and
the other representing a sample from the hypothesis distribution. The observed data is
represented by the item sizes from the real-life instance, while the second set is a vec-
tor of items generated according to the best-fit Weibull distribution obtained by MLF
from the observed data [158]. The null hypothesis of this statistical test is that the two
data sets come from the same underlying distribution. For a 95% level of confidence, if
the p-value from the test is at least 0.05, the null hypothesis cannot be rejected.

As a complementary approach the x? test [3] is applied to the instances set. The
null hypothesis is that the observed and expected distributions are the same. The
procedure requires grouping the items into ~ categories, according to their size. Based
on these categories, the expected number of values in each category can be computed,
assuming that the item sizes are drawn from a Weibull distribution with shape and scale
parameters estimated from the data set. Figure[6.6]presents the computation of the x?
statistic. On it, the corresponding p-value depends on O and FE, where each O, and F;
represent the observed and expected frequencies of each category i, respectively. This
test is known to be less sensitive to outliers in the sample data. For example, referring
back to the distribution of Figure the tail of the distribution (the values ranging
from 20,000 to 100,000, for which the probability is nearly 0) can be grouped into a
same category. The other v — 1 categories are equally sized.

Table presents the results of a randomly selected subset of the analyzed in-
stances. Column Instance represents the problem the real-life instances belong to.
Whereas the first six rows belong to the ETT, the last six belong to the ROADEF/EURO
one. Columns Shape and Scale represent the shape and scale parameters of the best-
fit Weibull distribution obtained by MLF, respectively. Column p-value represents the
p-value of the KS test. Last three columns represent the results for the x? test, with
number of categories created, the lower bound of the last category (selected by obser-
vation in the data of each instance) and the achieved p-value.

N

X* = Z(Oi — E;)*/E;,
i=1

Figure 6.6: x? Statistic
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| Instance || Shape | Scale || p-value || #(cat) | IbTail | p-value |

Nott 1.044 43.270 || 0.7864 7 100 0.059
MelA 0.946 109.214 0.091 10 427 0.073
MelB 0.951 117.158 0.079 5 47 0.051
Cars 1.052 85.438 0.037 18 53 0.109
hec 1.139 138.362 0.436 10 293 0.204
yor 1.421 37.049 0.062 7 117 0.068
al} 0.447 | 104,346.70 0.005 30 | 163,000 0.105
al3 0.549 | 88,267.85 0.001 15| 54,800 0.068
a2} 0.562 | 67,029.83 0.000 30 | 470,000 0.768
a2} 0.334 | 103,228.30 0.001 30 | 500,000 0.051

b 0.725 | 40,469.74 0.000 20 | 185,000 0.060

b3 0.454 | 91,563.28 0.000 30 | 140,000 0.088

Table 6.1: Statistics Test for the Instances

The results of the KS test reveal that most of the ETT item size distributions can
be accurately modeled by a Weibull distribution, since the corresponding p-values are
above 5% (highlighted in bold). Unfortunately, these KS results clearly reject the null
hypothesis for the ROADEF/EURO instances, most likely due to both the size of the data
sets and the presence of outliers in the tail of the distribution. However, it is known
that when dealing with large data sets with a small number of large outliers, this test
tends to underestimate the p-value. That is, even if the null hypothesis is rejected the
candidate distribution might still characterize the data set [64]. This idea is reaffirmed
by the results of x2, where the null hypothesis cannot be rejected for any of the bench-
marks that are presented. Thus, it proves that the Weibull distribution successfully fits
the item size distributions of the whole set of proposed real-life instances.

6.2 The Empirical Analysis Layout

This section describes the layout process being performed to carry out the empirical
analysis. A generated benchmark suite (based on the Weibull distribution) is used to
run the experiments, which include the application of both CP(FD) and heuristics tech-
niques. In the CP(FD) side, the Gecode constraint solving library is used. It is applied
by two equivalent C++ CP(FD) Gecode and a CFLP(FD) TOY(FDg) models. In the
heuristics side, the well-known MAXREST, FIRSTFIT, BESTFIT and NEXTFIT BPP strategies
are used. They are applied by a C++ model formulating each of these methods.
Figure[6.7] presents the layout process. The first module represents the benchmark
generator, and it is described in Section The benchmark consists of an instance
set, each of them contained in a single file (gathering the items sizes of the instance
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Figure 6.7: The Empirical Analysis Layout

in a decreasing order), which is univocally determined by the id of the instance. The
second module represents the set up for the experiments, and it is described in Sec-
tion It receives the instance set and returns some script files, gathering the set of
calls to be performed on the CP(FD) or heuristic session (where each call runs a single
instance). The CP(FD) and heuristics models are described in Section[6.2.2]and
respectively. The third module represents the CP(FD) and heuristics sessions, taking
both the concrete model and the script to run the instance set. It is also described in
Section[6.2.4] Finally, the last module is the analysis of the results, and it is further pre-
sented in Section The set of instances, the CP(FD) and heuristics models and the
session scripts are available at: http://gpd.sip.ucm.es/ncasti/models.zip.

6.2.1 Instance Set Generation

The benchmark suite is generated by using the Boost library [30]. This is a C++ API that
includes type definitions for random number generators and a Weibull distribution,
which is parameterized by the random number generator, the shape (k) and the scale
(A). Iteration capabilities for traversing the distribution of generated values are also
provided. In the benchmark, X is fixed to 1000, so that the distributions of item sizes are
spanned over three orders of magnitude. For k, a very large range [0.1, 0.2, ..., 19.9] of
values are considered, giving rise to up to 199 different (k, A\) parameter combinations
(or categories). By referring back to Figures[6.2]and[6.3} it is observed that very different
item size distributions are generated in such these categories.

With the aim to obtain statistically significant performance figures 100 instances
are generated for each category, thus leading to the generation of 19,900 instances.
Each instance contains 100 items, which are isolated in a single file (and represented
in a decreasing order). The file can be univocally identified by the (£, \) and the in-
dex (0, ..., 99) within the category. Moreover, the files are enumerated from 1 to
19,900. Thus, for example, the generated 100 instances for kK = 2.5 are represented
in inst_2401(2.5,1000, 0).data, ..., inst_2500(2.5,1000, 99).data. As an example, the in-
stance inst_2405(2.5, 1000, 4).data contains the following item sizes: {2001, 1699, 1657,

127


http://gpd.sip.ucm.es/ncasti/models.zip

1647, 1591, 1556, 1534, 1498, 1480, 1466, 1451, 1374, 1365, 1352, 1352, 1350, 1335, 1306,
1298, 1259, 1243, 1224, 1223, 1223, 1212, 1208, 1207, 1202, 1183, 1180, 1175, 1161, 1139,
1133, 1115, 1101, 1093, 1091, 1062, 1062, 1059, 1058, 1005, 981, 979, 970, 969, 955, 946,
941, 928, 923, 916, 911, 888, 854, 849, 844, 809, 808, 808, 803, 769, 753, 728, 716, 672, 670,
665, 656, 651, 622, 591, 588, 570, 567, 558, 554, 552, 538, 527, 527, 507, 503, 490, 450, 437,
402, 386, 371, 365, 355, 325, 321, 312, 297, 205, 193, 177, 135}.

Once the instance set is fixed, 11 different scenarios are considered for solving
each instance. They consist of setting the size of the bin C to the size of the highest
item of the instance times a factor ranging from 1.0 to 2.0 (increasing it 0.1 on each new
scenario). Thus, these scenarios (which are not taken from real-life instances) allow
to very precisely control how the applied solving methods behave as the size of the
bins slightly increase. For example, for solving inst_2405(2.5,1000, 4).data, in the 11
different experiments C is considered to be 2001, 2202, 2402, 2602, 2802, 3002, 3202,
3402, 3602, 3802 and 4002, respectively.

6.2.2 The CP(FD) Model

The CP(FD) experiments use the Gecode solver and the most efficient BPP C++ CP(FD)
model included in the Gecode distribution [173]. Also, for completeness with the
topic of this part of the thesis, now a CFLP(FD) variant of this BPP model has been
implemented in TOY(FDg). Regarding the empirical analysis being performed, this
TOY(FDg) model has been shown to be equivalent to the C++ CP(FD) one. That
is, both models post the very same FD constraint network and search strategy to
the solver, obtain the very same results for each of the instances of the benchmark
and spent the very same time for obtaining such these results. For example, both the
Gecode and TOY(FDg) models find an optimal solution of 47 bins (in 0.209 seconds)
for the instance inst_2405(2.5, 1000, 4).data proposed before.

The BPP model receives the following input arguments: The id of the instance Id.
The list of item sizes S. The capacity of the bins C. The timeout used for search explo-
ration T, which is set to 10 seconds to ensure that the session finishes in a reasonable
amount of time. It has also been verified that increasing this timeout to 300 seconds
does not significantly increase the proportion of solved instances. The model computes
as a result if the instance was solved to optimality or not within the used timeout. If
so, it also displays the optimal number of bins found and the time spent in search
exploration.

The model first employs the L; method by Martello and Toth [136] and a first-
fit BPP heuristic (which packs each item into the first bin with sufficient capacity), to
respectively obtain a lower 1b and upper bound Ub on the minimum number of bins to
be used. Then, it declares the following variables: A variable Bins (with initial domain
intherange 1b. . ub), representing the number of bins used to pack the items. A vector
of 100 variables Bin (with initial domain in the range 0. .Ub-1), where each Bin[1i]
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represents the bin the item i is assigned to. A vector of Ub variables Load (with initial
domain 0. .C), where each Load[i] represents the load of its associated bin. The
main constraint is the global BPP constraint proposed by Paul Shaw [177], enforcing
that the packing of items into bins corresponds to the load variables. Besides that,
three kinds of symmetry breaking constraints are applied: Load ones, stating that, if
Bins is smaller than ¢, then Load[i-1]..Load[Ub-1] are equal to 0. Capacity ones,
placing into different bins to those items whose size is greater than half of C. Bin ones,
avoiding different solutions involving permutations of items with equal size.

The search strategy labels first the variable Bins. Thus, for each labeled value, the
problem is reduced to find out if there is a feasible assignment of the items by using
that concrete number of bins. Also, by labeling Bins in an increasing order, the first
solution found is known to be optimal. Once labeled Bins, the 100 variables of Bin
are labeled in textual order, fitting each item to concrete bins. At this point, and as it
happened either with the classical CP(FD) problems and with the ETP (cf. Sections 4.3
and respectively), the use of an ad hoc search strategy highly improves the solving
performance for the BPP. That is, for each Bin[ 1] variable, instead of selecting a naive
increasing value order strategy, the possible bin to place the item is selected by using
the Complete Decreasing Best Fit: (CDBF) strategy proposed in [82]. It places Bin[1]
into the bin b with sufficient but least free space. If the assignhment fails, then b (and
other bins b1, ..., bj with same remaining free space) are pruned from the domain of
Bin[i] (and from the domain of other Bin[i1],...,Bin[1iz] representing items of
the same size).

6.2.3 The Heuristics Models

For the heuristics, a publicly available C++ implementation of the well-know heuristics
MAXREST, FIRSTFIT, BESTFIT and NEXTFIT [159] has been used. These four methods are
not exhaustive and thus, given a concrete instance, the optimal number of bins these
heuristics compute for it can be worse (higher) than the one computed by the two
CP(FD) models. For example, for the instance inst_2405(2.5,1000, 4).data proposed
before, whereas MAXREST uses 48 bins and NEXTFIT 63, both FIRSTFIT and BESTFIT use
47 bins (as the CP(FD) models). On the other hand, being n = 100 the number of items,
the worst case running time for the MAXREST, FIRSTFIT, BESTFIT and NEXTFIT heuristics
are O(n logn), ©(n?), ©(n?) and O(n), respectively. Thus, the experiments will suc-
ceed in finding a solution (within the timeout) for the entire 19,900 instance set, as a
difference to the CP(FD) approach.

Similarly to the CP(FD) search approach, the four heuristics place the items in tex-
tual order. However, neither of them compute an initial lower nor upper bound in the
amount of bins to be used. Instead of that, they start creating a first bin, for which
the first item is automatically assigned to. Starting from that the items are traversed to
place them in order, creating new bins on demand. In particular, when placing item i
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on the set of bins b4, ..., b; already opened:

e MAXREST traverses b,...,b; in order, computing the bin b, with maximum re-
maining space. If it does not fit i, then it opens a new b;,, and assigns ¢ to it.

e FIRSTFIT traverses by, ..., b; in order, assigning : to the first bin b, fitting it. If none
of them can do it, then it opens a new bin b, and assigns i to it.

e BESTFIT traverses by, ..., b; in order, computing the bin b, with sufficient but least
free space for fitting . If none of them can do it, then it opens a new bin b,
and assigns i to it. As it can be seen, this behavior is similar to the one of CDBF.
However, in the CP(FD) approach, for placing each item Bin[i], CDBF acts over
the potential set of bins (labeled value of the variable Bins), whereas in BESTFIT
the candidate set of bins dynamically grows while placing the different items.
Moreover, the BESTFIT strategy is not complete, and thus it does not backtrack to
place i in a different bin than b, (as CDBF does).

e Finally, NEXTFIT focuses just on the last bin b; of the by, ..., b; set. If it does not fit
i, then it opens a new bin b;,; and assigns i to it.

6.2.4 Setting the Experiments

Once described the instance set and both the CP(FD) and heuristics models, this sec-
tion focuses on the setup for running the experiments. The setup for the Gecode
and heuristics C++ models is presented first. Then, the slight differences arisen in
TOY(FDg) are discussed.

In C++, the models are compiled to generate executables. These executables can
be triggered via a command in a command session. The Gecode and heuristics models
are adapted so that, instead of S, they receive the name of the instance the items must
be read from (e.g., inst_2405(2.5,1000, 4).data), and, instead of C, they receive the fac-
tor to be applied to the first item being read (e.g., 1.0). Also, they receive the name of
the file where the solution must be stored (e.g., inst_2405(2.5, 1000, 4).data).

The command bpp . exe 2405 “$models_path$/bpp_instances/inst_2405(2.5
1000, 4).data” “$models_path$/Gecode/C++/bpp_solutions/inst_2405(
2.5, 1000, 4).s01”2.51.010000 solves the instance inst_2405(2.5, 1000, 4).data
using the Gecode model. The generated .sol file contains a single line ID = 2405
Solved =1 Time = 218 Bins = 47, indicating that the instance 2405 has been
solved in 218 milliseconds by using an optimal amount of 47 bins.

The command bpp . exe 2405 “$models_path$/bpp_instances/inst_2405(2.5
1000, 4).data” “$models_path$/Heuristics/bpp_solutions/inst_2405(
2.5, 1000, 4).sol” 1.0 solves the instance inst_2405(2.5,1000, 4).data using the
heuristics model. The generated .sol file contains four lines, one per heuristic, indicat-
ing the instance solved, the time spent and the number of bins used.
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ID = 2405 MaxRest: 0.000 48
ID = 2405 FirstFit: 0.000 47
ID = 2405 NextFit: 0.000 63
ID = 2405 BestFit: 0.000 47

A script (. bat) file is generated, containing the 19,900 commands running each of
the instances of the benchmark. The execution of this script is called a session. As for
each instance there are 11 configurations (with Cin [1.0, 1.1, ..., 2.0]) up to 11 script
files are used (for example, the file bpp_session_1.0.bat runs the entire instance
set, using for each instance bins with the capacity of its highest item).

The execution of a session in TOY(FDg) requires a few changes w.r.t. the process
presented before. First, 7TOY(FD) does not compile to native machine language, so
each command running an instance is in fact a TOY(FD) goal (to be executed within
a system session). Second, a TOY(FD) goal cannot read from a file, and thus the
goal must include the list of items S as an argument. As it can be seen, the content
of the instance set is needed for the creation of the script files, but not further when
performing the TOY(FDyg) sessions. Third, the stream of the system can be modified,
as to write the solution in a file univocally identified by the id of the instance being run.
Thus, the goal bpp 2405 2001 [2001, 1699, 1657, 1647, 1591, 1556, 1534,
1498, 1480, 1466, 1451, 1374, 1365, 1352, 1352, 1350, 1335, 1306, 1298,
1259, 1243, 1224, 1223, 1223, 1212, 1208, 1207, 1202, 1183, 1180, 1175,
1161, 1139, 1133, 1115, 1101, 1093, 1091, 1062, 1062, 1059, 1058, 1005,
981, 979, 970, 969, 955, 946, 941, 928, 923, 916, 911, 888, 854, 849,
844, 809, 808, 808, 803, 769, 753, 728, 716, 672, 670, 665, 656, 651,
622, 591, 588, 570, 567, 558, 554, 552, 538, 527, 527, 507, 503, 490,
450, 437, 402, 386, 371, 365, 355, 325, 321, 312, 297, 205, 193, 177,
1351 10000 true == Result solves the instance inst_2405(2.5,1000, 4).data using the
TOY(FDg) model. It binds Result — > 47 and generates the file inst_2405.s0l, which
contains a single line ID = 2405 Solved = 1 Time = 202 Bins = 47 (mate to
the one computed by Gecode).

To run the whole instance set, TOY(FD) cannot make use of scripting, but a
non-deterministic function can be used for it. That is, a TOY(FDyg) script file (e.g.,
bpp_session_10.toy, which stands for C = 1.0) contains just a non-deterministic
function bpp_session:: bool. This function receives no arguments, and contains
19,900 conditional rules. Each of them return true iff the execution of a concrete
instance of the benchmark succeeds (for example, the rule 2405 of bpp_session re-
turns true if the goal running the instance 2405 succeeds). The entire benchmark
is run by simply including the function bpp_session in the TOY(FDg) model and
executing the goal bpp_session == true (requesting the system for all the solu-
tions). More specifically, TOY(FD) suffers memory problems when the function con-
tains more than 300 rules, so to run the whole benchmark the function bpp_session
is split in packs of 250 rules and executed in several TOY(FD) sessions. To automat-
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ically trigger the execution of a block of 250 rules, a new function bpp_analysis is
created. It is equivalent to the original bpp, but it includes a fail primitive just af-
ter the cdbf search strategy. The underlying idea is that it is the primitive cdbf the
one reporting the success (and the elapsed time and optimal number of bins) or the
fail (and the timeout) to the generated .sol file. Thus, once done that, the execution of
the instance goal is no longer important, and it can be explicitly failed with no collat-
eral consequences. By using bpp_analysis in the 19,900 rules of bpp_session, itis
for sure that the goal bpp_session == true will trigger the execution of the entire
benchmark (with no extra interaction of the user with the system).

6.3 Analysis of the Results

Once performed the CP(FD) and heuristics sessions, this section analyzes the results.
Sections and[6.3.2] discuss the results of CP(FD). As small values of the k param-
eter ([0.1,...,5.0]) lead to quite different item size distributions, they are first analyzed
isolated. Then, the entire & parameter range [0.1,...,19.9] is considered. The rela-
tion among the instance configuration (k, A and C), the ratio of success of the CP(FD)
method (within the timeout), and the time and number of bins requested by the solved
instances is precisely discussed. Then, Section presents the results of the heuris-
tics. As they manage to solve the entire instance set (in a nearly negligible amount of
time), the discussion is focused on the quality of the solutions for those instances for
which CP(FD) was successful.

6.3.1 CP(FD): Small Weibull & Parameter Values

In this section small k values (ranging in [0.1,...,5.0] in steps of 0.1) are considered
isolated, as they lead to clearly very different regimes in the item sizes distributions (cf.
Figure[6.2). Figures and present the average time required to those instances
solved within the timeout, and the percentage of such these instances, respectively.
For them, only the capacity factors C = 1.0, C = 1.5, and C = 2.0 are considered. The
analysis reveals the following conclusions:

e Itis clear that the & factor, which defines the spread of item sizes, has a dramatic
impact on the average time taken to find the optimal solution to an instance. The
lower values of k correspond to distributions that have greater skew towards
smaller items. As k increases, for example consider value 1.5, there is a much
greater range of possible item sizes. Then, for even higher values, as 5.0, the
distribution of item sizes becomes more symmetric.

This shift in item size distribution impacts the difficulty of bin packing earlier
when the capacity of the bin is smaller. Figure[6.8] presents the effort required
when C'is equal to the largest item (C' = 1.0). It can be seen that the range of &

132



milliseconds

percentage

400 . . —
350 |- B /
300 !
250

200 |- /

150

100 f

50

0 1 1 1 1

0.5 1.0 2.0 3.0 4.0
shape factor

Figure 6.8: Small Shape: Average Runtime for Solved Instances

100

5.0

80

60

40 |

20 -

.0 2.0 3.0 4.0
shape factor

Figure 6.9: Small Shape: Percentage of Solved Instances

133

5.0



for which the instances turn hard for the CP(FD) approach is quite narrow. More
specifically, for the range k£ = [1.2, 1.3, ..., 3.2] the mean of the elapsed time for
those instances that did not timeout is above 100 milliseconds (with a maximum
of 175ms for k = 2.2). This reveals a combination of ¥ and C leading to a chal-
lenging combination of items to be placed in the same bin.

As the k parameter increases above 3.2 the item size distributions become more
compact, i.e., with a smaller range of items, also excluding very small and very
large items. In this setting, with C remaining fixed to the highest item, the com-
bination of £ and C' becomes again less challenging, and the instances are solved
in less than 100ms.

This challenging combination of k and C is also reflected in Figure[6.9] where the
percentage of instances being solved is presented. It can be seen that for this
very same range of k = [1.2, 1.3, ..., 3.2] the percentage of instances solved is
below the 80%, reaching a minimum for & = 2.2 with just a 60% of the instances
being solved. This makes an remarkable split of the instances: Whereas a 60%
of them are solved in about 175ms, the other 40% are not solved in 10,000ms.
That is, for this particular combination of k£, C and search strategy, very slight
deviations on the sizes of the items represent the difference between solving the
instance in a nearly negligible amount of time or not being able to solve it.

Fixing the range of k and increasing C the easy-hard-easy pattern seems to hap-
pen again. For example, Figure shows that, with C' = 1.5 there is also a
range of k’s for which the problem turns hard. However, now this range starts at
k = 2.0, which is higher than the £k = 1.2 of C = 1.0.

Also, the range is wider, as it reaches a minimum at & = 4.2, but for k = 5.0t is
still below the 80% of solved instances. Moreover, the computational challenge
of these k = [2.0,...] and C = 1.5 combinations is harder than the one of k£ = [1.2,
1.3,...,3.2]and C = 1.0. In the minimum of k = 4.2 (which again, as in C = 1.0,
holds both for percentage and running time), only a 30% of the instances are
solved, and the mean of their running time is of 550ms. Both easy-hard-easy
patterns of C = 1.0 and C' = 1.5 share a same upper bound of nearly a 100% of
instances solved for £ = [0.1,...,0.5]. But, as it can be seen, increasing C also
increases the computational challenge of the problem. Next section will describe
it further by considering the whole range of k.

6.3.2 CP(FD): Full Range of & Parameters

The Weibull distributions generated with a high & value differ from those with the
smaller values studied above (cf. Figure[6.3). Essentially, these distributions have lower
spread shown by successively taller density functions centering towards the value of
the X parameter. In this section, the entire range of ¥ = [0.1,...,19.9] is considered,
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allowing to observe the easy-hard-easy pattern for each of the 11 configurations of C.
Figures and present both the average running time of the instances solved
within the timeout and the percentage of instances that this corresponds to. Now, also
the average number of bins associated with these instances is considered, as it is pre-
sented in Figure[6.T2] All the instances contain 100 items, and thus the average number
of items placed per bin can be extracted as well from the results of Figure[6.12]

As mentioned before, increasing C' also increases the computational challenge of
the problem, and thus more instances reach the timeout when being solved with the
CP(FD) method. The effectiveness of the CP(FD) method is measured, classifying each
concrete category (k,\) of 100 instances by the percentage of instances being solved:
Ranging in 80%-100%, in 60%-80%, in 40%-60%, in 20%-40% or in 0%-20%. Thus, and
considering again just C = 1.0, C = 1.5 and C' = 2.0, Figure [6.11 shows that, whereas
C = 1.0 contains just categories of 80%-100% and 60%-80%, C = 1.5 contains cate-
gories of 80%-100%, 60%-80%, 40%-60% and 20%-40%, and finally C = 2.0 contains
categories of 80%-100%, 60%-80%, 40%-60%, 20%-40% and 0%-20%.

Table[6.2]summarizes the results from figures. Columns C and k-Range represent
the selected bin capacity and the range of shapes, respectively. For each concrete C,
the groups are presented in increasing k order, with a (*) identifying the concrete % for
which the percentage of instances being solved is minimum. Focusing on each concrete
row, columns Percentage and Time represent the group it belongs to and the range
of average running times achieved by it, respectively. Then, columns I/B and Bins
represent the range of average number of items per bin and the range of number of
bins achieved. Finally, columns MaxRest and NextFit (which are discussed further in
Section|6.3.3) represent the range of average deviations of the heuristics MAXREST and
NEXTFIT w.r.t. the optimal number of bins found by CP(FD), respectively. The results of
Table[6.2]reveal the following conclusions:

e The amount of instances being solved decreases as C increases. In C = 1.0, 178

categories belong to group 80%-100%, i.e., 17,800 instances of the benchmark
belong to categories (k,\) for which CDBF is able to solve between 80%-100%
of them. Then, 21 categories belong to group 60%-80%, i.e., the other 2,100
instances of the benchmark belong to categories (k,)) for which CDBF is able to
solve between 60%-80% of them. In C = 1.5, 150 categories belong to group
80%-100%, 17 to group 60%-80%, 18 to group 40%-60% and 14 to group 20%-
40%. In C = 2.0, 87 categories belong to group 80%-100%, 20 to group 60%-80%,
12 to group 40%-60%, 18 to group 20%-40% and 62 to group 0%-20%.
As it can be seen, in all the C configurations, the big mass of instances belong
to group 80%-100%, and then there is a more or less fair division among the
other groups. However, in C = 2.0 this does no longer hold, as there are 62
categories for which CDBF is able to solve at most a 20% of them, and for 12 of
these categories the percentage reaches nearly a 0%.
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As mentioned in Section there is a correlation between the percentage of
instances solved and the time CDBF devotes to search exploration. Focusing on
column Time of Table[6.2] it can be seen that the categories belonging to group
80%-100% are the fastest in being solved. In C' = 1.0, this time ranges in 50-
100ms and 0-100ms. In C' = 1.5, this time ranges in 50-150ms and 0-150ms.
However, in C' = 2.0, whereas for the range k£ = [0.1,...,2.8] the average time
ranges in 50-200ms, for the range & = [14.1,...,19.9] it ranges in 550-1000ms,
reaching effort levels of categories of groups 20%-40% and even 0%-20%.

In general, it can be seen that the average effort time for categories belonging to
the same group are nearly equivalent, with an slightly increase as C' increases.
For example, categories of group 60%-80% spend around 100-175ms if C' = 1.0,
around 150-250ms if C' = 1.5, and around 200-250ms if C' = 2.0 (with, once again,
the remarkable exception of range k = [12.8, .. ., 14.0], which spends around 850-
1000ms).

From Figure [6.12]it is clear that, as k increases, the amount of bins used in the
optimal solutions increases as well. In C = 1.0, it can be seen that £ = 10.0
represents a frontier, as from this value on all the instances are solved by using
100 bins (i.e., placing each item into a different bin). Also, referring back to Figure
6.10|it can be seen that the effort for solving such these instances is nearly Oms.
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| C | k-Range ][ Percentage | Time || I/B | Bins [ MaxRest | NextFit |
0.1-1.1 80-100 50-100 3.70-100 1-27 || 0.00-0.15 0.0-5.0
1.0 1.2-3.2 60-80 100-175 || 1.61-3.57 28-62 || 0.15-0.25 5.0-14.5
(*)2.2 60 175 2.22 45 0.35 14.5
3.3-19.9 80-100 0-100 || 1.00-1.59 | 63-100 || 0.00-0.15 0.0-12.5
0.1-1.9 80-100 50-150 3.84-100 1-26 || 0.00-0.21 0.0-6.0
2.0-2.7 60-80 150-250 || 3.22-3.70 27-31 0.21-0.30 6.1-9.0
2.8-3.8 40-60 250-400 || 2.70-3.13 32-37 || 0.31-0.61 9.1-12.5
1.5 3.9-5.2 30-40 400-550 || 2.17-2.63 38-46 || 0.53-0.64 | 12.5-19.0
(*)4.2 30 550 2.38 42 0.64 15.80
5.3-5.9 40-60 250-400 || 2.08-2.13 47-48 || 0.23-0.52 | 19.1-20.1
6.0-6.8 60-80 150-250 || 1.82-2.04 49-55 || 0.05-0.22 | 19.5-20.0
6.9-19.9 80-100 0-150 || 1.00-1.79 | 56-100 || 0.00-0.05 0.0-19.5
0.1-2.8 80-100 50-200 4.00-100 1-25 || 0.00-0.23 0.0-3.5
2.9-35 60-80 200-250 || 3.70-3.85 26-27 || 0.24-0.38 3.6-4.9
3.6-4.0 40-60 250-400 || 3.44-3.57 28-29 || 0.39-0.58 5.0-5.2
4.1-4.8 20-40 400-550 3.33 30 || 0.59-0.80 5.2-5.6
4.9-7.0 0-20 550-1150 || 2.70-3.23 31-37 || 0.80-1.40 5.1-5.6
2.0 | (*)7.1-8.2 1-2 | 1250-1550 || 2.38-2.63 38-42 || 1.05-1.40 2.5-5.1
8.3-11.0 0-20 | 1250-1750 || 2.00-2.33 43-50 || 0.15-1.05 0.5-2.5
11.1-12.0 20-40 | 1150-1250 2.00 50 || 0.13-0.15 0.5
12.1-12.7 40-60 | 1000-1150 2.00 50 || 0.08-0.12 0.3-0.5
12.8-14.0 60-80 850-1000 2.00 50 || 0.05-0.08 0.0-0.3
14.1-19.9 80-100 550-1000 2.00 50 || 0.00-0.05 0.0

Table 6.2: Summary of the Results for C = 1.0,C =1.5and C = 2.0

Thus, it can be concluded that the instances become trivial, as the CP(FD) model
takes advantage of the capacity symmetry breaking constraints (cf. Section|[6.2.2)
to solve the instance by using just the initial constraint propagation (with no CDBF
search exploration being performed).

In the case of C' = 2.0, obviously k¥ = 10.0 represents also a frontier, as from this
value on all the instances are solved by using 50 bins (i.e., as the bins double their
capacity, then two items are placed on each of them). However, by referring back
to Figures[6.10]and it can be seen that, for these range k£ = [10.0,...,19.9],
the problem is still computational challenging. That is, the computational chal-
lenge of deciding which two items are placed on each bin lead to categories of
groups 80%-100%, 60%-80%, 40%-60%, 20%-40% and 0%-20%, with an average
search effort time ranging in 550-1600ms for them.

For C' = 1.5, this computational challenge also makes the number of bins used in

the optimal solution to keep growing once reached k£ = 10.0 (until reaching a 100
bins solutions with & = 19.9).

As the amount of bins used in the optimal solutions increases as k increases, it is
clear that there are concrete intervals of items per bins for the categories belong-
ing to groups 80%-100%, 60%-80%, 40%-60%, 20%-40% and 0%-20%. However,

138



these intervals slightly change for the different C values.

Regarding categories classified into group 80%-100%: The interval is 1.00 — 1.59
and 3.70—100.00 for C = 1.0. Itis 1.00—1.79 and 3.84—100.00 for C = 1.5.Finally, it
is 2.00 and 4.00 — 50.00 for C' = 2.0. Thus, it can be concluded that, if the category
requires, for its 100 instances, an average of less that 1.60 or more than 4.00
items per bin, then the category is going to be classified into group 80%-100%.

Unfortunately, for the rest of groups there are no general conclusions for the
three ¢ = 1.0, ¢ = 1.5 and C = 2.0 configurations. For example, for group
60%-80%: The interval is 1.61 — 3.57 for C = 1.0. Itis 1.82 — 2.04 and 3.22 — 3.70
for C = 1.5 Finally, it is 2.00 and 3.70 — 3.85 for C' = 2.0. Thus, there is no single
value of items per bin that belongs to the three C configurations. Same situations
happens for groups 40%-60% and 20%-40%, for which only C = 1.5and C = 2.0
provide categories.

Last but not least, in C = 2.0 and £ = [10.0,...,19.9] there are categories of
groups 80%-100%, 60%-80%, 40%-60%, 20%-40% and 0%-20%, all of them with
a same amount of 2.0 items per bin.

In summary, it can be seen that increasing the capacity C' dramatically increases
the computational difficulty of the problem, as shown by both the amount of instances
solved and the search time spent for the solved ones. However, no general conclusions
are obtained about the relation between the average items placed per bin and the
computational challenge of the problem.

6.3.3 Heuristics: Quality of the Obtained Solutions

The four heuristics MAXREST, FIRSTFIT, BESTFIT and NEXTFIT solve the entire 19,900 in-
stance set for the 11 C configurations in a nearly negligible amount of time. However,
once again, they are not exhaustive methods, and thus the solutions they found can
be worse than the one found by the CP(FD) approach, in the sense of containing a
higher amount of bins. This section revisits Table[6.2] analyzing the results of columns
MaxRest and NextFit, which represent the range of average deviations of MAXREST
and NEexTFIT w.r.t. the optimal number of bins found by CP(FD), respectively. The dif-
ference in performance between MAXREST, FIRSTFIT, and BESTFIT is very small, so only
the first one is presented. On each case, the instances for which CP(FD) was not suc-
cessful are left out of the heuristics analysis.

Figures[6.13|and [6.14] present the results for MAXREST and NEXTFIT, respectively. As
it can be seen, the former behaves around an order of magnitude better than the latter,
with the differences with the CP(FD) approach ranging in 0.0-1.4 bins and 0.0-20.0 bins,
respectively. Furthermore, the results of Table[6.2]reveal the following conclusions:
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e In MAXREST, it is clear that, as C increases, the average gap achieved by the
heuristic w.r.t. the CP(FD) optimal solutions increases as well. This is intuitive,
since increasing the computational challenge of the problem makes it harder to
give a good quality solution. For C' = 1.0, the gap ranges in 0.00 — 0.35 bins, for
C = 1.5itrangesin 0.00 — 0.64 and for C' = 2.0 it ranges in 0.00 — 1.40.

Moreover, for each concrete C, there is a clear correlation between the cate-
gories classified by the CP(FD) approach (groups 80%-100%, 60%-80%, 40%-
60%, 20%-40% and 0%-20%) and the average gap achieved by the heuristic.
That is, the harder the group is for CP(FD) the higher the gap achieved. In
C = 2.0, there is again a frontier, this time at £k = 11.0. It makes that, for
k = [11.1,...,19.9], the average gap for categories 80%-100%, 60%-80%, 40%-
60% and 20%-40% are all in the range 0.00 — 0.13.

Thus, it is concluded that the use of the heuristic MAXREST (and thus also of
FIRSTFIT and BESTFIT) represents a very good alternative to the CP(FD) approach,
as it achieves very good solutions in a nearly negligible amount of time. This is
specially remarkable in the case of C' = 2.0. On it, for the range k = [4.9, ..., 11.0]
the categories belonged to group 0%-20% (moreover, for the range k = [7.1,.. .,
8.2] the percentage of instances being solved was nearly a 0%) and requested an
average search effort ranging in 550-1650ms. Now, by using the heuristic, they
are all solved in a nearly negligible amount of time, and with an average gap
ranging 0.15 — 1.40 bins.

e In NexTFIT, there is a frontier in C = 1.5. From C' = 1.0to C = 1.5, as C increases,
the average gap achieved by the heuristic w.r.t. the CP(FD) optimal solutions
increases as well. For C = 1.0, the gap ranges in 0.00 — 14.50 bins, and for C =
1.5 it ranges in 0.00 — 15.80. But then, from C' = 1.6 to C = 2.0 the achieved
curve representing the gap changes, and it gets smaller w.r.t. the CP(FD) optimal
solutions. For C' = 2.0, the gap ranges in 0.00 — 5.60 bins, which is not just even
better than C = 1.5, but also than C' = 1.0.

Moreover, there is no correlation between the categories classified by the CP(FD)
approach (groups 80%-100%, 60%-80%, 40%-60%, 20%-40% and 0%-20%) and
the average gap achieved by the heuristic (for neither C = 1.0 nor C = 1.5
nor C = 2.0). For example, in C = 1.0, both the ranges &k = [0.1,...,1.1] and
k = 1[3.3,...,19.9] lead to categories classified into group 80%-100%. However,
whereas in the former the gap ranges in 0.00 — 5.00 bins, in the latter it ranges in
0.00 — 14.50.

In C = 1.5, something similar happens, with both the ranges £ = [0.1,...,1.9] and
k=1[6.9,...,19.9] leading to categories classified into group 80%-100%. However,
whereas in the former the gap ranges in 0.00 — 6.00 bins, in the latter it ranges
in 0.00 — 19.50, (where this 19.5 represents nearly the maximum gap achieved
with the heuristic). In C = 2.0, it also happens. But, here, the issue of the
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frontier at £ = 11.0 (that happened in MAXREST) still holds. For k = [11.1,...,19.9],
the average gap for categories 80%-100%, 60%-80%, 40%-60% and 20%-40% are
all in the range 0.00 — 0.50 (which is nearly the minimum gap achieved by the
heuristic).

Thus, it is concluded that the heuristic NEXTFIT is not competitive w.r.t. MAXREST
(and thus also of FIRSTFIT and BESTFIT) and the CP(FD) approach. But, for C = 2.0
and the range k£ = [11.1,...,19.9] it is competitive w.r.t. all of them.

6.4 Related Work

As mentioned before, the BPP is a ubiquitous problem that arises in many practical
applications. Amongst the many applications of this problem are scheduling, stock
cutting, television commercial break scheduling, and container packing [42, [61]. It is
closely related to a variety of other problems such as rectangle packing [181} (180 [195,
67]. Recent work has focused on geometric generalizations of bin packing [43]. Typical
BPP methods rely on either Mathematical Programming [42], Satisfiability techniques
[86], CP(FD) [166| [177] and heuristics [17,[70]. There are many known bounds on the
optimal number of bins which can be used in most of the techniques mentioned above
(61} [116] [135].

6.5 Conclusions

In this chapter an empirical analysis of the solving hardness of the classical BPP has
been presented, as the basis for the future development of portfolio solvers, which
will tackle generalized BPP real-life problems coming from the data centre optimization
industry. The analysis includes the application of both CP(FD) and heuristic techniques
to the solving of a parametric generated benchmark of BPP instances, and a detailed
analysis of the results.

Regarding the BPP instances used in the analysis, a new benchmark suite based on
the well known Weibull distribution has been presented. The flexibility of the Weibull
approach has been discussed, showing that a great variety of item size distributions
can be generated via different combinations of the (k,)\) parameters. A set of real-
life BPP instances (coming from the data centre optimization and education industries)
have been gathered, showing that the Weibull approach allows to model them very
accurately. To visually show the quality of these fits, MLF and Q-Q plots have been used.
Besides that, a more rigorous analysis has been done by applying the Kolmogorov-
Smirnov and ? statistical tests.

The layout process being performed to carry out the empirical analysis has been
presented. A benchmark suite of 19,900 instances has been generated, consisting of
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199 different categories (of 100 instances of 100 items each) or combinations of (k,\).
Specifically, whereas )\ has been fixed to 1000 (spanning the item sizes of the distribu-
tions over three orders of magnitude), the k£ has ranged in k£ = [0.1,0.2,...,19.9]. Once
the instance set is fixed, 11 different bin capacities C have been tried, setting it to the
size of the highest item of the instance times a factor ranging from 1.0 to 2.0 (increasing
it 0.1 on each new scenario).

Then, the CP(FD) and heuristics models have been presented. In the CP(FD) side,
two equivalent C++ CP(FD) Gecode and CFLP(FD) TOY(FDg) models are applied. In
the heuristics side, a publicly available C++ implementation of the well-know heuristics
MAXREST, FIRSTFIT, BESTFIT and NEXTFIT has been applied. Also, the setup for running
the experiments has been discussed, analyzing the C++ scripts generated for Gecode
and the heuristics and their adaptation to the TOY(FDg) framework.

The analysis of the CP(FD) results have revealed that, for each of the 11 values of C
being considered, there are categories (k,\) for which the CP(FD) approach finds it hard
to solve the whole instance set of 100 instances. Moreover, the hardness a concrete
category results for the CP(FD) method can be classified by using 5 groups: 80%-100%,
609%-80%, 40%-60%, 20%-40% and 0%-20%. Thus, it can be seen that increasing C also
increases the computational challenge of the problem, so that the amount of instances
being solved decrease as C' increases. In C = 1.0, 178 categories belong to group 80%-
100% and 21 to group 60%-80%. In C' = 1.5, 150 categories belong to group 80%-100%,
17 to group 60%-80%, 18 to group 40%-60% and 14 to group 20%-40%. In C = 2.0, 87
categories belong to group 80%-100%, 20 to group 60%-80%, 12 to group 40%-60%,
18 to group 20%-40% and 62 to group 0%-20% (the latter with up to 12 categories for
which the percentage of instances being solved reached nearly a 0%). Also, there is a
correlation between the percentage of instances solved and the time devoted to search
exploration.

Also, as k increases, the amount of bins used in the optimal solutions increases as
well. As all the instances contain 100 items, there are concrete intervals of items per
bins for the categories belonging to groups 80%-100%, 60%-80%, 40%-60%, 20%-40%
and 0%-20%. However, these intervals slightly change for the different C values. On the
one hand, it can be concluded that, if the category requires an average of less that 1.60
or more than 4.00 items per bin, then the category is going to be classified into group
80%-100%. On the other hand, for the rest of groups there are no general conclusions
for the different C configurations. Specifically, for C = 2.0 and £ = [10.0,...,19.9] there
are categories of groups 80%-100%, 60%-80%, 40%-60%, 20%-40% and 0%-20%, all of
them with a same amount of 2.0 items per bin.

The heuristics solve the entire benchmark in a negligible amount of time, and thus
the analysis has focused on the average deviations of MAXREST (with similar results to
FIRSTFIT, and BeSTFIT) and NEXTFIT w.r.t. the optimal number of bins found by CP(FD).
The deviations of the former are an order of magnitude better (ranging in 0.0-1.4 bins)
than the ones of the latter (ranging in 0.0-20.0 bins). In MAXREsT, it is clear that, as
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C increases, the average gap achieved by the heuristic w.r.t. the CP(FD) optimal solu-
tions increases as well. Moreover, there is a clear correlation between the categories
belonging to groups 80%-100%, 60%-80%, 40%-60%, 20%-40% and 0%-20% and the
gap achieved by the heuristic. In NEXTFIT, there is a frontier in C' = 1.5. Thus, whereas
from C = 1.0to C = 1.5 the gap increases, from C' = 1.6 to C = 2.0 it decreases. Unfor-
tunately, there is no correlation between the categories and the gap achieved. In gen-
eral, whereas the use of the heuristic MAXREST (and thus also of FIRSTFIT and BESTFIT)
represents a very good alternative to the CP(FD) approach, as it achieves very good
solutions in a nearly negligible amount of time, the gap achieved by NEXTFIT makes it
not that much interesting.
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Part IV

Positioning 7OY(FD) w.r.t.
Other CP(FD) Systems



The third research part of the thesis is focused in positioning TOY(FD) w.r.t. other
state-of-the-art CP(FD) systems. Chapter [7]describes an in-depth modeling compari-
son of the Golomb and ETP problems between the algebraic CP(FD) systems MiniZinc
and ILOG OPL, the C++ CP(FD) systems Gecode and ILOG Solver, the CLP(FD) sys-
tems SICStus Prolog and SWI-Prolog, and the CFLP(FD) systems PAKCS and TOY(FD).
Chapter [8] performs an in-depth solving comparison of the same problems and sys-
tems (in the case of TOY(FD), the three systems versions TOY(FDg), TOY(FDi)
and TOY(FDs) are considered).



Chapter 7

Modeling Analysis

CP(FD) is widely used nowadays, with a big and alive community building up a large
number of applications, including both the modeling of new problems and system im-
plementations. As it was pointed out in the motivation of this thesis, by focusing in the
main CP(FD) related conferences and journals, it can be seen that there are multiple
real-life applications based on algebraic CP(FD), C++ CP(FD) and CLP(FD) approaches,
but there is no single application based on CFLP(FD). This reveals that, although the
CFLP(FD) features make it a suitable paradigm for tackling CSP's and COP's, it is still
far away from being taken into account by the CP(F¥D) community. To this end, this
chapter positions the system TOY(FD) w.r.t. other state-of-the-art CP(FD) systems.
The main purpose of the chapter is to show that TOY(FD) is appealing w.r.t. any of
them for modeling different COP’s, thus encouraging its use (and also the use of the
CFLP(FD) paradigm itself).

For the modeling analysis, both the classical CP(FD) problem of the Golomb Rulers
(cf. Section and the real-life Employee Timetabling Problem (cf. Section are
used. On the one hand, Golomb is a pure basic CP(FD) problem, allowing to discuss
the basic concepts of modeling any COP. On the other hand, the ETP is a real-life ap-
plication, fully parametric, non-monolithic and including CP(FD) independent compo-
nents. Thus, it fully exploits the expressive power of the different paradigms, allowing
to analyze in detail the strengths and drawbacks of each of them.

To widen the analysis, two different state-of-the-art systems are chosen per paradigm:
MiniZinc and ILOG OPL (for algebraic CP(FD)), Gecode and ILOG Solver (for C++ CP(FD)),
SICStus and SWI-Prolog (for CLP(FD)) and, finally, PAKCS and TOY(FD) (for CFLP(FD)).

The chapter is organized as follows: Section[7.1]uses Golomb to provide general in-
sights about the abstraction of the constraint solver, the specification of the 7D varia-
bles, 7D constraints and search strategies, as well as the output of the solutions. Then,
the next sections use the ETP to discuss in detail how each paradigm tackles a con-
crete modeling issue: Section[7.2]analyzes the coordination of the ETP stages. Sections
and [7.5] focus on the data structures, variables and constraints, respectively.
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Section[7.6|provides a final expressiveness comparison. Each section includes code ex-
amples to clarify the concepts being discussed, and the generated models for all the
systems are available at: http://gpd.sip.ucm.es/ncasti/models.zip. To end
this chapter, Section[7.7]compares the lines of code each system needs for modeling
both Golomb and ETP. Section[7.8|presents some related work, and Section[7.9 reports
conclusions.

7.1 General Modeling Insights

The Golomb problem is used to discuss basic modeling concepts about the constraint
solver, FD variables, 7D constraints, search strategies, and displaying the solutions.
Code examples are presented in Figures (for C++ CP(FD) systems) and (for
algebraic CP(FD), CLP(FD) and CFLP(FD) systems). Each concept is presented in a
separate section, but all of them refer back to the already mentioned figures.

7.1.1 Golomb: Solver Abstraction

C++ CP(FD) systems require solver-targeted models. Programming directly using the
API of the CP(FD) library being used also implies explicit handling of a constraint solver
object, and managing the control of its decision variables, constraints, objective func-
tion, constraint store, constraint propagation, search engine and search control (as well
as the garbage collection of all these elements). Figure[7.1]shows this management in
Gecode and ILOG Solver, respectively.

More specifically, as pointed out in Section[2.3.2} a Gecode Space object contains
the variables, propagators (implementations of constraints), branchers (describing the
shape of the search tree) and cost function specification. The constraint solver is made
explicit in the Gecode model: First, in line 2, by the use of Golomb class (inheriting
from Space). Then, in line 6, by the definition of the Golomb constructor (in charge
of specifying the Golomb problem). Finally, in line 20, with the explicit creation of
the solver object in the main program. From now on, in C++ CP(FD) systems, the
distinction between an object and a class will be omitted when it is clear from the
context.

In ILOG Solver, an I1oSolver object represents the constraint solver (line 34).
It contains the variables, constraints, labelings and cost function. Nevertheless, as
pointed out in Section[2.3.2] an I1oModel object (line 33), representing the constraint
store, is also needed. Its use replicates information, as any generic IloIntVar and
IloConstraint the I1loModel contains is different from the targeted IlcIntVar
and IlcConstraint the IloSolver deals with. Thus, a dedicated translation from
IloModel to I1oSolver, via the extract method (line 37), is needed. Finally, the
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class Golomb : public Space {
protected:
IntVarArray m;

public:
Golomb(int n, bool p) : m(xthis,n,
0, (int) ceil(pow(2.0,n-1)-1.0)){
bool sat = true;

for (int i = 0; i < (n-1); i++){
if (sat){
rel(+«this,m[i],IRT_LE,m[i+1]);
if (p){
this->status();
sat = !(this->failed());
}
}
}

branch(+this, m, INT_VAR_NONE,
INT_VAL_MIN);

void print() const {
std::cout << "m=" << m << std::endl;

int main(int argc, char* argv[]) {
bool sat =
I1oEnv env;
IloModel model(env);
IloSolver solver(model);

IloIntVarArray m(env, n, O,
(int) ceil(pow(2.0,n-1)-1.0));

true;

for (int i = 0; 1 < (n-1); i++){
if (sat){
IloConstraint ct =
model.add(ct);
if (p)
sat =

m[i] < m[i+1];

solver.propagate(ct);

GECODE

ILOG SOLVER

| Golomb(bool share, Golomb& s) :
| Space(share, s) {
m.update(+this, share, s.m);

s

void constrain(const Space& _s) {
const Golomb& s =
static_cast<const Golomb&>(_s);
IntVar v(s.m[s.m.size()-1]);
rel(#«this, this->m[this->m.size()
-1], IRT_LE,v);

.

int main(int argc, char+ argv[]) {

Golomb* solver = new Golomb(n);

BAB<Golomb> engine(solver);

while (Golomb+ s = engine.next()){
solver = s;

}

solver->print();

}

| ...

| IloGoal st = IloGenerate(env, m,

| IloChooseFirstUnboundInt);

| IloGoal g = IloSelectSearch(env, st,
| IloMinimizeVar(env, m[n-1], 1));
| IloNodeEvaluator D_Node =

| IloDFSEvaluator(env);

| IloGoal goal= IloApply(env,g,D_Node);
| solver.extract(model);

| solver.startNewSearch(goal);

| if (solver.next())

| for (int i = 0; i < n; i++)

| std::cout<< solver.getValue(m[i]);
| solver.endSearch();

| env.end();

|

}

Figure 7.1: C++ CP(FD): Golomb Structure
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———————————— MiniZinc ----------------------—---- TLOG OPL --------------------
array[1..n] of var |[var int m[1..n] in 0..(pow(2,n-1)-1);
0..(pow(2,n-1)-1): m; |minimize m[n]
constraint forall (i in 1..n-1) |subject to {
(m[i] < m[i+1]);| forall (i in 1..n-1) (m[i] < m[i+1]);
.. | ...
solve :: int_search(m, input_order, |};
indomain_min, complete) |search{
minimize m[n];| generateSeq(m);
output [show(m[i])++" "| i in 1..n1;|};
-------------------------- SICStus and SWI-Prolog --------------commmmmmmmaoao
%golomb/3(+N, +P, -M). |%set_prop/2(+P, -Prop).
golomb(N, P, M):- |set_prop(true, 0).
set_prop(P, Prop), |set_prop(false, V) :-
N1 is N-1, | var(Vv).
M= [0|M], |
length(M1, N1), |%order/3(+M, +N, +Prop).
Ub is (1<<N1), |order([X], N, Prop):-
order(M, Ub, Prop), | freeze(Prop, X #< N).
- |order ([M1,M2|RM]1, N, Prop) :-
nth1(N, M, Mn, _), | freeze(Prop, M1 #< M2),
Prop = 0, | order([M2|RM], N, Prop).
labeling([minimize(Mn)], M). |
———————————— TOY(FD) -------------------—ooou PAKCS ----mmmmmmmmm e -
golomb :: int -> bool -> [int] |golomb:: Int -> [Int]
golomb N P = M <== |golomb n | m =:= (0:(take (n-1)
P, | gen_v_list)) &
M == take N [0]| gen_v_list], | order m (my_exp 2 (n-1) 1)
order (M ++ [trunc(2”A(N-1))1), | =:= True &
gen_difs M == Ds, | -
lbound Ds sums_nats, | labeling [Minimize (last m)] m
. | = m where m free
labeling [toMinimize (last M)] M|order:: [Int] -> Int -> Bool
|order [x] n | x <# n
order:: [int] -> bool | = True
order [X] = true |order (x:y:xs) n | x <# vy
order [X,Y|Xs] = (X #<Y) /\ | = order (y:xs) n
order [Y|Xs]]
lbound:: [[int]] -> [int] -> bool |gen_v_list:: [a]

lbound Xss Is = foldl (/\) true |gen_v_list = (x : gen_v_list) where x free

(foldl (++) [1 (map |
(zipWith (#<=) Is) Xss))|my_exp:: Int -> Int -> Int -> Int
sums_nats:: [int] [my_exp _0Om=m
sums_nats = scanl (+) 1 [my_expnkm| k>0
(iterate (+1) 2)| = my_exp n (k-1) (m#n)

Figure 7.2: Algebraic CP(FD), CLP(FD), CFLP(FD): Golomb Structure
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I1oEnv object (line 32) manages the memory of any object of the application, providing
an end () method (line 43), to ease the garbage collection of the application objects.

In the case of algebraic CP(FD), CLP(FD) and CFLP(FD) systems, the constraint
solver and its management are transparent to the user.

7.1.2 Golomb: Variables

Each paradigm provides different kind of variables. MiniZinc and ILOG OPL provide
decision (FD) variables and parameter variables (which can be seen as constants).
Gecode and ILOG Solver inherit the concept of variable from OO programming (typed
and mutable). Regarding FD variables, Gecode supports both IntVarArray variable
arrays or IntVarArgs argument arrays. The former must have a fixed length at its
declaration, and it uses memory from the home Space. The latter is suitable for tem-
porary variable arrays, those ones either being dynamically built or used as arguments
for post functions. CLP(FD) and CFLP(FD) systems coordinate constraint solving with
their operational semantics based on SLD resolution and lazy narrowing, respectively.
These systems rely on logical variables, which are syntactically unified by a Herbrand
(H) solver. The FD solver is used to manage any FD primitive constraint arisen in
the computation, and each logic variable involved on this primitive must be firstly at-
tributed [105], turning them into an FD variable (in SICStus, SWI, PAKCS and TOY(FD)
models, this attribution is transparent to the user).

For example, focusing on the m variables, whereas algebraic and C++ CP(FD) sys-
tems create a fixed-length FD variable array, the CLP(F¥D) and CFLP(FD) ones create
a list formed by an explicit O followed by n — 1 new fresh logic variables. Algebraic and
C++ CP(FD) systems take advantage from dealing with 7D variables, using lower and
upper bounds (0 and (2¥—1) — 1, respectively) to set their initial domain. CLP(FD) and
CFLP(FD) systems take advantage of pattern matching to implicitly unify mq and 0.

As C++ CP(FD) systems explicitly handle a constraint solver, the declaration of any
variable is attached to it. In Gecode, m is declared as an attribute of the Golomb class,
and further initialized in the constructor class. In ILOG Solver, it is attached to the
IloModel object, and further dumped to I1oSolver. In the rest of the systems, as
they abstract the notion of constraint solver, variables are freely declared.

7.1.3 Golomb: Constraints

The ordering of the m variables (i.e., each m; < m;,1) has been selected to present how
the different systems declare and propagate the FD constraints.

In algebraic CP(FD) systems, the built-in function forall takes a one-dimensional
array and aggregate the elements. MiniZinc and ILOG OPL use it to declare all the
constraints in just one line of code. Both systems identify this code as an 7D constraint
declaration: MiniZinc by using the reserved word constraint (Figure[7.2} line 4) and
ILOG OPL placing the expression within the body of subject to{...}. Regardingthe
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constraint propagation, both MiniZinc and ILOG OPL only support batch mode, which
is set transparently to the user.

In C++ CP(FD) systems, Gecode and ILOG Solver use a for loop rangingin0...n—2
(Figure[7.1] line 11), constraining on each step the i-th variable to be smaller than the
next one. Regarding constraint declaration (specify the D constraint and post it to the
constraint store), Gecode uses the instruction rel («this,m[i],IRT_LE,m[i+1]),
declaring m[1] to be smaller than m[1+1] and posting it to the implicit constraint
store of the Golomb constraint solver object. In the case of ILOG Solver, it declares
the I1oConstraint ct and then uses the add method to post ct to the I1oModel
constraint store.

Regarding constraint propagation, Gecode and ILOG Solver receive P as an input
argument (Figure line 7), setting the Boolean variable p to true (incremental mode)
or false (batch mode). They also use the Boolean variable sat to control if the con-
straint store is currently satisfiable or not (line 9). In this setting, if p, then the con-
straints being posted are propagated. Gecode uses the Space status() method (line
15) and ILOG Solver the I1oSolver propagate(IloConstraint) one (note thatis
the I1oModel representation the one used as argument). Triggering the constraint
store propagation can detect an unfeasible constraint network. Gecode does that by
using the Space failed() method (line 16), and ILOG Solver by checking the result
reported by the propagate one. Finally, if the constraint store is not feasible, it makes
no sense to continue posting new constraints, so the current status is stored in the
variable sat and it is used to control the posting of new constraints.

In CLP(FD) systems, the predicate order (Figure line 17) recursively constrains
the order of the m variables. Whereas the first clause is the base case (constraining the
last variable to be smaller than the Ub) the second clause is the recursive case (con-
straining the i-th variable to be smaller than the next one). The expression M1 #< M2
specifies the constraint and posts it to the constraint store.

Regarding constraint propagation, CLP(FD) systems implicitly use incremental prop-
agation mode, but batch mode can be simulated via freeze(+Flag, +Expr) pred-
icates, delaying the execution of Expr as long as its Flag is not ground. The pred-
icate set_prop is placed at the beginning of the Golomb predicate (line 14), setting
the propagation mode to be applied to the whole program. It receives P as its input
parameter and returns Prop as a result. Whereas the first clause considers the in-
cremental mode (returning the Prolog atom 0) the second clause considers the batch
mode (returning the new fresh logic variable V). Either 0 or V is passed as the flag to all
the program predicates posting constraints (as, for example, in line 19). Orthogonally,
if batch mode is used, all the constraints must be posted to the constraint store and
being propagated before the search strategy specified in 1abeling starts. Thus, Prop
and 0 are unified just before declaring the search (line 22). Whereas in incremental
mode it makes no effect (as Prop was already unified to 0 before) in the batch one it
triggers in order the posting and propagation of all the delayed constraints.
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In CFLP(FD) systems, the function order (line 33) is mate to the predicate order of
the CLP(FD) systems, but the argument Prop is omitted. In TOY(FD), the primitives
batch_off and batch_on (cf. Section set the propagation mode to incremental
and batch, respectively. Thus, different propagation modes can be applied to differ-
ent program fragments. In this case, it is sufficient to set the concrete propagation
primitive at the very beginning of the program (line 27). In PAKCS, only incremental
propagation is supported.

7.1.4 Golomb: Search Strategy Declaration

As a COP, an exhaustive search on the m variables is needed to find a solution, specify-
ing the variable set, the variable order, the value order and the cost function, as well as
a search control. Whereas algebraic CP(FD), CLP(FD) and CFLP(FD) systems provide
good abstractions for most of these concepts, their management in Gecode and ILOG
Solver becomes harder.

In Gecode, as pointed out in Section the shape of the search tree to be ex-
plored is specified via Branchers. The instruction branch, placed at the end of the
Golomb constructor (Figure line 21), declares m to be the variable set to be labeled,
following a left to right order and an increasing domain value order for each variable.

Then, a Search Engine object BAB<Golomb> engine (line 21) is in charge of
search control. It receives the Golomb solver previously created to perform a branch
and bound exploration of its search tree, where each node of the tree is a Space. The
next() method of the engine (line 22) triggers the search, returning a pointer to the
Golomb Space placed in the solution node. As exploring the tree is based on cloning
Spaces, the Golomb copy constructor (line 2) is needed to specify how to perform a
clone. It relies on the method update (line 4), which allows to clone the m variables
(also including the propagators posted on them). Thus, updating all the variables of a
Space suffices to clone it.

Regarding the BAB exploration, Gecode allows to modify the shape of the tree dur-
ing exploration, by adding new constraints. The method constrain (line 8) receives a
current solution node (Space& _s), explores the value of one of its variables (in this
case m,_1: IntVar v(s.m[s.m.size() -1]))and forces the rest of the tree explo-
ration to obtain better lower bounds for this variable (by posting rel (xthis, this->
m[this-> m.size()-1], IRT_LE,v)). Gecode specifies a cost function ‘expr’ by
setting it to an optimization var, which is forced to be minimized/maximized in the
constrain method of the Space model class. Then, search is just controlled via a
while loop (line 22), which computes the solutions one by one (forcing each new solu-
tion to have a better bound for m,,_; than the older one). Once the loop finds no more
solutions, the last solution is the optimal one (line 23).

In ILOG Solver, search strategies are performed via the execution of I1loGoals,
daemons attached to an I1oSolver object, and executing an algorithm on it (lines 36
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and 38). It is said that an I1oGoal fails if its attached I1oSolver becomes inconsis-
tent by running its execution method; otherwise the goal succeeds (line 39). The library
provides predefined I1oGoals to abstract the different elements of a search declara-
tion. Thus, the goal st (line 30) plays the role of the Gecode Brancher. Under the
env context, it uses the predefined I1loGenerate to specify the labeling of m in tex-
tual order and increasing value order. The goal g (line 32) plays the role of the Gecode
constrain method, with the third parameter requiring the bound of each new m,,_;
found to be 1 value smaller than the former one. The node evaluator D_Node sets
a depth first search exploration of the tree. The combination of g and D_Node allow
to create the goal goal (line 36), to be applied to the constraint solver (line 38). The
search control is then performed via the methods startNewSearch(goal), next()
and endSearch().

The former approach was presented due to its similarity with the Gecode one. How-
ever, ILOG Solver allows an easier approach, using an I1loObjective (in this case
IloObjective obj = IloMinimize(env, m[n-1]);), which is added to
IloModel and specifies the cost function. With it, an I1oGoal as the one of line 30
can be directly applied to I1oSolver (skipping thus the I1oGoals of line 32 and 36).
Anyway, as a goal is an algorithm to be applied over an I1oSolver, in both approaches
a solution is thus the current state of solver after running the algorithm.

The rest of algebraic CP(FD), CLP(FD) and CFLP(FD) systems abstract the notion
of search control to the user, who thus cannot customize it. Regarding search decla-
ration, MiniZinc specifies a search strategy via a search annotation within the solve
block of the program (Figure line 7). It specifies a complete search for an 7D
problem (int_search), labeling m in input_order and in a increasing value order-
ing (indomain_min). Finally, the cost function is specified with minimize m[n]. In
the case of ILOG OPL, it wraps in a search block the primitive generateSeq (line 9),
using m as the variable set, and also uses minimize m[n] (line 3) to specify that it is
an FD optimization problem, wrapping the constraintsin a subject to block (line 4).
In SICStus, SWI, PAKCS and TOY(FD), the 1labeling expression acts over m, and the
cost function is specified viaminimize Mn (lines 23, 31 and 33, respectively).

7.1.5 Golomb: Showing the Solution

Once a solution for m has been computed, it has to be displayed to the user. The
systems use different ways to access the values of the variables. In Gecode and ILOG
Solver, m variables are explicitly attached to solver, and it must be used in order
to look for their solutions. The former contains m as a protected attribute of the
Golomb class (Figure line 4), and thus the devoted access method print() is used
(line 28). The latter makes use of the predefined getValue(IloIntVar) method (line
41). Note again that the ILOG Concert constraint store object is used as a parameter
accessing to its mate ILOG Solver constraint solver one. In MiniZinc, ILOG OPL, SICStus,
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SWI, PAKCS and TOY(FD), the variables are not attached to a solver, and thus they can
be directly accessed. All the systems but MiniZinc automatically display m to the user
by default. In the case of SICStus, SWI, PAKCS and 7TOY(FD), this happens because M
is an output parameter in the golomb main predicate/function (Figure[7.2} lines 12 and
25, resp). In the case of ILOG OPL, because all the variables are automatically output as
a result. Finally, MiniZinc makes use of a predefined show method within the output
block of the program (line 10).

7.2 ETP: Solver Abstraction

The ETP is used to discuss the implementation of the p_t¢t algorithm on each paradigm.
It was presented in Section[5.3} and is referred back several times from now on. The al-
gorithm relies on a four stage process: team_assign (to find tda bijections), tt_split
(to generate the independent nt subproblems), tt_solve (to sequentially solve them)
and tt_map (to map the solution to timetabling).

To coordinate the different stages of p_tt, a search for a feasible tda; must be done
in p_tt_ta_7. Then, using this tda;, stages tt_split, tt_solve and tt_map are
triggered, obtaining (in p_tt_so_8) a suboptimal timetabling;, eh;. The execution then
backtracks to p_tt_ta_7, looking for a new ¢da;, and repeating the process. Once no
more tda are found, the suboptimal pairs timetablingy, ehy, are compared, and the one
with smallest eh is outputted as the final result. An important remark is that, whereas
Table is created in team_assign (p_tt_ta_1), its content is split into ¢t1,...,tt, in
tt_split (p_tt_sp_4).

7.2.1 Algebraic CP(FD)

Figure[7.3]presents the ETP program structure in MiniZinc (the ILOG OPL one has been
omitted as it is quite similar). A different model (+.mzn file) is used to implement each
stage (lines 2 and 11), with its input arguments initialized in a =.dzn file. Thus, an ex-
ternal script is required to coordinate the execution of the different files. Programming
the script represents an additional difficulty on itself, as it is a task independent from
the modeling of a problem in MiniZinc. Coordinating the execution layout of the mod-
els requires using the information displayed by the output block of each *.mzn stage,
generating with it the input arguments of the =.dzn file of next stage (e.g., d, e and
o_abs between team_assign.mzn and tt_split.dzn). In ¢t_solve, the script must
generate nt independent tt_solve.dzn (one per t¢;) input files, to be run over the
tt_solve.mzn. Then, their generated output must be gathered for the tt_map.dzn
input. To manage all these files, the script must avoid a name clash. Although ILOG OPL
provides a native scripting language, in this modeling comparison the coordination of
the ETP instances of the benchmark is done by hand.
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(01) mmm e - MiniZing -------- - -
(02) --------- Team_Assign.mzn ----------- [===mmmmem- TT_Split.mzn ---------comunu-
(03) int nD; int nT; int nTW; ... |array[1..nDays] of 1..nTeams: d; ...

(04) array[1..nDays] of var 1..nT: d; ... |array[1..nTeams, 1..days_per_team,

(05) constraint alldifferent([d[i] | | 1..(nTW+1)] of var 0..24: totZ;

(06) i in 1..nT]); ... |constraint forall (i in 1..nD,j in 1..nTW)
(07) solve :: int_search(d, input_order, | (tZ_aux[i,j] = 1-(sum (z in 1..(nT*nTW)
(08) indomain_min, complete) satisfy;| where o_abs[i,z]=((d[1i]-1)*nTW+j)) (1)));
(09) output [show(d[i]) ++ " " | |solve satisfy;

(10) i in 1..nDays ] ++ ...;|output ["h = ", show(h), "\n"] ++ ...;
(1) --------- TT_Solve.mzn -------------- === TT_Map.mzn -------------o----
(12) array[1..nD,1..(nTW+1)] of 0..1:totZ;|array[1..nT] of 0..10000: eh;

(13) array[1..nD, 1..(nTW+1)] |array[1..nD] of 1..nT: d;

(14) of var 0..24: tt;|array[1..nD, 1..((nT*nTW)+1)] of var

(15) constraint forall (i in 1..nD, | 0..24: timetabling;

(16) j in 1..(nTW+1)) (tt[i,j] in |constraint forall (i in 1..nD, j in 1..
17) slots_per_jour[dC_list[i]]); | ((d[1i]-1)+*nTW)) (timetabling[i,]j]=0);
(18) solve :: int_search([tt[i,j] | 1 in |solve satisfy;

(19) 1..nD, j in 1..(nTW+1)]1,input_order, |output ["hp=",show(hp),"\n"] ++ ... ;
(20) indomain_min, complete) minimize eh; |

(21) output ["eh=",show(eh),"\n"] ++ ... ;|

Figure 7.3: Algebraic CP(FD): ETP Program Structure

The use of four models (files) is mandatory, as team_assign.mzn must be iso-
lated from tt_split.mzn, and the solving of each ¢¢; requires a dedicated execution
of tt_solve.mzn. Regarding the former, in a *.mzn model each input argument can
be either a parameter or a decision variable, but not both. Variable d must act as a
decision variable in team_assign.mzn (line 4), as p_tt_ta_4 sets its initial domain
to 1..nt. But, it must act as a parameter variable in tt_split (line3),asp_tt_sp_2
uses it to compute TotZ. Lines 4-8 show the computation of the values for tZ_aux
(a Boolean decision variable array used to further compute totZ). On them, the con-
tent of d[1] is placed in a where condition (filtering the z values being considered
to compute tZ_aux[1,J]), and these condition expressions only support parameter
variables.

Isolating team_assign does not prevent from generating a two model (files) ap-
proach, where tt_split, tt_solve and tt_map are gathered in the second one.
This model is feasible, and a MiniZinc implementation of it is included in the models
provided. However, this approach does not exploit the independence of the tt4, ..., tt,,
generated subproblems, leading to ehy,...,eh,; suboptimal solutions (optimal in the
context of each subproblem), and thus ensuring the final eh (equal to the sum of these
ehi,...,ehy) to be optimal. This is due to the fact that each +.mzn model must in-
clude a single solve declaration. Thus, if a two models approach is used, the variables
of tt1, ..., tt,, must be gathered in the variable set of this single solve declaration. By
selecting, for example, a lexicographic variable selection order, then the optimal com-
bination of values for variables of ¢¢; is not computed just once, but one time per each
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feasible combination of values of tt,, . . ., tt,;. This makes the approach absolutely inef-
ficient (e.g., for the ETP-15 instance of Section whereas the four models approach
finds the optimal solution in seconds, the two models approach does not find it after
several hours).

Finally, whereas the native scripting language of ILOG OPL would make possible to
fit the coordination of the different stages proposed before, the lack of such a native
scripting language in MiniZinc precludes it from doing so. The Gecode/FlatZinc front-
end fzn-Gecode [172] includes a parameter -n to specify the number of solutions
(0 to obtain all of them), but it does not include a parameter to simulate the method
SearchEngine: :next() (computing one tda; per each iteration of the stages). Also,
an output block cannot display an unbound FD variable (as it is the case of Table in
team_assign.mzn and of ¢t in tt_split.mzn). Thus, the decision made has been
to skip creating Table and create ¢t from scratch in ¢t_solve. To still take advantage of
the binding to 0 of some ¢t variables (due to absences in o_abs), an array of Boolean
0..1 variables ti_info is created in ti_split. Thus, in p_tt_so_3 totZ is traversed,
binding to 0 those variables of ¢t_in fo representing absences, but also binding to 1 the
rest of them (having all its variables bound, ¢t_info can be displayed in the output of
tt_split.mzn). Then, tt_solve.mzn creates ¢t following the dimensions of t¢_in fo,
and uses its content to do the corresponding bindings.

7.2.2 C++ CP(FD)

Figure[7.4] presents the ETP program main entry point in Gecode (the ILOG Solver one
has been omitted as it is quite similar). The model is contained in just one file. Whereas
the outermost while loop of the main method (line 10) coordinates the execution of
the stages, the innermost loop (line 2) ensures the sequential solving of ¢t1,. .., tt,;.

The independent CP(FD) stages tt_split and tt_map are easily implemented
by using the C++ abstractions. The stage team_assign requires a constraint solver s
(line 5), for finding the different feasible tda. For each tda;, the stage tt_solve creates
a new vector slv (line 14), with each s1v[i] dedicated to the solving of #¢;. In ILOG
Solver, each solver is represented as an I1oSolver (with its associated I1oModel),
butin Gecode s and slv lead to the different Space subclasses StageI and StageIII
(taking advantage of the Gecode capability to abstract each independent CP(FD) prob-
lem under a different class). Anyway, using a different solver entity for finding tda
and solving a t¢; is mandatory, as the API of CP(FD) systems preclude the posting of
new constraints on a solver entity being in search mode (which is the case of s when
reaching stage t¢_solve). In the case of Gecode, even the use of different StageI and
Stagelll classes is mandatory, as if both were merged, then the copy() method
would crash on trying to clone any FD variable not even being initialized.

The association of variables to solvers forces them to be passed as arguments to
any program point where the solutions of the variables are required. This is the case
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(01) mmm e - GeCOdE -~ - - mm e
(02) int main(int argc, charx argv[]) { | while ((sat) && (i < nT)){

(03) ... //parse input args sat = slv[i]->tt_solve(nTW, ws, eF,
(04) //I. Team Assign T, h, p, W, SS, dc_list);
(05) Stagelx s = new StageI;

(06) bool sat = s->team_assign(nD, nT,
(07) nTW, eR, ws, abs, dC, p, oAbs);
(08) if (sat){

(09) DFS<StageI> engine(s); eh += slv[i]->get_eh();
(10) while (Stagel+ sol= engine.next()){ }

|

|

| if (sat){

I

|

|
(11) //II. TT Split | i++;

|

|

|

|

|

|

|

|

BAB<StagelIII> eng(slv[i]);
while (StagelIII+ ss= eng.next())
slv[i] = ss;

(12) sat = true;

}
(13) s = sol; //IV. TT Map

(14) vector<StageIII+> slv; if (sat)

(15) vector< vector<int> > dC_list; tt_map(nT, nTW, eh, s, slv);
(16) int h = tt_split(nD, nT, nTW, ws, }

17) oAbs, dC, s, slv, dC_list);| }

(18) //I11. TT Solve
(19) int eh, i = 0;

. //clean elements
}

Figure 7.4: Gecode ETP Program main Entry Point

of s (in charge of labeling d), which is passed as an argument to the (even CP(FD)
independent) stages tt_split (line 16) and tt_map (line 15), just to give them access
to the computed values for d. Finally, the isolation from s and s1v makes impossible
to fit the bindings between Table and ttq, ..., tt,; of the coordination of p_tt stages
proposed before, as the mate variables to be linked by equality constraints are posted
to different solvers. Thus, Table is skipped and tt¢ is created from scratch (via s1lv) in
tt_solve. To still take advantage of the binding to 0 of some ¢¢ variables (due to absences
in o_abs), slv is also passed to tt_split (line 16), where totZ is used to constrain to
0 the corresponding variables.

7.2.3 CLP(FD) and CFLP(FD)

Figure presents the p_tt main program predicate (line 1) in SICStus (respectively
main program function (line 12) in TOY(FD)). SWI-Prolog and PAKCS have been omit-
ted as they are quite similar. The model is contained in just one file, and the code is
simpler and neater than the one for algebraic CP(FD) and C++ CP(FD) systems, with a
declarative coordination of the stages by simply placing them in order.

The use of multiple solvers, the assighment of constraints to them and their coor-
dination is abstracted to the user, which just has to focus on declaring the different
FD constraints arisen on team_assign and tt_solve. Regarding the FD variables
which, once again, are freely declared, a set of reflection functions allow to access their
domain during the goal computation. When this domain is reduced to a singleton, the
variable is automatically unified to the single value in the domain. In particular, D va-
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(01) =--mmmmmm e SICSTUS ------mmmmmmm e
(02) %p_tt/14(+ND, +NT, +NTW, +ER, +EF, +WS, +Abs, +DC, +T, +P, +W, +SS,

(03) -Timetabling, -EH).
(04) p_tt(ND, NT, NTW, ER, EF, WS, Abs, DC, T, P, W, SS, Timetabling, EH) :-

(05) set_prop(P, NT, P1, P3),

(06) team_assign(ND, NT, NTwW, ER, WS, Abs, DC, P1, D, E, OAbs),

(07) tt_split(ND, NT, NTW, WS, OAbs, DC, D, E, TT, TTList, DCList, H),

(08) zipWith_tt_solve(NTW, WS, EF, T, H, W, SS, TTList, DCList, P3, EHList),

(09) sum(EHList, #=, EH),

(10) zipWith_tt_map(NT, NTW, Dk, TT, Timetabling).

(11) mmmmmmmmm e TOY(FD) =-----mmmmmmmm e e
(12) p_tt:: int -> int -> int -> int -> int -> [[int]] -> [(int,int)] -> [int] ->
(13) int -> bool -> labOrder -> labStrat -> ([[int]],int)

(14) p_tt ND NT NTW ER EF WS Abs DC T P W SS = (Timetabling, EH) <==

(15) P,

(16) team_assign ND NT NTW ER WS Abs DC == (D, E, OAbs),

(17) tt_split ND NT NTW WS OAbs DC D E == (TT, TTList, DCList, H),

(18) sum (zipWith (tt_solve NTW WS EF T H W SS) TTList DClassList) (#=) EH,
(19) zipWith (tt_map NT NTW) D TT == Timetabling

Figure 7.5: CLP(FD), CFLP(FD): ETP p_tt Predicate/Function

riables can be directly used in tt_split and tt_map (lines 7 and 17, respectively) as,
at that point of the computation, the variables will be unified to integer values.

The nature of these systems (allowing them to reason with models) and their use
of the 7{ solver allow them to fit the coordination of the p_tt stages proposed before.
A labeling primitive placed at the end of team_assign (p_tt_ta_7) ensures the
backtracking to that point when the stages tt_split, tt_solveand tt_mapare com-
puted. This backtracking restores all the variables to the point they werein p_tt_ta_7.
In particular, Table is restored to be a list of lists of fresh logic variables (which are
not taken into account by the FD solver until an 7D constraint involves them). Thus,
splitting Table into tt (in ¢t_split) simply implies the variable unification between the
Table and tt[1] mate representations of the same logic variable.

Finally, the use of multiple solvers affects the way batch propagation is simulated
in CLP(FD) systems, breaking the pure declarative view they provide. Now, each solver
needs a dedicated flag, as once it is unified to a value (to trigger the frozen constraints
just before the solver starts a search) the flag cannot be reused in further solvers.
Thus, now set_prop (line 5) receives P and NT, generating P1 and P3 (to be a zero
value or a fresh logic variable; and a list of NT zero values or a list of NT fresh logic
variables, respectively). Whereas P1 is passed to team_assign (line 6), P3 is passed
to zipWith_tt_solve (line 8), assigning each element of P3 to a different working
team.

159



7.3 ETP: Data Structures

The use of dynamic data structures, as vectors in C++ CP(FD) systems and lists in
CLP(FD) and CFLP(FD) ones, eases the formulation of the ETP problem w.r.t. algebraic
CP(FD) systems, where static array data structures are used. For example, referring
back to the instance example ETP-7 of Section (5.1} it contains two kind of days: Work-
ing days (with a 20, 22 and a 24 working hours shift) and weekends (with two 24 hours
shifts). First, dynamic data structures can be declared empty (to be further filled), but
arrays cannot, thus requiring extra input parameter variables to set the dimensions of
the array. Second, the unbalanced number of shifts of both kind of days is inherently
supported by dynamic data structures, but it is not in arrays. Thus, void shifts of 0
hours are used for filling the empty spaces of those kind of days having less shifts (as
in the weekend days, with [24,24,0]). This behavior affects to input arguments, but
also to computed data structures. For example, when computing oabs, it is not known
in advance the amount of absences each day contains. Thus, the length of the array is
set to an upper bound of nT+nTW and, again, void 0 values are used to fill the empty
spaces (asin [1,2,5,6,7,10,11,12,0,0,0,0] for oabsy).

When dealing with 7D data structures, these additional void values represent addi-
tional 7D variables and D constraints to be posted to the solver. Referring back again
to ETP-7, p_tt_sp_4 computes tt = [tty, tto, tt3] and de_list = [dc_listy, dc_lists, de_lists],
where tt; = [|0,0,a,b,c], [I,m,n,0,0], [v,w,z,y,0]], tta = [ [d,e, f,9,0], [p,q,7,s,0]] and
tts = [ [h,i,5,k,0], [t,0,0,0,u]] (respectively dc_list; = [1,1,2], dc_lists = [1,1] and
dc_lists = [1,2]) are of different length. Thus, in algebraic CP(FD) systems a new in-
put parameter variable dpt = ((nD-1)/nT)+1 is computed, setting the length of all
these tt; and dc_list; structures. In this concrete example, it forces tt, and tt3 (re-
spectively dc_listo and dc_lists) to contain a new kind of void day they must deal with.
Regarding tt;, this void kind of day is easily represented as a day with ntw + 1 shifts
of 0 hours to be accomplished (i.e., days where all the variables are directly bound to
0). Regarding dc_list;, this void kind of day is represented as a new class of day (in the
instance as 3, different from working days 1 and weekends 2). Anyway, besides the
additional FD variables and constraints, the modeling of these void days represents a
difficulty itself, arisen due to the data structures being used.

On the other hand, the use of arrays provide algebraic CP(FD) systems free access
to n-dimensional arrays and free indexing by parameter variables. Figure[7.6|presents
the access to the bi-dimensional data structure atd (left part), as well as the indexing
of the one-dimensional lws with an element of the one-dimensional dc (right part). In
both cases, the algebraic CP(FD), C++ CP(FD), CLP(¥D) and CFLP(FD) systems are
presented in order. In the case of C++ systems (line 5), they require n — 1 auxiliary
elements to access or index an n-dimensional vector. Finally, CLP(FD) and CFLP(FD)
systems (lines 7 and 10, respectively) require n auxiliary elements to access or index
an n-dimensional vector (but the use of higher order functions in CFLP(FD) saves the
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(01) =----mmmem-- Accessing -------------- R Indexing ----------------
(02) =-mmmmmmm - ILOG OPL =-----mmmmmmmmmmmm e -
(03) atd[1,2] |lws[dc[i]]

(04) ----mmmmmm e ILOG Solver -------c-mommmmmmem oo
(05) vector<int> aux = atd[1]; (use aux[2])|lws[dc[i]]

(06) =--mmmmmm e SWI-Prolog ---------=------cmmmmmme oo
(07) nth1(1, ATD, AUX, _), [nth1(I,DC,K,_ ),

(08) nth1(2, AUX, R, _), (use R) |nth1(K,LWS,R,_), (use R)

(09) —-mmmmmmm e PAKCS —m-mmmm i mmm e
(10) fst (nth1 2 (fst (nth1 1 ATD))) |fst (nth1 (fst (nth 1 I DC)) LWS)

Figure 7.6: Data Structures Accessing and Indexing

explicit declaration of these auxiliary elements). Anyway, they also require using the
auxiliary primitive predicate/function nth1, which given and index i and a list [ returns
the i-th element of [ and the remaining list nl (after removing the i-th element from it).

7.4 ETP: Variables

The amount of FD variables each paradigm needs to formulate the ETP depends on
the concrete data structures being used (already presented before), but also on other
aspects derived from the constraint solver API and the operational semantics of the
system. As an example guiding the section, Figure presents the initialization of
tt and trans_tt in MiniZinc, Gecode, SICStus and TOY(FD) (ILOG OPL, ILOG Solver,
SWI-Prolog and PAKCS have been omitted as they are quite similar). These are the
main variables of t¢_solve, representing the shifts the different workers are assigned to.
They are mate variables, with ¢t ordering the shifts of the team by days it = [[w;(d}),

oy ew(dy)], ..., [wi(dng/ne)s - ew(dpayne)]] @and trans_tt ordering the shifts of the
team by workers trans_tt = [[wi(d1), ..., wi(dpa/nt)], - - -, [ew(dr), ..., ew(dpg/ne)]]. The
use of both representations eases the modeling of p_ti: Whereas ¢t are suitable for
p_tt_so_2, trans_tt are suitable for p_tt_so_5, p_tt_so_6 and p_tt_so_7. The
way each paradigm deals with these variables is discussed separately.

7.4.1 Algebraic CP(FD)

Two bi-dimensional arrays are used to declare tt (line 30) and trans_tt (line 32).
Each representation is independent, in the sense that tt[i,j] and trans_tt[j,1i]
use their own memory space and have their own domain and associated constraints.
The two mate variables are then linked via an explicit constraint (line 34), where the
use of forall aggregations allow to link all the mate variables in just one line of code.
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(01) ----mmmmmmm - - SICStus -------=------- IR it Gecode ------------oooooo-
(02) %gen_transpose/2(+TT, -TransTT). |class StageIII : public Space {

(03) gen_transpose([[]1]|_1, [1). |protected:

(04) gen_transpose([L|R1], [T|Rt]) :- | IntVarArray tt;

(05) map_headers([L|R1], T, R), | IntVarArray trans_tt;

(06) gen_transpose(R, Rt). |public:

(07) % | StageIlI(bool share, StagelIIl& s)
(08) %map_headers/3(+LA, -H, -LB). | Space(share, s) {
(09) map_headers([1, [1, [1). | this->tt.update(+«this, share, s.tt);
(10) map_headers([L|R1], [E|Re], [R|Rr]):-| this->trans_tt.update(*this, share,
11) nth1(1, L, E, R), | s.trans_tt);
(12) map_headers(R1, Re, Rr). | ¥

(13) =--mmmmmeme - TOY(FD) --------m-mmm- | void init_vars(int nD, int nTW) {
(14) gen_transpose:: [[A]] -> [[A]] | //Init tt

(15) gen_transpose = foldr aux_trans [] | this->tt = IntVarArray(sthis,

(16) % | nDx(nTW+1), 0, 24);
(17) aux_trans:: [A] -> [[A]l]l -> [[A]] | //Init trans_tt

(18) aux_trans Xs Xss = | IntVarArgs _vars(0);

(19) zipWith (:) Xs (Xss ++ repeat [])| for (int i = 0; i < (nTW+1); i++){
(20) % | for (int j = 0; j < nD; j++){

(21) foldr:: (A->B->B) -> B -> [A] -> B | IntVar v(this->tt[j*(nTW+1)+i]);
(22) foldr FZ []1 =2 | _vars << v;

(23) foldr F Z [X|Xs] = F X (foldr F Z Xs)| ¥

(24) % |}

(25) zipWith:: (A->B->C) -> [A]->[B]->[C] | this->trans_tt =

(26) zipWith Z [] Bs = [] | IntVarArray(+this, _vars);
(27) zipWith Z [A]As] []1 =[] |}

(28) zipWith Z [A]As] [B|Bs] = [...}

(29) [Z A B| zipWith Z As Bs] |-------------- MiniZinc -----------------
(30) % |array[1..nD, 1..(nTW+1)]

(31) repeat:: A -> [A] | of var 0..24: tt;
(32) repeat X = [X|repeat X] |array[1..(nTW+1), 1..nD]

(33) | of var 0..24: trans_tt;
(34) |constraint forall (i in 1..(nTW+1), j
(35) | in 1..nD) (trans_tt[i,j] = tt[j,1i]1);

Figure 7.7: Initializing t¢ and trans_tt Variables

7.4.2 C++ CP(FD)

Two explicit one-dimensional IntVarArray are used to declare tt and trans_tt as
attributes of the StageIIlI class (lines 4 and 5). As a difference to the Golomb class
(cf. Chapter [7.1), where the constructor initialized the variables, posted the constraint
network and specified the search strategy, in StageIII these tasks are uncoupled
from the class constructor and performed in dedicated functions. In concrete, the
function init_vars (line 13) sets the size and initial domain of tt and trans_tt, and
the copy constructor (line 7) updates these variables to perform each Space cloning
during search exploration.

Regarding init_vars, itinitializes two dependent tt and trans_tt variable data
structures (lines 15 and 25, respectively) That is, tt and trans_tt are declared as
different IntVarArray objects, but each mate tt[i] and trans_tt[j] IntVars
rely on a unique and shared IntView variable (the representation being used by the
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constraint solver for constraint propagation). To do so, tt is created first as a one-
dimensional IntVarArray of nDx(nTW+1) variables. Then, an auxiliary IntVarArgs
_vars (line 18) argument array (cf. Section|7.1.2) is used to build up trans_tt via the
variables of tt. Thatis, each IntVar of trans_tt is just a pointer to the one of tt.
Representing tt and trans_tt as bi-dimensional variable data structures

vector<IntVarArray> would have eased the formulation of the problem. How-
ever, for efficiency reasons, one-dimensional IntVarArrays are used (lines 4 and
5), thus implying a harder modeling by recomputing the indexes of the variables in-
volved on each posted constraint. The idea is that the search procedure is the most
relevant issue affecting solving efficiency. As the copy constructor is executed on each
clone performed during the search exploration, then its execution cost turns crucial as
well. Figure[7.8]| presents how the copy constructor method would have looked like if
a bi-dimensional tt had been used. By comparing the approaches of Figure [7.7]and
it can be seen that, whereas the running time of the copy method based in one-
dimensional variables is of ©(1), the one of the bi-dimensional variables is of ©(n).
Obviously, it still has to copy the same number of elements. But copying a single ar-
ray will be more efficient in hardware, since all the data will be contiguous in memory
and parallel bus transfers will be possible. Both Gecode versions are included in the
available models, and Chapter [8] proves that the one-dimensional model clearly out-
performs the efficiency of the two-dimensional one.

7.4.3 CLP(FD)and CFLP(FD)

In these systems, both tt and trans_tt are managed as bi-dimensional lists. Whereas
tt is created by generating nd x nt new fresh logic variables, trans_tt is created by
transposing tt via the predicate (respectively polymorphic function) gen_transpose
(lines 2 and 14, respectively). They generate each trans_tt[j,1i] variable by pat-
tern matching on its mate tt[i,j]. The semantics of this pattern matching differs
depending on the two variables involved: If both are fresh logic variables (or one is an

StageIII(bool share, StageIIl& s) : Space(share, s) {
int size = s.tt.size();

for (int i = 0; i < size; i++){
IntVarArray aux_tt(s.tt[i]);
this->tt.push_back(aux_tt);
this->tt[i].update(«this, share, s.tt[i]);

}

}...

Figure 7.8: Alternative copy Method
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FD variable but the other one is a fresh logic variable), then the matching is managed
by the H solver, which unifies both variables. Otherwise, the matching is managed by
the FD solver, which constrains both FD variables to be equal by posting an equality
constraint to the FD store. It is important to remark that any fresh logic variable is
implicitly attributed as FD by the system as soon as an FD constraint involves it.

Thus, as it happened in C++ CP(FD) systems, tt and trans_tt are treated as de-
pendent variable lists. That is, trans_tt is built up via tt, with each trans_tt[j, 1]
being unified (by the H solver) with tt[1i, j]. However, Figure[7.9 presents a fragment
of the SICStus predicate gen_d (line 3), implementing p_tt_ta_4, and for which the
order in which the clauses are executed affects to the amount of 7D variables created.
The predicate creates the list D of ND new fresh logical variables, uses the auxiliary pred-
icate work_each_n_days (line 2) to unify each D[1] with D[1+NT], and finally posts
an initial domain over the variables of D (line 6), with a freeze predicate controlled by
the parameter P of gen_d. By executing the clauses in this order, the unification of D
variables remains only NT different logical variables in the list, which then are turned
into NT different FD variables. But, if the domain constraint were posted before the
unification, then the ND variables of D would turn into ND different 7D variables, and in
this context the pattern matching would post an FD equality constraint between each
pair of 7D variablesD[1] and D[ 1+NT].

Thus, from the point of view of efficiency, it is a good idea to model a problem by
unifying first (using #) as many logical variables as possible, before they are turned into
FD variables. However, postponing as much as possible the posting of the 7D con-
straints when modeling a problem clearly breaks the pure declarative view of modeling
CLP(FD) and CFLP(FD) paradigms provide.

7.5 ETP: Constraints

The different modeling techniques provided by each paradigm play a role in the posting
of the D constraints. In this section, the ETP is used to discuss the posting of some
constraints related to the stage t¢_solve. First, Figure presents the step

(0T) =-mmmmmmmr i m e - SICStUS =------ s mmm e
(02) %gen_d/4(+ND, +NT, +P, -D). |%work_each_n_days/2(+N, +L).

(03) gen_d(ND, NT, P, D) :- |work_each_n_days(N, L) :-

(04) length(D, ND), | nth1(1, L, H1, R1),

(05) work_each_n_days(NT, D), | nth1(N, R1, H1, _),

(06) freeze(P, domain(D, Min, Max)), | work_each_n_days(N, R1).

(07) |

Figure 7.9: Pure Declarative View of Modeling vs. Safe 7D Variables
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tt_info;

int: nD;

int: dj;

int: mj;

array[1..dj,1..mj] of 0..24: ws;
array[1..nD] of 1..dj+1: dC;

array[1..nD, 1..(nTW+1)] of 0..1:

%

array[1..nD, 1..(nTW+1)] of var 0..24: tt;

| j in 1..mj where i <= dj} | 1 in 1..dj+1];

array[1..(dj+1)] of set of int: dom_pj
[{0} union {ws[i,]j]
constraint forall (i in 1..nD, j in 1..(nTW+1))

(if (tt_info[i,j] = 0) then tt[i,j] = 0 else true endif);
constraint forall (i in 1..nD, j in 1..(nTW+1)) (tt[i,j] in dom_pj[dC[i]]);

for (int i = 0;
//1. Collect the vars
IntVarArgs _vars(0);
for (int z = 0;

_vars << _var;

¥
IntVarArray vars =

IntVarArray(xthis, _vars);

//2. Collect the domain

std::vector<int> sh = ws[(dC[i]-1)];
SICStus

z < (nNTW+1); z++){
IntVar _var(this->tt[i*(nTW+1)+z]);

Gecode
void post_dom(vector<vector<int>> ws,

vector<int> dC, int ntW){|
i < dC.size(); i++){

| int s2 = sh.size();
IntArgs _vals(s2+1);

| _vals[0] = O;

| for (int j = 1; j <= s2; j++)
| _val[jl = (sh[j-11);

|  IntSet vals(_vals);

| //3. Post the domain to vars
| for (int j = 0; j < (nTW+1); j++)
| dom(+this, vars[j], vals);
[ ¥

[}

I

%prep_post_dom/4(+NTW, +WS, +Vars, +DC).|%gen_set/3(Values, +Set, -ResSet).

pre_post_dom(NTW, WS, Vars, DC) :

nth1(DC, WS, A0),
append([0], A0, A1),
sort_list(A1, A2),
reverse(A2, A3),
empty_fdset(S),
gen_set(A3, S, NS),
post_domain(Vars, NS).

TOY(FD)

|gen_set([], S, S).
|gen_set([V|Rv], S, NS) :-

| fdset_parts(S1, V, V, S),

| gen_set(Rv, S1, NS).

I

|%post_domain/2(+Vars, +Values).
|post_domain(_, [], _).
|post_domain([V|Rv], D) :-

| V in_set D,

| post_domain(Rv, D).

%post_working_slots:: int -> [[int]] -> [int] -> int -> bool
post_working_slots NTW WS Vars DC = true <==
domain_valArray Vars (sort_list ([0] ++ (head (drop (DC-1) WS))))

Figure 7.10: Posting the Domain of ¢t Variables (p_tt_so_2)




p_tt_so_2, on which the variables of each day t¢; are initialized with the domain v.
Then, Figure presents the step p_tt_so_6, on which the variables cv are con-
strained to be in the domain —7'...T. To guide the explanation, the third team of the in-
stance ETP-7 (cf. Section[5.7) is referred back. Onit, tt = [[H, I, J, K, 0], [T}, 0,0, 0, U]] and
de = [1,2] (corresponding to the days 3 (Wednesday) and 6 (Saturday) of the timetable).
As ws = [[20,22,24], [24, 24]] and nitw = 4, the domain for d¢; = 1 and d¢; = 2 must be
[0,20,22,24] and [0, 24], respectively. Also, the distribution (values, cardinalities) for
de; = 1 and de; = 2 must be [(0,2), (20,1), (22,1), (24,1)] and [(0,3), (24, 2)], respec-
tively. Finally, the cv variables for each kind of shift (in ETP-7 there are four kind of
shifts, of 0,20, 22, 24 hours, respectively) and regular worker (in ETP-7, the four workers
of team t3 are wo, wig, wi1, wiz) are computed in p_tt_so_5: cv0y9, cv0y10, c¥0w11,
V012 - .. V24,9, cV24410, V24,11, cv24,12. Given those variables, T = 1 is used in
p_tt_so_6 to tighten the distribution of shifts: auz0; = cv0u,9 — cv0y10, auzls =
V09 —cv0y11, aux03 = cv0y9—cv04y12, aux04 = cv0y10—CcV04y11, auxX05 = cv0y10—Ccv04yp12
and aux0g = cv0y,11 — cv0y12, With the domain of {auz0;, auz0s, auz0s, auzlys, auzls
and aux0g} in —1...1. The same constraints are posted for auz20;, auz22; and auz24;.

7.5.1 Algebraic CP(FD)

Due to the use of void days (cf. Section [7.3), the scheduling of ¢t3 in tt_solve.dzn
uses as input parameters nD = 3,dC = [1,2,3] and tt_info = [ [1,1,1,1,
01, [1,0,0,0,11,[0,0,0,0,0] ] (instead of the expected nd = 2, dc = [1,2]
and tt = [[H,I,J,K,0], [T,0,0,0, U]] presented before). Once again, the use of void
days does not affect the computational effort to schedule the team. Figure[7.70|shows
that the first constraint block (line 12) concerns with binding to 0 any variable iden-
tified as an absence by tt_info (which includes any variable of a void day). An
if-then-else instruction is used, where an idle true is used for the else part.
However, the use of void days affects to the modeling of the domain initialization of the
variables. Figure[7.10]shows the computation of the initial domain for tt. It relies on
the auxiliary array[1..(dj+1)] of set of int: dom_pj (line 10), where each
dom_pj[1i] represents the set of different kind of shifts a worker can be assigned to in
aday of kind dC[1]. As it can be seen, each dom_pj[i] can be simply obtained as the
union of 0 (shift for absences or resting) with the different elements of ws[1i,_]. As
there is no ws representation for the void days, it is computed as {0} union { } (by
using awhere clause to skip accessing to ws when computing dom_pj[dj+1]). Finally,
a forall aggregation is used in the second constraint block (line 14) to elegantly
post the domain of all the tt variables at a time. On each one, the concrete set of
dom_pj to be used is selected by indexing it with dC[1]. As it can be seen, MiniZinc
allows the initialization of a 0. .24 var (as the ones of tt) to a set of values by simply
using the in expression.
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(01) mmmmmmmm e ILOG OPL == mmmmmmmmmmm e e e
(02) var int tight_vars[1..n_dif_sl, 1..(((nTW-1)*nTW) / 2)] in (-t)..t;
(03) forall (i in 1..n_dif_sl, j in 1..(nTW-1), k in 1..(nTW-j)) (tight_vars[i,

(04) ((NTW-1)*(3-1) + ((k+j)-1)) - (((j-1)*J) / 2)1 = cv[i,j1 - cvIi,(G+K)1):
(05) --------- ILOG Solver -----mmmmm e PAKCS----------------
(06) void post_tight(bool prop, int nTW, |post_tight:: Int -> [Int] -> Bool

(07) IloEnv& env, IloIntVarArray& cv,|post_tight tight cv | domain (gen_diff
(08) IloModel&, IloSolver& solver){| cv) (-t) t
(09) bool satisf = true; | = True

(10) IloIntVarArray tight_vars(env); |gen_diff:: [Int] -> [Int]

(11) for (int j = 0; j < (nTW-1); j++) |gen_diff [] = []

(12) for (int k = (j+1); k < nTW; k++) |gen_diff (x:xs) = (aux_gd x xs)

(13) if (satisf){ | ++ (gen_diff xs)
(14) IloIntVar aux(env, (-t), t); | %

(15) tight_vars.add(aux); |aux_gd:: Int -> [Int] -> [Int]

(16) IloConstraint ct = laux_gd _ [1 = []

7) aux == (cv[j] - cv[k]); Jaux_gd x (y:xs) = ((x -# y):

(18) model.add(ct); | (aux_gd x xs))
(19) if (prop) |

(20) satisf = solver.propagate(ct); |

21) + |

(22) ¥ |

(23) ~m - SWI-Prolog -------------commmmmmme oo
(24) %post_tight/3(+P, +T, +CV). |%map_gen_sub_vars/3(+P, +VL, -NVL).

(25) post_tight(P, T, CV) :- |map_gen_sub_vars(_, [1, [1).

(26) map_gen_sub_vars(P, CV, Tight_Vars), |map_gen_sub_vars(P, [V|Rv], NL) :-

(27) MT is -T, | gen_sub_vars(P, V, Rv, S),

(28) freeze(P, domain(Tight_Vars, MT, T)).| map_gen_sub_vars(P, Rv, L),

(29) | append(S, L, NL).
(30) %gen_sub_vars/4(+P, +V, +VL, -NVL). |
(31) gen_sub_vars(_, _, [1, [1). |
(32) gen_sub_vars(P, Var, [V|Rv], [S|Rs]):-|
(33) freeze(P, Var - V #= 9), |
(34) gen_sub_vars(P, Var, Rv, Rs). |

Figure 7.11: Constraining the Distribution of the Workers (p_tt_so_6)

Orthogonally, Figure [7.11] shows the code of ILOG OPL constraining the cv varia-
bles. The explicit bi-dimensional decision variable array tight_vars is used (line
2). It ranges in the different kind of shifts n_dif_s1 and in the amount of pairwise
cv[j] and cv[k] (which are in total (ntw — 1)!, as it was seen in the instance with
auz0; = cv[l] — ev[2], ... auz0s = cv[3] — cv[4] for the O hours kind of shift). The
factorial is computed via ((nTW-1)*nTW) / 2. The variables of tight_vars are
tightened by simply declaring their initial domain as (-t). .t (line 2). Finally, the as-
signment of the tight_vars variables to the subtraction of cv is done via a triple
forall loop (line 3): Whereas 1 ranges in n_dif_s1, jand krangein 1..(nTW-1)
and 1..(nTW-7), to respectively represent the indexes of the pairwise different varia-
bles subtracted by cv[i,j] and cv[i, (j+k)]. However, neither MiniZinc nor ILOG
OPL include the notion of a counter in the forall instructions. Thus, the link between
each tight_vars[i,counter] and the indexes j and k must be set. In this case,
the link is counter = ((nTW-1)*(j-1) + ((k+j)-1)) - (((J-1)*]j) / 2),which
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is far from being straightforward.

7.5.2 C++ CP(FD)

In the case of C++ CP(FD) systems, due to the use of vector data structures no void
days are needed (cf. Section[7.3), and then the dC = [1,2] received is consistent with
the one presented in the initial sketch of the section.

Figure presents the code used in Gecode to initialize the variables. A method
post_dom is used (line 16), which is local to the class StageIII (cf. Section [7.2.2),
and thus is called within the tt_solve stage by the different teams s1v[1i] (cf. Figure
[7.4). The method uses the size of dC to create a for loop ranging on each of the days
the team has to deal with (line 18). For each day, it collects the variables and initializes
their domain. Regarding the variable collection, an explicit IntVarArray vars is used
(line 25), which relies on the auxiliary IntVarArgs _vars(0) for its initialization (line
20). Initially empty, a for loop uses the operator << to dynamically add the concrete
tt variables of the day to _vars. As it was seen in Section [7.4.2] (with the case of tt
and trans_tt variables) the constructor IntVar _x(IntVar& y) is used (line 22),
which treats both y and the new _x as two different pointers of a unique solver variable
IntView. Finally, as Gecode uses an one-dimensional variable array for tt, to identify
the concrete index of the variable, the offset i+ (nTW+1) (discriminating the day) plus
z (discriminating the concrete worker) is used.

Orthogonally, Figure shows the code of the method post_tight (line 6),
which ILOG Solver uses to tighten the cv variables. As a difference with Gecode, the
constraint solvers used for team_assign and each team in tt_solve are all repre-
sented as I1oSolvers (cf. Section[7.2.2). Thus, when solving the third team, the solver
slv[2] must be passed as an argument to any method interacting with it (and so it
must be passed its application environment I10Env and its associated constraint store
IloModel). Moreover, to refer to each cv[i] within post_tight, the IntVarArray
cv must be passed as an argument too. Regarding the content of the method, the use
of a local IntVarArray tight_vars is needed (line 10), as it supports the dynamic
addition of variables. Taking advantage of that, a double for loop in j and k is used
(lines 11 and 12), similar to the one of ILOG OPL. However, instead of declaring all the
variables prior to the loop, in ILOG Solver a new explicit I1oIntVar aux is created on
each loop iteration, which is added to tight_vars (line 15). Thus, there is no counter
needed to relate the concrete tight_vars[i] being used for each concrete cv[j]
and cv[k], as it is known that on each iteration this variable is going to be aux, which
is the last variable being added to tight_vars. Finally, to tighten the domain of aux,
it is declared with an initial domain with lower and upper bounds -t and t (line 14),
respectively.
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7.5.3 CLP(FD)and CFLP(FD)

The use of 1ist data structures makes the received arguments consistent with the
ones presented in the initial sketch of the section. Both for the domain initialization and
for the tightening of the distribution, the CLP(FD) approach is discussed first, pointing
out then how the CFLP(FD) one improves it.

Figure presents the code used in SICStus to initialize the variables. Focus-
ing on the concrete instance, the predicate prep_post_dom (line 30) receives WS =
[ [20,22,24], [24,24] 1, NTW = 4, the variables of a concrete day and its con-
crete kind of day (i.e., a first call to prep_post_dom will be in charge of Vars =
[H,I,J,K,0]anddC = 1andasecondoneofVars =[T,0,0,0,U]anddC = 2).
The list of values of the domain (for example A2 =[0,20,22,24] for the first day) is
obtained by using the primitive predicates nth1 (using DC to discriminate the day in WS)
and append (to add the 0 shift). Then, the predicate sort_list (line 34) orders the
shifts (with no repetitions) in an increasing order. However, the SICStus API just pro-
vides two primitives to post a domain to a variable: The usual domain([VarList],
Lb, Ub)andV in_set D.Thus,the [0,20,22,24] domain list must be turned into
the {0,20,22,24} domain set (another option would have been to post
domain([VarList], 0, 24)andthenadd #\= constraints for all valuesin the range
1. .23 butfor 20 and 22). To construct the set of values the predicates empty_fdset(S)
(which unifies S with {}) and fdset_parts(NS, V, V, S) (which, given asetS and
a new value V, creates the new set NS including V on its first position) are used (lines
36 and 33, respectively). Thus, {0,20,22,24} is constructed by recursively calling to
the predicate gen_set (line 30) with the reversed values list [24,22,20,0].

In the case of TOY(FD), the approach is exactly the same. However, the primitive
domain_valArray (line 44) allows as its arguments the variable list [H,I,J,K,0]
(respectively [T,0,0,0,U]) and the domain value list [0,20,22,24] (respectively
[0,24]), so that it can avoid the set creation. Besides that, the use of higher order
functions allows to model the domain initialization in just one line of code.

Orthogonally, Figure[7.11]shows the code of SWI-Prolog to tighten the CV variables.
A method post_tight is used (line 24), which, besides the propagation mode P and
the tight level T receives the CV list corresponding to a concrete kind of shift. As in
ILOG OPL and ILOG Solver, post_tight constrains tight_vars to be in the domain
(-T)..T (line 28) and to be the subtraction of a concrete pair of CV[j] and CV[k]
(line 33). But, opposite to them, in SWI, the variables of tight_vars are created on
the fly, as the different pairwise of CV[j] and CV[k] are traversed. In this setting, the
predicate map_gen_sub_vars (line 24) would represent the loop j and the auxiliary
gen_sub_vars the k loop.

In the case of PAKCS, the use of higher order functions allows to compute
tight_vars on the fly as the list argument of the domain constraint (line 7). Once
again, the auxiliaries functions gen_diff (line 11) and aux_gd (line 15) would play
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the role of the loops j and k, respectively. But, on the latter one, the use of functional
notation in (x -# y):(aux_gd x xs) (line 17) provides an implicit declaration of
each of the variables of tight_var.

7.6 ETP: A Final Expressiveness Comparison

Once given a detailed description of different modeling issues, this section points out
some of the modeling features each paradigm provides. To this end, it focuses on
the computation of the concrete data structure oabs, as it is easy enough as to ex-
plain from scratch the complete code for computing it, and complex enough as to re-
quire most of the modeling features of each paradigm. Figures [7.12] [7.13] and [7.14]
present the computation of oabs in MiniZinc, Gecode, SICStus and TOY(FD), respec-
tively (the code for ILOG OPL, ILOG Solver, SWI-Prolog and PAKCS has been skipped,
as it is quite similar). To guide the section, the computation of oabs for the con-
crete ETP-7 instance (cf. Section [5.1) is used. On it, the abs = [(1,1), (2,1),(5,1),
(6,1),(7,1), (10,1), (11,1), (12,1),(5,6), (6,6), (7,6), (10,6), (11,6), (12,6)] leads to the
result oabs = [[1,2,5,6,7,10,11,12], [ 1,[], [],[], [5,6,7,10,11,12], [ ] ]. Each paradigm is
presented separately, with a brief sketch of the code being presented before enumer-
ating the modeling features to be pointed out.

7.6.1 Algebraic CP(FD)

Sketch: The bi-dimensional array of int abs (Figure [7.12] line 3) is passed as an in-
put argument (as well as the int num_abs (line 2), indicating the length of the array).
Three auxiliary data structures are used: First, the set of int Workers (line 5), con-
taining the identifier of any possible regular worker, as they are the potentially candi-
dates to be absent (in ETP-7, {1, ..,12}). Second, the one-dimensional array of set
of Workers aux_abs (line 6), filtering the regular workers that are absent each day
(in ETP-7, [{1,2,5,6,7,10, 11,12}, {}, .., {}1]). Third, the one-dimensional
array of int num_abs_day (line 8), computing the size of each aux_abs[i] (in ETP-
7,[8,0, .., 0]).

Then, oabs is declared as a bi-dimensional variable array (line 12). As the amount
of absences per day is not known in advance, the upper bound nT+nTW is used to set
the size of the array, and the void value 0 is used to fill the remaining positions (cf. Sec-
tion. Whereas the first constraint block (line 13) uses num_abs_day[i] = kto
assign each oabs[1i,z] (withz in 1..k)to the z-th element of the set aux_abs[1i],
the second constraint block (line 15) assigns each oabs[i,z] (withz in k+1..
nT+nTW) to 0.

Modeling features:
a. The use of set as a basic data structure, which also includes the use of array of
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(02) int: num_abs;

(03) array[1..num_abs, 1..2] of 1..(nT*nTW): abs;
(04) %

(05) set of int: Workers = 1..(nT+*nTW);

(06) array[1..nD] of set of Workers: aux_abs =

(07) [{abs[j,1] | j in 1..num_abs where abs[j,2] = i} | i in 1..nD];
(08) array[1..nD] of 0..(nT*nTW): num_abs_day =

(09) [(sum (j in 1..num_abs where abs[j,2] = i) (1)) | i in 1..nD];
(10) [(sum (J in 1..(nT*nTW)) (bool2int(j in aux_abs[i]))) | i in 1..nD];
(1) %

(12) array[1..nD, 1..(nT#nTW)] of var 0..(nT+*nTW): oabs;
(13) constraint forall (i in 1..nD, j in 1..(nT#*nTW)) ((j <= num_abs_day[i]) ->

(14) (oabs[i,j] = (let {set of Workers: m = aux_abs[i]} in m[j]1)));
(15) constraint forall (i in 1..nD, j in 1..(nT#nTW)) ((j > num_abs_day[i]) ->

(16) (oabs[i,j] = 0));
(17) = mmmm e GeCOode —---mmmm oo

(18) void c_oabs(int nD, vector<pair<int,int>>& abs, vector<vector<int>>& oabs){
(19) 1int size = abs.size();

(20) for (int i = 0; i < size; i++)

(21) swap(abs[i].first, abs[i].second);

(22) sort(abs.begin(), abs.end());

(23) //

(24) for (int i = 0; i < nD; i++){

(25) vector<int> aux;

(26) oabs.push_back(aux);

(27) 1}

(28) //

(29) for (int i = 0; i < size; i++)

(30) oabs[(abs[i].first)-1].push_back(abs[i].second);

Figure 7.12: Algebraic and C++ CP(FD) Computation of oabs

sets, as in aux_abs (line 6).

b. The use of integer range expressions a. .b, indicating the set {a, (a+1), (a+2),
.., b}. Then, either all the elements of the set can be considered, asini in 1..nD
(line 6), or just the ones holding a concrete condition are filtered, as j in1..num_abs

where abs[j,2] = 1i(line8).

c. The use of sum expressions to count the amount of elements of a data structure
holding a condition. For example, sum (range where cond) (1) filters first the ele-
ments of range holding cond, and it adds 1 to the sum for each of them (Figure
lines 6, 7 and 8).

d. The direct access to the API of MiniZinc does not provide a method for obtaining the
cardinality of a set (computing each num_abs_day[1] requires a filtering as the one
presented before). However, MiniZinc allows accessing to the i-th element of the set a,
by simply using a[1]. It also allows to check if an element e belongs to the set a, by
simply using (e in a) (Figure[7.12} line 10). Finally, it allows to coerce this result to
an integer by using the primitive bool2int.

e. The request of turning any parameter variable v to be displayed in the output block
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(01) =--emmmmmmmmccmmccccmcc e ea e SICStUS ------m-cemmcce e e

(02) %c_oabs/3(+ND, +Abs, -0Abs). |%repeat_N_times/3(+N, +Arg, -List).

(03) c_oabs(N, Abs, OAbs) :- |repeat_N_times(0, _, [1).

(04) map_swap(Abs, IAbs), |repeat_N_times(N, Arg, [Arg|L]) :-

(05) spl(IAbs, SL), | N >0,

(06) repeat_N_times(N, [], Ac), | N1 is (N-1),

(07) foldl_select_by_day(Ac, SL, OAbs). | repeat_N_times(N1, Arg, L).

(08) |

(09) %po/3(+P1, +P2, ?Res). |%foldl_select_by_day/3(+Ac, +AL, -R).
(10) po((X,Y), (Z,T), true) :- |foldl_select_by_day(Ac, [1, Ac).

(11 (X>2Z) ; X=2Z,Y>T)). | foldl_select_by_day(Ac, [(A,B)|RAb], R):-
(12) po((X,Y), (Z,T), false) :- | select_by_day(Ac, (A,B), NAc),

(13) (X <2Z); X=2Z,Y=x<T)). | foldl_select_by_day(NAc, RAb, R).

(14) |

(15) %spl/2(+L1, -L2). |%filter_po/4(+P, +L, +R, -LR).

(16) spl([1, [1). [filter_po(_, [1, _, [D).

(17) spl([(X,Y)|Xs], L) :- |filter_po((X,Y),[(Z,T)|Xs]1,R,[(Z,T)|L]):-

(18) filter_po((X,Y), Xs, true, S),
(19) spl(s, L1), !,
(20) filter_po((X,Y), Xs,false, B), filter_po((X,Y), Xs, R, L).

| po((X,Y), (Z,T), R),

|
(21) spl(B, L2), |filter_po((X,Y), [_| Xs1, R, L) :-

|

|

(22) append(L1, [(X,Y)|L2], L). filter_po((X,Y), Xs, R, L).
(23)

(24) %select_by_day/3(+L1, +P, -L2). |%swap/2(+P1, -P2).

(25) select_by_day(L, (A,B), NL) :- | swap((A,B), (B,A)).

(26) nth1(A, L, Elem, Rest), |

(27) append(Elem, [B], NE), |%map_swap/2(+L1, -L2).

(28) nth1(A, NL, NE, Rest). |[map_swap([1, [1).

(29) |map_swap([X|Xs1, [A|R]) :-
(30) | swap(X, A),

(31) | map_swap(Xs, R).

Figure 7.13: CLP(FD) Computation of oabs

into a decision (FD) one (as oabs, which is displayed by the team_assign.mzn file).
It also implies, as a collateral effect, converting into a decision variable any other pa-
rameter variable v’ depending on v (as ATD and ETD, which require accessing to the
obtained oabs).

f. The use of implication constraints c_1 ->c_2 (asin (j > num_abs_day[i]) ->
(oabs[i,j] = 0)). In particular, c_1 must support reification, and c_2 is just posted
when c_1 is entailed to true (line 13).

8. The use of local variables, as m in the first constraint forall block, which rep-
resents aux_abs[1i] in the expression oabs[i,j] = m[j] (line 13).

7.6.2 C++ CP(FD)

Sketch: The sketch for computing oabs is the same in C++ CP(FD), CLP(FD) and
CFLP(FD). Thus, itis presented for the three paradigms. It uses a method, predicate or

function c_oabs (Figures (line 18), (line 2) and (line 2), respectively), re-
ceiving nD and abs as input parameters, and computing oabs as a result. To do so, the
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(01) mmmm e m e TOY(FD) == mmmmmmm e e e
(02) c_oabs:: int -> [(int,int)] -> [[int]]

(03) c_oabs N Abs = foldl select_by_day (take N (repeat [])) (spl (map swap Abs))
(04) %

(05) (|>):: (int,int) -> (int,int) -> bool

(06) (X,Y) |> (Z,T) = (X>2Z) \/ (X==Z/\Y>T)

(07) %

(08) spl :: [(int,int)] -> [(int,int)]

(09) spl [1 =[]

(10) spl [(X,Y)[Xs] = (spl As) ++ [(X,Y)] ++ (spl Bs) <==

1) bi_filter ((|>) (X,Y)) Xs == (As,Bs)
(12) %

(13) select_by_day:: [[B]] -> (int,B) -> [[B]]

(14) select_by_day L (A,B) = L1 ++ [E++[B]] ++ L2 <== split_at (A-1) L == (L1,[E|L2])

(15) % |%

(16) map:: (A -> B) -> [A] -> [B] |take:: int -> [A] -> [A]

(17) map F [] = [] |take 0 _ = []

(18) map F [X|Xs] = [(F X)|(map F Xs)] |take N [1 = [1]

(19) % |take N [X|Xs] = [X]| take (N-1) Xs] <==
(20) (++) :: [A]l -> [A] -> [A] | (N> 0)
(21) [] ++ Ys = Ys |foldl:: (A -> B -> A) -> A -> [B] -> A
(22) [X]|Xs] ++ Ys = [X|Xs ++ Ys] |foldl FZ [] =2

(23) % |foldl F Z [X|Xs] = foldl F (F Z X) Xs
(24) swap:: (A,B) -> (B,A) |%

(25) swap (X,Y) = (Y.,X) | (/\):: bool -> bool -> bool

(26) % |false /\ _ = false

(27) bi_filter:: (A -> bool) -> [A] -> |true /\ X = X

(28) ([AT,[AD) %

(29) bi_filter _ [1 = ([1,[]) |(\/):: bool -> bool -> bool

(30) bi_filter F [X]|Xs] = if (F X) |true \/ X = true

(31) then ([X|As],Bs) |false \/ X = X

(32) else (As,[X]|Bs]) <== |%

(33) bi_filter F Xs == (As,Bs) |repeat:: A -> [A]

(34) % |repeat X = [X|repeat X]

(35) gen_v_list:: [A] |
(36) gen_v_list = [X]| gen_v_list] |

Figure 7.14: CFLP(FD) Computation of oabs

elements of abs are swapped to sw_abs (from (w;,d;) to (d;,w;)), and then ordered
to ord_sw_abs. Then, a bi-dimensional vector or list oabs is created, initially with nD
empty elements. Finally, each (di,wj) of ord_sw_abs is traversed, adding wj to the
dit" element of oabs.

Modeling features:

a. The use of reference parameters & for the arguments abs and oabs (Figure [7.12]
line 18). Thus, oabs is firstly declared (empty) in the context of the main program, and
then it is passed as an input argument to c_oabs (but the modifications applied on it
in the context of the method are reflected when the execution comes back further to
the main function).

b. The use of the standard std library. Its API for vector provides (among others)
the methods: size (for getting the size of the vector), push_back (for adding a new
element to the vector), and sort (which receives two iterators, pointing at the first and
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to the past the end of the vector); Its API for pair<A,B> provides (among others) the
methods: first and second (returning the first and the second elements of the pair,
respectively), and swap (for swapping the first and second position content, given that
the type of the pair is pair<A, A>). Thus, the code for computing oabs is simple and
clear: A for loop (line 20), ranging 1 in 1. . size (the size of abs) is needed to swap the
elements. Then, the methods abs.begin() and abs.end() compute the two itera-
tors needed to order the vector by textual order. Another for loop (line 24), ranging in
1..nD, allows to add nD new empty vectors<int> to oabs. Finally, a for loop (line
29),ranging iin 1..size, is needed to traverse the pairs (di,wj). On each iteration,
it accesses to the oabs concrete day by indexing it with abs[i] . first, modifying its
content by adding abs[1].second.

7.6.3 CFLP(FD)

Sketch: Besides the sketch of Section the functions c_oabs, spl (quicksort vari-
ation for type [(int,int)]), select_by_day and the operator (|>) are needed,
and they are presented in Figure [7.14] together with the primitive auxiliary functions
map, bi_filter, swap, take, foldl, repeat (and the operators (++), /\ and \/)
they rely on.

Modeling features:

a. The amount of functions needed. Rather than using a single method as in C++
CP(FD), the code for CFLP(FD) needs to program four different functions (besides the
other ten auxiliary ones they rely on).

b. The use of higher order functions. It allows to develop an elegant, simple and neat
formulation for each of these functions. As it can be seen, all the functions have one or
at most two rules, with all of them being formulated in just one line of code. Focusing
on oabs (line 2), it uses multiple higher-order applications to implement the already
described sketch, as (map swap Abs) = a, (spla) = b, (take N (repeat [1))
= ¢, and finally foldl select_by_day cb.

¢. The use of extra variables on the right hand side of a function rule. In the function
gen_v_list, it allows to create a new fresh logic variable (Figure line 36).

d. The use of lazy evaluation. In CFLP(FD) systems, the function arguments are evalu-
ated to the required extent (the call-by-value used in LP vs. the call-by-need used in FP
[147]), as in take N (repeat []) (line 3). The evaluation computes the requested
list by dealing with the potentially infinite list generated by repeat.

e. The use of type declarations, easing the development of secure and maintainable
programs. It is important to point out that the type declaration is optional, as the
system always infer a type for each function, no matter if it is declared or not. The
system also supports polymorphic arguments, as the [[B]] and (int, B) ones of
select_by_day (line 14).

f. The use of partial application. The type of bi_filter is (A -> bool) -> [A]
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-> ([A],[A]) (line 27). In the expression bi_filter ((|>) (X,Y)) Xs, the par-
tial application of (|>) (X,Y) has in fact the type (A -> bool) (i.e., it is acting as
a pattern not subject of further evaluation until one of the elements of the list Xs is
applied on it).

8. The use of pattern matching. It allows to discriminate the rule of a function to be
applied. For example, in the case of take (line 16), the first two rules use 0 and [] to
discriminate the cases in which there are no more elements to take or more elements
in the list, respectively. Thus, the expression take A B tries to apply pattern matching
between A with 0 or B with [], in order to execute the first or second rule, respectively.
If this is not possible, then the third rule is applied (the condition N > 0 is requested
for the consistency of the function, which otherwise might lead to infinite computations
in case of being called with an N smaller than 0). As it was seen in Figure [7.9] pattern
matching can also imply the posting of 7D equality constraints (if the variable being
evaluated is an FD variable and the pattern is either an integer value or another 7D
variable).

7.6.4 CLP(FD)

Sketch: Besides the sketch of Section the predicates c_oabs, spl,
select_by_day and swap play the same role as their mate CFLP(FD) functions (re-
spectively for the operator (| >)). The remaining predicates po, repeat_N_times,
foldl_select_by_day, filter_pair _ord and map_swap represent the parame-
terized versions of the CFLP(FD) functions repeat, foldl, filter and map, respec-
tively.

Modeling features:

a. The amount of predicates needed. As it can be seen, in the computation of oabs
there is an equivalence between each CLP(FD) predicate and each CFLP(FD) function.
b. The less compact definition of each predicate. The lack of higher order functions
makes the code of each predicate not as compact as the one of its mate function, as in
c_oabs (Figure line 2), where four lines of code are needed).

¢. The amount of variables used. The lack of higher order functions makes explicit the
declaration of the variables IAbs, SL and Ac (lines 4, 5 and 6, respectively), which were
omitted in CFLP(FD) (as they were implicitly represented as the underlying result of
higher order computations).

d. The amount of predicates used. The lack of polymorphic arguments implies creat-
ing a specific predicate for each application of a higher order CFLP(FD) function (as
foldl, filter or map). For example, the clauses of the predicate filter_po (line
15) are dependent on the arguments of the predicate po (line 9). So, for any other
filter application in the CFLP(FD) model, a new dedicated filter ' predicate must be
explicitly defined.

e. The use of input/output arguments, as the third argument of the predicate po. The
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normal use of Res is as output, returning if the pair of the first element is greater
than the one of the second. However, in the computation of c_oabs the predicate
sort_pair_list uses explicitly true (line 18) and false (line 20) to set the prop-
erty to be handled by the pairs in the call to filter_po. This true or false value is
used then as an input parameter to po, discriminating by pattern matching the rule to
be applied.

f. Applying pattern matching also in the result of a computation. In filter_po((X,Y),
[(Z,T)|Xs], false, R), by using Res as an input parameter, only the second
clause of po (the one making pattern matching with false) s tried.

8. The use of the cut operator (!) (line 19). The predicate filter_po has three
clauses: A first one, for the case in which there are no more elements on the list to be
filtered. A second one, which checks if (X,Y) and (Z,T) hold the result that R passed
as argument. Thus, if po((X,Y),(Z,T), R) fails then the second clause of po fails
too. This will trigger the evaluation of the third clause, which recursively computes L
as a result by applying filter_po on the rest of elements of the list. Otherwise, if
po((X,Y),(Z,T),R) succeeds, then the second clause computes [(Z,T)|L] as a
result (where L is again recursively computed).

However, the success of the second clause will make the third one to remain unex-
plored, and a further backtracking in the goal computation will try to succeed. To avoid
this, the operator (!) is used just after the po((X,Y),(Z,T), R) evaluation in the
second clause. If it succeeds, then the (!) operator is applied, precluding a further
evaluation of the remaining clauses of the predicate (in this case just the third one). In
TOY(FD) there is not such cut operator. Thus, all the rules of a function has to be
mutually exclusive, to preclude lazy narrowing evaluation to do pattern matching with
some rules. In any case, the lack of a cut operator cannot be seen as a drawback, as
it is a non-declarative mechanism (turning relevant the order in which the clauses of a
predicate are written).

7.7 Model Sizes

As a final issue for the modeling comparison, this section measures the size of each
benchmark for each system. Table presents these results, with columns Golomb
and Ratio_G representing the lines of code for Golomb, and the ratio of lines of each
system w.r.t. the one requiring the minimum number of lines, respectively. Columns
ETP and Ratio_E provide the same information, but for ETP. Finally, column Average
presents the average values between Ratio_G and Ratio_E, and column Ranking
represents the ranking of each system.

There is a clear ranking among the paradigms and systems, and it is stable for
both problems. The algebraic CP(FD) paradigm is the one requiring the fewest lines
of code (although, once again, in ETP the coordination of stages is done manually, thus
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| System || Golomb | Ratio_G || ETP | Ratio_E | Average | Ranking |

Minizinc 14 1.00 || 123 1.00 1.00 1
ILOG OPL 17 1.21 || 138 1.12 117 2
TOY(FD) 28 2.00 || 215 1.79 2.08 3

PAKCS 33 2.36 || 252 2.05 2.21 4

SICStus 57 4.07 || 599 4.87 4.47 5

SWI-Prolog 57 4.07 || 635 5.16 4.62 6
ILOG Solver 104 7.43 || 762 6.20 6.82 7
Gecode 127 9.07 || 828 6.73 7.90 8

Table 7.1: Number of Lines per System

not counting the code lines that will be needed for a coordination script). The second
one is CFLP(FD), requiring 1.8-2.4 more lines of code. The third paradigm is CLP(FD),
whose code is between 4-5 times greater than the one of the algebraic CP(FD). The last
paradigm is C++ CP(FD), whose code is between 6-9 times greater than the one of the
algebraic CP(FD). More specifically, when comparing the systems of each paradigm,
the differences turn to be much smaller. In algebraic CP(FD) systems, ILOG OPL re-
quires between 1.12-1.21 more lines of code than MiniZinc. In CFLP(FD) systems,
PAKCS requires between 1.15-1.18 more lines of code than TOY(FD). In CLP(FD)
systems, SWI-Prolog requires between 1.00-1.06 more lines of code than SICStus. In
C++ CP(FD) systems, Gecode requires between 1.09-1.22 more lines of code than ILOG
Solver.

7.8 Related Work

The literature contains a big amount of documents related with modeling in CP(FD). A
main introduction to the topic can be found in Chapter 11 of [163], which provides ba-
sic notions on how to represent a problem (including variables, constraints and search
strategies). It also provides some notions of symmetry breaking, problem reformula-
tion and other techniques to improve the efficiency of the model. Regarding the mod-
eling of CSP's and COP’s for the algebraic CP(FD), C++ CP(FD), CLP(FD) and CFLP(FD)
systems considered in this chapter, perhaps the best reference are the user manuals of
MiniZinc [133], ILOG OPL [108], Gecode [173], ILOG Solver [109], SICStus Prolog [126],
SWI-Prolog [150], PAKCS [93] and TOY(FD) [40], which include several case studies
with a detailed explanation of the modeling of different problems.

Regarding other modeling comparisons among different CP(FD) systems, [71]
presents one based on eight C++ CP(FD) and CLP(FD) systems. However, the model-
ing comparison is restricted to a concrete expressiveness aspect, explaining how con-
straints and meta-constraints can be coded on each of the systems. Similarly, [114] pro-
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vides a comparison of 14 constraint solvers, including algebraic CP(FD), C++ CP(FD),
CLP(FD) and Mathematical Programming ones. An example of how to encode an
all_different constraint on each system is provided. However, besides that, the
comparison is focused on giving an overview of each solver, considering aspects as the
documentation, the amount of examples, and the users community. A benchmark is
presented, using different criterion to classify the problems, as the availability of the
source code, the number of solutions found and the types of variables used.

Regarding a modeling comparison of CP(FD) and other techniques, [99] compares
two different ILOG OPL models for an industrial planning problem, using ILOG Solver
and ILOG CPLEX [13] as the target solvers, respectively. It concludes that, whereas
the CP(FD) model leads to a more natural statement of the problem, the computa-
tion of bounds for the variable initialization represents a drawback w.r.t. the CPLEX
model. Similarly, [53] compares two different ILOG OPL models for an Generic Supply
Chain Model, but in this case the ILOG CPLEX ones uses Mixed Integer Programming. It
presents the constraints that concrete requirements of the formulation lead to in both
models. It shows that the MP model leads to a 20% more variables and constraints than
the CP(FD) one. Finally, [66] performs a modeling comparison of different problems
in both CLP(FD) (using SICStus Prolog and B-Prolog [31]) and ASP (using the answer
set solvers Smodels [182] and Cmodels [11], the latter relying in the SAT Solver mChaff
[138]). It models classic problems, as graph k-coloring, Hamiltonian circuit and gener-
alized Knapsack, and real-life problems as Protein Structure Prediction and a Planning
problem. In their analysis, it can be seen that ASP leads to a more compact encoding.
In particular, it avoids the explicit use of recursion in most situations, as it happens
in the CLP(FD) formulation. Moreover, the depth-first search strategy affects the user
choices when encoding the algorithm. They also observe that, the more a CLP(FD)
solution is refined (by introducing further heuristics), the faster is the execution, which
does not necessarily happen in the ASP approach.

7.9 Conclusions

Although CFLP(FD) is a suitable paradigm for tackling CSP's and COP's, the literature
lacks so many practical applications as there are for other well established CP(FD)
paradigms, as algebraic CP(FD), C++ CP(FD) and CLP(FD). In this chapter, both the
classical CP(F¥D) Golomb Rulers and the real-life ETP COP’s have been used to per-
form an in-depth modeling comparison among the state-of-the-art algebraic CP(FD)
systems MiniZinc and ILOG OPL, the C++ CP(FD) systems Gecode and ILOG Solver, the
CLP(FD) systems SICStus Prolog and SWI-Prolog, and the CFLP(FD) systems PAKCS and
TOY(FD). The conclusions are summarized next.

The constraint solver and its management are transparent to the user in algebraic
CP(FD), CLP(FD) and CFLP(FD) systems. But, in the case of the C++ CP(FD) systems,
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it is needed to develop solver-targeted models, managing the control of its decision va-
riables, constraints, objective function, constraint store, constraint propagation, search
engine and search control (as well as the garbage collection of all these elements).
More specifically, in Gecode the constraint solver is represented by a Space object,
and the modeling is done by inheritance, implementing subclasses whose class con-
structor contains the formulation of the problem. In ILOG Solver, the constraint solver
is represented by an I1oSolver object, but the problem is formulated on the generic
modeling layer ILOG Concert, which includes a constraint store and a translation pro-
cess between the generic variables and constraints to the I1oSolver targeted ones.
Finally, to display the solution, C++ CP(FD) systems respectively require specific Space
and IloSolver methods accessing to the values of their attached variables. In the al-
gebraic CP(FD), CLP(FD) and CFLP(FD), as variables are freely declared, they can be
straightly used to display their values.

When dealing with a multiple stage formulation, algebraic CP(FD) systems may
require several models (files). This is the case of ETP, for which algebraic CP(FD) sys-
tems require one file per each stage, as both team_assign and tt_solve stages must
be isolated. The former because some variables must be treated as decision ones in
team_assign and as parameter ones in t¢_split and tt_map. The latter (tt_solve) is iso-
lated to exploit the independence of each team. An external script coordinates the
execution of the models, generating the input arguments for each of them. The pro-
gramming of the script represents a difficulty on its own (besides being a task totally
independent from modeling a CP(FD) problem). In the rest of paradigms, the model
is contained in just one file. In C++ CP(FD) systems, the stages tt_split and tt_map
are easily implemented by using the C++ abstractions, but the stages team_assign and
each team of t_solve require a different constraint solver object. This is mandatory,
as the C++ CP(FD) solvers are not prepared to receive the new constraints of t¢_solve
when they are already in search mode (previously set in team_assign). Whereas in
Gecode the solver abstractions of team_assign and tt_solve lead to different Space
subclasses, in ILOG Solver all of them are implemented with I1oSolver objects. In
CLP(FD) and CFLP(FD) systems, the support of model reasoning allows them to bet-
ter coordinate the different stages of the p_tt formulation. The different stages are
coordinated by simply placing them in order, with a labeling primitive at the end of
team_assign and tt_solve ensuring the correct implementation of the architecture of
p_tt. Both CLP(FD) and CFLP(FD) systems will internally need to use different solver
objects for team_assign and each team of t¢_solve but, as these systems abstract the
notion of constraint solver, their management is transparent to the user.

Whereas C++ CP(FD), CLP(FD) and CFLP(FD) systems use dynamic data structures
as vectors and lists, algebraic CP(FD) systems rely on static arrays. Thus, the latter
needs extra input parameters to set in advance the concrete amount of elements each
array must contain. Bi-dimensional and three-dimensional arrays are used in ¢t_split
to configure the input parameters and structure of the different teams to be solved
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with tt_solve. As these arrays have a fixed length, extra FD variables and constraints
are needed to represent void days in those teams having less days than others. On
the other hand, those arrays provide free access and free indexing by using parameter
variables, whereas in CLP(FD) and CFLP(FD) systems, additional variables (and even
predicate/functions) are needed to access and/or index the elements of the lists.

Saving FD variables alleviates the constraint network posted to the 7D solver. Tak-
ing as an example the mate variables ¢t and trans_tt of ETP, it has been seen that al-
gebraic CP(FD) systems cannot save any of them, as two independent bi-dimensional
arrays must be declared, which are then linked via explicit constraints. In C++ CP(FD),
CLP(FD) and CFLP(FD) systems, mate variables can contain a single variable (which is
posted to the constraint solver), although maintaining two different modeling variable
representations. In C++ CP(FD) systems it suffices with initializing each trans_tt;; us-
ing tt;; as its parameter. In particular, in Gecode ¢t and trans_tt are represented as
one-dimensional variable array attributes of the class StageIII (and not as the more
naturally bi-dimensional ones used by ILOG Solver). This one-dimensional approach
implies a harder modeling, recomputing all the indexes of the variables involved on
each of the constraints being posted. However, it allows both ¢t and ¢rans_tt to be
immediately cloned by the copy constructor, whereas the use of bi-dimensional ar-
rays would have required an additional management, penalizing the performance of
the copy method, and thus of the CPU time spent on solving the problem. This repre-
sents a low-level issue, showing that the lack of abstraction in C++ CP(FD) can result in
breaking the isolation between the modeling and solving of a problem. In CLP(FD) and
CFLP(FD) systems, tt is built up by generating new fresh logic variables and trans_tt is
constructed from ¢t by using pattern matching unification. Whereas the unification of
two logic variables is done by the # solver, the equality of two FD variables posts an
FD constraint to the store. Thus, the unification of ¢t and trans_tt must be done before
any FD constraint is posted on them. This clearly breaks the pure declarative view of
modeling that CLP(FD) and CFLP(FD) systems claim to provide (as the order in which
the problem formulation is declared becomes relevant for the solving efficiency).

The use of aggregations allow algebraic CP(FD) systems to declare blocks of con-
straints in just one line of code, in a much more elegant way than the C++ CP(FD)
imperative loops and the CLP(FD) and CFLP(FD) recursive processes. However, as
neither MiniZinc nor ILOG Solver include the notion of a counter for these blocks,
the declaration of some constraints turns to be much more difficult (when they im-
ply a complex relation among the indexes of the variables involved). In CLP(FD) and
CFLP(FD) systems, by declaring auxiliary variables on the fly, the posting of some con-
straints has been eased. Moreover, in CFLP(FD) the use of higher order functions and
functional notation avoid the explicit declaration of such auxiliary variables.

In terms of constraint propagation, algebraic CP(FD) just supports batch mode,
and the CFLP(FD) system PAKCS just incremental mode. C++ CP(FD) inherently sup-
port batch mode, but their models can be tuned to support incremental by using addi-
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tional variables controlling the feasibility of the constraint network after posting each
constraint. Similarly, CLP(FD) inherently supports incremental mode, but their models
can also support batch mode by using additional variables, freezing constraint posting.
TOY(FD) contains two primitives to set the propagation mode, easily supporting the
application of different propagation modes to different parts of the model.

Regarding search exploration, a search declaration must specify the variable set,
the variable order, the value order and the cost function. Algebraic CP(FD), CLP(FD)
and CFLP(FD) systems provide expressive primitives allowing to fully specify them in
one line of code. In Gecode, the specification is more low level, attached to the tree
exploration being performed, where tree nodes are Spaces. A search engine wraps
the Space to control the search exploration. The copy method of the Space must be
explicitly programmed (the engine uses it to clone Spaces for performing the hybrid
recomputation techniques), as well as the cost function (dynamically adding new bound
constraints to the tree exploration). Finally, the engine must be forced to look for all
the solutions, remaining the last (optimal) one. ILOG Solver requests several primitives
to specify the search, to be composed in a final daemon applied (to be executed) to the
IloSolver. However, neither search control nor specific programming methods are
required.

In summary, besides the general interest of comparing those state-of-the-art CP(FD)
systems, the results have shown 7TOY(FD) to be an appealing alternative to any of
them, encouraging its use (and the use of the CFLP(FD) paradigm itself) for modeling
COP's because of a number of advantages:

e It abstracts the notion of the constraint solver, isolating the use of several solvers
and the distribution of the constraints on them. It also supports free access to
the variables.

¢ It allows to model the problems in just one file, matching the multiple-stage ar-
chitecture of the p_tt algorithm by simply placing the stages in order.

e It uses dynamic data structures, and makes handy the access and index of them.

e It allows to save several 7D variables, placing first the variable unifications and
then the rest of the 7D constraints.

¢ It provides batch and incremental primitives for easily applying different propa-
gation modes to different parts of the program.

e It is a declarative general-purpose programming language, including expressive
modeling features such as non-deterministic functions, types, higher-order, lazy
evaluation, pattern matching and partial application, for allowing the user to
write neater formulations. Thus, only the algebraic CP(FD) systems require less
amount of lines of code for modeling the problems.
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Chapter 8
Solving Analysis

Efficiency is a critical issue when choosing a concrete CP(FD) system for tackling hard
CSP’s and COP's. All the expressiveness provided by TOY(FD) (discussed in Chap-
ter [7) would be meaningless if, when solving different instances of the problem being
modeled, the solving performance of TOY(FDg), TOY(FDi) and TOY(FDs) were
clearly outperformed by solving native Gecode, ILOG Solver and SICStus clpfd mod-
els, respectively. This chapter positions the system 7TOY(FD) w.r.t. other state-of-
the-art CP(FD) systems belonging to the Algebraic CP(FD), C++ CP(FD) and CLP(FD)
paradigms. The main purpose of the chapter is to show that 7OY(FD) is competitive
w.r.t. any of them for solving different COP’s, thus encouraging its use (and the use of
the CFLP(FD) paradigm itself).

Following Chapter the classical CP(FD) problem of Golomb and ETP are used
as benchmarks for the algebraic CP(FD) systems MiniZinc (using the Gecode solver)
and ILOG OPL, the C++ CP(FD) systems Gecode and ILOG Solver, the CLP(FD) sys-
tems SICStus and SWI, and the CFLP(FD) systems PAKCS, TOY(FDg), TOY(FDi) and
TOY(FDs). The Golomb and ETP instances used in Sections and are revis-
ited now: G-9 & ETP-7 (whose solving times are of the order of magnitude of tenths of
second), G-10 & ETP-15 (seconds) and G-11 & ETP-21 (minutes).

When performing a solving comparison among different systems and problems,
many performance metrics can be considered: The execution or CPU time, the memory
requirements, the compilation time, etc. The solving comparison of this chapter has
two clear targets: Measuring the CPU time of each system for running the benchmark,
and provide a low-level monitoring of each TOY(FD) version and its native constraint
solver executions.

The chapter is organized as follows: Section sets the context for the solving
comparison. Section presents the performance of all the systems, analyzing the
ranking and slow-down results. It also discusses the performance ranking among the
Gecode, ILOG Solver, SICStus c1pfd and SWI-Prolog c1pfd constraint solvers, gather-
ing the related systems into different sets. Section[8.3presents a dedicated ranking and
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slow-down analysis of the Gecode related systems MiniZinc, Gecode and TOY(FDg).
Focusing on G-11 and ETP-21, it discusses the search statistics of the different systems,
and provides a low-level monitoring of the search exploration in both TOY(FDg) and
Gecode, discussing their differences. Sections[8.4and|[8.5are similar to Section[8.3] but
they focus on the ILOG Solver and SICStus c1pfd related systems, respectively Section
[8.6] presents some related work. Finally, Section[8.7]reports conclusions.

8.1 Setting for the Experiments

All the benchmarks are run in a machine with an Intel Dual Core 2.4Ghz processor and
4GB RAM memory. The OS used is Windows 7 Professional SP1 (32 bits.)

The system versions used are: MiniZinc 1.5 (connected to Gecode 3.7.3), ILOG OPL
3.7 (connected to ILOG Solver 6.0), Gecode 3.7.3, ILOG Concert 12.2 & ILOG Solver
6.8, SICStus 3.12.8, SWI-Prolog 6.2.6, PAKCS 1.9.2 (connected to SICStus c1pfd 3.12.8),
TOY(FDyg) (connected to Gecode 3.7.3), TOY(FDi) (connected to ILOG Concert 12.2
& ILOG Solver 6.8) and TOY(FDs) (connected to SICStus clpfd 3.12.8). Microsoft
Visual Studio 2008 tools are used to compile and link the C++ code of the Gecode and
ILOG Solver models, as well as the TOY(FDg) and TOY(FDi) systems.

Besides that, a common framework is set for performing the experiments, consid-
ering the global constraints being used, the search strategy and propagation mode, and
the measurement of the elapsed time in seconds.

Global Constraints. Golomb and ETP include all_different, count and
distribute global constraints. To set a common configuration, the local consistency
of them have been set to value consistency (i.e., the constraint only propagates when
the domain of one of its associates variables becomes a singleton). Table 8.1 presents
the availability and value consistency support per global constraint and system. Each
cell in the table displays the pair ¢ — j, with ¢ describing if the constraint is available
(and, if not, how is it implemented), and j if it supports value consistency. As it can be
seen, it is not possible to set a common configuration for all the systems being com-
pared. For example, for all_different, whereas ILOG OPL, Gecode, ILOG Solver,
SICStus, TOY(FDyg), TOY(FDi) and TOY(FDs) support value consistency, MiniZinc,
SWI-Prolog and PAKCS do not support it.

Search Strategy and Propagation Mode. In Golomb, its m variables are labeled
in textual order, minimizing m,,_1. In ETP, for each team tt;, its trans_tt variables are
also labeled in textual order, minimizing eh. Regarding propagation mode, it is not
possible to set up a common framework for all the systems, as PAKCS only supports
incremental, and MiniZinc and ILOG OPL only supports batch. Thus, both for Golomb
and ETP, incremental mode is selected (except for MiniZinc and ILOG OPL).

Measuring the Elapsed Time. The measurement of the MiniZinc model is done
via the Gecode/FlatZinc front-end fzn-gecode. It first compiles the MiniZinc model to
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| System ||| All-Different | Count \ Distribute

MiniZinc Yes - No Yes - No Yes - No
ILOG OPL Yes - Yes No (sum) - No Yes - No
Gecode Yes - Yes Yes - Yes Yes - Yes
ILOG Solver Yes - Yes No (sum) - Yes Yes - Yes
SICStus Yes - Yes Yes - No Yes (global cardinality) - No
SWI-Prolog Yes - No No (exactly) - No No (set of exactly) - No
PAKCS Yes - No Yes - No No (set of count) - No
TOY(FDg) Yes - Yes Yes - Yes Yes - Yes
TOY(FDi) Yes - Yes Yes - Yes Yes - Yes
TOY(FDs) Yes - Yes Yes - No Yes - No

Table 8.1: Constraints Availability and Value Consistency

a FlatZinc one (with a customized compilation of the global constraints). Then, a parser
provided by Gecode reads the FlatZinc model, automatically generating an equivalent
Gecode Space, which is executed. The front-end includes commands for computing
one or all solutions, as well as for displaying some statistics (including the CPU time).
The measurement of the ILOG OPL model is done within the graphical interface of ILOG
OPL Studio. It automatically compiles the model to the suitable ILOG Solver input,
executing it and displaying the solutions and some statistics (including the CPU time).

The rest of the systems execute the instances within the SICStus framework, mak-
ing use of the SICStus predicate statistics(runtime, [X,_]) [126]. It unifies X
to the CPU time used, excluding memory management and system calls (this time also
includes the CPU time used for handling the 7D constraint solver). Whereas for SICS-
tus and TOY(FD) this setup comes for free (as TOY(FD) is implemented in SICStus
Prolog), the Gecode and ILOG Solver models are executed within SICStus via wrapping
its C++ main function into a SICStus predicate p (see the SICStus interface to C++ [126]),
and then executing p on the SICStus engine. Finally, the SWI-Prolog model also makes
use of the statistics(runtime, [X,_]) predicate, but it is obviously executed
within a SWI-Prolog session.

Each instance has been executed five times on each system (to avoid any particular
side effect associated to the OS affecting the achieved time on a single run). Then, the
best and worse times have been discarded, computing as a final result (to be displayed
in the tables) the mean of the remaining three.

Instance Classification. By referring back to tables[3.1/and the instances can
be classified in two groups: On the one hand, G-9, G-10, G-11 and ETP-21 are classified
as just search: js instances. For them, the three TOY(FD) versions spend searching
above the 98% of the total CPU time, turning the performance comparison into purely
CP(FD) dependent. That is, the CPU time of each system directly comes from the
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performance of its solver in achieving the pure CP(F¥D) mechanism of performing a
search exploration, by propagating basic and global constraints. On the other hand,
ETP-7 and ETP-15 are classified as different factors: df instances. For them, the three
TOY(FD) versions spend searching a percentage of the total CPU time ranging in a 0%-
98%, turning the performance comparison into both CP(FD) and paradigm inherent
overheads dependent.

Generated Models. Due to low-level details, the built models of the different sys-
tems relying on a same constraint solver library will slightly differ. A deeper discussion
will be given on this in Sections (for MiniZinc, Gecode and TOY(FDg)), (for
ILOG OPL, ILOG Solver and TOY(FDi)) and [8.5 (for SICStus, PAKCS and TOY(FDs)).

8.2 General Performance Comparison

This section provides a performance comparison of the 10 systems being considered,
analyzing their ranking and slow-down results. It also discusses the performance rank-
ing among the Gecode, ILOG Solver, SICStus c1pfd, and SWI-Prolog c1lpfd constraint
solvers, gathering the systems by their underlying solver.

Tables[8.2]and present the performance for the Golomb and ETP problems, re-
spectively. Columns Instance and System represent the concrete instance and sys-
tem being considered, respectively. The systems are sorted by an increasing CPU time,
with column Ranking representing the ranking. Finally, columns Time and S1-Dw
represent the CPU time of each system and its slow-down w.r.t. the fastest one, respec-
tively. The CPU times are measured in seconds, with precision set to two decimal digits
(except for the instances G-9 and ETP-7, in which it is set to three digits). The results for
G-11 and ETP-21 are not shown for SWI, as the computation did not finish after half an
hour.

The general performance results of the 10 systems reveals that, for js instances
there is a clear performance order among the constraint solvers, with the ranking per-
formance positions 1-3, 4-6, 7-9 and 10 got by the Gecode, ILOG Solver, SICStus related
systems and SWI, respectively. For df instances, this performance order among the
solvers is partially broken. On the one hand, SICStus and ILOG Solver obtain a better
ranking for ETP-7 and ETP-15, and PAKCS, TOY(FDs) and SWI-Prolog do it as well, but
just for ETP-7. On the other hand, both TOY(FDg) and ILOG OPL obtain a worse rank-
ing for ETP-7, and both MiniZinc and 7OY(FD:) obtain a worse ranking for both ETP-7
and ETP-15.

8.2.1 Golomb Slow-down Analysis

First, the slow-down of each system w.r.t. the one with best performance is presented.
Then, the three systems using the Gecode constraint solver library are sorted by their

186



Instance | System | Time | SI-Dw [ Ranking |

MiniZinc 0.109 1.00 1
Gecode 0.234 2.15
TOY(FDg) 0.250 2.29
TOY(FDi) 0.421 3.86
G-9 ILOG Solver 0.468 4.29

(s) ILOG OPL 0.500 4.59
SICStus 0.764 7.01
PAKCS 0.810 7.43

TOY(FDs) 0.842 7.72
SWI-Prolog || 29.170 | 26.76

—_—

MiniZinc 0.81 1.00
Gecode 2.11 2.60
TOY(FDg) 2.1 2.60
TOY(FDi) 3.56 4.40
G-10 ILOG Solver 3.85 475

(s) ILOG OPL 4.40 543
SICStus 6.65 8.20
PAKCS 7.12 8.79

TOY(FDs) 7.35 9.07
SWI-Prolog || 257.17 | 317.49

—_

MiniZinc 16.02 1.00
Gecode 41.57 2.59
TOY(FDyg) 42.01 2.62
TOY(FDi) 72.65 4.53
G-11 ILOG Solver || 77.08 4.81
(Js) ILOG OPL 88.28 5.51
SICStus 143.60 8.96
PAKCS 151.60 9.46
TOY(FDs) || 153.05 9.55
SWI-Prolog - -

Swoo~NOoOULP,WN-_,OCOONOOULP,WN_OCOONOULIRAWDN

—_

Table 8.2: Golomb Comparison Results
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Instance | System || Time | SI-Dw || Ranking |
Gecode 0.030 1.00 1
SICStus 0.094 3.13 2
ILOG Solver 0.156 5.20 3
TOY(FDyg) 0.192 6.40 4
ETP-7 PAKCS 0.220 7.33 5
(df) TOY(FDs) 0.248 8.27 6
ILOG OPL 0.360 | 12.00 7
MiniZinc 0.420 | 14.00 8
SWI-Prolog 0.998 | 33.27 9
TOY(FDi) 1.380 | 46.00 10
Gecode 0.56 1.00 1
TOY(FDyg) 0.90 1.61 2
ILOG Solver 0.96 1.71 3
ILOG OPL 1.00 1.78 4
ETP-15 MiniZinc 1.30 2.32 5
(df) SICStus 1.88 3.36 6
PAKCS 2.36 4.21 7
TOY(FDs) 3.22 5.75 8
TOY(FDi) 3.28 5.86 9
SWI-Prolog 43.46 | 77.61 10
Gecode 49,52 1.00 1
TOY(FDg) 50.04 1.01 2
MiniZinc 75.80 1.53 3
ILOG Solver 93.42 1.89 4
ETP-21 TOY(FDi) || 109.02 2.20 5
(s) ILOG OPL 124.70 2.52 6
SICStus 190.48 3.85 7
PAKCS 199.30 4.02 8
TOY(FDs) || 338.16 6.83 9
SWI-Prolog - - 10

Table 8.3: ETP Comparison Results
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ranking, and the three using the ILOG Solver and SICStus c1pfd constraint libraries are
respectively sorted as well. This leads to three sets of three teams. For each instance,
a comparison among the best system of each set is done, and the second best systems
and worse ones are respectively compared as well.

Slow-down by systems: Table shows that the ranking is stable for the three
instances, with MiniZinc ranking 1 in all of them. At first glance, it can be surprising to
see MiniZinc and TOY(FDi) with a better performance than Gecode and ILOG Solver
(respectively). Sections and will provide a deeper discussion on these cases,
showing that the different propagation levels of global constraints (for Gecode related
systems) and the different models being built-up (for ILOG Solver ones) justify this be-
havior. Besides that, some conclusions are obtained now from Table[8.2]

The head-to-head slow-down between any system w.r.t. MiniZinc scales as the in-
stances scale up (e.g., the 7.01, 8.20 and 8.96 slow-down of SICStus w.r.t. MiniZinc for
G-9, G-10 and G-11, resp). As a direct consequence of this, the slow-down interval
achieved, i.e., the interval from the system ranked 2 w.r.t. MiniZinc and the system
ranked 9 w.r.t. MiniZinc (SWI-Prolog is left out from the analysis as there is no measure
for ETP-21) also scales as the instances scale up: From the 2.15-7.72 for G-9, to the
2.60-9.07 for G-10 and the 2.59-9.55 for G-11.

Regarding the performance ranking among the constraint solvers, the slow-down of
the remaining Gecode related systems (w.r.t. MiniZinc) range in 2.15-2.29 for G-9, 2.60
for G-10 and 2.59-2.62 for G-11. The slow-down of the ILOG Solver related systems
(w.r.t. MiniZinc) range in 3.86-4.59 for G-9, 4.40-5.43 for G-10 and 4.53-5.51 for G-11.
The slow-down of the SICStus related systems (w.r.t. MiniZinc) range in 7.01-7.72 for
G-9, 8.20-9.07 for G-10 and 8.96-9.55 for G-11.

Slow-down by constraint solver library: Table[8.4]presents the slow-downs sorted
by the constraint solver related systems. Whereas column Instance represents the
concrete instance, columns Rank and Systems represent the ranking of the systems
and their names, respectively. For example, coming back to Table [8.2] it can be seen
that, within the Gecode related systems, their internal ranking is: (1) MiniZinc, (2)
Gecode and (3) TOY(FDg) (as they are ranked 1, 2 and 3, respectively). Similarly,
within the ILOG Solver related systems their internal ranking is: (1) TOY(FDi), (2)
ILOG Solver and (3) ILOG OPL (as they are ranked 4, 5 and 6, respectively), and within
the SICStus clpfd related systems their internal ranking is: (1) SICStus, (2) PAKCS and
(3) TOY(FDs) (as they are ranked 7, 8 and 9, respectively). Thus, the the first row of
Table[8.4represents to the Gecode, ILOG Solver and SICStus systems ranked (1), for the
instance G-9. Similarly, the second and third row represents to the systems ranked (2)
and (3), respectively, and again for the instance G-9. Finally, columns Gecode, ILOG
and SICStus represent the slow-downs of the concrete system w.r.t. to the Gecode
related one. These results reveal the following conclusions.

First, the ranking for Golomb is stable in the 3 instances. Thus, regarding the ILOG
Solver related systems, Table[8.4 compares 7TOY(FDi) w.r.t. MiniZinc (ranking 1), ILOG
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[ Instance | Rank || Systems || Gecode | ILOG [ SICStus

1 MiniZinc, TOY(FDz), SICStus 1.00 3.86 7.01
G-9 2 Gecode, ILOG Solver, PAKCS 1.00 2.00 3.46
3 TOY(FDg), ILOG OPL, TOY(FDs) 1.00 2.00 3.37
1 MiniZinc, TOY(FD:i), SICStus 1.00 4.40 8.20
G-10 2 Gecode, ILOG Solver, PAKCS 1.00 1.82 3.42
3 TOY(FDg), ILOG OPL, TOY(FDs) 1.00 2.09 3.48
1 Minizinc, TOY(FDz), SICStus 1.00 4,53 8.96
G-11 2 Gecode, ILOG Solver, PAKCS 1.00 1.85 3.65
3 TOY(FDg), ILOG OPL, TOY(FDs) 1.00 2.10 3.64

Table 8.4: Constraint Solver Library Slow-Down Results for Golomb

Solver w.r.t. Gecode (ranking 2) and ILOG OPL w.r.t. TOY(FDyg) (ranking 3). Regarding
the SICStus related systems, Table [8.4] compares SICStus w.r.t. MiniZinc, PAKCS w.r.t.
Gecode and TOY(FDs) w.r.t. TOY(FDg).

In this setting, the slow-down interval obtained before for G-9, when comparing
the ILOG Solver related systems w.r.t. MiniZinc (cf. Table , was 3.86-4.59. Now, with
the new comparison of Table [8.4] column ILOG shows that it is reduced to 2.00-3.86,
as both the slow-down of ILOG Solver w.r.t. Gecode and the one of ILOG OPL w.r.t.
TOY(FDg) are 2.00. In the case of SICStus (column SICStus), the slow-down interval
7.01-7.72 of Table is now reduced to 3.37-7.01, as the slow-down of PAKCS w.r.t.
Gecode is 3.46 and the one of TOY(FDs) w.r.t. TOY(FDg) is 3.37. Thus, it can be
seen that, whereas there is a performance order among all the Gecode, ILOG Solver
and SICStus related systems, the slow-down for systems ranking 2 and 3 are around a
50% smaller than the ones of the systems ranking 1. This situation also happens for G-
10 and G-11, where the slow-down for systems ranking 2 and 3 are between a 50%-60%
smaller than the ones of the systems ranking 1.

Second, whereas the slow-down of each system w.r.t. MiniZinc increases as the
instances scale up, it does not happen now with the ILOG Solver and SICStus systems
ranked 2 and 3 in Table[8.4 For example, the slow-down of ILOG Solver (respectively
PAKCS) w.r.t. Gecode decreases from G-9 to G-10, and then it increases from G-10 to
G-11.

In summary, it can be seen that Golomb is a relatively homogeneous problem:

e The ranking of any system for any problem instance is fixed.

e The slow-down of any system (w.r.t. the optimal MiniZinc) scales as the instances
scale up.

e This slow-down w.r.t. MiniZinc is around 2.0-2.5, 4.0-5.5 and 7.0-9.5 for the Gecode,
ILOG Solver and SICStus related systems, respectively.

e However, when the homogeneous ranked systems are compared, the slow-down
of ILOG Solver systems w.r.t. Gecode ones decreases to around 2.0-4.5, and the
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slow-down of SICStus systems w.r.t. Gecode ones decreases to around 3.3-9.0.

e Moreover, the slow-down of any ILOG Solver (respectively SICStus) related sys-
tem w.r.t. any Gecode system does not necessarily scale as the instances scale

up.

8.2.2 ETP Slow-down Analysis

The same two analysis by systems and constraint solvers are performed for the ETP.

Slow-down by systems: The ETP ranking is not stable for the three instances, but
the C++ CP(FD) Gecode ranks 1 for all of them. Thus, two comparisons are needed:
One by ranking (i.e., Gecode vs. the system ranking 2, 3, etc.) and a head-to-head
comparison (i.e., Gecode vs. TOY(FDg), ILOG Solver, SICStus, etc.)

Regarding the ranking comparison, the slow-down between the systems w.r.t.
Gecode decreases as the instances scale up. For example, the comparison of the sys-
tems ranked 2 w.r.t. Gecode, which respectively evolve from the SICStus 3.13 for ETP-7,
to the TOY(FDg) 1.61 for ETP-15 and the TOY(FDg) 1.01 for ETP-21. Moreover, the
slow-down interval (considering all the systems) decreases as the instances scale up
(both in their lower and upper bound values, and in the difference of upper and lower).
Itis 3.13-46.00 for ETP-7, then 1.61-5.86 for ETP-15 and, finally, 1.01-6.83 for ETP-21.

Regarding the head-to-head slow-down between each system w.r.t. Gecode, it does
not follow a clear pattern as the instances scale up. There are systems for which the
slow-down decreases (as for MiniZinc, TOY(FDg), TOY(FDi) and PAKCS), increases
(as for SICStus and SWI) and decreases from ETP-7 to ETP-15, and then increases from
ETP-15 to ETP-21 (as for ILOG OPL, ILOG Solver and TOY(FDs)). As it can be seen, this
does not follow a pattern neither by paradigms nor by constraint solving libraries.

Finally, regarding the performance order of constraint solvers, it can be seen that
the slow-down of the remaining Gecode related systems (w.r.t. Gecode) ranges in 6.40-
14.00 for ETP-7, 1.61-2.32 for ETP-15 and 1.01-1.53 for ETP-21. The slow-down of the
ILOG Solver related systems (w.r.t. Gecode) ranges in 5.20-46.00 for ETP-7, 1.71-5.86 for
ETP-15 and 1.89-2.52 for ETP-21. The slow-down of the SICStus related systems (w.r.t.
Gecode) ranges in 3.13-8.27 for ETP-7, 3.36-5.75 for ETP-15 and 3.85-6.83 for ETP-21.

Slow-down by constraint solver library: Table[8.5 presents the slow-down sorted
by constraint solver related systems (similar to Table but for ETP). The general
ranking of ETP is not stable for the 3 instances (cf. Table , but it is stable in the
comparison performed in Table[8.5] Regarding the ILOG Solver related systems, it com-
pares ILOG Solver w.r.t. Gecode (ranking 1), ILOG OPL w.r.t. TOY(FDyg) (ranking 2) and
TOY(FDi) w.r.t. MiniZinc (ranking 3). There is an exception in ETP-21, where ILOG
OPL and TOY(FDi) switch their respective 2 and 3 rankings. Regarding the SICStus re-
lated systems, Table[8.5]compares SICStus w.r.t. Gecode, PAKCS w.r.t. TOY/(FDg) and
TOY(FDs) w.r.t. MiniZinc.
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[ Instance [ Rank || Systems || Gecode | ILOG [ SICStus |

1 Gecode, ILOG Solver, SICStus 1.00 5.20 3.13
ETP-7 2 TOY(FDg), ILOG OPL, PAKCS 1.00 1.88 1.15
3 MiniZinc, TOY(FDi), TOY(FDs) 1.00 3.29 0.59
1 Gecode, ILOG Solver, SICStus 1.00 1.71 3.36
ETP-15 2 TOY(FDg), ILOG OPL, PAKCS 1.00 1.1 2.62
3 MiniZinc, TOY(FDi), TOY(FDs) 1.00 2.52 2.48
1 Gecode, ILOG Solver, SICStus 1.00 1.89 3.85
ETP-21 2 TOY(FDg), TOY(FDi), PAKCS 1.00 2.18 3.98
3 MiniZinc, ILOG OPL, TOY(FDs) 1.00 1.65 4.46

Table 8.5: Constraint Solver Library Slow-Down Results for ETP

First, in ETP-7, it can be seen that the performance ranking among constraint solvers
is not (1) Gecode, (2) ILOG Solver and (3) SICStus, but (1) Gecode, (2) SICStus and (3)
ILOG Solver, with the three SICStus related systems behaving better than the ILOG
Solver ones. Furthermore, in the case of systems ranking 3, the performance order is
(1) SICStus, (2) Gecode and (3) ILOG Solver, with TOY(FDs) behaving even better than
MiniZinc.

In this setting, in ETP-7, a 5.20-46.00 slow-down interval was obtained when com-
paring the ILOG Solver related systems w.r.t. the C++ CP(FD) Gecode (cf. Table .
Now, with the new comparison of Table[8.5} this slow-down interval is reduced to 1.88-
5.20, as the slow-down of ILOG OPL w.r.t. TOY(FDyg) is 1.88 (60% smaller than 5.20)
and the one of TOY(FDi) w.r.t. MiniZinc is 3.29 (40% smaller than 5.20). In the case
of SICStus, the slow-down interval 3.13-8.27 of Table is now reduced to 0.59-3.13,
as the slow-down of PAKCS w.r.t. TOY(FDyg) is 1.15 (60% smaller than 3.13) and the
one of TOY(FDs) w.r.t. MiniZinc is 0.59 (80% smaller than 3.13).

Second, in ETP-15 and ETP-21, the performance ranking among constraint solvers
becomes (1) Gecode, (2) ILOG Solver and (3) SICStus, and it stands for all the systems
ranking 1, 2 and 3. However, the slow-down of this performance order varies for each
instance and constraint solver systems related being considered.

In ETP-15 and ILOG Solver related systems, it is observed that the slow-down of
the systems ranking 2 (ILOG OPL w.r.t. TOY(FDy)) is a 35% smaller than the one of
those ranking 1 (ILOG Solver w.r.t. Gecode). On the other hand, the slow-down of
systems ranking 3 (TOY(FDi) w.r.t. MiniZinc) is a 50% greater than the one of those
ranking 1. However, ETP-21 the behavior is the opposite. In this case, systems ranking
2 (TOY(FDi) and TOY(FDg)) have a 15% greater slow-down than the ones ranking
1 (ILOG Solver w.r.t. Gecode), and systems ranking 3 (ILOG OPL w.r.t. MiniZinc) have a
15% smaller slow-down than the ones ranking 1.

This lack of stable slow-downs might be due to the switch of ILOG OPL and TOY(FDi)
in ranks 2 and 3 of ETP-15 and ETP-21. However, this is not the case, as in ETP-15 and
SICStus related systems, the slow-down of systems ranking 2 (PAKCS w.r.t. TOY(FDyg))
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and 3 (TOY(FDs) w.r.t. MiniZinc) are a 25% smaller than the ones of systems ranking
1 (SICStus and Gecode). However, in ETP-21 the systems ranking 2 (again PAKCS and
TOY(FDg)) and 3 (again TOY(FDs) and MiniZinc) have a 3% and 16% (respectively)
greater slow-down than the ones ranking 1.

In summary, it can be seen that ETP is a less homogeneous problem:

e The ranking of a chosen system depends on the concrete instance being run.

e The slow-down between the systems ranking 2 (respectively 3, 4 and so on) w.r.t.
Gecode decreases as the instances scale up. However, as the ranking is not sta-
ble, a head-to-head comparison between the slow-down of each concrete system
w.r.t. Gecode reveals that there is not a general behavior: Depending on the cho-
sen system this slow-down can decrease, increase or decrease and then increase
as the instances scale up.

e The ranking becomes more stable when it is compared by the performance order
of the Gecode, ILOG Solver and SICStus related systems.

e However, in ETP-7, the performance ranking order is modified to (1) Gecode, (2)
SICStus and (3) ILOG Solver. Moreover, the slow-down of the systems decrease
in a 40%-80% as the systems ranking 2 and 3 (respectively) are compared.

e In ETP-15 and ETP-21, the performance ranking order remains as (1) Gecode,
(2) ILOG Solver and (3) SICStus. However, in these cases there are no general
patterns about how the slow-down behaves as the systems ranking 2 and 3 (re-
spectively) are compared.

8.3 Performance Comparison of Gecode Systems

This section focuses on the Gecode related systems MiniZinc, Gecode and TOY(FDyg),
analyzing first their ranking and slow-down results. Then, the instances G-11 and ETP-
21 are used to discuss their search exploration (as for them it is the only factor deter-
mining the CPU time). Their search statistics results are compared, also monitoring the
search in Gecode and TOY(FDy), to justify their different results.

8.3.1 Ranking and Slow-Down Analysis

Table presents the results of the three systems for solving the Golomb and ETP in-
stances. As in Tables[8.2]and[8.3] the columns represent the instance, system, CPU time,
slow-down and ranking, respectively. These results reveal the following conclusions.
First, the ranking is stable for, respectively, the three Golomb and ETP instances. It
is (1) MiniZinc, (2) Gecode and (3) TOY(FDg) for Golomb, and (1) Gecode, (2) TOY(FDg)
and (3) MiniZinc for ETP. As it can be seen, the performance of MiniZinc clearly varies
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| Instance | System | Time | SI-Dw | Ranking |

MiniZinc 0.109 1.00 1

G-9 Gecode 0.234 2.15 2
(js) TOY(FDyg) || 0.250 2.29 3
MiniZinc 0.81 1.00 1

G-10 Gecode 2.11 2.60 2
(js) TOY(FDyg) 2.1 2.60 3
MiniZinc 16.02 1.00 1

G-11 Gecode 41.52 2.59 2
(js) TOY(FDyg) || 42.01 2.62 3
Gecode 0.030 1.00 1

ETP-7 TOY(FDg) || 0.192 6.40 2
(df) MiniZinc 0.420 | 14.00 3
Gecode 0.56 1.00 1

ETP-15 | TOY(FDyg) 0.90 1.61 2
(df) MiniZinc 1.30 2.32 3
Gecode 49,52 1.00 1

ETP-21 TOY(FDg) || 50.04 1.01 2
(js) MiniZinc 75.80 1.53 3

Table 8.6: Gecode Results

from one problem to the other. Moreover, the slow-down of Gecode (respectively
TOY(FDg)) w.r.t. MiniZinc scales as the instances scale up: From the 2.15 (respec-
tively 2.29) for G-9, to the 2.60 (respectively 2.60) for G-10 and the 2.59 (respectively
2.62) for G-11. However, in ETP, the slow-down of MiniZinc w.r.t. Gecode (respectively
TOY(FDg)) nearly decreases as the instances scale up: From the 14.00 (respectively
2.18) for ETP-7, to the 2.32 (respectively 1.44) for ETP-15 and the 1.53 (respectively 1.51)
for ETP-21.

In the case of Gecode and TOY(FDy), their ranking and slow-down practically re-
main the same for both problems. Gecode is always behaving better than TOY(FDg)
but, whereas for df instances the slow-down is quite big (6.40 for ETP-7 and 1.61 for
ETP-15), for the js instances the CPU time of TOY(FDg) nearly matches the one of
Gecode, with 1.07 for G-9 (where the 16ms difference is nearly negligible), 1.00 for
G-10, 1.01 for G-11 and 1.01 for ETP-21.

These results are extremely encouraging for the use of the CFLP(FD) system
TOY(FDg), revealing that the interface from 7OY(FD) to the Gecode API [48] is build-
ing up a Gecode model similar enough to the native C++ CP(FD) one, as to achieve the
same performance results. Therefore, as both Gecode and TOY(FDg) are running
(practically) the same model, the time they devote to search exploration matches. For
df instances, the performance of TOY(FDy) is still worse than the one of Gecode, as it
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is penalized by the lazy narrowing and external solver overheads. But, for js instances,
where this search exploration is the only factor determining the CPU time, TOY(FDg)
directly matches the CPU time of Gecode.

8.3.2 Search Exploration Analysis

This section compares the search statistics of the systems for G-11 and ETP-21. The
search statistics results for G-11 are presented in Table 8.7 with their respective slow-
down results presented in Table[8.8] The same information is presented for ETP-21 in
Tablesand with rows representing the search statistics of teams tt;, tt; and tt3,
respectively (associated to the first tda being computed). On all these Tables, column
System represents the system. Besides MiniZinc, Gecode and TOY(FDy), Tables[8.9]
and[8.10/add a fourth system Gecode*, representing an alternative C++ Gecode model
in which both ¢t and trans_tt variables are represented as bi-dimensional arrays (cf.
Section|7.4.2), instead of the one-dimensional ones. They also include a Column St .,
representing the concrete team being solved. Column Time represents the elapsed
time for performing the search exploration, and column Cons. the amount of con-
straints posted to the constraint store before the search exploration starts. Next block
of three columns present some search exploration statistics, as the constraint propa-
gations triggered (column Propag.), the amount of nodes/choice points explored (col-
umn Nodes), and the failures (column Fails). Finally, columns Copy and C.T. are
devoted to the Space: :copy() constructor, which plays a central role in the hybrid
recomputation techniques the Gecode search is based on. Column Copy represents
the amount of times the method is executed during the search exploration. Column
C.T. represents the elapsed time spent in such these executions. Unfortunately, there
is no way to retrieve this information in MiniZinc.

The results of tables[8.7] [8.8} [8.9)and reveal the following conclusions:

First, column Time of Tables and show that the CPU times of MiniZinc,
Gecode and TOY(FDy) (presented in Table for G-11 and ETP-21 directly come
from their elapsed times devoted to search exploration.

Second, the interface from 7TOY(FD) to Gecode allows to formulate both the
Golomb and ETP problems with the same constraint network than the native C++ CP(FD)
Gecode models. In the case of ETP-21, as the absences of workers differ from one
team to another, the amount of constraints posted to the solver differs as well (89, 85
and 84 for the first, second and third teams, resp). In the case of MiniZinc, the alge-
braic CP(FD) modeling features lead to the same constraint network as in Gecode and
TOY(FDg) in G-11, but to a greater one for ETP-21 (cf. Chapter refchapter?), ranging
in 2.43-2.60 for the three teams.

However, it can be seen that there is not a direct correlation between the con-
straint network used and the search exploration being performed. In G-11, MiniZinc
and Gecode depart from the same constraint network (cf. Table column Time).
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System Time || Cons. Propag. Nodes Fails Copy | C.T.
Gecode 41.52 66 | 312,737,962 | 2,968,201 | 1,484,086 1,484,116 | 0.81
TOY(FDg) || 42.01 66 | 320,150,379 | 2,968,201 | 1,484,086 || 1,484,116 | 0.75
MiniZinc 16.02 66 94,022,986 642,867 321,419 - -

Table 8.7: G-11 Search Results

| System [ Time [[ Cons | Propag. | Nodes | Fails [| Copy | CT. |

Gecode 1.00 1.00 1.00 1.00 | 1.00 1.00 | 1.00
TOY(FDg) 1.01 1.00 1.02 1.00 | 1.00 1.00 | 0.93
MiniZinc 0.39 1.00 0.30 0.22 | 0.22 - -

Table 8.8: G-11 Slow-Down Results

| System [ st. [ Time [[ Cons | Propag. [ Nodes | Fails ] Copy [ CT. |
Gecode 2.86 89 12,801,281 398,985 194,990 194,996 | 0.06
Gecode* tty 3.48 89 12,798,088 398,985 194,990 194,996 | 0.38
TOY(FDyg) 2.91 89 13,030,676 398,985 194,990 194,996 | 0.03
MiniZinc 4.43 216 18,354,346 398,985 194,990 - -
Gecode 19.25 85 88,453,074 | 2,836,539 | 1,418,269 1,418,271 | 0.54
Gecode* tto 23.59 85 88,455,074 | 2,836,539 | 1,418,269 1,418,271 | 3.66
TOY(FDg) 19.30 85 89,411,906 | 2,836,539 | 1,418,269 1,418,271 | 0.22
MiniZinc 29.40 221 | 130,010,012 | 2,836,539 | 1,418,269 - -
Gecode 2.55 84 11,961,872 399,669 199,834 199,836 | 0.11
Gecode* tts 3.33 84 11,961,886 399,669 199,834 199,836 | 0.47
TOY(FDg) 2.58 84 12,028,347 399,669 199,834 199,836 | 0.05
MiniZinc 4.01 207 15,929,131 380,169 190,084 - -

Table 8.9: ETP-21 Search Results of the Three Teams

| System [ st. [[ Time [[ Cons | Propag. [ Nodes [ Fails [[ Copy | CT. |

Gecode 1.00 1.00 1.00 1.00 | 1.00 1.00 | 1.00
Gecode* 231 1.22 1.00 1.00 1.00 | 1.00 1.00 | 6.33
TOY(FDg) 1.02 1.00 1.02 1.00 | 1.00 1.00 | 0.50
MiniZinc 1.55 243 1.43 1.00 | 1.00 - -
Gecode 1.00 1.00 1.00 1.00 | 1.00 1.00 | 1.00
Gecode* tto 1.23 1.00 1.02 1.00 | 1.00 1.00 | 6.78
TOY(FDg) 1.00 1.00 1.01 1.00 | 1.00 1.00 | 0.41
MiniZinc 1.53 2.60 1.47 1.00 | 1.00 - -
Gecode 1.00 1.00 1.00 1.00 | 1.00 1.00 | 1.00
Gecode* tt3 1.31 1.00 1.00 1.00 | 1.00 1.00 | 4.27
TOY(FDy) 1.01 1.00 1.01 1.00 | 1.00 1.00 | 0.45
MiniZinc 1.57 2.46 1.33 0.95 | 0.95 - -

Table 8.10: ETP-21 Search Slow-Down of the Three Teams
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However, due to the different propagation level for the all_different constraint,
MinizZinc performs a search exploration containing 0.22 times the nodes and failures of
the Gecode ones (cf. Table[8.8] columns Nodes and Fails). On the other hand, in the
three teams of ETP-21, MiniZinc and Gecode have different constraint networks. But,
whereas for the first two teams they exactly perform the same exploration (in terms of
nodes and failures) for the third one they do not (cf. Table columns Nodes and
Fails).

Thus, the key factor determining the CPU time of the search exploration is the num-
ber of constraint propagations being triggered: The less constraint propagations a sys-
tem triggers during the search exploration, the fastest this search is performed. In this
setting, in G-11 MiniZinc triggers just a 30% of the propagations triggered by Gecode,
and it achieves a slow-down of 0.39 w.r.t. it. On the other hand, for the three teams
of ETP-21, MiniZinc performs a 33%-47% more propagations than Gecode, achieving
a slow-down of 1.53-1.57 w.r.t. it. In the case of TOY(FDy), it nearly matches the
amount of propagations of Gecode (a 1%-2% more) for all the Golomb-11 and ETP-21
searches, and so it matches the CPU time devoted to search exploration (with a slow-
down ranging in 1.01-1.02).

Third, besides the amount of propagations, in Section[7.4.2the copy () construc-
tor was identified as another key factor determining the CPU time devoted to search.
On it, the importance of modeling tt and trans_tt as one-dimensional variable vec-
tors was remarked, rather than the more intuitive bi-dimensional ones. The results of
Tables and show this importance, presenting a system Gecode* that uses bi-
dimensional arrays. This system has a small deviation of propagations w.r.t. Gecode,
ranging in 1.00-1.02 (similar to TOY(FDyg)). However, its slow-down w.r.t. Gecode
ranges in 1.22-1.31. Looking at the times of Columns Time and C.T., it can be seen
that the differences obtained directly come from the amount of time devoted to exe-
cute the method copy () during the search exploration. As both systems execute the
copy () method the same amount of times, it can be seen that the efficiency of the
method in Gecode outperform the one of Gecode*.

In the case of TOY(FDy), its interface to the Gecode API relies on a method
copy () also based on a one-dimensional variable array. Moreover, in TOY(FD) some
of the FD variables are saved by unifying them by the H solver. Thus, the time that
TOY(FDg) spends in copy () is even a little bit smaller than the one of Gecode (with
a slow-down of 0.93 for G-11 and ranging in 0.41-0.50 for the teams of ETP-21). This
is also encouraging for TOY(FDyg), that can thus reduce a little the overhead derived
from the higher amount of triggered propagations, matching even more the CPU time
of Gecode for performing the search exploration.
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8.3.3 Monitoring the Search of Gecode and TOY(FDy)

In this section, part of the search exploration in Gecode and 7TOY(FDyg) is monitored,
showing that they lead to the same amount of nodes and failures, but perform a differ-
ent amount of propagations.

To this end, an easier instance G-5 has been used (cf. Chapter [2), big enough as to
lead to a search exploration (with the similarities and differences between Gecode and
TOY(FDg) that want to be shown) but small enough as to make this search explo-
ration tractable. Its optimal solution is: m = [0,1,4,9,11]; d = [1,4,9,11, 3,8,10, 5,7, 2].
Gist, a graphical tool of Gecode which interacts with the solver during the search ex-
ploration, has been used. It allows to monitor the execution of the search tree node by
node (also executing a log method on each of them). In this case, this log method has
been configured to display the domain of all the m and d variables of Golomb. The solv-
ing of G-5 in Gecode and TOY(FDy) lead to the same search tree exploration, which
is presented in Figure [8.1] On it, the blue circles represent choice points, the green
diamonds solutions that have been further improved, the yellow diamond the optimal
solution, and the red squares the failures.

Top part of Figure[8.2]presents the information displayed when exploring the nodes
1, 2 and 3 of the tree, which lead to the same results in Gecode and TOY(FDy).

Besides configuring the log method, a log constraint has been implemented, which
is associated to each m and d variable. This constraint propagates each time the domain
of its variable is modified, displaying its new domain. Thus, now it is also known the way
the domain of the variables evolve on the execution of each node. Bottom part of Figure
B2 presents this information for nodes 2 and 3. Column Step represents the step
identifier, to univocally distinguish each atomic propagation pruning the domain of a
variable. Columns Gecode-NODE 2 and TOY(FDg)-NODE 2 presentthe log execution
of node 2 in Gecode and TOY(FDy), respectively. It can be seen that they

1 @

15

Figure 8.1: Tree of G-5 in Gist
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NODE 1.

m= {0, [1..8], [3..121, [6..13], [10..15]}

d = {[1..8], [3..12], [6..131, [10..15], [1..11]1,
[3..12], [6..141, [1..101, [3..121, [2..91}

NODE 2.

m=4{0, 1, [3..111, [6..131, [10..15]}

d= {1, [3..11], [6..13], [10..15], [2..10],
[5..12], [9..14], [2..101, [3..121, [2..91}

NODE 3.

{0, 1, 3, [7..111, [11..151}

{1, 3, [7..111, [11..15], 2,

[6..10], [10..141, [4..81, [8..121, [4..81}

m =
d =

(01) [m[1] = 1 Im[1] = 1 Im[1] = 1 [m[1] = 1

(02) |d[0] = 1 |d[0] = 1 Im[2] = 3 Im[2] = 3

(03) |d[5] = [5..12] |d[5] = [5..12] |d[O0] =1 |d[0] =1

(04) |d[4] = [2..11] |d[4] = [2..11] |d[1] =3 |d[1] = 3

(05) |d[6] = [9..14] |d[6] = [9..14] |d[5] = [5..12] |d[5] = [5..12]
(06) |d[7] = [2..10]1 |d[7] = [2..10] |d[4] = 2 |d[4] = 2

(07) |m[2] = [3..11] |m[2] = [3..11] |d[6] = [9..14] |d[6] = [9..14]
(08) |m[2] = [3..11] |d[4] = [2..10] |d[7] = [3..10] |d[7] = [3..10]
(09) |d[4] = [2..10] |m[2] = [3..11] |d[8] = [7..12] |d[8] = [7..12]
(10) | | |d[7] = [4..10] |d[7] = [4..10]
(1) | | |d[9] = [4..9] |d[9] = [4..9]
(12) | | Im[3] = [7..13] |m[3] = [7..13]
(13) | | |d[2] = [7..131 |d[5] = [6..12]
(14) | | |d[9] = [4..8] |d[2] = [7..13]
(15) | | [m[3] = [7..11] |m[3] = [7..11]
(16) | | m[4] = [11..15]|d[9] = [4..8]
17y | | |d[2] = [7..11] |m[4] = [11..15]
(18) | | |d[3] = [11..15]1|d[5] = [6..10]
(19) | | |d[5] = [6..10] |d[2] = [7..11]
(20) | | |d[7] = [4..8] |d[7] = [4..8]
(21) | | |d[8] = [8..12] |d[8] = [8..12]
(22) | | |d[6] = [10..14]1|d[6] = [10..14]
(23) | | | |d[3] = [11..15]

Figure 8.2: Variable Domains Prunings for Nodes 1, 2 and 3
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basically follow the same steps, although the order of execution of steps 8 and 9 (prun-
ing the domains of ms and d,) are interchanged. Finally, columns Gecode-NODE 3 and
TOY(FDg)-NODE 3 present the log execution of node 3. Again, it can be seen that the
propagation of some variable domains are interchanged from Gecode to TOY(FDg).
But, most importantly, to achieve the propagation of d[5] TOY(FDg) performs one
more step than Gecode (step 13).

This example represents in detail what is happening in Gecode and TOY(FDg)
in Tables[8.7]and where it can be seen that, even containing the same constraint
network and performing the same search exploration (in terms of nodes and failures)
they lead to different number of constraint propagations.

8.4 Performance Comparison of ILOG Solver Systems

This section is similar to Section[8.3] but it is focused on the ILOG Solver related systems
ILOG OPL, ILOG Solver and TOY(FDi).

8.4.1 Ranking and Slow-Down Analysis

Table presents the results of the three systems for solving the Golomb and ETP
instances. As in Table[8.6] the columns represent the instance, system, CPU time, slow-
down and ranking, respectively. These results reveal the following conclusions:

First, the ranking for Golomb instances is (1) TOY(FDs), (2) ILOG Solver and (3)
ILOG OPL. For the df instances ETP-7 and ETP-15, the ranking is (1) ILOG Solver,

(2) ILOG OPL and (3) TOY(FDs), but for the js instance ETP-21, the ranking is (1) ILOG
Solver, (2) TOY(FDi) and (3) ILOG OPL.

The most two remarkable observations are that TOY(FDi) is the fastest system
for Golomb (behaving even better than ILOG Solver), and that, for ETP, the ranking is
dependent of dealing with a df or a js instance. Besides that, there are some similar-
ities w.r.t. the Gecode related systems ranking: The ranking is stable for the Golomb
instances and it varies from the Golomb to the ETP problem. The C++ CP(FD) model
ranks 2 for the Golomb instances, and 1 for the ETP ones. The system ranking 1 for the
Golomb instances behaves as the worst for the ETP ones.

Second, although the slow-down interval for df instances is quite big, ranging in
1.04-8.85, the one for js ones is quite narrow, ranging in 1.06-1.33. This reveals that,
besides having a less homogeneous ranking, the general differences among the ILOG
Solver related systems are smaller than the ones achieved among the Gecode systems.
Specifically, whereas the slow-down of ILOG Solver w.r.t. TOY(FDi) for Golomb in-
stances decreases as the instances scale up (from 1.11 for G-9 to the 1.08 and 1.06 for
G-10 and G-11, respectively), the slow-down of TOY(FDi) w.r.t. ILOG Solver for ETP-21
is 1.17.

200



| Instance | System | Time [ SI-Dw || Ranking |

TOY(FDi) | 0421 1.00 1
G-9 | ILOGSolver | 0468 | 1.11
ILOGOPL | 0500 | 1.19
TOY(FDi) | 3.56| 1.00
G-10 | ILOGSolver | 3.85| 1.08
ILOG OPL 440 | 1.24
TOY(FDi) | 72.65| 1.00
G-11 | ILOG Solver | 77.08 | 1.06

ILOGOPL | 8828 | 1.22
ILOG Solver || 0.156 | 1.00
ETP-7 | ILOGOPL || 0360 | 2.31
TOY(FDi) | 1.380 | 8.85
ILOG Solver || 0.96 | 1.00
ETP-15 | ILOG OPL 1.00 | 1.04
TOY(FDi) | 328 | 3.42
ILOG Solver || 93.42 | 1.00
ETP-21 | TOY(FDi) || 109.02 | 1.17
ILOGOPL | 124.70 | 1.33

WN=2WON 2 WON =2 WN =2 WON -2

Table 8.11: ILOG Results

These results are twofold regarding the interface from 7OY(FD) to ILOG Solver.
On the one hand, the overheads of TOY(FDi) for solving df instances are much
greater than the ones of ILOG Solver, and even slightly greater than the ones of
TOY(FDg) (cf. Table column Perc_I). This directly points at the interface from
TOY(FD) to ILOG Solver, revealing that TOY(FDi) needs more management of ILOG
Concert objects than the native model of ILOG Solver (e.g., each of the tasks proposed
in Section [3.2). Thus, the slow-down of TOY(FDi) w.r.t. ILOG Solver for ETP-7 and
ETP-15 results to be quite big.

On the other hand, these same results present TOY(FDi) as a very competitive
system for solving js instances. Moreover, differently to what happens with Gecode and
TOY(FDg) (that nearly match their CPU times), these results reveal that, depending on
the problem being solved, TOY(FDi) can behave either better (and also worse) than
ILOG Solver. This points again at the TOY(FD) interface to ILOG Solver, revealing that
there is a mismatch between the model built up by TOY(FD:) and the one built up by
the C++ CP(FD) model. Next section discusses the different management required by
ILOG Solver, which leads to a different amount of variables and constraints posted to
the solver. As ILOG Solver and TOY(FDi) are running (partially) different constraint
networks, the time they spend in search exploration differs. Finally, in Section|8.4.3
the execution of these Golomb and ETP models are monitored, identifying the cases in
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which TOY(FDi) saves variables and constraints w.r.t. ILOG Solver, and viceversa.

8.4.2 Search Exploration Analysis

This section is similar to Section but with tables and (respectively
and[8.15) representing the search statistics and slow-down for G-11 (respectively ETP-

21) in ILOG Solver, TOY(FDi) and ILOG OPL. As a difference with the Gecode search
results previously displayed, columns Vars and Cons represent the amount of varia-
bles and constraints (respectively) posted to the constraint store before the search ex-
ploration starts. But, unfortunately, neither the API of ILOG OPL nor the one of ILOG
Solver provide a method to compute the amount of constraint propagations triggered
during the search exploration. As it was seen, this was the key factor determining the
elapsed time performed by the Gecode systems, so the lack of this information sup-
poses a drawback now for the analysis among the ILOG Solver systems.

Focusing then on the nodes, failures, variables and constraints presented in tables
[8.7}i8.10| the following conclusions are obtained:

First, as in Gecode systems, column Time of tables[8.12]and[8.74]show that the CPU
times of ILOG OPL, ILOG Solver and TOY(FDi) (presented in Table[8.T1) for G-11 and
ETP-21 directly come from their elapsed time devoted to tackle the search exploration.

Second, interestingly, both in G-11 and ETP-21 the three systems use the same
amount of nodes and failures (in ETP-21 the differences are nearly negligible, not reach-
ing even a 1%). This represents a difference w.r.t. TabIe where the algebraic CP(FD)
system MiniZinc used less nodes and failures than Gecode and 7TOY(FDg) for solving
G-11. The formulation of Golomb is as simple that both MiniZinc and ILOG OPL models
are exactly the same (besides the small grammar differences between both languages).
This formulation includes as its unique global constraint the all_different among
d variables. For it, ILOG OPL supports value consistency (as Gecode, ILOG Solver,
TOY(FDg) and TOY(FDi)), but MiniZinc does not. Thus, it is the factor making Miniz-
inc to perform a smaller search exploration (in terms of nodes, failures and constraint
propagations).

Besides obtaining the same statistics after exploring the search tree, columns Vars
and Cons of tables and reveal that the three related systems use a differ-
ent amount of variables and constraints. These represent a difference w.r.t. Gecode,
where only MiniZinc used a higher amount of constraints for ETP-21 (in all cases with
no available info about the amount of variables used).

ILOG OPL uses more variables and constraints than ILOG Solver for ETP-21 and G-
11. But, when comparing ILOG Solver and TOY(FD:), the difference of variables and
constraints depends on the problem: Whereas for G-11 TOY(FD:) uses less variables
and constraints than ILOG Solver, for ETP-21 it uses more. This amount of variables and
constraints turn to be the key factor determining the elapsed time, as they represent
the constraint network the solver has to deal with. As it can be seen, the smaller this
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| System [ Time | Nodes | Fails | Vars | Cons |

TOY(FDi) 72.65 || 1,484,102 | 1,484,086 55 56
ILOG Solver || 77.08 || 1,484,102 | 1,484,086 66 67
ILOGOPL | 88.28 || 1,484,102 | 1,484,088 76 | 132

Table 8.12: G-11 Search Results

| System [ Time || Nodes | Fails | Vars | Cons |
TOY(FDi) 1.00 1.00 | 1.00 | 1.00 | 1.00
ILOG Solver 1.06 1.00 | 1.00 | 1.20 | 1.20
ILOG OPL 1.22 1.00 | 1.00 | 1.38 | 2.36

Table 8.13: G-11 Slow-Down Results

| System | St. | Time || Nodes | Fails | Vars | Cons |
ILOG Solver 493 194,992 194,990 | 141 99
TOY(FDi) tty 5.91 194,992 194,990 | 186 104
ILOG OPL 6.30 195,013 195,011 | 147 183
ILOG Solver 37.29 || 1,418,269 | 1,418,269 | 141 100
TOY(FDi) tty || 42.98 || 1,418,269 | 1,418,269 | 181 105
ILOG OPL 51.08 || 1,418,276 | 1,418,276 | 147 183
ILOG Solver 4.45 190,834 190,834 | 141 99
TOY(FDi) tts 4.88 190,834 190,834 | 191 104
ILOG OPL 4,72 190,091 190,091 | 147 183

Table 8.14: ETP-21 Search Results of the Three Teams

| System [ St. || Time || Nodes | Fails | Vars | Cons |

ILOG Solver 1.00 1.00 | 1.00 | 1.00 | 1.00
TOY(FDi) tt 1.20 1.00 | 1.00 | 1.32 | 1.05
ILOG OPL 1.28 1.00 | 1.00 | 1.04 | 1.85
ILOG Solver 1.00 1.00 | 1.00 | 1.00 | 1.00
TOY(FDi) tto 1.15 1.00 | 1.00 | 1.28 | 1.05
ILOG OPL 1.37 1.00 | 1.00 | 1.04 | 1.83
ILOG Solver 1.00 1.00 | 1.00 | 1.00 | 1.00
TOY(FDi) tts 1.10 1.00 | 1.00 | 1.35| 1.05
ILOG OPL 1.06 1.00 | 1.00 | 1.04 | 1.83

Table 8.15: ETP-21 Search Slow-Down of the Three Teams
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network is, the faster the solver performs the search.

In G-11, it can be seen that, even with such an easy formulation, ILOG Solver uses
20% more variables and constraints than TOY(FDi), leading to a slow-down of 1.06.
In the case of ILOG OPL, its formulation leads to a 38% more variables and 136% more
constraints than TOY(FDi), leading to a slow-down of 1.22.

In ETP-21, it can be seen that ILOG Solver is the system with less variables and
constraints for the 3 team subproblems, and thus it is the fastest one for solving all
of them. However, there is not a clear pattern between the constraint network and
the slow-down. In the case of TOY(FDi), the slow-down of constraints is stable (1.32,
1.28 and 1.35, respectively). However, the slow-down achieved decreases (1.20, 1.15
and 1.10, respectively), not following a relation w.r.t. the amount of variables posted
to the solver. In the case of ILOG OPL, both the slow-downs of variables and con-
straints are stable (at 1.04 and 1.83, respectively), but the slow-downs are quite differ-
ent (1.28, 1.37 and 1.06, respectively) Finally, a similar situation happens when com-
paring TOY(FDi) w.r.t. ILOG OPL. For the 3 teams, ILOG OPL uses around 20% less
variables than TOY(FDi), but around 75% more constraints. However, the slow-down
of ILOG OPL w.r.t. TOY(FDi) does not follow a clear pattern (1.07, 1.19 and 0.97,
respectively), being even faster for the third team.

8.4.3 Monitoring the Execution of ILOG Solver and 7O)Y(FDi)

This section monitors the execution of the ILOG Solver and TOY(FDi) models, justify-
ing the different amount of variables and constraints they post to the solver (something
that did not happen with Gecode and TOY(FDg)).

The interfaces from TOY(FD) to Gecode and from 7TOY(FD) to ILOG only dif-
fer in their C++ code, i.e., in the management of the C++ API objects of the concrete
library being used. In this setting, the results show that, whereas TOY(FDy) is build-
ing up the same Gecode model as the one built up when programming directly in the
C++ framework, TOY(FDi) is not doing so. That is, even following the same problem
formulation, TOY(FDi) and ILOG Solver are leading to different constraint networks.

Whereas for G-11 TOY(FDi) builds up a model with less variables and constraints
than the one built up by ILOG Solver, for ETP-21 the situation is the opposite. This
shows that there are cases in which the interface from 7OY(FD) to ILOG Concert
and ILOG Solver allows to save variables and constraints w.r.t. the direct modeling in
C++, and viceversa. By using printInformation(), the amount of variables and
constraints that 7OY(FDi) and ILOG Solver give rise on each execution step of their
programs is measured. In this section, the differences for both G-11 and ETP-21 are
presented, analyzing where do they come from.

G-11. Table shows that, whereas ILOG Solver requires 66 variables and 67
constraints, TOY(FDi) requires 55 and 56, respectively. This difference of 11 variables
and constraints come from 2 situations:
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First, in TOY(FDi) my is unified to 0 by the 7 solver. This allows TOY(FDi) to
save both the variable and the constraint. However, in ILOG Solver both the variable
and the constraint are taken into account by the 7D solver (cf. Section|7.1.2).

Second, the first 10 variables of dy, . . ., dg represent the subtractions of m, ..., m1q
and mg. In TOY(FDi), these constraints are managed by the lazy narrowing as DO ==
M1 #- MO, ..., D9 == M10 #- MO, where DO...D9 appear for first time in the pro-
gram. Their management is performed in two steps: Mi #- 0 = Aux and (ii) D1 ==
Aux. In the former, the interface of ILOG Concert and ILOG Solver treats the constraint
as a basic one, where the new IloIntVar aux is set to be equal to the subtraction
of the already existing I1oIntVar (m[1]) and the constant 0. As the subtraction is a
dummy one, ILOG Concert makes aux and mi to be two different IloIntVar repre-
sentations of the same implementation variable (cf. Section[7.4.2). Thus, the constraint
solver saves the variable (aux) and the constraint (aux = mi - 0). Then, for the man-
agement of D1 == Aux in TOY(FDi), as Di was not previously identified as an D
variable, the unification with Aux is in charge of the 7{ solver. For the rest of the pro-
gram, each occurrence of Di (as in the alldifferent constraint) will be identified
with Aux in TOY(FDi) and with aux in the C++ code of the interface.

However, in the ILOG Solver model, d is initialized as an IloIntVarArray with
an initial domain. Thus, the constraint solver considers d[0]...d[9] as variables and
eachd[i] == m[i] - m[O0] as a constraint.

ETP-21. Table shows that, whereas for the first team ILOG Solver requires
141 variables and 99 constraints, TOY(FDi) requires 186 and 104, respectively. This
difference comes from quite a few situations:

First, in p_tt_ta_5 (cf. Section the implication constraints C1 => C2 are
managed as I1oIfThen by the ILOG Concert APL. Any implication constraint occurring
in the ILOG Solver model leads to two constraints. However, in TOY(FDsi), the man-
aging of the interface can save some constraints: In D1 (#=) 2 #=>A1 (#=) 3, as
the domain of A1 is 0. . 2, the solver only posts one constraint, i.e., D1 /= 2, making
the domain of D1 to be 1 \/ 3. Also, in D1 (#=) 3 #=>A1 (#=) 3, the solver only
posts the constraint D1 /= 3. This bounds the domain of D1 to 1, also binding D4, D7,
..., D19 to 1, and pruning the value 1 from the domain of D2, D3, ..., D20 and D21.
Then,inD2 (#=) 1 #=>A2 (#=) 0, asthe domain of D2 is 2. .3, the expression is
trivially entailed and no constraints are posted to the solver.

Second, consider the following TOY(FDi) goal: domain [X,Y] 1 2, X #> 1,
sum [X,Y] (#=) Z. By using incremental propagation, when the goal reaches the last
constraint, the variable X is bound to 2, so the system evaluates sum [2,Y] (#=) Z.
Then, the interface of TOY(FDi) uses Y to find out the mate IloIntVar in the C++
code. Unfortunately, for X the only information that can be inferred is that there must
be a decision variable bound to 2, but not which one is it. The API of ILOG Concert
does not allow to use an integer I1oInt as an argument of a sum constraint, but only
IloIntVars. In that context, an extra dummy IloIntVar must be created, whose
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domainisinitially bound to 2. The solver considers this variable as part of the constraint
network, but at least it does not consider its domain initialization as an additional con-
straint. This situation is produced in TOY(FDi) with any bound variable involved on
a sum, distribute, count and alldifferent constraint, implying the use of more
variables.

In the ILOG Solver model, the sum constraint can be easily modelled over x (even
if it is bound at that moment) and y, so no additional variable is necessary.

Third, for managing a sum List Op R, TOY(FDi) creates one variable per in-
teger of List, one variable for Val, one constraint for sum List #= Val, and one
constraint for Val Op R.In the case of ILOG Solver, all these variables and constraints
are skipped. For managing a distribute, TOY(FDi) creates one variable per in-
teger of cards and one variable per integer of vars. In the case of ILOG Solver, it
skips the extra variables of vars. For managing a count L List Op R, TOY(FD3)
creates one variable for L, one variable per integer of List, one variable for Val, one
constraint for card(L) in List #= Val, and one constraint for Val Op R. In the
case of ILOG Solver, it skips the variables of L and List.

Fourth, the use of complex constraints is supported in TOY(FDi), but they are
internally decomposed into multiple basic constraints, and thus extra variables are re-
quired to represent them. For example, the expression X #+ 2 #x Y requests first to
evaluate 2 #+ Y, generating an extra variable Z. Then, the sum X #+ Zis applied. In
the case of ILOG Solver the additional variables are skipped, and the whole expression
is represented as a single constraint.

So, as it can be seen, there are cases in which TOY(FDi) saves variables and con-
straints w.r.t. ILOG Solver, and viceversa. Thus, depending on the formulation of the
problem, more specifically depending on the amount of these situations that arise in
this formulation, either TOY(FDi) or ILOG Solver will lead to a smaller constraint net-
work, obtaining thus a better performance.

8.5 Performance Comparison of SICStus Systems

This section is similar to Section but it is focused on the SICStus clpfd related
systems SICStus, PAKCS and TOY(FDs).

8.5.1 Ranking and Slow-Down Analysis

Table presents the results of the three systems for solving the Golomb and ETP
instances. As in Table[8.6] the columns represent the instance, system, CPU time, slow-
down and ranking, respectively. These results reveal the following conclusions:

First, the ranking is totally stable for all the instances, being (1) SICStus, (2) PAKCS
and (3) TOY(FDs). This stability was not achieved neither in Gecode nor in ILOG
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| Instance | System | Time | SI-Dw || Ranking |

SICStus 0.764 | 1.00 1
G-9 PAKCS 0.810 | 1.06 2
Gs) | TOY(FDs) | 0842 | 1.10 3

SICStus 6.65| 1.00 1

G-10 PAKCS 712 | 1.07 2
Gs) | TOV(FDs) | 735 1.11 3
SICStus || 143.60 | 1.00 1

G-11 PAKCS || 151.60 | 1.06 2
Gs) | TOY(FDs) | 153.05 | 1.07 3
SICStus 0.094 | 1.00 1

ETP-7 PAKCS 0.220 | 234 2
(df) | TOY(FDs) | 0.248 | 2.64 3
SICStus 1.88| 1.00 1

ETP-15 PAKCS 236 | 126 2
df) | TOY(FDs) | 3.22| 1.71 3

SICStus || 190.48 | 1.00 1

ETP-21 PAKCS || 199.30 | 1.05 2

(s) | TOY(FDs) | 338.16 | 1.78 3

Table 8.16: SICStus Results

Solver, and reveals that the overheads of (respectively) SLD resolution and lazy narrow-
ing do not distort the performance order of the systems for solving df instances.

However, even in this context, the slow-down of PAKCS and TOY(FDs) w.r.t. SIC-
Stus ranges in 1.05-1.11 (with a 1.78 exception for TOY(FDs) in ETP-21, which will be
discussed later). For df instances, this slow-down ranges in 1.26-2.64, representing a
much worse performance of the CFLP(FD) systems. More specifically, for js instances,
the slow-down of PAKCS w.r.t. SICStus is quite stable, ranging in 1.05-1.07. Similarly,
the slow-down of TOY(FDs) w.r.t. SICStus for solving the Golomb instances ranges in
1.07-1.11. But, for ETP-21, the slow-down of TOY(FDs) w.r.t. SICStus increases until
1.78 (in comparison with the 1.05 of PAKCS). This result is less encouraging for the use
of TOY(FDs), as it is even worse than the one achieved for the df instance ETP-15
(1.71), and not much smaller than the one for ETP-7 (2.64), where the impact of the ad-
ditional host overhead is more important. In this setting, in TOY(FDs) it can be seen
that, more than a different behavior between js and df instances, there is a different
behavior between Golomb and ETP instances. This can also be observed when com-
paring TOY(FDs) with PAKCS, as in all the instances PAKCS is faster but, whereas for
Golomb instances the slow-down decreases as the instances scale up (1.04 for G-9, 1.03
for G-10 and 1.01 for G-11), for ETP instances the slow-down increases as the instances
scale up (1.13 for ETP-7, 1.36 for ETP-15 and 1.70 for ETP-21).
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8.5.2 Search Exploration Analysis

This section is similar to Section[8.3.2] but representing the search statistics for SICStus
and TOY(FDs) (PAKCS provides no option/command to obtain any information re-
garding the constraint solver statistics). The analysis includes the CPU time for perform-
ing the search exploration, and the results displayed by the predicate fd_statistics,
which include the amount of:

e Constraints posted to the constraint store before the search exploration starts.
Each of these primitive constraints is translated by SICStus c1pfd into an index-
ical (cf. Section [2.3.3), which is the one being definitely posted to the solver.

e Resumptions performed during the search exploration. Each resumption repre-
sents a sort of constraint propagation, i.e., the triggering of the filtering algorithm
of an indexical, evaluating (and possibly pruning) the domain of its variables in-
volved.

e Entailments performed during the search exploration (an indexical is entailed
when the relation among its variables become trivially true).

e Prunings of variables during the search exploration.
e Backtracks (or failures nodes) reached during the search exploration.

Before presenting the search results of SICStus and TOY(FDs), Figure[8.3|presents
an example illustrating the behavior of SICStus clpfd w.r.t. the indexical generated
from a constraint primitive, as well as the constraint solver statistics from propagating
it: The predicate sub(A,B,C):- A - B #= (, has asingle clause, posting a subtrac-
tion constraint to c1pfd. Figure[8.3|presents a SICStus session solving two goals, which
create an FD variable X (with domain values 20..22), post Y to be equal to the subtrac-
tion of X and 10, display the constraint solver statistics after propagating the constraint,
and requests also the domain size of Y. Both goals are equivalent but, whereas the first
one posts the subtraction constraint directly, the second one posts it by using the pred-
icate sub/3. However, there are some differences in their results:

First, the domain of Y in the first goal is {10}\/ {12} (with size SY = 2), butin the
second goal is 10. . 12 (with size SY = 3). This reveals that, whereas the indexical gen-
erated by c1pfd from the constraint X - 10 #= Y maintains domain-consistency, the
indexical generated from sub(X, 10,Y) maintains bound-consistency. Unfortunately,
the propagation level of the indexical a primitive constraint generates is not config-
urable in SICStus clpfd. This example is relevant in the context of the comparison
between SICStus and TOY(FDs), as whereas the SICStus model posts the constraints
as the first goal proposed, TOY(FDs) does it as the second one. Thus, both the prop-
agation they achieve, and the time they spent in running this propagation algorithm is
different.
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| ?- domain([X],20,22), X #\= 21, X - 10 #= Y, fd_statistics, fd_size(Y,SY).
Resumptions: 2; Entailments: 0; Prunings: 3; Backtracks: 0; Constraints: 1
SY = 2,

X in{20}\/{22},

Y in{10}\/{12} ? ;

no

| ?- domain([X],20,22), X #\= 21, sub(X,10,Y), fd_statistics, fd_size(Y,SY).
Resumptions: 4; Entailments: 0; Prunings: 3; Backtracks: 0; Constraints: 1
Sy = 3,

X in{20}\/{22},

Y in 10..12 ? ;

no

Figure 8.3: SICStus Different Behavior for Equivalent Goals

Furthermore, these differences in the propagation algorithms being executed are
not reflected in the constraint solver statistics, as only the amount of indexicals being
generated is displayed. The first goal prunes one variable domain value more than the
second goal (the value 11 of Y). However, the statistics says that both goals execute 3
prunings. This reflects that fd_statistics just counts the prunings in the lower and
upper bound values of the variables (and thus the value 11 of Y is not counted for the
statistics). As the goals just contains one indexical, it can be ensured that the resump-
tion statistics represent the amount of times the propagation algorithm of this indexical
is being executed. Whereas the first goal executes twice the domain-consistency algo-
rithm, the second goal executes four times the bound-consistency algorithm. However,
for a same indexical, executing a domain-consistency filtering algorithm takes longer
than executing a bound-consistency one. Thus, a direct correlation cannot be found
between the amount of resumptions performed and the CPU time for executing these
resumption filtering algorithms.

Tables[8.17]and represent the search statistics (and slow-down) of SICStus and
TOY(FDs) for Golomb and ETP (respectively), revealing the following conclusions:

First, column Time of both tables show that the CPU times of SICStus and 7TOY(FDs)
(presented in Table[8.16) for G-11 and ETP-21 directly come from their CPU times de-
voted for the search.

Second, TOY(FDs) generates the same amount of indexicals than SICStus for G-
11 and each of the 3 teams of ETP-21. Moreover, by using fd_statistics it has
been ensured that, for each execution step of the SICStus and TOY(FDs) programs,
they match the amount of indexicals posted to the solver. However, as it happened
in Figure[8.3] the consistency algorithm of the indexicals generated by c1pfd differ in
both executions.

Regarding the other search statistics, the amount of backtracks of TOY(FDs) and
SICStus matches, but this is not noticeable, as it also happened for TOY(FDg) and
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[ System | Time [[ Cons | Resump. | Entail. | Prun. | Backt. |

SICStus 143.60 56 | 645,967,067 | 26,192,797 | 207,110,715 | 1,484,088

TOY(FDs) | 153.05 56 | 593,495,878 | 26,385,042 | 207,068,902 | 1,484,088

T/S 1.07 1.00 0.92 1.01 1.00 1.00

Table 8.17: G-11 Search Results
[ System [ St. [| Time [ Indexicals | Resump. | Entail. | Prun. | Backt. |

SICStus 9.33 231 18,663,982 8,381,326 | 11,619,779 194,990
TOY(FDs) | tt1 18.61 231 18,953,619 8,381,326 | 11,619,779 194,990
T/S 1.99 1.00 1.02 1.00 1.00 1.00
SICStus 78.27 224 | 110,665,909 | 62,977,336 | 76,755,493 | 1,418,269
TOY(FDs) | tta 136.11 224 | 113,707,230 | 62,977,336 | 76,755,493 | 1,418,269
T/S 1.74 1.00 1.03 1.00 1.00 1.00
SICStus 7.61 225 16,281,460 7,688,457 | 10,326,448 199,834
TOY(FDs) | tts 14.14 225 16,617,391 7,688,457 | 10,326,448 199,834
T/S 1.86 1.00 1.02 1.00 1.00 1.00

Table 8.18: ETP-21 Search Results of the Three Teams

Gecode (respectively for TOY(FDi) and ILOG Solver). Regarding the amount of prun-
ings and entailments of G-11, it can be seen that TOY(FDs) needs less variable do-
mains prunings to entail more constraints. It seems to be counter intuitive, but, as it
was seen in the example of Figure 8.3} the pruning results only take into account the
lower and upper bound prunings. In the case of ETP-21, the amount of entailments
and prunings directly matches.

Finally, the amount of resumptions could be the key factor determining the CPU
time, as it indicates the amount of filtering algorithms being executed during search.
However, these results are not relevant by themselves, but only jointly with the CPU
time required by the filtering algorithm of each indexical, and the amount of times
each indexical is executed. For example, in G-11 TOY(FDs) spends 10 seconds more
(a slow-down of 1.07 w.r.t SICStus) in performing 52 millions of executions less, so the
ratio of time per filtering algorithm execution must be higher.

8.5.3 Constraint Network of SICStus and 7O)(FDs)

This section monitors the set of indexicals (constraint network) that SICStus and
TOY(FDs) generate for the instance G-5 (for which the variables and constraints were
presented in Section [2.1), showing that it is different in both systems. The predicate
call_residue is used, which prints the set of variables (with their current domain)
and each indexical posted to the constraint store. It is applied just before triggering
the search exploration, obtaining thus the content of the store once the whole problem
formulation has been posted.
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Top and bottom parts of Figure 8.4 present the results for call_residue in SIC-
Stus and TOY(FDs), respectively. The differences between them are presented in
boldface. For each variable (respectively indexical), the format used by call_residue
presents first the set of variables involved and then the domain (respectively constraint
associated). Each element is univocally identified.

Regarding the SICStus session (top part of Figure the m and d variables are
represented in lines 12..21. As it was pointed out in Section my is unified to 0
by the H solver, and thus the constraints dy = m; — 0, ..., d3 = my4 — 0 turn to be
trivially solved by the H unifications of dy with my, ..., d3 with my4. Thus, the variable
mq does not belong to the constraint store. The variable _8074 of line (12) represents
dp and m4. The variable _8075 of line (13) represents d; and m,. The variable _8076
of line (14) represents d, and m3. The variable of _8077 of line (15) represents d3 and
my. The variables _8071, _8072, 8073, _8069, 8070 and _8068 of lines (16)...(21)
represent dy ... dy, respectively.

The constraint mg < my is in fact 0 < mq, which is understood as a trivial constraint
by clpfd (pruning the lower bound of m1). Thus, it is not included in the constraint
store. The lines (02), (03) and (04) represent the constraints m; < msg, ms < mg3 and
ms < my, respectively. These constraints are translated to indexicals following the
pattern t=<u+c, being represented as m; <=mg—1, my <=mz—1and mg <=my—1
(respectively).

Once again, the constraints setting do, ..., ds to the subtraction of m4, ..., m4 and
my (i.e., the constant 0) are managed by the # solver. The lines (06)..(11) constrain
dy, ... do. For example, line (06) constrains d, = ms — my and line (11) constrains
dg = my4—ms. On each case, the constraints are translated into indexicals following the
pattern x+y=t. The constraints of lines (06) and (11) are represented as d4 + m; = mo
and dg + m3 = my (respectively).

The line (05) represents the symmetry breaking constraint dy < dy, which is trans-
lated into an indexical following the pattern t>=u+c. The constraint is represented as
dg >= dy + 1. Finally, the line (01) represents the alldif ferent constraint.

Regarding the TOY(FDs) session (bottom part of Figure[8.4) the differences found
(w.r.t. SICStus) are the following:

First, the variable identifiers are much higher than the ones for SICStus (with values
over _30,000 in contrast to the _8,000 of SICStus). These identifiers have a continue
increasing order from _30421 to _30430, in contrast with the intermittent increasing
order of SICStus: _8074,...,_ 8077, then _8071,...,_8073, then _8069,...,_8070 and
finally _8068. This reveals that the load of the TOY(FD) libraries on top of SICStus
(to launch a TOY(FDs) session) leaves a smaller amount of free memory to further
tackling the labeling execution.

Second, the lines (02), (03) and (04) represent the constraints m; < ms, ma < mgs
and mg < my, respectively. These constraints are translated into indexicals following
the pattern t>=u+c. The constraints are represented as ms >=mj + 1, m3 >=mg + 1
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| ?- call\_residue((golomb(5,true,M)),Res), write(Res).

(01) [[_8074,_8075,_8076,_8077,_8071,_8072,_8073,_8069,_8070,_8068]-
(clpfd:all_different([_8074,_8075,_8076,_8077,_8071,_8072,
_8073,_8069,_8070,_8068],[on(val)])),

02) [_8074,_8075]-(cIpfd:t=<u+c(_8074,_8075,-1)),

[ 8075,_8076]-(clpfd:t=<u+c(_8075,_8076,-1)),

[ 8076,_8077]-(clpfd:t=<u+c(_8076,_8077,-1)),

[ 8074,_8068]-(clpfd:t>=u+c(_8068,_8074,1)),

[ 8074,_8075,_8071]-(clpfd:x+y=t(_8071,_8074,_8075)),
[ 8074,_8076,_8072]-(clpfd:x+y=t(_8072,_8074,_8076)),
[ 8074,_8077,_8073]-(clpfd:x+y=t(_8073,_8074,_8077)),
[ 8075,_8076,_8069]-(cIpfd:x+y=t(_8069,_8075,_8076)),
[ 8075,_8077,_8070]-(clpfd:x+y=t(_8070,_8075,_8077)),
[ 8076,_8077,_8068]-(cIpfd:x+y=t(_8068,_8076,_8077)),
[ 8074]-(_8074 in 1..8),

[ 8075]-(_8075in 3..12),

[ 8076]-(_8076 in 6..13),

[ 80771-(_8077 in 10..15),

80711-(_8071in 1..11),

8072]-(_8072in 3..12

L
L
[ 8073]-(_8073 in 6..14
L
L
L

'

'
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TOY(FDs)> golomb 5 true == M

(01) [[_30421,_30422, 30423, 30424, 30425, 30426, 30427, 30428,
_30429,_30430]-(cIpfd:all_different([_30421,_30422,_30423,
_30424,_30425, 30426, 30427,_30428,_30429,_30430],[on(val)])),
02) [ .30421,_30422]-(clpfd:t>=u+c(_30422,_30421,1)),
[.30422,_30423]-(clpfd:t>=u+c(_30423,_30422,1)),
[.30423,_30424]-(clpfd:t>=u+c(_30424,_30423,1)),
[.30421,_30430]-(clpfd:t>=u+c(_30430,_30421,1)),
[.30421,_30422,_30425]-(clpfd:x+y=t(_30421,_30425,_30422)),
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Figure 8.4: Constraint Store in the SICStus and TOY(FDs) Session
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and my >= mg + 1 (respectively).

Third, the lines (06)..(11) setting d4,. . .,dg are also translated to indexicals following
the pattern x+y=t, but the arguments x and y are inverted. Thus, the constraints of
lines (06) and (11) are represented as m; + d4 = ms and ms + dg = my (respectively).

In summary, although SICStus and TOY(FDs) follow the same formulation for G-
5, the internal primitive constraint to indexical translation performed by clpfd differs
in both models, leading to different filtering algorithms for some of the indexicals, and
thus to a different performance of the search exploration.

8.6 Related Work

The literature contains a big amount of documents related to CP(FD) solving. As men-
tioned in Section a main introduction to the constraint propagation and search
exploration techniques any CP(FD) solver is based on can be found in Chapters 3 and
4 of [163], respectively. The former chapter presents the notions of arc and higher
order consistencies, as well as variable domain inference by using constraint handling
rules and specific constraints. The latter presents the notions of search tree, depth first
search exploration, variable and value selection strategies, branch and bound optimiza-
tion and restart strategies. Regarding the solving of CSP's and COP's for the algebraic
CP(FD), C++ CP(FD), CLP(FD) and CFLP(FD) systems considered in this chapter, once
again, perhaps the best reference are the MiniZinc [133], ILOG OPL [108], Gecode [173],
ILOG Solver [109], SICStus Prolog [126], SWI-Prolog [150], PAKCS [93] and TOY(FD)
[40] user manuals, which include several case studies with a detailed explanation of
the best configuration of the solver for tackling the problems.

Regarding comparison papers among different CP(FD) systems (cf. Section [7.8),
[71] presents one based on eight C++ CP(FD) and CLP(FD) systems: ECLiPSe, Oz, ILOG
Solver (version 3.1), clp(fd) [58], CHR [75], SICStus clpfd (version 3.5), IF/Prolog [9]
and B-Prolog. It compares a benchmark based on puzzle problems (with just some of
them being scalable). For running the experiments, two different machines are used.
Regarding the problem formulation, all_different global constraints are included
if available, and both first-fail and naive labeling strategies are used. Moreover, the
importance of a good specification is pointed out, by showing the improvement each
system achieves when reformulating a problem using less variables and constraints.
Regarding the solving results, ILOG Solver turns to be the fastest system. But, as a dif-
ference with the results of this chapter, it outperformed SICStus clpfd by 5-10 times.
Thus, it can be seen that the performance gap between these two constraint libraries
has been reduced w.r.t. the one they had 15 years ago. The comparison results also
revealed ILOG Solver to have a better scalability than SICStus, allowing to solve larger
problems (involving a greater number of variables). This gap has also been observed in
TOY(FD), with TOY(FDi) being able to solve larger instances than TOY(FDs) for
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the Magic Sequence and Queens problems (presented on Section [3.4).

The benchmark proposal of [71] was criticized in [197]. They claimed that some
pitfalls were addressed, as providing a different specification for a same problem in
different systems, use low-level implementation issues in some systems but not in oth-
ers, and not using different machines for running the experiments of different systems.
Moreover, they criticized using as benchmark a set of puzzle problems (as they are not
representative of the issues found in real-life applications), and the lack of available
source code for them. Unfortunately, some of these aspects are also applicable to the
comparison of this chapter, as Section[8.1]has shown that it has been impossible to set-
up a purely common framework for running the experiments (e.g., consistency-filtering
algorithms for global constraints and CPU measurement for algebraic CP(FD) systems).

Regarding the comparison papers among CP(FD) and other techniques (cf. Section
[7.8), [99] compares two different ILOG OPL models for an industrial planning prob-
lem, using ILOG Solver and ILOG CPLEX [13] as the target solvers, respectively. It con-
cludes that the integer programming approach is more promising and reliable than the
CP(FD) one, as it is faster for each instance being run. In particular, it points out that
the linear relaxation improves the branch and bound search. Similarly, [53] compares
two different ILOG OPL models for an Generic Supply Chain Model, but in this case
the ILOG CPLEX ones uses Mixed Integer Programming. It can be seen that, whereas
CP(FD) behaves quite well for small instances, for larger ones it does not find a solu-
tion after hours of computation (whereas the MIP approach finds an optimal solution
in just 30 seconds).

Finally, [66] performs a comparison of classical and real-life problems in both
CLP(FD) (using SICStus Prolog and B-Prolog) and ASP (using the answer set solvers
Smodels and Cmodels, the latter relying in the SAT Solver mChaff). As general con-
clusions, they observe that graph-based problems have nice and compact encodings
in ASP, and the performance of the ASP solutions is acceptable and scalable. On the
other hand, for problems requiring more intense use of arithmetic and/or numbers,
CLP(FD) efficiently handles them. More specifically, in most of the cases, both SICS-
tus clpfd and Cmodels outperform Smodels (for Cmodels, the improvement can be
directly assigned to the better performance of its underlying SAT solver). Regarding
the comparison between SICStus and Cmodels, the system performing better is clearly
dependent of the problem being run. Besides that, the paper also includes a brief
comparison among the CLP(FD) systems SICStus Prolog, B-Prolog, GNU-Prolog and
ECLiPSe, obtaining the same performance conclusions as in [71]. Moreover, similarly
to the comparison performed in this chapter between each 7OY(FD) version and its
underlying solver, they provide a brief comparison between Cmodels and mChaff. The
conclusions are, at some point, similar to the ones obtained in this chapter. That is,
whereas ASP requires less encoding effort than modeling straight in the SAT solver, the
former has a slight performance overhead w.r.t. the latter. However, they discover that,
for a class of problems involving loop formulae, the ASP provides a better formulation
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and also a better performance.

In summary, after considering related work, it can be said that this chapter pro-
vides a relevant contribution for comparing the solving performance of state-of-the-art
CP(FD) systems, measuring the CPU time of each system for running the benchmark,
and providing a low-level monitoring of each TOY(FD) version and its native con-
straint solver executions.

Besides these papers available in the literature, in the last years the MiniZinc Chal-
lenge [7] has emerged as a very suitable framework for comparing the performance
of different constraint solvers. It has been celebrated each year since 2008, and pro-
vides an open forum in which the different participants can propose the problems of
the competition. Then, there is a period of several weeks for tackling the problems and
submitting solutions to the proposed instances. Whereas Gecode has won the com-
petition in the period 2008-2012, in the last year the podium has been composed by
Opturion/CPX [14], OR-Tools [15] and Gecode, respectively. Finally, as a side comment,
a First International Lightning Model and Solve Competition [188] (celebrated in the last
CP"13 conference) should be pointed out. On it, the conditions were quite different to
the ones of the MiniZinc Challenge: Just 2 hours competition to tackle 6 new CSP’s and
COP's (with 3-5 instances each), teams of three people (but just using one laptop, which
may contain as many different CP solvers as desired), and multiple points by submitting
multiple suboptimal solutions to a very same instance. Under these circumstances, a
team solving the instances by hand won the competition (defeating other 9 teams us-
ing CP solvers to model and solve the problem instances). This points out, once again,
the complexity of tackling CSP's and COP's, and how even relying on expressive and
efficient CP solvers, their adaptation to a concrete solver input takes time.

8.7 Conclusions

A common framework has been set for performing the experiments, considering the
machine and system versions used, the set of variables and constraints (including the
global ones), the propagation mode, the search strategy and the measurement of the
CPU time and other search statistics. Any slight deviation of each system to this com-
mon setup has been justified.

G-9, G-10, G-11 and ETP-21 are classified as js as, for them, the three TOY(FD)
versions spend above the 98% of the total CPU time (cf. tablesand , turning the
performance comparison into purely solver dependent. ETP-7 and ETP-15 are classified
as different factors df as, for them, the three TOY(FD) versions spend a percentage
ranging in a 0%-98% of the total CPU time, turning the performance comparison into
both CP(FD) and paradigm inherent overheads dependent.

The general performance results reveal that, for js instances, there is a clear per-
formance ranking among the constraint solvers, with the positions 1-3, 4-6, 7-9 and
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10 got by the Gecode, ILOG Solver, SICStus related systems and SWI, respectively. For
df instances, this ranking among the constraint solvers is partially broken. On the
one hand, SICStus and ILOG Solver obtain a better ranking for ETP-7 and ETP-15, and
PAKCS, TOY(FDs) and SWI-Prolog do it as well, but just for ETP-7. On the other hand,
both MiniZinc and TOY(FDi) obtain a worse ranking for both ETP-7 and ETP-15, and
TOY(FDg) and ILOG OPL do it as well, but just for ETP-7.

The complete ranking of the Golomb problem is homogeneous for the three in-
stances: (1) MiniZinc; (2) Gecode; (3) TOY(FDg); (4) TOY(FDi); (5) ILOG Solver; (6)
ILOG OPL; (7) SICStus; (8) PAKCS; (9) TOY(FDs); and (10) SWI. Moreover, the slow-
down of any system (w.r.t. the optimal MiniZinc) scales as the instances scale up (being
around 2.0-2.5, 4.0-5.5 and 7.0-9.5 for the Gecode, ILOG Solver and SICStus related sys-
tems, respectively). However, if the best and worse Gecode, ILOG Solver and SICStus
clpfd related systems are compared among them, then the slow-down of ILOG Solver
and SICStus clpfd systems w.r.t. Gecode ones decreases in about a 50%-60%.

ETP is claimed to be a less homogeneous problem, as the complete ranking varies
for the different instances tried (but, at least, Gecode ranks 1 for all of them). In ETP-21,
the only js instance, the complete ranking is: (1) Gecode; (2) TOY(FDy); (3) MiniZinc;
(4) ILOG Solver; (5) TOY(FDi); (6) ILOG OPL; (7) SICStus; (8) PAKCS; (9) TOY(FDs);
and (10) SWI-Prolog (with an slow-down being around 1.0-1.5, 1.9-2.5 and 3.8-6.8 for
the Gecode, ILOG Solver and SICStus related systems, respectively).

Focusing on the three ETP instances, the slow-down between the systems ranking
2,...,9 w.r.t. Gecode decreases as the instances scale up. However, as the ranking is
not stable, a head-to-head comparison between the slow-down of each concrete sys-
tem w.r.t. Gecode reveals that there is not a general behavior, as depending on the
system this slow-down can either decrease, increase, or even decrease and then in-
crease as the instances scale up. Finally, if the best and worse Gecode, ILOG Solver
and SICStus clpfd related systems are compared among them, then the ranking be-
comes nearly stable. However, the paradigm related overheads play a key role in ETP-7,
modifying the performance order to (1) Gecode, (2) SICStus and (3) ILOG Solver, also
decreasing the slow-down in a 40%-80% when the systems ranking 2 and 3 (respec-
tively) are compared. In ETP-15, the overheads do not modify the performance order
(1) Gecode, (2) ILOG Solver and (3) SICStus, but there is not a general pattern about how
the slow-down behaves as the systems ranking 2 and 3 (respectively) are compared.

The Gecode, ILOG Solver and SICStus clpfd related systems have been respec-
tively considered isolatedly. The instances G-11 and ETP-21 have been used to compare
the results of TOY(FDg) and Gecode; TOY(FDi) and ILOG Solver; TOY(FDs) and
SICStus. The Gecode, ILOG Solver and SICStus clpfd constraint networks being built
up (for these models) by the TOY(FDg), TOY(FDi) and TOY(FDs) interfaces have
been monitored, as well as the search exploration being performed by them. These
constraints networks and search exploration have been compared with the ones of the
Gecode, ILOG Solver and SICStus models, monitoring any mismatch arisen between
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each TOY(FD) execution and the one of its constraint solver native implementation.

The main conclusion for TOY(FDy) is that its use is highly encouraged for solving
these COP’s, as it has been shown that the interface from TOY(FD) to the Gecode API
builds up a Gecode model nearly equal to the C++ CP(FD) one (thus achieving the same
performance as when programming in C++ CP(FD) directly using the Gecode API). In
this setting, as both Gecode and 7TOY(FDyg) contain nearly the same constraint net-
work, the time they devote to search exploration nearly matches (there is a 1%-2%
overhead for TOY(FDyg), due to the triggering of a few more constraints during the
search exploration). For df instances, the performance of TOY(FDg) is still worse
than the one of Gecode, as it is penalized by the lazy narrowing and external solver
overheads. But, for js instances, where this search exploration is the only factor de-
termining the CPU time, TOY(FDyg) directly matches the CPU time of Gecode (1%-2%
overhead), becoming nearly the second fastest system for solving pure CP(FD) prob-
lems as Golomb, and nearly the fastest system for solving real-life applications as ETP.

Also, the main conclusion for TOY(FDi) is that its use is encouraged for solving
these COP’s, although its performance is clearly dependent on the formulation of the
problem. The interface from TOY(FD) requires extra tuning to manage the ILOG Con-
cert and ILOG Solver objects, which implies a relevant additional overhead. Whereas
this overhead is crucial for df instances (with a quite big slow-down w.r.t. the execu-
tion of the native ILOG Solver model) it becomes nearly negligible for js ones. More-
over, this extra tuning produces a mismatch between the constraint network built up
by TOY(FDi) and the one built up by the C++ CP(FD) model (both in the amount of
variables and constraints being used). It has been shwon that, whereas there are some
situations in which TOY(FDi) saves variables and constraints w.r.t. ILOG Solver, in
other situations it is the other way round. Thus, the final constraint network applied
in TOY(FDi) and ILOG Solver is totally dependent on the formulation of the problem
(more specifically, on the amount of these mismatch situations a formulation leads to).
In this setting, TOY(FDi) performs 6%-11% better than ILOG Solver for the Golomb
instances (being nearly the fourth fastest system), and a 17% worse for ETP-21 (being
nearly the fifth fastest system).

Finally, the main conclusion for TOY(FDs) is that its use is encouraged for solving
the pure CP(FD) COP of Golomb, but discouraged for solving the real-life COP of ETP.
Regarding the former, the performance of TOY(FDs) suffers an overhead ranging in a
7%-10% w.r.t. the CPU time when programming directly in SICStus by using the c1pfd
APL Besides that, TOY(FDs) reaches nearly the same performance as when program-
ming in the mate CFLP(FD) system PAKCS. However, when solving a real-life problem,
the overhead of TOY(FDs) ranges on a 70%-80% w.r.t. the CPU time of SICStus, be-
ing less competitive w.r.t. it and PAKCS. It has been shown that this performance mis-
match is due to the constraint to indexical translation performed by c1pfd, that differs
in SICStus and TOY(FDs) executions, giving rise to different constraint networks, i.e.,
different sets of indexicals (with different consistency-level propagation algorithms).
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PartV

Conclusions and Perspectives



This part concludes the thesis. Chapter [9 gathers the main conclusions of the three
parts of the research being accomplished, also presenting some perspectives for each
of them.



Chapter 9

Conclusions and Perspectives

This chapter presents the main conclusions of the three research parts being accom-
plished in this thesis, respectively devoted to: The performance improvement of
TOY(FD), real-life applications of TOY(FD), and a modeling and solving comparison
of TOY(FD) w.r.t. state-of-the-art CP(FD) systems. Sections[9.1}[9.2]and 9.3 summa-
rize the conclusions of each part, with Section presenting some perspectives for
them.

9.1 Improving the Performance of TOY(FD)

A scheme for interfacing C++ CP(FD) solvers into 7TOY(FD) has been presented (easily
adaptable to other CLP(FD) or CFLP(FD) Prolog systems). It has described the addi-
tional difficulties arisen in terms of communication with the solver and different varia-
bles, constraints and types representations. Also, it has described the adaptation of a
C++ CP(FD) solver to the CFLP(FD) requirements of model reasoning, multiple search
strategies (interleaved with constraint posting) and both incremental and batch propa-
gation modes. The scheme has been shown to be generic enough, interfacing Gecode
and ILOG Solver (leading to the new versions TOY(FDg) and T OY(FDi), respectively)
by finding no extra interface difficulties but the ones described in the scheme.

The performance of the three TOY(FD) versions has been measured by using
three classical CP(FD) CSP's (Magic, Queens and Langford’'s) and a COP (Golomb). These
problems cover the whole repertoire of 7D constraints supported by TOY(FD). Also,
by using three instances per problem (solved in the order of magnitude of tenths
of seconds, seconds and minutes, respectively) the experiments have compared the
TOY(FD) performance as the hardness of the problem scales.

It has been shown that TOY(FDg) and TOY(FDi) outperform TOY(FDs), but
the improvement achieved (ranging in 1.15-3.57 times faster) is dependent on the con-
crete problem and instance solved. For Magic and Golomb instances, the improvement
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of TOY(FDg) and TOY(FDi) w.r.t. TOY(FDs) remains stable as the instances scale
up. For Queens and Langford's instances, the improvement achieved scales from the
instances solved in tenths of second to both the instances solved in seconds and min-
utes. In any case, the propagation mode does not play a key role in the solving time,
as although batch mode is faster for all the instances, the differences achieved are very
small (about an order of magnitude smaller than the CPU solving time of the instance,
or even less).

Moreover, there is a clear correlation between the percentage of CPU solving time
devoted to search exploration and the improvement achieved. Thus, whereas this per-
centage remains stable in Magic and Golomb, it clearly scales from the Queens and
Langford’s instances solved in tenths of second to both the instances solved in seconds
and minutes. This turns the performance of TOY(FD) into purely CP(¥D) depen-
dent. That is, the CPU time of each version directly comes from the performance of
its concrete solver in achieving the pure CP(FD) mechanism of performing a search
exploration by propagating basic and global constraints.

Thus, another suitable approach to improve the solving performance of TOY(FDg)
and TOY(FDi) has been to focus on the search strategy, replacing it by an ad hoc one
which exploits the knowledge about the structure of the problem and its solutions. That
is, keeping the same solver to accomplish the search, modify the TOY(FD) model to
specify a search strategy requiring less search exploration to find the solutions. The
motivation of this approach (easily adaptable to other CLP(FD) or CFLP(FD) Prolog
systems interfacing C++ CP(FD) solvers) has been to take advantage of both the high
expressivity of TOY(FD) for specifying search strategies, and of the high efficiency of
Gecode and ILOG Solver for accomplishing them.

Specifically, eight new search primitives have been described, which have included
some novel search concepts (not directly available neither in Gecode nor in ILOG Solver),
as performing an exhaustive breadth exploration of the search tree (further sorting the
satisfiable solutions by a specified criterion), fragmenting the variables pruning each
one to a subset of its domain values (instead of binding it to a single value), and apply-
ing the labeling or fragment strategy only to a subset of the variables involved. It has
been pointed out how expressive, easy and flexible it is to specify some search criterion
at TOY(FD) level, as well as how easy it is to use model reasoning to apply different
search strategies (setting different search scenarios) to the solving of a problem.

The new versions of TOY(FDyg) and TOY(FDi) have extended the Gecode and
ILOG Solver libraries by relying on their different underlying search mechanisms
(Search Engine, Brancher methods and hybrid recomputation for Gecode;
IloGoal, goal constructor and goal stack for ILOG Solver). An abstract view of the
requirements needed to integrate the search strategies in TOY(FD) has been first
presented (with the scheme further instantiated to Gecode and ILOG Solver). Also, the
impact of the implementation of the search primitives on the system architecture has
been analyzed, revealing that the specification of search criterion at TOY(FD) level
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has an inherent overhead due to the recursive interaction between the SICStus Prolog
and C++ layers.

The TOY(FD) models for Magic, Queens, Langford’'s and Golomb have been revis-
ited, discussing the structure of the solutions of each problem, and pointing out how
the use of the proposed search strategies allow to reduce the search exploration to
find them. Mate TOY(FD) models with an improved ad hoc search strategy have
been developed, showing that the solving time of both TOY(FDg) and TOY(FDi) is
improved (in a range of 1.05 times faster to more than 1000 times) w.r.t. the solving
time of original models. In particular, whereas for Queens and Langford's instances
the better performance achieved clearly scales as the size of the instances scale, for
Magic ones it remains stable, and for Golomb ones it decreases. Moreover, the speed-
up of TOY(FDg) w.r.t. TOY(FDi) is greater for the new improved 7OY(FD) models,
revealing that the approach Gecode offers to extend the library with new search strate-
gies is more efficient than the one of ILOG Solver.

9.2 Real-Life Applications of 7TOY(FD)

Two real-life applications of the system have been presented. The first one has been a
Employee Timetabling Problem (ETP) coming from the communication industry. In con-
trast to the simple formulation of the classical CP(FD) problems (Magic Series, Queens,
Langford's Number and Golomb Rulers) this ETP exploits both the high expressivity of
TOY(FD) and its higher solving performance just achieved.

A solving approach to tackle the problem has been presented, fully parametric,
non-monolithic and including CP(FD) independent components. Three instances (with
solving times of tenths of seconds, seconds and minutes, respectively) have been pro-
posed, to compare the conclusions for ETP with the ones for the classical CP(FD) prob-
lems. It has been shown that ETP behaves similarly to Queens and Langford's: The
TOY(FDg) and TOY(FDi) improvement w.r.t. TOY(FDs) increases as the instances
scale up, as it increases the CPU solving time devoted to search exploration and the
impact of the improved search strategy applied.

However, the results for ETP are more dependent on the concrete instance being
run than when solving Queens or Langford's: TOY(FDy) still outperforms TOY(FDs),
but the range of its improvement achieved is wider than the one for Queens and
Langford's. TOY(FDi) behaves worse, equivalent or better than TOY(FDs) for the
three ETP instances, respectively. In any case, the search exploration percentage of
TOY(FDg) and TOY(FDz) for the ETP instances solved in tenths of second and sec-
onds is much smaller than the one of TOY(FDs), revealing that more time is spent
in the interface with the external CP(FD) solvers. Regarding propagation mode, batch
clearly improves incremental in TOY(FDi) for the ETP instances solved in tenths of
second and seconds, and in TOY(FDs) for the ETP instances solved in seconds and
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minutes. Finally, the impact of applying the improved search strategy is smaller in ETP
instances than in Queens and Langford’'s ones. Moreover, the speed-up of TOY(FDy)
w.r.t. TOY(FDi) does not increase as the instances scale up.

Second, an empirical analysis of the solving hardness of the Bin Packing Problem
(BPP) has been performed. It has included the solving of a parametric generated
BPP benchmark (based on the well known Weibull distribution), applying two equiv-
alent CP(FD) models (Gecode and TOY(FDg)) and four heuristics (MAXREST, FIRSTFIT,
BesTFIT and NEexTFIT). The conclusions are interesting for the future development of
portfolio solvers, tackling configuration problems (which can be seen as generalizations
of the BPP) coming from the industry of the data centre optimization.

The flexibility of Weibull has been discussed, showing that a great variety of item
size distributions can be generated via different combinations of its (k,\) parameters.
A set of real-life BPP instances have been very accurately modeled using Weibull (MLF
and Q-Q plots have visually shown the quality of the fit, and the K-S and y? statistical
tests have rigorously ensured it). A benchmark suite of 19,900 instances has been
generated, consisting of 199 different categories (of 100 instances of 100 items each)
or combinations of (k,\). Specifically, A has been fixed to 1000 (spanning the item
sizes of the distributions over three orders of magnitude), and % has ranged in k£ =
[0.1,0.2,...,19.9]. Once the instance set is fixed, 11 different bin capacities C have been
tried, setting it to the size of the highest item of the instance times a factor ranging from
1.0 to 2.0 (increasing it 0.1 on each new scenario).

The analysis of the CP(FD) results have revealed that, for C parameter, there are
categories (k,\) for which the CP(FD) approach finds hard to solve the whole instance
set of 100 instances. Moreover, the hardness a concrete category results for the CP(FD)
method can be classified by using 5 groups: 80%-100%, 60%-80%, 40%-60%, 20%-40%
and 0%-20%. Thus, it can be seen that increasing C also increases the computational
challenge of the problem, so that the amount of instances being solved decrease as
C increases. In C = 1.0, 178 categories belong to group 80%-100% and 21 to group
60%-80%. In C = 1.5, 150 categories belong to group 80%-100%, 17 to group 60%-80%,
18 to group 40%-60% and 14 to group 20%-40%. In C = 2.0, 87 categories belong to
group 80%-100%, 20 to group 60%-80%, 12 to group 40%-60%, 18 to group 20%-40%
and 62 to group 0%-20% (the latter with up to 12 categories for which the percentage
of instances being solved reached nearly a 0%). Also, there is a correlation between the
percentage of instances solved and the time devoted to search exploration.

Also, as k increases, the amount of bins used in the optimal solutions being found
increases as well. As all the instances contain 100 items, there are concrete intervals of
items per bins for the categories belonging to groups 80%-100%, 60%-80%, 40%-60%,
20%-40% and 0%-20%. However, these intervals slightly change for the different C
values. On the one hand, it can be concluded that, if the category requires an average
of less that 1.60 or more than 4.00 items per bin, then the category is going to be
classified into group 80%-100%. On the other hand, for the rest of groups there are
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no general conclusions for the different C' configurations. Specifically, for C = 2.0
and k = [10.0,...,19.9] there are categories of groups 80%-100%, 60%-80%, 40%-60%,
20%-40% and 0%-20%, all of them with a same amount of 2.0 items per bin.

The heuristics solve the entire benchmark in a negligible amount of time, and thus
the analysis has focused on the average deviations of MAXREST (with similar results to
FIRSTFIT, and BeSTFIT) and NEXTFIT w.r.t. the optimal number of bins found by CP(FD).
The deviations of the former are an order of magnitude better (ranging in 0.0-1.4 bins)
than the ones of the latter (ranging in 0.0-20.0 bins). In MAXREST, it is clear that, as
C increases, the average gap achieved by the heuristic w.r.t. the CP(FD) optimal solu-
tions increases as well. Moreover, there is a clear correlation between the categories
belonging to groups 80%-100%, 60%-80%, 40%-60%, 20%-40% and 0%-20% and the
gap achieved by the heuristic. In NEXTFIT, there is a frontier in C = 1.5. Thus, whereas
from C = 1.0 to C = 1.5 the gap increases, from C = 1.6 to C = 2.0 it decreases.
Unfortunately, there is no correlation between the categories and the gap achieved. In
general, whereas the heuristic MAXREST (and thus also of FIRSTFIT and BESTFIT) repre-
sents a very good alternative to the CP(FD) approach (as it achieves very good solutions
in a nearly negligible amount of time), the gap achieved by NexTFIT makes it not that
much interesting.

9.3 Positioning 7TOY(FD) w.r.t. Other CP(FD) Systems

The Golomb and ETP COP's have been used to perform a modeling and solving compar-
ison among the state-of-the-art algebraic CP(FD) systems MiniZinc and ILOG OPL, the
C++ CP(FD) systems Gecode and ILOG Solver, the CLP(FD) systems SICStus Prolog and
SWI-Prolog, and the CFLP(FD) systems PAKCS and TOY(FD) (with its three different
versions TOY(FDg), TOY(FDi) and TOY(FDs)).

The main conclusion for TOY(FD) is that its use is an appealing alternative for
modeling these COP's, because of a number of advantages: It abstracts the notion of
the constraint solver, isolating the use of several solvers and the distribution of the con-
straints on them. It also supports free access to the variables. It allows to model the
problems in just one file, matching the multiple-stage architecture of the p_tt algorithm
by simply placing the stages in order. It uses dynamic data structures, and makes it
easy to access an index them. It allows to save several 7D variables, placing first the
variable unifications and then the rest of the 7D constraints. It provides batch and in-
cremental primitives for easily applying different propagation modes to different parts
of the program. It is a declarative general-purpose programming language, including
expressive modeling features such as non-deterministic functions, types, higher-order
functions, lazy evaluation, pattern matching and partial application, for allowing the
user to write neater formulations. Thus, only the algebraic CP(FD) systems require
less amount of lines of code for modeling the problems.
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The main conclusion for TOY(FDy) is that its use is highly encouraged for solving
these COP’s, as it has been shown that the interface from 7OY(FD) to the Gecode API
builds up a Gecode model nearly equal to the C++ CP(FD) one (thus achieving the same
performance as when programming a Gecode native model). In this setting, as both
Gecode and TOY(FDg) contain nearly the same constraint network, the time they de-
vote to search exploration nearly matches (there is a 1%-2% overhead for TOY(FDg),
due to the triggering of a few more constraints during the search exploration). For df
instances, the performance of TOY(FDy) is still worse than the one of Gecode, as it
is penalized by the lazy narrowing and external solver overheads. But, for js instances,
where this search exploration is the only factor determining the CPU time, TOY(FDg)
directly matches the CPU time of Gecode (1%-2% overhead), becoming nearly the sec-
ond fastest system for solving Golomb, and nearly the fastest system for solving ETP.

The main conclusion for TOY(FDs) is that its use is encouraged for solving these
COP's, although its performance is clearly dependent on the formulation of the prob-
lem. The interface from 7TOY(FD) requires extra tuning to manage the ILOG Concert
and ILOG Solver objects, which implies a relevant additional overhead. Whereas this
overhead is crucial for df instances (with a quite big slow-down w.r.t. the execution
of the native ILOG Solver model) it becomes nearly negligible for js ones. Moreover,
this extra tuning produces a mismatch between the constraint network built up by
TOY(FDi) and the one built up by the native ILOG Solver model (both in the amount
of variables and constraints being used). It has been shown that, whereas there are
some situations in which TOY(FDi) saves variables and constraints w.r.t. ILOG Solver,
in other situations it is the other way round. Thus, the final constraint network applied
in TOY(FDi) and ILOG Solver is totally dependent on the formulation of the problem
(more specifically, on the amount of these mismatch situations a formulation leads to).
In this setting, TOY(FDi) performs 6%-11% better than ILOG Solver for the Golomb
instances (being nearly the fourth fastest system) and a 17% worse for ETP-21 (being
nearly the fifth fastest system).

The main conclusion for TOY(FDs) is that its use is encouraged for solving the
pure CP(FD) COP of Golomb, but discouraged for solving the real-life COP of ETP.
Regarding Golomb, the performance of TOY(FDs) suffers an overhead ranging in
a 7%-10% we.r.t. the native SICStus model. Besides that, TOY(FDs) reaches nearly
the same performance as PAKCS. However, regarding ETP, the overhead of TOY(FDs)
ranges on a 70%-80% w.r.t. the native SICStus model, being less competitive w.r.t. it
(and even w.r.t. PAKCS). It has been shown that this performance mismatch is due to
the constraint to indexical translation performed by c1pfd, that differs in SICStus and
TOY(FDs) executions, giving rise to different constraint networks, i.e., different sets
of indexicals (relying on different consistency-level propagation algorithms).

In summary, besides the general interest of comparing these state-of-the-art CP(FD)
systems, the results have shown TOY(FD) to be competitive w.r.t. any of them for
both the modeling and solving of these COP's, thus encouraging its use (and the use of
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the CFLP(FD) paradigm itself).

9.4 Future Work

The generic scheme proposed in Chapter [3| can be useful for interfacing new C++
CP(FD) solvers (and providing a better performance than the ones of Gecode and
ILOG Solver). Besides that, the complex nature of many CSP’s and COP’s makes their
specification to contain several variable domains. Although Gecode and ILOG Solver
support integer, Boolean, set and even float variables, sometimes the computational
challenge of these CSP’s and COP's just make unrealistic to solve the problem by sim-
ply applying an exhaustive search exploration. A clear example was shown with the
generalized BPP’s of the data centre optimization industry, where hard and dynamic
planning problems were proposed. In these cases, the combination of CP(FD) with
other techniques is required. For example, the Lazy Clause Generation [187] has re-
cently combined CP(FD) with SAT solving, and it has been shown successful for solving
many well-known real-life open problems [174].

In TOY, there is a system version combining CP(FD) with Mathematical Program-
ming techniques [68] via the coordination of the SICStus clpfd and clpr constraint
libraries (from now on TOY(FD&R)). A specific mediatorial solver M manages the
bridge constraints X #== Y arisen in the goal computation. Each of these constraints
requests the float variable Y to take an integral real value equivalent to that of the in-
teger variable X. Then, the cl1pfd and clpr solvers work independently, but explicit
bridge projections [104] make any pruning in X or Y to be automatically shared with
the mate solver and variable. Thus, the system TOY(FDi) can be extended to repro-
duce the proposed scheme, with ILOG Solver playing the role of SICStus clpfd and
ILOG CPLEX [13] playing the role of SICStus clpr. The better performance of ILOG
Solver and ILOG CPLEX w.r.t. SICStus clpfd and clpr (respectively) will improve the
solving performance of the new system w.r.t. the existing version (so as the better per-
formance of ILOG Solver w.r.t. SICStus clpfd improved the solving performance of
TOY(FDi) w.rt. TOY(FDs)). Moreover, both ILOG Solver and ILOG CPLEX make use
of the same ILOG Concert modeling library. The new system version could implement
the mediatorial solver M in ILOG Concert, leveraging it from the Prolog layer of the
architecture of the system, thus improving even more the solving performance. As a
drawback, it has to be said that ILOG CPLEX always computes an extensional solution of
the proposed equation system (binding variables to values), instead of an intensional
solution (simplifying the system), as SICStus clpr does.

The ad hoc search strategies proposed in Chapter [4 could be applied to classical
CP(FD) benchmarks under multiple and very precisely controlled scenarios, by using
scripting techniques as the ones proposed for TOY(FDg) in Chapter [6](based in non-
deterministic functions). In them, an exhaustive combination of applying one or dif-
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ferent search strategies (as well as the variable subset used on each of them) can be
analyzed. Then, the results could be analyzed, in order to find out which strategies
had lead to a solution, or to a minimum search space containing a solution. Moreover,
this analysis will help to find out new patterns about the relation between the struc-
ture of a concrete problem and the concrete search strategy (or combination of search
strategies) to be applied to successfully solve it.

The ETP model of Chapter [5]is fully parametric, so multiple new instances should
be tried, ranging in the number of days of the timetable, number of teams, workers
per team, periodicity the extra worker can be selected, the extra factor its working
hours must be paid, number of different kinds of working days, absences of the regular
workers of the teams and how tight the shifts must be distributed among the workers
of a team. Moreover, the use of multiple disjoint teams is a particular characteristic of
the formulation, but the possibility of using a single team can also be considered (by
simply setting that concrete parameter to value one), thus increasing the applicability
of the proposed model to many other timetabling real-life problems.

The conclusions of the empirical BPP analysis of Chapter [ represent a basis for
the future development of portfolio solvers, tackling generalized BPP real-life instances
coming from the data centre optimization industry. By applying Maximum Likelihood
Fitting to the real-life instance, it is easy to find the Weibull parameters (k,)) best fitting
it. Then, by looking back to the concrete results of that particular Weibull parameter
combination category, it would be straightforward to determine if it is better to apply
a CP(FD) or a heuristic approach to tackle it. Finally, the approach of generating a new
benchmark (as a way to study real-life instances) can be extended to other important
problems, such as knapsacks, multi-processor scheduling or job shop scheduling, to
name but a few.

Also, as already mentioned, many real-life applications can be found for CP(FD).
Just focusing on the papers published in the application track of the last CP'13 edition,
a wide range of applications domains can be found, including: Power Stations Plan-
ning [26], Agricultural Land Allocation [35], Bike Sharing Systems [77], Chaotic Dynamic
Systems [84], Laser Cutting Path Planning [117], Atom Mapping [129], Hardware Verifi-
cation [140], Wireless Network Assignment [143], Multiple-Choice Math Quizzes [191],
Wine Blending [196] and Berth Allocation & Quay Crane Assignment [208]. Thus, it
could be discussed the application of TOY(FD) to some of these (and other related)
problems and application domains.

Regarding comparing CP(FD) systems, as in Chapters[7]and[8] obviously more clas-
sical CP(FD) problems (as the ones of CSPlib) and real-life problems (as the ones just
said before) can be considered. In the case of the ETP, and following the proposal of
evaluating multiple new instances exploiting the parametric the problem is, these new
set of ETP instances can be also applied to the solving comparison. Also, more systems
can be considered in the algebraic CP(FD), C++ CP(FD) and CLP(FD) paradigms, as the
ones mentioned for each paradigm in Chapter[2]
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Besides that, TOY(FD) could be positioned w.r.t. the application of other tech-
niques different to CP(FD), as Mathematical Programming and SAT solving. First, the
ETP problem can be modeled with ILOG CPLEX, developing a native C++ CP(R) ILOG
CPLEX model. A modeling comparison of the ILOG Solver, TOY(FD:) and the ILOG
CPLEX models will allow to discuss the advantages that CP(FD) provides for formulating
such a constraint-oriented problem. Also, a solving comparison will allow to compare
the performance of applying an exhaustive search or a simplex approach [141] to the
solving of multiple ETP instances. Second, the new TOY(FD&R) version proposed can
be also applied to the problem, relying on the support of mathematical techniques by
interfacing ILOG CPLEX. Thus, a modeling comparison between the new TOY(FD&R)
model and the native C++ CP(R) ILOG CPLEX one will allow to evaluate how the higher
abstraction of TOY(FD&R) eases the formulation of the problem, and to compare
this abstraction with the one achieved for ILOG Solver and TOY(FD). Also, a compari-
son between the performance of TOY(FD&R) and ILOG CPLEX will allow to analyze if
the interface from TOY(FD&R) to ILOG CPLEX produces the same kind of mismatches
in the ILOG CPLEX constraint solver input as the ones arisen between the TOY(FD)
and the ILOG Solver native models (the constraint network posted to the solver was
dependent on the formulation of the problem). Finally, a possible reformulation of the
ETP problem could be discussed, in order to suit it to a SAT solver.
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Resumen en espanol

(Summary in Spanish)



La presente tesis doctoral ha sido redactada completamente en inglés. Por ello, y si-
guiendo la normativa de la Universidad Complutense de Madrid, se incluye una versién
en castellano del Abstract (“Compendio”) y las Keywords (“Palabras clave”), asi como un
amplio resumen de la tesis, con una seccién dedicada a cada una de las cinco partes en
que se esta se divide: Introduction and Preliminaries (“Introducciéon y preliminares”),
Improving the Performance of TOY(FD) (“Mejora del rendimiento de TOY(FD)"),
Real-life Applications of TOY(FD) (“Aplicaciones reales de TOY(FD)"), Positioning
TOY(FD) w.r.t. Other CP(FD) Systems (“T OY(FD) comparado con otros sistemas
CP(FD)")y Conclusions and Perspectives (“Conclusiones y trabajo futuro”).



Compendio: Debido a su importancia en la industria, los problemas de satisfac-
cién y optimizacion de restriccciones (CSP y COP, respectivamente) han sido amplia-
mente estudiados en las Ultimas décadas. Estos implican una compleja formulacién
y un gran esfuerzo computacional para su resolucion. El drea de conocimiento de la
programacion con restricciones sobre dominios finitos (CP(FD)) ha sido identificada
como especialmente adecuada para el modelado y resoluciéon de un CSP o COP, ya
que captura la naturaleza orientada a restricciones de estos problemas de una manera
concisa. Dentro de CP(FD), los cuatro paradigmas CP(FD) algebraico, C++ CP(FD),
programacion logica con restricciones (CLP(FD)) y programacion légico funcional con
restriccciones (CFLP(FD)) se basan en un resolutor de restricciones, pero difieren en
el lenguaje de modelado utilizado. En particular, CFLP(FD) ofrece lenguajes altamente
expresivos, soportando e incluso incrementando las caracteristicas de modelado de
los lenguajes ldgicos y funcionales. Sin embargo, aunque CFLP(FD) resulta ser un
paradigma adecuado para hacer frente a los CSP y COP, la literatura carece de tantas
aplicaciones como las existentes para CP(FD) algebraico, C++ CP(FD) y CLP(FD).

El objetivo principal de esta tesis es fomentar el uso de CFLP(FD) para hacer frente
a CSP y COP de la vida real. Para ello, la investigacion se divide en tres partes: una
mejora del rendimiento de CFLP(FD), una descripcion de aplicaciones reales para
CFLP(FD)y una comparativa en profundidad sobre el modelado y resolucién de varios
COP utilizando sistemas CP(FD) algebraicos, C++ CP(FD), CLP(FD) y CFLP(FD). Para
ello, se selecciona al sistema CFLP(FD) de vanguardia TOY(FD), implementado en
SICStus Prolog, y que soporta la resolucion de restricciones 7D mediante su interac-
cion con un resolutor de restricciones.

La primera parte de la investigacion mejora el rendimiento de resolucién de
TOY(FD). En concreto, se desarrolla un esquema genérico para integrar resolutores
C++ CP(FD) en TOY(FD), y se implementan dos nuevas versiones del sistema que
resultan de instanciar el esquema con Gecode e ILOG Solver. Asimismo, se aumenta la
capacidad expresiva de TOY(FD) con nuevas primitivas de busqueda. Estas permiten
una mejor especificacion de estrategias de busqueda ad hoc, que explotan la estruc-
tura del problema a resolver, precisando una menor exploracién de busqueda para
computar las soluciones del mismo.

Una vez mejorado el rendimiento de resolucion de 7OY(FD), la segunda parte de
la investigacidn presenta dos aplicaciones industriales del sistema. La primera es un
problema de asignacion de trabajadores a turnos de trabajo (ETP), proveniente de la
industria de las comunicaciones, y modelado y resuelto con TOY(FD). La segunda es
un analisis empirico de la complejidad del problema de asignacién de elementos unidi-
mensionales a contenedores (BPP). En este andlisis se utilizan tanto técnicas heuristicas
como CP(FD) (esta ultima incluyendo a TOY(FD)) para resolver un conjunto de ca-
sos de prueba, que resulta representativo de instancias generalizadas del problema
provenientes de la industria de la optimizacion en centros de datos.

Por Ultimo, la tercera parte de la investigacion utiliza a ETP para realizar una compa-
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rativa en profundidad del modelado y resolucion del problema en diferentes sistemas
CP(FD) de vanguardia. En concreto, se seleccionan los sistemas CP(FD) algebraicos
Minizinc e ILOG OPL, los sistemas C++ CP(FD) Gecode e ILOG Solver, los sistemas
CLP(FD) SICStus Prolog y SWI-Prolog, y los sistemas CFLP(FD) PAKCS y TOY(FD).
La comparativa muestra que TOY(FD) es competitivo con respecto a cualquiera de
los otros sistemas.

Palabras clave: Programacién con restricciones sobre dominios finitos, progra-
macion logico funcional con restricciones, integracidn de resolutores de restricciones,
estrategias de busqueda, problema de asignacion de trabajadores a turnos de trabajo,
problema de asignacion de elementos unidimensionales a contenedores, generacién
paramétrica de casos de prueba, programacién con restricciones algebraica, progra-
macion con restricciones orientada a objetos, programacién Idgica con restricciones.

248



1 Introducciony preliminares

La evolucién tecnoldgica, influenciada en parte por las necesidades econémicas, ha
convertido a la logistica en un factor fundamental para el éxito de cualquier empresa
u organizacion. Detras de esta idea abstracta se encuentran problemas concretos cuya
naturaleza combinatoria a menudo los hace NP-completos (es decir, problemas sobre
los que no se pueden aplicar métodos generales de coste polinémico) [76]. Por lo tanto,
se requiere tiempo y experiencia, tanto para la especificacién del problema como el
disefio del algoritmo que lo resuelva.

1.1 CSPy COP

Los problemas de satisfaccion y optimizacion de restriccciones (del inglés Constraint
Satisfaction and Optimization Problem: CSP y COP, respectivamente) [192] proporcio-
nan una formalizacion abstracta para los problemas relacionados con la asignacion de
recursos. Estan presentes en las industrias manufactureras y de servicios, tales como
la produccién, el transporte, la distribucion, el procesamiento de la informacion y las
comunicaciones [149]. Un CSP se define mediante la tupla (V, D, C), donde V es el con-
junto devariables {v,...,v,}, D es el conjunto de n dominios {dy,...,d,} (donde cada
d; representa los posibles valores que v; puede tomar) y C es el conjunto de restriccio-
nes (cada una de ellas involucrando a un subconjunto de variables de V, y proporcio-
nando una representacion intensional de las combinaciones de valores satisfactibles
que estas variables pueden tomar). Una solucién del problema es una asignacién de
variables V a valores de D, de modo que las restricciones de C' se satisfagan. Un ejem-
plo paradigmatico de un CSP es el problema de las N reinas: un puzzle cuyo desafio
consiste en colocar N reinas de ajedrez en un tablero de N x N casillas, de modo que
no haya dos reinas que se ataquen entre si (es decir, que no haya dos reinas colocadas
en la misma fila, columna o diagonal).

Por otro lado, un COP se define mediante la tupla (V, D, C, F’), donde el parametro
adicional F' representa una funcion de coste (es decir, una expresiéon a minimizar o
maximizar). Una solucién del problema es una asignacién de variables V' a valores de
D, de modo que las restricciones de C se satisfagan y la funcién de coste F se minimice
o maximice. Un ejemplo paradigmatico de un COP es el problema de las reglas con N
marcas de Golomb: un puzzle cuyo desafio consiste en dibujar N marcas (0 = mg <
my < ...<mpy_1)en una regla, de modo que las distancias d; ; = m; — m; para 0 <1
< j < N sean distintas. Una regla 6ptima es la de longitud minima (minimizando asi el
valor de la Ultima marca muy_1).

A modo de ejemplo, la figura 1 presenta una posible especificacion de la instancia
G-5 (para el problema de Golomb con cinco marcas en la regla), incluyendo el espacio
inicial de busqueda del problema y remarcando en negrita su solucién 6ptima, para la
cual también se proporciona una representacidn grafica.

249



V = [mg, m1, ma, ms, my,
di,0, d2,0, d30, dao, d2,1,ds.1,da1, ds2, da2, das);
D =[mgin0..15, m; in 0..15, mg in 0..15, m3 in 0..15, my in 0..15,
dl,O in 0..15, d270 in 0..15, dg’o in 0..15, d4’0 in 0..15, dg’l in 0..15,
d31in0..15,dys 1 in 0..15, d3 2 in 0..15, d4 2 iN 0..15, dy 3 in 0..15];
C=[mgy=0,
mo <mi, my < Mg, Mg < M3, M3 < My,
dy,0 =mq - mg, dap = M2 - Mo, dz,o = M3 - Mg, da0 = My - Mg,
do1 =my-my,d31 =mg-my, ds1 = mg-my,
d3,2 =mg3 - ma, d4,2 =Mmy - ma, d4,3 =my-m3
di,o!=do,dio'=dso,di1o!=dao, dip!=doi,dio!=d3n, dio!=da,
dio!=ds 2, dio!=dsp,
dio!=ds3, doo'=ds, doo!=dao, dop = do, doo!=dsn, doo!=dy,
dao 1= ds 2, dao 1= dspo,
doo!=dsz,d3ol=dag,dso!=doq1,dso!=ds1,ds3o!=da1,dsp!=dso,
d3 o 1= dy 2, d3 o 1= da 3,
daol=do1,dap!=ds1,dso!=da1,dao!=ds 2, dag!=dago, dapo!=das,
do1!=d3q,doy 1= dyg,
d2,1 1= d3,27 d2,1 1= d4,27 d2,1 1= d4,37 d3,1 1= d4,1, d3,1 1= d3,2, d3,1 1= d4,27
d3 1= dag, day 1= ds o,
dag = dyp,dyy '=daz, d3p=dyo, d3o!=dys, dao = dygs,
di,0>=1,d20>=3,d30>=6,ds0>=10,do1 >=1,d3; >=3,
d4’1 >= 0, d3’2 >=1, d4’2 >= 3, d4’3 >=1
diop <dagl;
F = minimize my;

S=[(mo=0,m1=0,my=0,m3=0,m4=0,d1,0=0,d2,0=0,d30=0,...ds3=0),
...,(m0=0,m1=1,m2=4,m3=9,m4=11,d1’0=1,d270=4,
dso = 9, dyo = 1n, doy = 3, dsq = 8, dgy = 10, d3po = 5, dyp=7,ds3= 2),...

(mo = 15, mi = ].5, mo = 15, ms = ].5, my = ].5, dl,O = 15, . d4’3 = ].5)]

01 4 9 11
L L T[]

dl,() d2,1 d3 2 d4 3

Figura 1. Especificacion y solucién éptima para G-5
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Ademas de utilizar N variables para representar las marcas de la regla [my, ...
mpy—1], Se usan N x (N — 1)/2 variables adicionales para representar las distancias en-
tre cada par de marcas [d1 0, . .., d(n—1),0,d2,1, - - - » d(N—1),(N—2)] (dando lugar a un total
de (N2 + N)/2 variables). Es sabido que se puede aplicar la cota superior 2V—1 — 1 so-
bre el valor que pueden tomar las variables m [145]. Esto se basa en que, si la distancia
entre m; y m;;1 es siempre 2771, entonces cada m; se puede asignar a 2° — 1. Por lo
tanto, la representacion en formato de bits de cualquier d;; = m; - m; toma el valor
cero en sus ¢ bits mas pequefios, seguidos de j — i unos. Como se puede ver, esta re-
presentacion en formato de bits es diferente para cada una de las variables de d, por lo
que sus valores son diferentes también [173]. Estableciendo que las variables m tomen
un dominio inicial de 0..(2¥~! — 1), entonces la distancia entre cada par de marcas
debe estar también en este dominio, por lo que las variables d se acotan igualmente a
0..(2N=1 —1). El resto de requisitos del problema se especifican mediante las siguien-
tes V2 restricciones: se usa una restriccion para asignar mg a 0, y N — 1 restricciones
especifican que cada m; sea menor que m;41. Otras N« (N —1)/2 restricciones asignan
cada d; ; a la resta de sus dos marcas asociadas. Por ultimo, otras tantas restricciones
especifican que todas las variables d sean diferentes.

Ademads de estas N? restricciones, la especificacion de Golomb-5 contiene ciertas
restricciones redundantes que mejoran el rendimiento a la hora de encontrar las solu-
ciones del problema. Por ejemplo, se utilizan N % (N — 1)/2 restricciones redundantes
para aplicar una cota inferior a las variables d [183]. Esto se basa en que la distancia d; ;
=m; - m; satisface la propiedad de ser igual a la suma de todas las distancias entre las
marcas m; y m; (es decir, d; ; = (m; - m;_1) + (m;_1 -m;_2) + ...+ (m;1 - m;)). Como to-
das estas distancias son distintas, su suma debe ser, al menos, la suma de los primeros
j—t numeros naturales. Del mismo modo, se afiade una ultima restricciéon redundante
d1,0 < d(n—_2),(n—1) Para romper algunas simetrias entre las soluciones encontradas.

Finalmente, la funcién de coste especifica que, entre todas las soluciones satisfac-
tibles del problema, solo se debe tener en cuenta aquella (o aquellas) con un valor
minimo para my. Es decir, la naturaleza combinatoria del problema da lugar a un espa-
cio de busqueda de (2V-1)(V*+N)/2 candidatos a solucion (ya que el problema contiene
(N?+N)/2variables, cada una de ellas con un dominio inicial de 2V~ valores). Incluso
en una instancia del problema tan pequefia como es Golomb-5, esta combinatoria con-
duce a una cantidad de 16'° = 1.152.921.504.606.846.976 candidatos, de los que solo 81
son soluciones satisfactibles. Analizandolas con respecto al valor que toman para my:
38 soluciones asignan my al valor 15, 21 soluciones a 14, 14 soluciones a 13, 7 solu-
ciones a 12, y, por ultimo, solo 1 solucién a 11 (siendo esta, por tanto, la solucion
optima).
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1.2 CP(FD) para abordar un CSP o COP

Los CSP y COP han sido ampliamente estudiados en las ultimas décadas. Para su
tratamiento se han aplicado diferentes aproximaciones: el darea de conocimiento de
la programacion matemadtica (del inglés Mathematical Programming: MP) ha aplicado
tanto técnicas de programacion lineal (del inglés Linear Programming: LP) [179] como
técnicas de programacién entera (mixta) (del inglés (Mixed) Integer Programming: MIP)
[113]. Cuando la aplicacién de una busqueda exhaustiva resultaba impracticable (de-
bido al enorme espacio de busqueda del problema), el drea de conocimiento de las
heuristicas ha aplicado aproximaciones basadas en una busqueda incompleta, como
estrategias ad hoc [146] o incluso meta heuristicas [39] (proporcionando heuristicas
para determinar la heuristica finalmente aplicada para resolver el problema).

Ademas de las mencionadas areas MP y heuristicas, el drea de conocimiento de
programacion con restricciones sobre dominios finitos (del inglés Constraint Program-
ming over Finite Domains: CP(FD)) [63], [163] ha sido identificada como especialmente
adecuada para el modelado y resolucidn de un CSP o COP, ya que captura la naturaleza
orientada a restricciones de estos problemas de una manera concisa. Para ello, CP(FD)
distingue entre el lenguaje de modelado utilizado para especificar el problemayy las téc-
nicas aplicadas para resolverlo.

Cualquier sistema CP(FD) se basa en la nocidn de un resolutor de restricciones
FD. Este resulta de la combinacién de un almacén de restricciones y un motor de res-
tricciones. El almacén contiene las variables, dominios, restricciones y posible funcién
de coste ((V,D,C) y (V,D,C, F)) del CSP o COP especificado. El motor aplica técnicas
tanto de propagacion de restricciones como de busqueda para encontrar soluciones
satisfactibles y 6ptimas para el problema. Brevemente, la propagacion de una restric-
Cion ¢, involucrando a las variables [v;1, ..., vy, €s un proceso de inferencia que per-
mite eliminar valores (o combinaciones de valores) del dominio de las variables que
no satisfacen la restriccion. Como este mecanismo considera cada restriccién de la red
C por separado, no todos los valores que permanecen en los dominios son necesaria-
mente parte de alguna solucién. Asi, el proceso de resolucién se debe completar con
una busqueda que modifica el CSP o COP inicial mediante la adicién de nuevas restric-
ciones para razonar nuevamente sobre él. Las exploraciones de bisqueda sistematicas
también se llaman algoritmos de busqueda con vuelta atrds, y se puede ver como la
exploracion de un arbol mediante un recorrido de primero en profundidad (del inglés
Depth First Search: DFS), donde cada nodo contiene una version modificada del CSP o
COP original. Un nodo del arbol puede representar: un CSP resuelto (en cuyo caso, la
busqueda se detiene, devolviendo la solucién), un CSP insatisfactible (en cuyo caso, el
proceso de busqueda retrocede en el arbol), o un CSP estable, pero con ciertas varia-
bles aun sin asignar a valores concretos (en cuyo caso, se selecciona una variable no
asignada, y los hijos del nodo se generan mediante la asignacion exclusiva y exhaustiva
de la variable a los distintos valores de su dominio).
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El modo en que se especifican las variables, dominios, restricciones y funcién de
coste depende del lenguaje de modelado utilizado. Dependiendo del contexto en el
que se modela el problema, la importancia de diferentes factores (como la expresivi-
dad, la aumento de la complejidad del problema, el mantenimiento, la integracién en
aplicaciones de mayor tamafio, etc.) varia. La mayoria de estas tareas son mutuamente
excluyentes y, por lo tanto, cualquier lenguaje de modelado proporciona un compro-
miso entre ellos. Para presentar al conjunto de paradigmas CP(FD) identificados como
adecuados para abordar a un CSP o COP, una primera clasificaciéon permite distinguir a
los lenguajes declarativos de los lenguajes imperativos. Un programa declarativo des-
cribe las propiedades que una solucién del problema debe cumplir, mientras que un
programa imperativo describe una secuencia de pasos que se deben realizar con el fin
de construir la solucion del problema.

Laintegracidon de CP(FD) en el paradigma imperativo de la programacion orientada
a objetos [33], mas especificamente en el lenguaje C++, ha dado lugar al paradigma
C++ CP(FD). En él, la especificacion del problema se beneficia de caracteristicas de
modelado tales como la abstraccién, la encapsulacion, la herencia y el polimorfismo.
Ademas, la alta eficiencia de C++ [36] permite a las bibliotecas CP(FD) implementadas
en dicho lenguaje obtener un mayor rendimiento de resolucion. Dos sistemas C++
CP(FD) de vanguardia son Gecode [78] e IBM ILOG Solver [12].

Dentro de la programacién declarativa, una segunda clasificacion permite distin-
guir a los lenguajes de propdsito general (también llamados Turing completos [101]) de
los lenguajes de proposito especifico (o Turing incompletos). La integracion de CP(FD)
en lenguajes de propdsito especifico basados en formulaciones algebraicas ha dado
lugar al paradigma CP(FD) algebraico. En él, la especificaciéon del problema se bene-
ficia de caracteristicas de modelado tales como la combinacién de restricciones basi-
cas para construir nuevas restricciones complejas, la definicion de nuevas restricciones
mediante predicados, el uso de tipos enumerados, el uso de estructuras de datos basa-
dos en arrays o conjuntos, y en un aislamiento entre el modelo generico y los datos de
entrada de la instancia concreta a ejecutar. Ademas, se abstrae la especificacion del
CSP o COP del resolutor de restricciones concreto que se utilizara para su resolucion,
permitiendo asi probar un mismo modelo sobre distintos resolutores sin ningdn de-
sarrollo adicional. Dos sistemas CP(FD) algebraicos de vanguardia son MiniZinc [142]
e IBM ILOG OPL [193].

Dentro de los lenguajes declarativos de propdsito general, la integracion de CP(FD)
en los lenguajes de programacion Iégica LP [120] ha dado lugar al paradigma de la pro-
gramacion légica con restricciones: CLP(FD) [111]. En él, la especificacidn del pro-
blema se beneficia de caracteristicas de modelado tales como la alta expresividad,
incluyendo caracteristicas légicas como la notacioén relacional, el indeterminismo, la
vuelta atras (del inglés backtracking), las variables légicas y de dominio, asi como la
capacidad para efectuar un razonamiento por modelos (permitiendo afiadir y eliminar
dinamicamente restricciones del almacén). Dos sistemas CLP(FD) de vanguardia son
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SICStus Prolog [178] y SWI-Prolog [190], cada uno de ellos integrando CP(FD) a través
de la biblioteca subyacente clpfd.

1.3 CFLP(FD) para abordar a un CSP o COP

La integraciéon de CP(FD) en lenguages declarativos de naturaleza multi-paradigma,
como son los lenguajes de programacion Iégico funcionales (del inglés Functional Logic
Programming: FLP) [161], [91], [19] (que resultan de la integracién de LP y la pro-
gramacion funcional (del inglés Functional Programming: FP) [128]), ha dado lugar al
paradigma de la programacion Iégico funcional con restricciones (del inglés Constraint
Functional Logic Programming: CFLP(FD)). En términos de modelado, el lenguaje pro-
porcionado por CFLP(FD) representa probablemente el enfoque mas completo den-
tro de los sistemas CP(FD). En primer lugar, su naturaleza declarativa abstrae la es-
pecificacion del problema, lo que representa una ventaja con respecto a los sistemas
C++ CP(FD) imperativos. En segundo lugar, su naturaleza de propésito general per-
mite la integracion del modelo en grandes aplicaciones, en contraste con los sistemas
CP(FD) algebraicos. Finalmente, su alta expresividad aumenta incluso la de los sis-
temas CLP(FD), incluyendo caracteristicas propias de FP, tales como la notacion fun-
cional, las expresiones currificadas, las funciones de orden superior, los patrones, las
aplicaciones parciales, la evaluacidn perezosa, los tipos, el polimorfismo y la composi-
cién de funciones. Dos sistemas CFLP(FD) de vanguardia son PAKCS [93] (una de las
implementaciones del lenguaje Curry [92]) y TOY(FD) [72], [124], [40].

A modo de ejemplo, la figura 2 presenta el modelo TOY(FD) para especificar el
problema de Golomb de la seccién 1.1, evidenciando la alta expresividad de CFLP(FD).
Basandose en dicho modelo la siguiente sesién TOY(FD) computa la solucién éptima
para la instancia G-5:

TOY(FD)> golomb 5 ==
{L_>[0I1I419I11]}

sol.1, more solutions (y/n/d/a) [y]?
no

El modelo incluye los archivos cflpfd.toy y misc. toy (lineas 1y 2, respectiva-
mente). El primero permite el uso de las restricciones 7D. El segundo contiene un
preludio que incluye una version TOY(FD) de diferentes funciones primitivas FP. Se
utilizan las funciones map, foldl, zipWith, scanl, iterate, head, last y take, asi
como los operadores (++) y /\. Todos ellos tienen la misma semantica que su version
estandar en FP.

La funcién principal golomb (lineas 3-12) modela el COP. Su Unica regla recibe el
parametro de entrada N que representa la cantidad de marcas a colocar en la regla. La
funcion computa como resultado la listaM -> [My,..., My_4], donde M, representa
la i-ésima marca de la regla. Para calcular la solucion 6ptima, la regla se convierte
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(01) include "cflpfd.toy"
(02) include "misc.toy"

(03) golomb :: int -> [int]

(04) golomb N = M <==

(05) M == take N [0 | gen_v_list],

(06) order (M ++ [trunc(2A(N-1))]) == true,
(07) gen_difs M == Ds,

(08) foldl (++) [] Ds == D,

(09) all different D,

(10) lbound Ds sums_nats == true,

(11) (head D) #< (last D),

(12) labeling [toMinimize (last M)] M

(13) order:: [int] -> bool
(14) order [X] = true
(15) order [X,Y|Xs] = (X #< Y) /\ order [Y]|Xs]

(16) gen_difs:: [int] -> [[int]]
(17) gen_difs [] = []
(18) gen_difs [X|Xs] = [map (#- X) Xs|gen_difs Xs]

(19) lbound:: [[int]] -> [int] -> bool
(20) lbound Xss Is = foldl (/\) true
(foldl (++) [1 (map (zipWith (#<=) Is) Xss))

(21) sums_nats:: [int]
(22) sums_nats = scanl (+) 1 (iterate (+1) 2)

(23) gen_v_list:: [A]
(24) gen_v_list = [X | gen_v_list]

Figura 2. Modelo TOY(FD) para Golomb
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en condicional, con ocho condiciones (lineas 5-12) que se deben satisfacer:

e La linea 5 genera la lista M, mediante el uso de la funcién extra gen_v_list
(lineas 23-24). Esta lista estd compuesta por un 0 (garantizando el requisito del
problema de que M, = 0) y N-1 nuevas variables I4gicas.

e La linea 6 utiliza la funcién extra order (lineas 13-15) para asegurar que cada
elemento de M es menor que el siguiente. Esta funcion también establece im-
plicitamente una cota inferior para las variables de M, ya que su primer elemento
toma el valor 0. Ademas, llamando a order con M ++ [trunc(2A(N-1))1,
también se establece una cota superior para dichas variables.

e La linea 7 utiliza la funcion extra gen_difs (lineas 16-18) para generar la lista
de variables D que representan las diferencias entre cada par de variables de M.
Esta funcion computa lalista [[int]1]1 Ds =[[Di_o,...,Dn—1)-0}, [D2-1,- -,
D(n-1)-1], -+, [D(n-1)—(Nn—2)]]. Cada D;_; se genera implicitamente como el re-
sultado de la resta M; — M;. Como tanto M, como M, tienen ya un dominio aso-
ciado, gen_difs sirve también para la inicializacion del dominio de las nuevas
variables generadas.

e Lalinea 8 convierte Ds enlalista [int] D =[D; o,...,D(n_1)—0; D2-1,.. -,
Dn—1)=1, -+ Div—1)—(n—2)]-
e Lalinea 9 asegura que las variables de D toman valores diferentes.

e Lalinea 10 utiliza la funcién extra 1bound (lineas 19 a 20) para imponer una cota
inferior para cada D,_; (teniendo en cuenta que, como todas las distancias son
distintas, su suma debe ser, al menos, la suma de los primeros j —i numeros na-
turales). El segundo argumento de 1bound utiliza otra funcién extra sums_nats
(lineas 21-22). Esta computa la lista infinita [s1, s2 .. .|, donde cada s; representa
la suma de los primeros i nimeros naturales.

La regla de 1bound aplica zipWith (#<=) [s1,s2...] a cada elemento de Ds,
computando bajo demanda [s1, sz ...] y compartiéndola para los diferentes ele-
mentos de Ds. Tomando como ejemplo el primer elemento de Ds, el cdmputo
de zipWith (#<=) [s1,s2,5,-1] [Di-0,..., D(n—1)—0] impone que D;_¢ >= sy,
o D(n—1)—0 >= sn_1. La aplicacion de la funcion de orden superior map ase-
gura que zipWith se aplica a cada elemento de Ds. Como las restricciones
relacionales soportan reificacion [132], el no asignar el resultado de estas a una
variable Booleana se puede entender como un azucar sintactico en el que solo se
imponga la version de la restriccion que haga true el resultado devuelto. Por lo
tanto, la lista resultante de la aplicacién de (map (zipWith (#<=) sum_nats)
Ds) es [[bool]] (con todos los elementos de la lista siendo true). A conti-
nuacién, foldl (++) [] convierte [[bool]] en [bool]. Finalmente, foldl
(/\) truetomalalista [bool], devolviendo true como resultado (asegurando
asi la restriccion de igualdad de la linea 10).
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e Lalinea 11 impone que la primera variable de D sea menor que la dltima.

e Finalmente, la linea 12 utiliza la primitiva 7D labeling para especificar una
estrategia de busqueda. El segundo argumento especifica que M es la lista de
variables a etiquetar (asignar valores). El primer argumento especifica una fun-
cion de coste para la busqueda, donde la ultima variable de M se debe minimizar.
Como no se hace explicito ningun criterio de seleccion de variables o valores del
dominio, las variables se etiquetan en su orden textual, y el dominio de cada
variable se etiqueta en un orden creciente.

1.4 Contribuciones de la tesis

Con la gran variedad de paradigmas disponibles, actualmente la comunidad CP(FD) es
grande y muy productiva, desarrollando una gran cantidad de sistemas y aplicaciones.
Existen numerosas conferencias y revistas que incluyen a CP(FD) entre sus temas a
tratar, presentando multiples aplicaciones industriales. Sin embargo, mientras que
estas aplicaciones se encuentran mas o menos repartidas entre las que siguen enfo-
ques CP(FD) algebraicos, C++ CP(FD) y CLP(FD), parece que CFLP(FD) no ha atraido
la atencion de la comunidad CP(FD). Por ejemplo, en los dos Ultimos afos, las edi-
ciones de estas conferencias y revistas incluyen multiples aplicaciones de los sistemas
MiniZinc, Gecode y SICStus Prolog, pero no incluyen ninguna aplicacién basada en un
enfoque CFLP(FD).

Dada esta falta de aplicaciones reales de CFLP(FD), esta tesis se centra en una
analisis empirico sobre la aplicabilidad de CFLP(FD) para abordar a un CSP o COP
presente en la industria. La investigacion realizada se centra en el sistema CFLP(FD)
TOY(FD), implementado en SICStus Prolog, y con la capacidad para resolver igual-
dades y desigualdades sintacticas (mediante un resolutor de Herbrand: #), asi como
restricciones 7D (mediante un resolutor CP(FD)). Su lenguaje de modelado y su so-
brecarga a la hora de resolver los problemas se analiza en detalle. Estos resultados de
modelado y resolucién se comparan con los de otros sistemas CP(FD) de vanguardia,
tanto algebraicos como C++ CP(FD) y CLP(FD). Para acometer todos y cada uno de
estos objetivos, la investigacion se ha dividido en tres partes que se describen a conti-
nuacién.

La primera parte de la investigacidn tiene por objeto la mejora del rendimiento de
resolucion de TOY(FD). El sistema del que se parte utiliza el resolutor subyacente
de SICStus clpfd (por lo que el sistema se denota como TOY(FDs)). En esta tesis
se integran en TOY(FD) los resolutores C++ CP(FD) de vanguardia Gecode e ILOG
Solver, dando lugar respectivamente a las nuevas versiones del sistema TOY(FDg) y
TOY(FDi). Ademas, para estas nuevas versiones se aumenta la capacidad expresiva
del lenguaje TOY(FD), afadiendo estrategias de busqueda ad hoc. Las principales
contribuciones han sido las siguientes:
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e Desarrollo de un esquema para la integraciéon de resolutores C++ CP(FD) en
TOY(FD), en un contexto facilmente aplicable a otros sistemas CLP(F¥D) y
CFLP(FD) implementados en Prolog. Este esquema ha resultado ser ciertamente
génerico, puesto que ha permitido integrar dos resolutores diferentes, como son
Gecode e ILOG Solver, siguiendo los pasos que se describen en el esquema.

- Identificacion de los diferentes procedimientos requeridos por TOY(FD)
para coordinar un resolutor CP(FD), creando una interfaz abstracta y ex-
tensible entre el sistema y resolutor (que incluye cédigo de pegamento en-
tre sus componentes Prolog y C++).

- Gestion de la falta de correspondencia entre las variables, restricciones y
tipos soportados por el sistema y resolutor.

- Adaptacién del resolutor C++ CP(FD) para cumplir con los requisitos de
un sistema CFLP(FD), tales como el razonamiento por modelos, el uso de
multiples estrategias de busqueda (intercaladas con el almacenamiento de
nuevas restricciones) y el uso de un modo de propagacion tanto incremen-
tal como por lotes.

e Aumento de la capacidad expresiva del lenguaje en las versiones del sistema
TOY(FDg) y TOY(FDi) (ya que son estas las que proporcionan una mayor
capacidad de resolucién). En concreto se soportan ocho nuevas primitivas de
bldsqueda parametrizables que proporcionan una especificacion de bldsqueda
mas detallada al resolutor (en un contexto facilmente aplicable a otros sistemas
CLP(FD) y CFLP(FD) implementados en Prolog e integrando resolutores C++
CP(FD) externos).

- Estas primitivas incluyen conceptos novedosos de busqueda (soportando

incluso busquedas incompletas) que no estan directamente disponibles en
las bibliotecas de Gecode ni de ILOG Solver. En concreto soportan una ex-
ploracién exhaustiva en anchura sobre los primeros niveles del arbol (orde-
nando posteriormente los nodos satisfactibles segiin un criterio especifico).
También soportan la fragmentacién del dominio de las variables, acotando
cada una de ellas a un subconjunto de los valores de su dominio (en lugar
de asignandolas directamente a un valor concreto). Por ultimo, tanto las
estrategias de asignacion como de fragmentacién se pueden aplicar Unica-
mente a un subconjunto de las variables involucradas.
Por otra parte, algunos de los criterios de busqueda de estas primitivas se
pueden especificar directamente en el lenguaje TOY(FD). Ademas, el pro-
pio TOY(FD) permite combinar facilmente varias primitivas (para cons-
truir nuevas estrategias de busqueda complejas), asi como hacer uso del
razonamiento por modelos para aplicar diferentes escenarios de bldsqueda
a la resolucién de un problema.
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e Analisis del rendimiento de las tres versiones de TOY(FD), usando para ello un
conjunto mimimo de problemas de prueba, formado por tres CSP clasicos (series
magicas, reinas y nimeros de Langford) y por un COP clasico (reglas de Golomb).
Los resultados revelan que TOY(FDg) y TOY(FDi) mejoran claramente el ren-
dimiento de resolucién de TOY(FDs). Por otra parte, las nuevas primitivas de
bldsqueda permiten mejorar aiin mas el rendimiento de TOY(FDg)y TOY(FDi).

- El conjunto de problemas de prueba es suficientemente completo, ya que
abarca todo el repertorio de restricciones FD soportadas por TOY(FD).
Ademas, mediante el uso de diferentes instancias por problema, se analiza
el rendimiento de TOY(FD) a medida que la complejidad del problema
aumenta. Finalmente, se analizan las primitivas de busqueda a aplicar para
cada problema, basandose en la estructura de las soluciones de cada uno
de estos.

La segunda parte de la investigacion presenta dos aplicaciones reales de TOY(FD).
En primer lugar, se presenta un problema de asignacion de trabajadores a turnos de
trabajo (del inglés Employee Timetabling Problem: ETP), proveniente de la industria de
las comunicaciones. En segundo lugar, se presenta un analisis empirico de la comple-
jidad del problema de asignacion de elementos unidimensionales a contenedores (del
inglés one-dimensional Bin Packing Problem: BPP), necesario para resolver intancias
generalizadas provenientes, en particular, de la industria de los centros de datos. Las
principales contribuciones han sido las siguientes:

e Descripcion de un algoritmo no monolitico para la especificacion de una version
genérica del ETP, donde los trabajadores estan divididos en diferentes equipos.
Comparativa entre el rendimiento de resolucion alcanzado y el que se obtuvo
anteriormente para el conjunto de problemas de prueba.

- La compleja formulacion del problema explota la alta expresividad de
TOY(FD). Esta es totalmente paramétrica en el nimero de dias del ca-
lendario, el nimero de equipos (y el nimero de trabajadores por equipo),
la periodicidad con que el trabajador adicional se puede seleccionar (y el
factor extra al que sus horas de trabajo se deben pagar), el nimero de di-
ferentes tipos de jornadas de trabajo (y los turnos concretos solicitados en
cada una de ellas), las ausencias de trabajadores y el nivel de homogenei-
dad requerido en la distribucién de cada tipo de turno de trabajo entre los
trabajadores de cada equipo.

- El enfoque utilizado para resolver el problema divide el espacio de bus-
queda inicial en tantos subespacios como asignaciones posibles de equipos
a dias existan, explorando solo aquellos que sean satisfactibles. Para cada
uno de estos, se descompone nuevamente al problema; en este caso en
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tantos subproblemas independientes como equipos haya (siendo la com-
plejidad computacional del subproblema asociado a cada equipo exponen-
cialmente menor que la del subespacio inicial).

- Los resultados de rendimiento (tanto en términos de la version concreta de
TOY(FD) utilizada, como en la aplicacion de estrategias de busqueda ad
hoc) son similares a los obtenidos para el conjunto de problemas clasicos
de prueba, aunque las diferencias obtenidas entre las diferentes instancias
resueltas son ahora mayores.

e Resolucidn de un conjunto de instancias del problema BPP (generadas paramétri-
camente mediante la conocida distribucion de Weibull [201]), aplicando para
dicha resolucion dos modelos CP(FD) equivalentes (Gecodey TOY(FDg))y cua-
tro heuristicas.

- Weibull permite generar una gran variedad de distribuciones (en lo que
al tamafio de los elementos se refiere), ya que su alta flexibilidad permite
representar a casi cualquier distribucién unimodal. Su modelo paramétrico
se usa para representar (de manera muy precisa) a instancias reales del
problema BPP. En concreto se utilizan técnicas de mdxima verosimilitud y
grdficos Q-Q para observar la calidad del ajuste. Ademas, se utilizan los
tests estadisticos de Kolmogorov-Smirnov y x? para probar de manera mas
rigurosa dicho ajuste.

- El conjunto de instancias se construye utilizando 199 combinaciones dife-
rentes de los parametros de Weibull (generando 100 instancias por cada
combinacion). Ademas, se proponen once escenarios diferentes, que varian
el tamafio del contenedor al asignar a este un factor multiplicador (de entre
1,0y 2,0, con incrementos de 0,1) del tamafio del elemento mas grande de
la distribucién. Finalmente, se utilizan archivos de procesamiento por lotes
para establecer sesiones de resolucién del conjunto de instancias, tanto
para los sistemas CP(FD) como para las heuristicas.

- Los resultados obtenidos revelan que, tanto CP(FD) como las heuristicas,
son adecuados para resolver el problema BPP. Dependiendo de la instancia
concreta a resolver (combinacion de parametros de Weibull) y el tamafio
del contenedor (escenario elegido), ambas técnicas proporcionan un com-
promiso entre el tiempo empleado para resolver el problema y la calidad
de la solucién obtenida.

La tercera parte de la investigacion posiciona a TOY(FD) con respecto a sistemas
CP(FD) de vanguardia. En concreto con los sistemas CP(FD) algebraicos MiniZinc e
ILOG OPL, los sistemas C++ CP(FD) Gecode e ILOG Solver, los sistemas CLP(FD)
SICStus Prolog y SWI-Prolog, y el sistema CFLP(FD) PAKCS. Los resultados fomentan el
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uso de TOY(FD) (y del propio paradigma CFLP(FD)), demostrando que este es com-
petitivo con respecto a cualquiera de los otros sistemas para el modelado y resolucién
de los dos COP propuestos (el puzzle clasico de Golomb y el problema real ETP presen-
tado previamente). Las principales contribuciones han sido las siguientes:

e Desarrollo de una comparativa para modelar dos COP entre los sistemas
MiniZinc, ILOG OPL, Gecode, ILOG Solver, SICStus Prolog, SWI-Prolog, PAKCS y
TOY(FD).

- Debido a la simplicidad de la formulacién del problema de Golomb, este
proporciona una visién general sobre conceptos basicos del modelado de
un COP, como son la abstraccién del resolutor de restricciones, la especifi-
cacion de las variables FD, restricciones FD y estrategia de bldsqueda, asi
como la visualizaciéon de las soluciones encontradas. En cuanto al ETP, su
compleja formulacion (totalmente paramétrica, no monolitica y con com-
ponentes independientes de CP(FD)), explota la capacidad expresiva de
los diferentes paradigmas, permitiendo analizar en detalle las ventajas e
inconvenientes de cada uno de ellos.

- La comparativa incluye varios ejemplos de cédigo, para poner en contexto
las ideas que se presentan. Ademas, se proporciona el cddigo completo de
cada modelo (para cada problema y sistema). La comparativa de expresivi-
dad también incluye la cantidad de lineas de codigo utilizas en cada caso.

e Desarrollo de una comparativa para resolver dos COP entre los sistemas
MiniZinc, ILOG OPL, Gecode, ILOG Solver, SICStus Prolog, SWI-Prolog, PAKCS,
TOY(FDg), TOY(FDi)y TOY(FDs).

- Establecer un marco comun para la ejecucién de los experimentos, teniendo
en cuenta las versiones de los sistemas, las restricciones globales que se
utilizan (y sus algoritmos de filtrado) y la medicién del tiempo empleado.
Reutilizar las tres instancias por problema (con tiempos de resolucion de
décimas de segundo, segundos y minutos, respectivamente) que se consi-
deraron en los analisis anteriores.

- Comparar el rendimiento de resolucion de los diez sistemas, analizando
su ranking y sobrecarga con respecto al sistema mas rapido. Analizar el
orden de rendimiento existente entre los sistemas que utilizan un resolu-
tor de restricciones comun, especializando posteriormente la comparativa
para los sistemas que utilicen el resolutor de Gecode, ILOG Solver y SICStus
clpfd (dedicando un analisis aislado de cada uno de ellos).

- Comparar el rendimiento de TOY(FDyg) con el del modelo nativo Gecode
(asimismo el de TOY(FDi) con el del modelo nativo ILOG Solver, y el
de TOY(FDs) con el del modelo nativo SICStus Prolog, respectivamente),
para analizar y justificar la sobrecarga de cada version de TOY(FD).
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2 Mejora del rendimiento de TOY(FD)

Debido a la naturaleza combinatoria de los CSP y COP que se abordan con TOY(FD)
se espera que, a medida que las instancias aumenten lo suficiente, la mayor parte del
tiempo de resolucién de un problema se emplee en la busqueda. En este contexto,
y siguiendo la ley de Amdahl (que establece que la mejora de rendimiento de un sis-
tema debido a la alteracion de uno de sus componentes estd limitada por la fraccion
de tiempo que utiliza dicho componente) parece claro que hay dos tipos de aproxima-
ciones adecuadas para aumentar la eficiencia de resoluciéon de TOY(FD). La primera
consiste en reemplazar al resolutor de restricciones subyacente al sistema por nuevos
resolutores externos con mejor rendimiento. Es decir, manteniendo la misma formu-
lacion del problema en TOY(FD) (especificamente, la misma red de restricciones y
la misma estrategia de busqueda), utilizar nuevos resolutores de restricciones capaces
de efectuar el proceso de busqueda mas rapido. La segunda alternativa consiste en
sustituir la estrategia de busqueda original por una nueva estrategia ad hoc, que ex-
plote el conocimiento acerca de la estructura del problema y sus soluciones. Es de-
cir, manteniendo el mismo resolutor para acometer la bdsqueda, modificar el modelo
TOY(FD) para especificar una nueva estrategia de busqueda que requiera una menor
exploracion para encontrar las soluciones.

Esta seccidn presenta la implementacion de las dos alternativas en TOY(FD): la
seccién 2.1 presenta un esquema para integrar a los resolutores externos C++ CP(FD)
de Gecode e ILOG Solver en TOY(FD), dando lugar a las nuevas versiones del sistema
TOY(FDg)y TOY(FDi), respectivamente. La seccidn 2.2 describe las nuevas primi-
tivas de busqueda afiadidas para estas versiones del sistema que permiten especificar
estrategias de busqueda ad hoc.

2.1 Esquema para integrar resolutores C++ CP(FD)

TOY(FD) esta implementado en SICStus Prolog. Su arquitectura contiene un reso-
lutor de Herbrand (7{), que permite gestionar restricciones de igualdad y desigual-
dad sintacticas, asi como un resolutor 7D, que permite gestionar restricciones de do-
minio finito. Se necesita una interfaz para coordinar al resolutor FD con la semantica
operacional del sistema. Esta interfaz consiste en un conjunto de predicados Prolog
predy, ..., predg, cada uno de ellos implementando un comando del sistema mediante
el uso de la API del resolutor. En el caso de TOY(FDs), el sistema utiliza el resolutor
CP(FD) subyacente de SICStus clpfd, dando lugar a una interfaz sencilla y elegante
entre el sistema y el resolutor. En concreto las variables de TOY y clpfd tienen una
representacién comdn como variables logicas Prolog. Ademas, clpfd proporciona
una gestion de la vuelta atras transparente al usuario. Este restaura implicitamente
el almacén de restricciones (de ahora en adelante store”?) al punto concreto de la
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resolucion del objetivo al que el sistema ha retornado. Del mismo modo, clpfd pro-
porciona una gestidn implicita del uso de multiples exploraciones de bisquedas inter-
caladas con la imposicion de nuevas restricciones (donde cada busqueda actia sobre
su red de restricciones asociada). Finalmente, c1pfd utiliza implicitamente un modo
de propagacion incremental (realizando una propagacién de restricciones cada vez que
una nueva restriccién se impone sobre el almacén [197]).

La integracion en TOY(FD) de nuevos resolutores C++ CP(FD) aumenta la com-
plejidad de la interfaz. La primera dificultad resulta de comunicar sistema con resolutor
(puesto que ahora esta conectando a componentes implementados en lenguajes dife-
rentes, como son Prolog y C++). Ademas, las variables, restricciones y tipos difieren
entre ambos componentes, lo que provoca un desajuste de impedancia. Tres dificul-
tades adicionales provienen de la adaptacion de un resolutor C++ CP(FD) a los requi-
sitos de un sistema CFLP(FD). En primer lugar, en estos resolutores el razonamiento
por modelos no esta soportado, pues es una caracteristica asociada a la programacion
l6gica. Por lo tanto, la API del resolutor no proporciona un método para eliminar a una
restriccion del almacén. En segundo lugar, en estos resolutores se espera una Unica
exploracion de busqueda que se aplicara sobre la red de restricciones completa. Para
utilizar varias exploraciones de busquedas intercaladas con la imposicién de nuevas
restricciones es necesario utilizar (y coordinar) a varios resolutores. En tercer lugar,
en estos resolutores la propagacion incremental puede no estar soportada, ya que se
espera que la primera vez que se propague a la red completa de restricciones sea justo
al iniciarse la exploracién de busqueda.

Las siguientes subsecciones presentan un esquema genérico para afrontar cada
una de estas dificultades.

2.1.1 Comunicacion

Los predicados Prolog pred,, ..., predy, que actian como interfaz con la API del reso-
lutor, requieren ahora acceder a codigo C++. SICStus proporciona un marco de comu-
nicacion Prolog-C++ que permite definir un predicado prototipo en Prolog pero cuya
implementacion esta en realidad contenida en una funcién C++. Estos prototipos in-
cluye el niumero de argumentos, especificando el modo de cada uno de ellos (entrada
o salida), asi como su tipo. SICStus proporciona una conversidn entre los parametros
Prolog y C++, que incluye una representacion C++ para los términos Prolog.

Para integrar resolutores C++ CP(FD), la funcionalidad de los procedimientos
TOY(FD) se implementa mediante un conjunto de funciones C++ f1, ..., f,,, que acce-
den la API del resolutor. Por ejemplo, f; podria estar encargada de crear una nueva
variable 7D, f; de imponer una restriccion domainy f. de acometer la propagacion
de restricciones del almacén. Estas funciones C++ f1,..., f, son accesibles respec-
tivamente desde Prolog mediante los predicados prototipo py,...,p,. Asi, cualquier
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predicado pred; de la interfaz gestiona el comando impuesto por el sistema utilizando
pi, p; Y p- tantas veces como sea necesario.

Por otra parte, la interfaz se debe extender con estructuras de datos Prolog y C++
que sean accesibles a los predicados Prolog y que actien como pegamento para la
integracién del resolutor. Mientras que las estructuras de datos C++ se almacenan
como variables globales, las estructuras Prolog se almacenan en el término fd_glue.
Para ello, store™ se reemplaza por el par (store”, fd_glue), donde el segundo
componente representa a las estructuras de datos Prolog adicionales.

2.1.2 Representacion

Cada resolutor C++ CP(FD) proporciona su propia representacion para variables y res-
tricciones FD, diferente de las de TOY(FD). Por lo tanto, en la implementacién, cada
variable y restriccién contiene dos representaciones diferentes (aunque equivalentes),
y la interfaz proporciona la conexién entre ambas. Para cada nueva restriccién pC; im-
puesta por el objetivo TOY(FD), lainterfaz genera una restriccion equivalente cC; que
se impone sobre store”? (véase la figura 3). Ademas, las variables FD asociadas a
dicha restriccion se atribuyen explicitamente. Esto permite identificar como restriccion
FD a cualquier futura restriccién de igualdad o desigualdad sintactica que involucre
alguna de estas variables.

La comunicacién entre las dos representaciones de cada variable es bidireccional.
Por un lado, cuando se gestiona pC;, sus variables I6gicas asociadas pV; ... pVy ser
deben conectar con las variables de decisién equivalentes cV; ... cV, para que la res-
triccién equivalente cC, se imponga sobre ellas. Sin embargo, ni la API de Prolog ni el
de store” P proporcionan métodos para la obtencion de sus variables almacenadas.
Por ello, se deben utilizar los vectores auxiliares pV y cV, que contienen en su posicién
i-ésima a las representaciones ldgica y de decision (respectivamente) de la i-ésima va-
riable involucrada en la resolucion del objetivo. Por otra parte, una solucién de un
objetivo TOY(FD) debe mostrar los dominios obtenidos para las variables, asi como
todas las restricciones del almacén que no hayan sido simplificadas hasta convertirse
en trivialmente ciertas. En primer lugar, esto implica que las variables de cV que se
han asignado a un valor mediante la propagacién de restricciones deben disparar la
unificacion a dichos valores de sus variables légicas equivalentes de pV. Para ello, se
define una nueva clase de restriccién unaria d que impone una restriccion a store”’?
por cada variable de decisién cV; creada. Esta restriccion se propaga cuando el do-
minio de la variable involucrada se acota al valor k, almacenando el par (1, k) enla
estructura de datos C++ cV_bound. Esta estructura se vacia antes de la propagacién de
restricciones para que, tras esta, la estructura se pueda recorrer indentificando todas
las variables de cV que se han asignado a un valor. Con esta informacién se genera un
término Prolog que la interfaz utiliza para unificar a las variables pV equivalentes. En
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Figura 3. Estructuras de Datos

segundo lugar, dada una variable como argumento, la API del resolutor proporciona un
método para mostrar su dominio. Por lo tanto, se recorre cV solicitando el dominio de
cada variable cV; sin asignar. Por Ultimo, mientras que clpfd si que proporciona un
método para acceder a store” P, un resolutor C++ CP(FD) no, ya que estos esperan
que todas las variables hayan sido asignadas a valores. Por lo tanto, para mostrar el
contenido de store”?, cada restriccion pC; procesada se almacena explicitamente
en una lista Prolog pC. Respecto a la consistencia de pV y cV, se recorre la primera,
mostrando en la solucién Unicamente las restricciones que no han sido simplificadas
hasta convertirse en trivialmente ciertas.

2.1.3 Vuelta atras

El razonamiento por modelos ofrece posibilidades interesantes para la formulacién de
un CSP o COP (véase [134] como ejemplo donde una vuelta atras cronoldgica juega
un papel clave en la mejora de rendimiento de un problema de asignacién de re-
cursos para un entorno académico). 7TOY(FD) soporta el razonamiento por mode-
los mediante el uso de funciones indeterministas, cuyas multiples reglas se exploran
por vuelta atras, restaurando store* y store’P. Seglun la semdntica operacional de
TOY(FD), las restricciones de un objetivo se procesan en su orden textual. Por ello,
la nocion de vuelta atras consiste en eliminar (de store™ y store”?) las k restriccio-
nes primitivas procesadas desde el dltimo punto de eleccion. Esta vuelta atras afecta
al resolutor FD si alguna de esas ultimas k1 € {1,...,k} restricciones primitivas a
eliminar es una restriccion FD, incluyendo asimismo a las ultimas k2 > 0 variables
FD creadas (asociadas Unicamente a estas k1 restricciones).

Cuando se produce una vuelta atras, el motor Prolog restaura automaticamente
store’y fd_glue, peronoasia store’? nialas estructuras de datos C++. La figura
4 presenta un ejemplo donde los elementos de pV y pC que se eliminan automatica-
mente se muestran en lineas discontinuas. Unicamente los predicados Prolog de la
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Figura 4. Identificacion de vuelta atras y restauracion

interfaz pueden identificar que se ha producido una vuelta atras, y que este ha afectado
al resolutor FD. Para ello, basta con que cada uno de estos predicados compare los
tamanos de store’P y pV+pC al iniciar su ejecucién. En este contexto, puede darse
el caso de que, tras producirse una vuelta atras y mientras el resolutor 7D adn se
mantiene desincronizado, se procesen nuevas restricciones #. Sin embargo, esto no
es problematico pues en cuanto se produzca cualquier tipo de interaccién con el reso-
lutor FD, el predicado Prolog que gestione esta interaccion detectard la vuelta atras y
sincronizard previamente al resolutor.

Para eliminar las restantes k2 variables de cV se comparan los tamafios de pV y
cV. Para eliminar las restantes k1+k2 restricciones de store”? primero se vacia com-
pletamente el almacén y después se imponen nuevamente i+j restricciones (ya que
la API del resolutor no proporciona un método para eliminar una Unica restriccién de
store’P). Mientras que cV se recorre para crear e imponer nuevamente las restric-
ciones d, paraimponer a las restricciones primitivas se consideran dos posibilidades: la
primera recorre pC, traduciendo de nuevo a cada pC; a su restriccion equivalente cC;.
La segunda alternativa replica las restricciones primitivas impuestas sobre store’?
en el vector cC. Se selecciona esta segunda opcién ya que, en general, la gestion de cC
es mas eficiente que traducir nuevamente a las restricciones pC;. Para eliminar a las
restantes k1 restricciones de cC se compara previamente a los tamafios de pCy cC.
Finalmente, se recorre cC para imponer nuevamente las restricciones sobre store’?.

2.1.4 Multiples exploraciones de busqueda

El uso de mdltiples etiquetados o0 1abelings, intercalados con la imposicion de nuevas
restricciones, ofrece posibilidades interesantes para la formulacién de un CSP o COP
(véase [207] como ejemplo de un problema de asignacién de recursos para un en-
torno académico que precisa de dos etapas, cada una de ellas con una exploracion
de busqueda asociada a una red de restricciones concreta). En 7O)Y(FD), esta carac-
teristica esta soportada (un labeling se considera como una simple expresidn) pero,
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en la mayor parte de los resolutores C++ CP(FD), el método de la API para imponer
nuevas restricciones sobre store’” no es aplicable cuando el resolutor se encuentra
en medio de una exploracion de busqueda. Para solventar esta dificultad, store”?
se dedica Unicamente para la imposicién de restricciones, y el vector de resolutores
auxiliares ss para gestionar los labelings 1, ... 1, que aparezcan durante la reso-
lucién del objetivo (véase la figura 5). Por lo tanto, el resolutor principal (o engine”?)
nunca ejecuta un labelingy asi, al no encontrarse nunca en modo buisqueda, el uso
de mdltiples labelings puede intercalarse con la imposicién de nuevas restricciones
mediante una sincronizacion entre los almacenes de store”? y cada store_ss;:

e Al crear un nuevo resolutor ss; se recorre cC, imponiendo las restricciones so-
bre store_ss;. En este caso no se deben imponer las restricciones d ya que,
durante la busqueda, las ramas que conduzcan a fallos asignaran valores erré-
neos a las variables. Por lo tanto, al inicio de la busqueda, store_ss; es consis-
tente con el estado actual de la resolucién del objetivo, y 1; se asigna al resolutor
i-ésimo (0 engine_ss;), que acometerad la busqueda de soluciones.

e Como el labeling es un proceso de enumeracién, cuando engine_ss; en-
cuentra una rama solucion, esta surge de imponer un conjunto de restricciones
de igualdad sobre store_ss;, y dicha rama puede representarse como un con-
junto de pares (variable, valor). Este rama solucidn (o conjunto de restricciones)
se debe imponer sobre cCy store”? para que estos sean consistentes con el
efecto de haber realizado la busqueda y poder asi continuar la resolucién del ob-
jetivo. Para la sincronizacion se recorre cV, solicitando a engine_ss,; el dominio
de cada variable cV;, e imponiendo la restriccién de igualdad si dicha variable se
ha asignado a un valor durante la busqueda.

interface
=3 ] fd_glue
pV pC SS « a1 g
Store; engine tore, ;engine; ;[store;engine, CTt data
7= | jstorei-1 o = Hong »{ structures

cC

store” P|cCq| ---|cC; te er engine” ?

Figura 5. Gestidn del etiquetado
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Con respecto a la interfaz, el predicado Prolog dedicado a gestionar las expre-
siones labeling toma a 1; como argumento, y usa un bucle repeat para solicitar
a engine_ss; que busque las soluciones una a una. Para distinguir la primera lla-
mada a 1; (que solicita la creacién de ss;) de las siguientes (que solicitan una nueva
solucion via vuelta atras) se guarda el tamafio de ss en fd_glue, por lo que este se
restaura automaticamente cuando se produce la vuelta atrds. En cada iteracion del
bucle, el predicado Prolog compara ambos tamafos. Cuando no se encuentran mas
soluciones, se elimina a ss; y el bucle completo falla.

2.1.5 Propagacion incremental y por lotes

El modo de propagacién incremental es habitual en los sistemas que soportan un ra-
zonamiento por modelos, ya que les permite detectar fallos a lo largo de la resolucion
del objetivo tan pronto como sea posible. Sin embargo, el modo de propagacién por
lotes (donde el resolutor realiza la propagacién de restricciones bajo demanda) es mas
habitual en los sistemas C++ CP(FD). Mientras que este modo puede mejorar el ren-
dimiento de resolucién gracias a propagar un menor numero de veces, también es
posible que la evaluacién de un objetivo que no conduce a ninguna solucién continte
hasta que se demande explicitamente una propagacién [197]. Se definen las primitivas
TOY(FD) batch_onybatch_off, que habilitan y deshabilitan (respectivamente) el
modo de propagacion por lotes. Ambas primitivas se pueden utilizar libremente en los
programas 7 OY(FD), permitiendo a los usuarios decidir qué partes son propagadas
de forma incremental y cudles por lotes.

Al integrar resolutores C++ CP(FD), el modo por lotes implica que las restricciones
sean impuestas a cC, pero no a store”?. Ademads, no se crea ni impone ninguna
restriccion d(cV;) por cada nueva variable cV; creada. Cuando el modo incremen-
tal vuelve a activarse, las restricciones restantes se deben imponer sobre store”?
antes de realizar la propagacidén. Por ello, la tupla de enteros (b, bcV, bcC) se afiade a
fd_glue. Mientras que b es un valor binario que representa el modo de propagacion,
bcVybcC representan el nimero de restricciones d y cC (respectivamente) impuestas
sobre store’P. En primer lugar, cuando se procesa una primitiva batch_on, b toma
el valor 1, y bcV y bcC toman respectivamente el valor de los tamafios actuales de cV
y cC. En segundo lugar, cuando se procesa la primitiva batch_off, b toma el valor
0, y tanto bcV como bcC se comparan respectivamente con los tamafios de cV y cC,
para imponer sobre store”? las restricciones restantes. En tercer lugar, cuando se
produce una vuelta atras a un punto del computo en el que b ya tomaba el valor 1, se
utilizan los tamafos restaurados de bcV y bcC para imponer sobre store”? Unica-
mente las restricciones que ya habian sido impuestas previamente a que la primitiva
batch_on fuera procesada.

El modo de propagacion por lotes también se ha implementado en TOY(FDs)
mediante el uso de los objetivos congelados soportados por SICStus. Se modifica a
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store’ para que sea el par (store*, B), donde B representa el modo de propa-
gacion utilizado en cada momento. Cuando se procesa una primitiva batch_on, se
utiliza a una nueva variable I6gica en B, congelando la imposicion de toda nueva restric-
cién hasta que B se unifique a un valor. Cuando se procesa una primitiva batch_off,
la variable se unifica a B, lo que dispara automaticamente la imposicidn de todas las
restricciones congeladas sobre store”?P.

2.2 Estrategias de busqueda ad hoc

En esta seccién se presentan ocho nuevas primitivas de busqueda para especificar es-
trategias ad hoc en TOY(FDg)y TOY(FDi), permitiendo al usuario una mayor inte-
raccién con el resolutor en la busqueda de soluciones. Se describen las primitivas y sus
componentes (incluyendo su declaraciédn de tipo) desde un punto de vista abstracto
(independiente del resolutor). Se presta especial atencidn a los conceptos novedosos
que estas primitivas proporcionan, los cuales no estan disponibles en las estrategias de
busqueda predefinidas de Gecode ni de ILOG Solver. Finalmente, también se muestran
las posibilidades que TOY(FD) ofrece para aplicar diferentes estrategias de busqueda
para la resolucién de un problema.

2.2.1 Primitivas de asignacién

En esta seccién se describen cuatro primitivas de busqueda: lab, que representa una
variacién de la version clasica de 1labeling, incluyendo nuevos criterios de seleccién
de variables y valores, asi como la posibilidad de etiquetar solo un subconjunto de las
variables involucradas. La segunda, 1abB, representa una variacién de lab, donde
Unicamente se explora una rama del arbol de busqueda. La tercera, 1abW, realiza una
exploracién exhaustiva en amplitud de los primeros niveles del arbol de busqueda,
ordenando posteriormente los nodos satisfactibles segiin un criterio especificado. Fi-
nalmente, 1ab0, representa una variacion de la versidn de optimizacién de lab.

Primitiva lab

lab :: varOrd -> valOrd -> int -> [int] -> bool

Esta primitiva devuelve (una a una) todas las posibles combinaciones de valores que
satisfacen el conjunto de restricciones impuestas sobre el almacén. Esta parametri-
zada por cuatro componentes basicos. Los dos primeros representan respectivamente
los criterios de seleccion de variables y valores que se usaran en la exploracién. Para
expresarlos se han definido en 70O los tipos enumerados varOrd y valOrd, que
abarcan todos los criterios predefinidos disponibles en la documentacidn de Gecode
[173]. Estos también incluyen un Gltimo caso (userVar y userVal, respectivamente)
en el que el usuario especifica en TOY(FD) su propio criterio de seleccién de variable
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y de valor. El tercer parametro N representa el numero de variables del conjunto que se
etiquetaran. Esto representa un concepto novedoso que no estd disponible en las es-
trategias de busqueda predefinidas de Gecode ni de ILOG Solver. El cuarto argumento
representa el conjunto de variables S. Por lo tanto, la busqueda etiqueta Unicamente
las primeras N variables de S seleccionadas por el criterio varOrd.

Primitiva labB

labB :: varOrd -> valOrd -> int -> [int] -> bool

Esta primitiva usa los mismos cuatro componentes basicos que lab. Sin embargo,
su semantica es diferente, ya que sigue los criterios varOrd y valOrd para explorar
Unicamente una rama del arbol de bldsqueda, sin permitir que se produzca vuelta atras.

Primitiva labwW

labW :: varOrd -> bound -> int -> [int] -> bool

Esta primitiva realiza una exploracién exhaustiva en amplitud de los primeros niveles
del arbol de busqueda, almacenando en una estructura de datos DS cada nodo sa-
tisfactible encontrado. Una vez que estos niveles del arbol han sido completamente
explorados, se devuelven (uno a uno) los nodos satisfactibles mediante el uso de un
criterio para seleccionar y eliminar el mejor nodo de DS. El primer parametro repre-
senta el criterio de seleccion de variables (en este caso no es necesario un criterio de
seleccién de valores, ya que la busqueda es exhaustiva, por lo que todos los valores se
seleccionaran antes de devolver ninguna solucidn). El segundo parametro representa
el criterio para seleccionar al mejor nodo. Para expresarlo en TOY(FD) se ha definido
el tipo enumerado ord que puede especificar al nodo que de lugar a un espacio de bus-
queda mas pequefio o grande (tanto con respecto a las cardinalidades de las variables
pertenecientes a 1abW, como a las cardinalidades de todas las variables del almacén).
Una vez mas, un ultimo caso (userBound) permite al usuario especificar el criterio de
seleccion en TOY(FD). El tercer parametro especifica los niveles del arbol a explorar.
Finalmente, como siempre, el Gltimo parametro representa el conjunto de variables a
etiquetar.

La primitiva LabW representa un concepto novedoso que no esta disponible en las
estrategias de busqueda predefinidas de Gecode ni de ILOG Solver. Sin embargo, debe
ser utilizado con cuidado, ya que explorar el arbol en mucha profundidad puede llevar
a una explosién en el nimero de nodos, produciendo problemas de memoria en DS 'y
llegando a ser muy ineficiente (debido al tiempo dedicado a la exploracion del arbol y
a la seleccion del mejor nodo).

Primitiva labO

lab0:: optType -> varOrd -> valOrd -> int -> [int] -> bool

Esta primitiva realiza una busqueda estandar de optimizacidn. El primer parametro
optType especifica el tipo de optimizacion a realizar (minimizacién o maximizacién) y
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la variable a optimizar. Los otros cuatro parametros son los mismos que en la primitiva
lab.

2.2.2 Primitivas de fragmentacion

frag:: domFrag -> varOrd -> intervalOrd -> int -> [int] -> bool
fragB:: domFrag -> varOrd -> intervalOrd -> int -> [int] -> bool
fragW:: domFrag -> varOrd -> bound -> int -> [int] -> bool

frag0:: domFrag->optType->varOrd->intervalOrd->int->[int]->bool

Estas cuatro nuevas primitivas estan relacionadas con las primitivas lab+ (donde * es-
pecifica a cualquiera de ellas), pero ahora cada variable no sera etiquetada (asignada)
a unvalor, sino fragmentada (acotada) a un subconjunto de los valores de su dominio.
A modo de ejemplo introductorio se podria pensar en un objetivo que contiene V varia-
bles y C restricciones, con V' ={V1, V2, V3} siendo un subconjunto de V. La restriccién
domain V' 1 9 pertenece a C. Mientras que ninguna restriccion de C relaciona a las
variables de V' entre si, algunas restricciones relacionan a V' con el resto de las varia-
bles de V.

La figura 6 presenta la exploracién del arbol de bisqueda realizada por las primi-
tivas frag+ y lab+, respectivamente. En el caso de frags, las tres variables de V'’
se han fragmentado en los intervalos (1,...,3), (4,....6) y (7,...,9), dando lugar a 27
nodos hoja, un niumero exponencialmente menor que el de la exploracién de lab=:
729. Por un lado, si se supiese que solo existe una solucion al problema, entonces las
probabilidades de encontrar la combinacién correcta de valores para V' seria mucho
mayor en frag+ que en lab*. Por otro lado, se espera que el espacio de blsqueda
restante de los nodos hoja de 1ab+ sea exponencialmente menor que el de los nodos
de frag+ debido a la mayor propagacion en V' (que también se espera que conduzca
a una poda mucho mayor en el resto de las variables de V). Por lo tanto, las estrategias
de busqueda frag+ se pueden entender como una técnica mas conservadora donde
hay menos expectativas de reducir en gran medida el espacio de busqueda (ya que
las variables no son asignadas) pero donde hay mas probabilidades de elegir un sub-
conjunto que contenga valores que conduzcan a soluciones (en lo que puede ser visto
como una generalizacion de first fail [94]).

Volviendo a la definicion de cada primitiva frag, existen dos diferencias funda-
mentales con respecto a la definicién de su primitiva 1ab+ equivalente: En primer
lugar, frag+ contiene como componente basico adicional (primer argumento) el tipo
de datos domFrag, que especifica el modo en que se fragmenta el dominio de la va-
riable seleccionada. El usuario puede elegir entre partition n e intervals. El
primero de ellos fragmenta los valores del dominio de la variable en n subconjuntos de
la misma cardinalidad. En el caso de intervals, este busca intervalos ya existentes
en el dominio de las variables, dividiendo el dominio a partir de estos intervalos. Por
ejemplo, en el objetivo domain [X] 0 16, X /= 9, X /= 12, mientras que
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Figura 6. Arbol de busqueda de fragy lab

aplicar partition 3a X fragmenta el dominio en los subconjuntos S1={0.. .4}, S2 =
{5...8tU{10} y S3 = {11}U{13...16} y aplicar intervals fragmenta el dominio en los
subconjuntos S1' = {0...8}, S2' ={10...11} y S3" = {13...16}. Como segunda dife-
rencia, frag+ contiene un tipo de datos enumerado intervalOrd (que reemplaza al
argumento valOrd de lab+) para especificar el orden en el que se deben seleccionar
los diferentes intervalos. Las opciones proporcionadas son: elegir primero el intervalo
izquierdo, derecho o central, asi como elegir un intervalo aleatoriamente.

Se puede afirmar que las primitivas frag+ son una herramienta interesante que
debe tenerse en cuenta en el contexto de las estrategias de bisqueda, bien como
alternativa o como complemento al uso de las primitivas 1ab*. Ademas, su uso en
TOY(FD) representa un concepto novedoso que no esta disponible en las estrategias
de busqueda predefinidas de Gecode ni de ILOG Solver.

2.2.3 Aplicacion de diferentes escenarios de bisqueda

TOY(FD) soporta funciones indeterministas con varias reducciones posibles para los
argumentos de una funcion. Las reglas se aplican siguiendo su orden textual y, tanto
los fallos como la solicitud de una nueva solucion, disparan la vuelta atras a la siguiente
regla sin explorar. En este contexto, se pueden aplicar secuencialmente diferentes es-
trategias de busqueda para resolver un problema. Por ejemplo, siguiendo el ejem-
plo de la seccion anterior, tras imponer V y C al resolutor, el programa y el objetivo
TOY(FD) presentados en la figura 7 utilizan la funcién indeterminista f. Esta es-
pecifica tres escenarios diferentes para resolver el problema. Cada escenario termina
con un etiquetado exhaustivo del conjunto de variables V. Sin embargo, el espacio de
bldsqueda s que este etiquetado exhaustivo tiene que explorar se puede reducir no-
tablemente por la evaluacion previa de f.

Escenario 1: La primera regla de f realiza la busqueda heuristica h; sobre V'
= {V1,V2,V3}. h; fragmenta el dominio de V1 en 4 subconjuntos seleccionando uno
de ellos al azar. Sila propagacidn tiene éxito, entonces h; asigna V2 y V3 a su valor
mas pequefio. Si, nuevamente, la propagacion tiene éxito (dando lugar a un espacio
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de busqueda s;), entonces h; tiene éxito y el etiquetado exhaustivo explora s;. S
la propagacion falla en uno de esos puntos o el etiquetado exhaustivo no encuentra
ninguna solucién en sy, entonces h; falla (asi como la primera regla de ) ya que tanto
las primitivas 1abB como fragB solo exploran una rama del arbol.

Escenario 2: Se prueba la segunda regla de f que realiza la busqueda heuristica hs
sobre V'. En esta ocasién, la primitiva fragW se aplica en primer lugar. De este modo,
si mas adelante bien 1abB, bien h, 0 bien 1ab (actuando sobre un espacio de busqueda
sq) fallaran, entonces se produciria una vuelta atras sobre fragW, proporcionando el
siguiente mejor intervalo para V1 (de acuerdo con el criterio de escoger el nodo que dé
lugar al subarbol de busqueda mas pequefio). Si después de haber intentado todos los
intervalos no se encuentra una solucién, entonces h, falla (asi como la segunda regla
de f).

Escenario 3: Si tanto h; como h;, fallan, la tercera regla de f termina trivialmente
con éxito. Entonces, el etiquetado exhaustivo se realiza sobre el espacio de busqueda
original obtenido tras imponer V y C sobre el resolutor.

f:: [int] -> bool
f [V1,V2,V3] = true <==
fragB (partition 4) unassignedLeftVar random 0 [V1],
labB unassignedLeftVar smallestVal 0 [V2,V3]
f [V1,V2,V3] = true <==
fragW (partition 4) unassignedLeftVar smallestTree 0 [V1],
labB unassignedLeftVar smallestTotalVars 0 [V2,V3]
f [V1,V2,V3] = true
TOY(FD)> ... (resto del objetivo, que impone la red de
restricciones C, actuando sobre el
conjunto de variables V = [V1,V2,V3,...,VKk]),
f [V1,V2,V3], lab userVar userVal 0 V

Figura 7. Aplicacion de diferentes estrategias de busqueda
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3 Aplicaciones reales de TOY(FD)

Una vez mejorado el rendimiento de resolucién de TOY(FD), en esta segunda parte de
la investigacion se presentan dos aplicaciones industriales del sistema. La primera con-
siste en un problema de asignacién de trabajadores a turnos de trabajo (ETP), prove-
niente de la industria de las comunicaciones. La segunda consiste en un analisis em-
pirico de la complejidad del problema de asignacion de elementos unidimensionales a
contenedores (BPP), relevante para resolver intancias generalizadas provenientes, en
particular, de la industria de los centros de datos. Las secciones 3.1y 3.2 presentan la
aplicacion de TOY(FD) a cada uno de estos problemas.

3.1 ETP

El primer problema industrial que se aborda con TOY(FD) es ETP. Las siguientes sub-
secciones proporcionan respectivamente una descripcién del problema y del enfoque
de resolucion utilizado.

3.1.1 Descripcion

Un departamento esta generando el horario de sus empleados para los proximos nd
dias. Esta organizado con diferentes tipos de jornadas de trabajo ws = {ws1, ..., wsk},
cada una de ellas con una cantidad asociada de turnos de trabajo ws; = [swsi1,-- -,
swsim]- Asi, se identifica a los dias dc = [dcy,...,dc,q] del calendario por el tipo de
jornada de trabajo que estos representan (es decir, cada dc_i toma un valor entre
{ws1,..., wsk}). Si ws; proporciona m turnos, entonces para cada dia dc, = ws; debe
haber m trabajadores disponibles en el departamento (ya que cada turno se asigna a
un unico trabajador). El departamento cuenta con w trabajadores. nt * ntw de ellos
son trabajadores fijos, divididos en nt equipos de ntw trabajadores: {wi,..., wntw}
pertenecen al equipo t1, {Wntw+1,-- -, Wasntw } PErtenecen al equipo t,, y asi sucesi-
vamente. Obviamente, esto incluye también la posibilidad de tener un solo equipo
que contiene a todos los trabajadores fijos. En cualquier caso, hay un trabajador ex-
tra ew que no pertenece a ningln equipo y solo es seleccionado bajo demanda para
hacer frente a las ausencias de los trabajadores fijos. Mientras que ew se considera
disponible para los nd dias del calendario, los trabajadores fijos pueden estar ausentes
algunos dias. Esta informacién se proporciona con abs = {(w;1,d;1), ..., (wq,dj)}, de
pares (trabajador fijo, dia).

Se selecciona a cada equipo ¢; para trabajar cada nt dias. Si se selecciona a ¢; en
el dia dc;, entonces solo se puede seleccionar a {w;_1)untw+1, - - - » Wisntw y (10S traba-
jadores fijos de ese equipo) y a ew para trabajar en el departamento durante ese dia. Al
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trabajador extra ew se le puede seleccionar para trabajar solo uno de cada er dias con-
secutivos. Obviamente, esto también incluye la posibilidad de trabajar todos los dias,
simplemente haciendo que er sea uno. Para cada dia dc;, el equipo ¢; seleccionado
proporciona (debido a ausencias) 0 < a < ntw trabajadores disponibles para que se
les asigne a los m turnos de trabajo del dia. Esto da lugar a tres situaciones posibles:
en primer lugar, si a > m, entonces ew y cualquier posible trabajador fijo restante no
tiene que trabajar (se asigna a un turno de trabajo de 0 horas). En segundo lugar, si
a = m—1, entonces ew se selecciona para trabajar, siendo asignado para cubrir uno de
los m turnos de dc;. En tercer lugar, si a < m — 1, entonces no hay ninguna asignacion
satisfactible, y se concluye que no se puede seleccionar a t; para el dia dc;.

Sea s = {s1,...,s4} el conjunto de los distintos tipos de turnos de trabajo que pro-
porciona ws, se usa T;, s, como una medida de la distribucion de los turnos de tipo s,
entre los trabajadores fijos de ¢;. Suponiendo que {w(_1)sntw+1;- - - Wisntw) S€ aSIg-
nan a [cuy, ..., cun] turnos de tipo s, durante los nd dias, entonces T}, ;. representa
la diferencia entre el maximo y el minimo de estos valores cv. La distribucién de es-
tos turnos se ve restringida por T, que representa el maximo valor que puede tomar
cualquier T; ;. Obviamente, esta restriccion se puede evitar haciendo que 7' tome un
valor igual o mayor que (nd/nt) + 1: cualquier equipo ¢; trabaja cada nt dias, por lo
que trabajard (nd/nt) o (nd/nt) + 1 dias durante el calendario (donde / representa la
divisién entera). Como cada trabajador se asigna a un solo turno de trabajo cada uno
de esos dias, el valor mas alto posible para T, ;. seria aquel en el que un trabajador
concreto de ¢; se asigna Unicamente a turnos del tipo s,, mientras que otro trabajador
del equipo no se asigna a ninguin turno de este tipo.

Un calendario contiene un total de h horas de trabajo, por lo que se espera que
cada trabajador fijo trabaje h/(nt*ntw) de esas horas. Cualquier hora de mas trabajada
se considera como una hora extra. La optimizacidn surge en el problema debido a que
el departamento debe pagar a los trabajadores fijos por cada hora extra que trabajen,
y cualquier hora que trabaja ew se paga como ef horas extras de un trabajador fijo.
Obviamente, se puede tratar a ew como a un trabajador fijo simplemente haciendo
que ef tome el valor uno. Una asignacion éptima en el calendario minimiza el pago de
extra horas. En este sentido, es importante sefialar que T no pertenece a la funcién de
optimizacion. El objetivo es minimizar el nimero de horas extra, no minimizar 7'. Sin
embargo, T representa una medida de la equidad en la asignacion de horarios para
un calendario, ya que es parametrizable por el usuario. Por ejemplo, dos asignaciones
diferentes que impliquen 16 horas extras (una de ellas asignando esas 16 horas a un
Unico trabajador, y la otra dividiendo esas horas entre los trabajadores de un equipo)
son equivalentes desde el punto de vista de su optimalidad, pero la segunda es mas
justa con respecto a la asignacion del trabajo.

Con esta descripcion del problema en mente, una posible instancia consistiria en
programar el horario del calendario para la semana que empieza el préoximo lunes.
Mientras que los dias laborables contienen tres turnos de trabajo (de 20, 22 y 24 horas,
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respectivamente), los dias del fin de semana contienen dos turnos (ambos de 24 ho-
ras). El departamento cuenta con 13 trabajadores: 12 de ellos son trabajadores fijos,
divididos en 3 equipos de 4 trabajadores. Algunos de estos trabajadores fijos no es-
tan disponibles todos los dias, con sus ausencias descritas por abs = [(w1,d1), (wa,d1),
(ws,d1), (ws,ds), (we,d1), (we,ds), (wr,d1), (wr,ds), (wio,d1), (w10,ds), (w11,d1), (W11,
dg), (wi2,d1), (wi2,dg)]. El Gltimo es un trabajador extra, que puede ser seleccionado
para trabajar un maximo de uno de cada tres dias consecutivos, y cuyas horas de tra-
bajo se pagan al doble que las horas de un trabajador fijo. Por ultimo, se permiten
pequefias desviaciones de un turno de trabajo por cada tipo de turno (T" = 1) entre los
diferentes trabajadores fijos de un equipo.

3.1.2 Resolucion

La descripcion propuesta abstrae el problema como una entidad que recibe a nd, nt,
ntw, er, ef, ws, abs, dcy a T como parametros de entrada, computando como resul-
tado la pareja (timetabling, eh). timetabling es una asignacion de turnos representada
mediante una matriz w x nd, donde cada posicion (i, j) representa el turno asignado en
el dia j al trabajador i (por ejemplo, en la instancia usada como ejemplo, timetabling es
una matriz 13 x 7). eh representa la cantidad total de horas extra de dicha asignacién.

Una forma intuitiva de modelar el problema es usar a timetabling como el con-
junto de variables D, usando a dc y ws para determinar el dominio inicial de las
variables en cada uno de esos dias. Sin embargo, el hecho de que solo un equipo tra-
baje cada dia, y de que los equipos roten (haciendo que cada equipo trabaje cada nt
dias) produce fuertes dependencias entre las variables de timetable: Tan pronto como
se selecciona a un trabajador fijo wy, (perteneciente al equipo ¢;) para trabajar el dia d;
(asignando a este a un turno de trabajo s;; > 0), entonces se puede concluir que ¢; es el
equipo seleccionado para trabajar en dicho dia d;, asi como en los dias d;ynt, dj 1 (24n1)
y sucesivos. Esto excluye a los otros equipos de trabajo para estos dias, al tiempo
que excluye al equipo t; de trabajar en los dias d; 1, d;(nt—1)r djg(nt+1)r it (2emt—1) Y
sucesivos. La figura 8 presenta estas dependencias para la instancia usada como ejem-
plo, mostrando las implicaciones de asignar timetabling; » = 20. Por lo tanto, aunque
estas dependencias podrian ser perfectamente modeladas (por ejemplo, mediante el
uso de restricciones proposicionales de implicacién) un enfoque mas eficiente para
modelar el problema es utilizar Table en lugar de timetabling. Table es una matriz
(ntw+1) x nd donde, por cada d;, las primeras ntw filas representan a los trabajadores
fijos del equipo ¢; seleccionado para trabajar en d;, y la fila (ntw + 1) representa a ew.
Para utilizar esta aproximacion a la resolucion se necesitan varias traducciones bidirec-
cionales entre las representaciones de timetabling y Table. Estas requieren un registro
adicional tda (de asignaciones de equipos a dias), indicando qué equipo trabaja cada
dia. La figura 9 presenta esta traduccién para la instancia usada como ejemplo, donde
las cuatro primeras filas representan a {w;, ws, w3, ws} enlosdias 1,4y 7,
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Figura 8. Dependencias de los equipos en timetabling
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Figura 9. Traduccion entre timetabling y Table

a {wo, wio, w11, w12} €nlos dias 2y 5,y a {ws, wg, wy, ws} en los dias 3y 6.
Como se puede ver, una Unica Table no permite explorar todo el espacio de bus-
queda de timetabling, sino Unicamente el subconjunto del espacio asociado al valor
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concreto de tda seleccionado. Por lo tanto, la solucién encontrada en Table solo puede
considerarse subdptima, en el sentido de que es solo es 6ptima con respecto a dicho
subespacio de timetabling. De hecho, los nt equipos dan lugar a un total de nt! posi-
bles valores para tda = {tday, ..., tda,n} (cada uno de ellos con su Table a explorar
asociada). Para encontrar la solucién dptima no se deben explorar a todas las posi-
bles Table, sino Unicamente a aquellas asociadas a valores de tda satisfactibles. Mas
especificamente, se dice que una tda; concreta es satisfactible si, para cada dia, hay
suficientes trabajadores disponibles para llevar a cabo los turnos de trabajo requeri-
dos (contando ademas con que nunca se seleccione a ew para trabajar mas de uno de
cada er dias consecutivos). En este contexto, encontrar un tda; insatisfactible permite
ahorrar la exploracién de un 1/nt! del espacio de busqueda de timetabling. En la ins-
tancia usada como ejemplo, solo dos de los seis tda son satisfactibles ya que, debido a
las ausencias proporcionadas por abs, t; es el Gnico equipo que puede trabajar en dj.
Las dos asignaciones satisfactibles son, por tanto, asignar ¢, (respectivamente ¢3) a ds
y t3 (respectivamente ¢5) a ds.

Ademas, los nt equipos estan vinculados puesto que, en caso necesario, solo se
puede seleccionar a ew para trabajar uno de cada er dias consecutivos. Sin embargo,
como un tda satisfactible implica cumplir esta restricciéon de descanso para ew, su Table
asociada se puede dividir en nt subproblemas independientes (y exponencialmente
mas sencillos de resolver). En la instancia usada como ejemplo, la Table asociada a la
figura 9 se divide en tt; (columnas 1, 4y 7), tto (columnas 2 y 5) y tt3 (columnas 3y 6).

En resumen, el modelo mas intuitivo basado en timetabling requiere w x nd va-
riables (en la instancia usada como ejemplo 13 x 7 = 91). Suponiendo que, debido a
los turnos de trabajo requeridos, el dominio inicial de cada variable fuese {0, 20, 22,
24}, entonces el espacio de busqueda inicial contendria 4°1 = 6,12 * 10°* candidatos.
Por lo tanto, el enfoque de resolucidn basado en tda mejora la eficiencia de resolucion
mediante:

e Elusode Tuable, cuyas (ntw+1) x nd variables permiten ahorrar ntwx (nt—1) x nd
variables con respecto a la aproximacién basada en timetabling. En la instancia
usada como ejemplo, Table es de 5 x 7, ahorrando un 61% de las variables de
timetabling, y reduciendo asf el espacio de busqueda a 4°:39*91 = 2 32 % 10%L.

e La division de Table en nt subproblemas independientes, y exponencialmente
mas sencillos de resolver. En la instancia usada como ejemplo, hay tres equipos
independientes (en la figura 9 se pueden identificar mediante las columnas ver-
des, naranjas y azules, respectivamente). Por lo tanto, el espacio de bldsqueda
de cada uno de estos subproblemas es de 4%13*91 = 1,32 % 107. Como los tres
subproblemas deben ser resueltos, el espacio de bdsqueda explorado resulta ser
3,96 % 107,

e La exploracion de Unicamente aquellas Table; asociadas a tda; satisfactibles. En
la instancia usada como ejemplo, solo dos ¢da de las 3! = 6 posibles son satis-
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factibles. Por lo tanto, para encontrar la solucién 6ptima el espacio de busqueda
explorado resulta ser 7,92 x 107, que es mucho mas pequefio que el espacio ori-
ginal de 6, 12 x 1054 candidatos.

3.2 BPP

La segunda aplicaciéon de TOY(FD) consiste en un analisis empirico acerca de la com-
plejidad computacional del BPP clasico. Dicho analisis resuelve un conjunto de instan-
cias generadas paramétricamente para los que aplica tanto a las heuristicas MAXREST,
FIRSTFIT, BESTFIT y NEXTFIT, como a dos modelos CP(FD) equivalentes de Gecode y
TOY(FDg). Este conjunto de instancias BPP se basa en el modelo estadistico pa-
ramétrico de Weibull, cuya funcién de densidad de probabilidad es particularmente
interesante, ya que permite modelar con precisién diferentes aspectos de instancias
BPP de la vida real. Las conclusiones obtenidas en el andlisis proporcionan una base
para el futuro desarrollo de resolutores ad hoc que permitan resolver intancias BPP
generalizadas. Estos resolutores proporcionaran técnicas hibridas entre las heuristicas
y la resolucidn de restricciones CP(FD). Asi, se basaran en la estructura de la instan-
cia (los parametros concretos que la generan) para determinar una configuracion mas
eficiente (respecto a la técnica mas adecuada a aplicar para resolver dicha instancia).

La subseccién 3.2.1 presenta el modelo de Weibull, asi como su aplicabilidad para
ajustar instancias BPP reales. Las subsecciones 3.2.2 y 3.2.3 presentan la generacion
del conjunto de instancias y de los archivos de procesamiento por lotes (para la reso-
lucién de dicho conjunto mediante las diferentes técnicas), respectivamente.

3.2.1 Modelo paramétrico de Weibull

La conocida distribucion continua de Weibull [201] se define por dos parametros: la
forma (k > 0) y la escala (A > 0). La figura 10 presenta la funcién de densidad de
probabilidad, f(z; A, k), de una variable aleatoria = distribuida acorde a Weibull. Los
parametros dan lugar a una gran flexibilidad, permitiendo representar a distribuciones
de diferentes dominios de aplicacion, entre los que se incluye BPP. Las figuras 11y 12
presentan varios ejemplos de las diferentes distribuciones que se pueden obtener con
Weibull. En la figura 11 se muestran cuatro distribuciones, donde el parametro k toma
valores pequefios (0,5, 1,0, 1,5y 5,0). Como se puede ver, las distribuciones obtenidas

0, otherwise

>

f(w;k,k)Z{

Figura 10. Funcion de densidad de probabilidad de Weibull
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son muy diferentes, algunas proporcionando valores que se expanden varios érdenes
de magnitud con respecto al parametro A (aunque con una probabilidad muy baja).
La figura 12 muestra valores mas grandes de & (9,0, 12,0, 15,0y 18,0), lo que permite
observar que las distribuciones obtenidas con Weibull presentan una menor variacion

a medida que k aumenta.

Se ha comprobado que un conjunto de instancias BPP, basadas en la distribucién de
Weibull, representa con éxito a instancias BPP generalizadas provenientes de la indus-
tria de la optimizacidn en centros de datos [45]. Para ello, se ha utilizado a la plataforma
de computacion estadistica R [8], comprobando el ajuste que proporciona la distribu-
cién de Weibull a los datos de dichas instancias reales, mediante el uso de maxima
verosimilitud (del inglés Maximum Likelihood Fitting: MLF). Como ejemplo, la figura
13 muestra el ajuste de Weibull (circulos en verde) para los datos de una de estas ins-
tancias (linea en negro). Este analisis visual puede complementarse mediante graficos
Q-Q (del inglés Quantile-Quantile plots). Estos graficos proporcionan una herramienta
simple para determinar si dos conjuntos de datos provienen de la misma distribucion

subyacente. En una grafico Q-Q, cada punto corresponde a un determinado segmento
de ambos conjuntos de datos. Si, en la grafica resultante el conjunto de puntos se en-
cuandran sobre la diagonal ascendente (linea de pendiente 1, o de 45 grados) entonces
se puede concluir que ambos conjuntos de datos provienen de la misma distribucion
subyacente. La figura 14 presenta un ejemplo del grafico Q-Q obtenido para la misma

instancia real utilizada anteriormente.
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Figura 13. Ajuste Weibull por MLF
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Figura 14. Ajuste Weibull por graficos Q-Q

Se puede comprobar que la distribucion de Weibull computada por MLF se ajusta a
los datos de la instancia real. En particular, para los valores que van desde 0 a 20.000
(que representan la mayoria de la masa de probabilidad) el ajuste es muy preciso.
Por otro lado, para los valores atipicos, que abarcan varios drdenes de magnitud, este
ajuste es mucho peor. Sin embargo, esto tiene sentido, puesto que la probabilidad de
cada uno de estos valores es practicamente 0.

3.2.2 Generacion del conjunto de instancias

El conjunto de instancias BPP se genera mediante la biblioteca Boost [30]. Esta es una
API C++ que incluye definiciones de tipo para una distribucién de Weibull, parametri-
zada por un generador de ndmeros aleatorios, la forma (k) y la escala (\). También
se proporciona la opcién de iterar por los valores generados por la distribucién. Para
generar el conjunto de instancias, se fija A al valor 1000, de manera que los tamafios de
los elementos se expanden tres drdenes de magnitud. Para & se considera un amplio
rango de valores [0,1, 0,2, ..., 19,9], dando lugar a 199 combinaciones diferentes de
los parametros (k, ), de ahora en adelante categorias. Volviendo sobre las figuras 11y
12, se observa que estas categorias dan lugar a distribuciones muy diferentes.

Para evitar la aleatoriedad en los experimentos se generan 100 instancias para cada
categoria, lo que da lugar a la generacién de 19.900 instancias. Cada una de ellas con-
tiene 100 elementos, cuyos tamafios se almacenan en un archivo asociado (en el que
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se encuentran representados en un orden decreciente). Este archivo puede ser identifi-
cado univocamente mediante los parametros (k, \) y el indice (0, . . ., 99) dentro de la ca-
tegoria. Ademas, los archivos se enumeran de 1 a 19.900. Asi, por ejemplo, las 100 ins-
tancias generadas para k = 2,5 estan representadas en inst_2401(2.5,1000, 0).data, . . .,
inst_2500(2.5,1000, 99).data. A modo de ejemplo, la instancia inst_2405(2.5, 1000, 4).data
contiene los siguientes tamafios de elementos: {2001, 1699, 1657, 1647, 1591, 1556, 1534,
1498, 1480, 1466, 1451, 1374, 1365, 1352, 1352, 1350, 1335, 1306, 1298, 1259, 1243, 1224,
1223, 1223, 1212, 1208, 1207, 1202, 1183, 1180, 1175, 1161, 1139, 1133, 1115, 1101, 1093,
1091, 1062, 1062, 1059, 1058, 1005, 981, 979, 970, 969, 955, 946, 941, 928, 923, 916, 911,
888, 854, 849, 844, 809, 808, 808, 803, 769, 753, 728, 716, 672, 670, 665, 656, 651, 622, 591,
588, 570, 567, 558, 554, 552, 538, 527, 527, 507, 503, 490, 450, 437, 402, 386, 371, 365, 355,
325, 321, 312, 297, 205, 193, 177, 135}.

Una vez fijado el conjunto de instancias, se han analizado 11 capacidades C' dife-
rentes para el contenedor, oscilando su tamafio entre 1,0 y 2,0 (con incrementos de
0,1) veces el tamafio del elemento mas grande de la instancia a resolver. Por ejemplo,
para resolver la instancia inst_2405(2.5, 1000, 4).data, en los 11 experimentos conside-
rados C ha tomado los valores 2001, 2202, 2402, 2602, 2802, 3002, 3202, 3402, 3602, 3802
y 4002, respectivamente.

3.2.3 Ejecucion del conjunto de instancias

En primer lugar se presenta la configuracion de los modelos C++ de Gecode y de las
heuristicas. Despues se describen las pequefias diferencias necesarias para configurar
TOY(FD).

En C++, los modelos se compilan para generar ejecutables. Estos archivos ejecuta-
bles se pueden lanzar mediante un comando en una sesion de comandos del sistema
operativo. Los modelos de Gecode y de las heuristicas son adaptados, de manera que
estos reciben el nombre de la instancia de la que extraer los tamafios de los elemen-
tos (por ejemplo, inst_2405(2.5,1000, 4).data), asi como el factor por el que multiplicar
al tamafio del elemento mas grande, para establecer el tamafio del contenedor (por
ejemplo, 1,0). Ademas, reciben el nombre del archivo donde almacenar la solucién
obtenida (por ejemplo, inst_2405(2.5,1000,4).data).

El comando bpp.exe 2405 “$models_path$/bpp_instances/inst_2405(2.5,
1000, 4).data” “$models_path$/Gecode/C++/bpp_solutions/inst_2405(
2.5, 1000, 4).s01"2.51.010000 resuelve lainstancia inst_2405(2.5, 1000, 4).data
usando el modelo Gecode. El archivo .sol generado contiene una sola linea ID = 2405
Solved =1 Time = 218 Bins = 47, indicando que lainstancia 2405 se ha resuelto
en 218 milisegundos mediante el uso de una cantidad dptima de 47 contenedores.

El comando bpp.exe 2405 “$models_path$/bpp_instances/inst_2405(2.5,
1000, 4).data” “$models_path$/Heuristics/bpp_solutions/inst_2405(
2.5, 1000, 4).sol” 1.0resuelve lainstanciainst_2405(2.5,1000,4).data utilizando
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las heuristicas. El archivo .sol generado contiene cuatro lineas, una por heuristica, in-
dicando la instancia que ha sido resuelta, el tiempo empleado y el nimero de contene-
dores usados.

ID = 2405 MaxRest: 0.000 48
ID = 2405 FirstFit: 0.000 47
ID = 2405 NextFit: 0.000 63
ID = 2405 BestFit: 0.000 47

Se genera un archivo de procesamiento por lotes (.bat), que contiene los 19.900
comandos para ejecutar cada una de las instancias del conjunto. La ejecucion de un
archivo de procesamiento por lotes se llamara también sesion. Como para cada ins-
tancia se consideran 11 configuraciones de C diferentes (variando entre 1,0y 2,0, con
incrementos de 0,1), se utilizan 11 archivos de procesamiento por lotes. Por ejemplo,
el archivo bpp_session_1.0.bat da lugar a una sesién para ejecutar el conjunto
de instancias, considerando para cada una de ellas que los contenedores tienen un
tamafio igual al elemento mas grande de la instancia.

La ejecucion de una sesion en TOY(FDg) requiere unos pocos cambios con res-
pecto al proceso descrito para Gecode y las heuristicas. En primer lugar, TOY(FD)
no se compila a un lenguaje maquina, por lo que cada comando que ejecuta una ins-
tancia debe ser considerado como un objetivo TOY(FD) (que se ejecuta dentro de
una sesion del sistema). En segundo lugar, un objetivo TOY(FD) no puede leer de
un archivo, por lo que este debe incluir a la lista de elementos y al tamafio del con-
tenedor como argumentos. En tercer lugar, se modifica el flujo de salida del sistema,
de manera que se escriba la solucidn obtenida en un archivo univocamente identi-
ficado (por el id de la instancia que se ha ejecutado). En este contexto, el objetivo
bpp 2405 2001 [2001, 1699, 1657, 1647, 1591, 1556, 1534, 1498, 1480,
1466, 1451, 1374, 1365, 1352, 1352, 1350, 1335, 1306, 1298, 1259, 1243,
1224, 1223, 1223, 1212, 1208, 1207, 1202, 1183, 1180, 1175, 1161, 1139,
1133, 1115, 1101, 1093, 1091, 1062, 1062, 1059, 1058, 1005, 981, 979,
970, 969, 955, 946, 941, 928, 923, 916, 911, 888, 854, 849, 844, 809,
808, 808, 803, 769, 753, 728, 716, 672, 670, 665, 656, 651, 622, 591,
588, 570, 567, 558, 554, 552, 538, 527, 527, 507, 503, 490, 450, 437,
402, 386, 371, 365, 355, 325, 321, 312, 297, 205, 193, 177, 135] 10000
true == Result resuelve la instancia inst_2405(2.5, 1000, 4).data usando TOY(FDy).
Este objetivo vincula Result — > 47, y genera el archivo inst_2405.s0l, que contiene
como unica linea ID = 2405 Solved = 1 Time = 202 Bins = 47 (equivalente
a la computada por Gecode).

Para ejecutar el conjunto de instancias, 7OY(FD) no puede hacer uso de archivos
de procesamiento por lotes, por lo que utiliza una funcién indeterminista para simular
el comportamiento de estos. Es decir, un archivo de sesidn TOY(FDyg) (por ejemplo,
bpp_session_10.toy, que utiliza C = 1.0) contiene solo una funcién indetermi-
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nista bpp_session:: bool. Esta funcién no recibe ningin argumento, y contiene
19.900 reglas condicionales. Cada una de estas reglas devuelven true si y solo si
la ejecucion de una instancia concreta de conjunto tiene éxito (por ejemplo, la regla
2405 de bpp_session devuelve true si el objetivo de ejecutar la instancia 2405 tiene
éxito). Todo el conjunto de instancias se ejecuta mediante la inclusion de la funcion
bpp_session en el modelo TOY(FDg)y la ejecucion del objetivo bpp_session ==
true (solicitando ademas al sistema que compute todas las soluciones). Mas especifi-
camente, 7OY(FD) sufre problemas de memoria cuando la funcién contiene mas de
300 reglas, por lo que para ejecutar el conjunto completo de instancias bpp_session
se divide en bloques de 250 reglas, y cada bloque se ejecuta en una sesidn TOY(FDg).
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4 TOY(FD)comparado con otros sistemas CP(FD)

Aunque CFLP(FD) es un paradigma adecuado para abordar a un CSP o COP, la litera-
tura carece de tantas aplicaciones reales como las existentes para otros paradigmas
CP(FD) consolidados, como CP(FD) algebraicos, C++ CP(FD) o CLP(FD). En esta ter-
cera parte de la investigacion se utilizan dos COP, el CP(FD) clasico de Golomb y el
industrial de ETP, para realizar una comparativa en profundidad acerca del modelado
y resolucidn de estos COP en diferentes sistemas CP(FD) de vanguardia. En concreto
se consideran los sistemas CP(FD) algebriacos Minizinc e ILOG OPL, los sistemas C++
CP(FD) Gecode e ILOG Solver, los sistemas CLP(FD) SICStus Prolog y SWI-Prolog, y los
sistemas CFLP(FD) PAKCS y TOY(FD) (este ultimo con sus tres versiones 7TOY(FDg),
TOY(FDi)y TOY(FDs)). Las secciones 4.1 y 4.2 presentan los principales resultados
obtenidos en la comparativa de modelado y resolucion, respectivamente.

4.1 Comparativa de modelado

El resolutor de restricciones es transparente para el usuario en los sistemas CP(FD)
algebraicos, C++ CP(FD) y CLP(FD), por lo que también lo es su gestion. En el caso
de los sistemas C++ CP(FD), estos desarrollan modelos especificos para un determi-
nado resolutor, por lo que se hace explicita la gestién de las variables de decision,
las restricciones, la funcion objetivo, el almacén de restricciones, la propagacion de
restricciones, el motor de busqueda y el control que este hace de la exploracién. De
igual modo, es necesario gestionar la recoleccion de basura de todos estos elementos.
Mas especificamente, en Gecode la nocion de resolutor de restricciones esta represen-
tada mediante un objeto Space, el cual se programa por herencia, utilizando subclases
dedicadas, cuyo constructor de clase contiene la formulacion del problema a resolver.
En ILOG Solver la nocién de resolutor de restricciones estd representada mediante un
objeto IloSolver, pero el problema se formula en la capa genérica de modelado
de ILOG Concert, que incluye un objeto para representar explicitamente al almacén
de restricciones. Obviamente, esta capa ILOG Concert también incluye un proceso de
traduccidn entre las variables y restricciones genéricas impuestas en el almacén y las
variables y restricciones especializadas con las que trabajara IloSolver. Finalmente,
para mostrar la solucion obtenida, los sistemas C++ CP(FD) requieren métodos especi-
ficos de Space e I1oSolver, que permitan acceder a los valores computados para las
variables. En los sistemas CP(FD) algebraicos, CLP(FD) y CFLP(FD), como las varia-
bles son declaradas libremente, estas se pueden utilizar directamente para mostrar
sus valores obtenidos.

Cuando la formulacion de un problema involucra multiples etapas, los sistemas
CP(FD) algebraicos requieren varios modelos (almacenados en archivos independien-
tes). Este es el caso de ETP, para el que los sistemas CP(FD) algebraicos utilizan cuatro
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archivos, ya que tanto la etapa team_assign como ti_solve requieren un archivo inde-
pendiente. En el primero de los casos, esto es debido a que existen variables que se
deben tratar como variables de decisidn en team_assign, pero como parametros en
tt_split y tt_map. En el caso de ti_solve, la etapa se debe aislar para poder explotar
la independencia de cada equipo. Un archivo de procesamiento externo coordina la
ejecucion de los diferentes modelos, generando también los argumentos de entrada
para cada uno de ellos. La programacion de este archivo de procesamiento representa
una dificultad afiadida (ya que es totalmente independiente del modelado de un pro-
blema CP(FD)). Para el resto de paradigmas, el modelo de ETP esta contenido en un
solo archivo. En los sistemas C++ CP(FD), las etapas tt_split y tt_map se implementan
facilmente mediante el uso de las abstracciones de C++, pero las etapas team_assign
y la etapa tt_solve de cada equipo requieren un resolutor de restricciones dedicado.
Esto es obligatorio ya que los resolutores C++ CP(FD) no soportan el almacenamiento
de nuevas restricciones (como las impuestas en ¢t_solve) cuando estos estan en medio
de una exploracién de busqueda (como la que se inicia en team_assign). Mientras que
en Gecode la abstraccién de un resolutor de restricciones dedicado para team_assign
y tt_solve da lugar a diferentes subclases de Space, en ILOG Solver todos los resolu-
tores se implementan como objetos I1oSolver. En los sistemas CLP(¥D)y CFLP(FD),
el uso de un razonamiento por modelos permite abordar facilmente la formulacion
propuesta en el algoritmo p_tt. Las diferentes etapas son coordinadas mediante una
simple emumeracién en orden de estas, con una primitiva labeling colocada al final de
team_assign Y tt_solve, para asegurar una correcta implementacién de la arquitectura
de p_tt. Obviamente, tanto los sistemas CLP(FD) como CFLP(FD) necesitan gestionar
internamente varios resolutores de restricciones (para team_assign Yy tt_solve en cada
equipo). Sin embargo, como estos sistemas abstraen el concepto de resolutor de res-
tricciones, su gestion es transparente al usuario.

Mientras que los sistemas C++ CP(FD), CLP(FD)y CFLP(FD) utilizan estructuras de
datos dindmicas (como vectores y listas), los sistemas CP(FD) algebraicos se basan en
arrays estaticos. Por ello, estos Ultimos necesitan parametros de entrada adicionales
que les permitan determinar por adelantado la cantidad de elementos que deberan
contener. En t¢_split se utilizan tanto arrays bidimensionales como tridimensionales
que permiten configurar los parametros de entrada y la estructura de los diferentes
equipos que seran posteriormente resueltos en ¢¢_solve. Como estos arrays tienen una
longitud fija, se necesitan variables y restricciones FD adicionales para representar
dias extra en los equipos con un menor ndmero de dias. Por otra parte, estos arrays
proporcionan tanto acceso como indexacion directo para cada uno de sus elementos,
mientras que en los sistemas CLP(FD) y CFLP(FD) se necesitan variables adicionales (e
incluso predicados y funciones dedicados) para acceder e indexar los elementos de las
listas.

El ahorro de variables 7D permite reducir la red de restricciones impuesta so-
bre el almacén. Tomando como ejemplo las variables equivalentes de tt y trans_tt
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en ETP, se ha comprobado que los sistemas CP(FD) algebraicos no permiten reducir
el nimero de variables impuestas, ya que ¢t y trans_tt se encuentran declaradas en
dos arrays bidimensionales independientes (con sus variables equivalentes posterior-
mente relacionadas mediante restricciones explicitas de igualdad). En los sistemas C++
CP(FD), CLP(FD) y CFLP(FD), de cara al modelado, estas variables equivalentes dan
lugar a dos representaciones diferentes. Sin embargo, de cara a la resolucién, am-
bas se encuentran representadas mediante una Unica variable comin impuesta sobre
el almacén. Para ello, en los sistemas C++ CP(FD) es suficiente con inicializar cada
trans_tt;; usando a tt;; como su parametro. En concreto en Gecode, ¢t y trans_tt for-
man parte de los atributos de la clase StageIII. Sin embargo, estos se representan
como vectores unidimensionales (a diferencia de los vectores bidimensionales usados
en ILOG Solver y que resultan una opcién mucho mas intuitiva). Esta aproximacion
unidimensional implica una dificultad afiadida al modelado puesto que exige recom-
putar todos los indices de las variables que intervienen en las restricciones impues-
tas. Sin embargo, esto permite clonar tanto ¢t como trans_tt por parte del constructor
de copia mediante una Unica operacién atémica. El uso de vectores bidimensionales
habria exigido n operaciones (una por cada dia de trabajo del equipo), penalizando
el rendimiento del propio método de copia y el del propio tiempo de resolucién del
problema. Como puede apreciarse, este uso de vectores unidimensionales representa
un matiz de bajo nivel, y demuestra que la falta de abstraccion en C++ CP(FD) puede
dar lugar a una ruptura del denominado aislamiento entre modelado y resolucién de
un problema. En los sistemas CLP(FD) y CFLP(FD), ¢t se construye mediante la ge-
neracion de nuevas variables logicas, y trans_tt se construye a partir de ¢t mediante
unificacién de patrones. Mientras que el resolutor 7 es el encargado de la unificacion
de dos variables logicas, la igualdad de dos variables 7D da lugar a la imposicién de
una restricciéon FD sobre el almacén. Por lo tanto, la unificacién entre las variables
equivalentes de ¢t y trans_tt debe realizarse antes de imponer cualquier restriccion
FD sobre estas. Esto contradice la naturaleza puramente declarativa de los sistemas
CLP(FD) y CFLP(FD), ya que el orden en que se formule el problema se convierte en
relevante para la eficiencia de la resolucién.

El uso de expresiones de agregacién permite a los sistemas CP(FD) algebraicos
declarar bloques de restricciones en una sola linea de c4digo, de manera mucho mas
elegante que en el caso de los bucles imperativos de C++ CP(FD) o de los procesos
recursivos de CLP(FD) y CFLP(FD). Sin embargo, como ni MiniZinc ni ILOG Solver in-
cluyen la nocién de contador para estos bloques, la declaracién de algunas restriccio-
nes resulta mucho mas compleja (especialmente cuando estas implican una relacién
compleja entre los indices de las variables involucradas). En los sistemas CLP(FD)y
CFLP(FD), el uso de variables auxiliares declaradas al vuelo facilita la especificacion de
algunas de estas restricciones. Ademas, en CFLP(FD), el uso del orden superior y la
notacion funcional permite evitar la declaracion explicita de estas variables auxiliares.

En cuanto a la propagacion de restricciones, los sistemas CP(FD) algebraicos solo
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soportan el modo por lotes, y el sistema CFLP(FD) PAKCS solo soporta el modo in-
cremental. En el caso de C++ CP(FD), por defecto, el modo de propagacién es por
lotes, pero se puede modificar a los modelos para que estos soporten el modo in-
cremental, mediante el uso de variables extra que controlan la satisfiabilidad del al-
macén de restricciones tras cada nueva restriccion impuesta. En el caso de CLP(FD)
el modo de propagacion es incremental de forma predeterminada, pero se puede mo-
dificar a los modelos para que estos soporten el modo por lotes mediante el uso de
variables extra que congelen el almacenamiento de las restricciones impuestas. Final-
mente, TOY(FD) contiene primitivas explicitas para establecer un modo u otro de
propagacion, permitiendo aplicar de forma trivial diferentes modos de propagacion a
diferentes partes del modelo.

En cuanto a la exploracion de busqueda, ademas del control sobre esta, la decla-
racion debe especificar el conjunto de variables, el orden en que estas se etiquetan, el
orden en que se prueban los diferentes valores del dominio de cada variable y, final-
mente, la funcién de coste. Los sistemas CP(FD) algebraicos, CLP(FD)y CFLP(FD) pro-
porcionan primitivas expresivas que permiten especificar todos estos aspectos en una
linea de cédigo. En Gecode, la especificacién es de mas bajo nivel, pues esta asociada a
la exploracion del arbol que se va a realizar. Los nodos del drbol se abstraen mediante
objetos Space. Un motor de busqueda se asocia a un cierto Space, para controlar
la exploracion de blsqueda. El constructor de copia del Space debe programarse ex-
plicitamente (puesto que el motor lo utiliza para clonar Spaces, paso imprescindible
para la realizacion de la recomputacién hibrida). También debe programarse explici-
tamente la funcién de coste, ya que esta se encarga de afiadir dinamicamente nuevas
restricciones que permiten continuar la busqueda para encontrar nuevas soluciones
mejores que la actual. De este modo, forzando al motor a buscar todas las soluciones,
se puede garantizar que la Ultima solucién encontrada sera la dptima. ILOG Solver re-
quiere varias primitivas para especificar la bisqueda que se componen para generar
el demonio final que sera ejecutado por I1oSolver. Sin embargo, no se requiere un
control de la busqueda ni la programacion de métodos especificos.

El modelado de los COP propuestos explota en gran medida la expresividad que
ofrece cada paradigma.

En el caso de los sistemas CP(FD) algebraicos, estas caracteristicas incluyen:

e El uso de conjuntos (set) como una estructura de datos basica, lo que incluye
también el uso de arrays de conjuntos.

e El uso de rangos de enteros a. .b, que indican el conjunto {a, (a+1), (a+2),
..,b}. La posibilidad de seleccionar a todos los elementos de un rango, o tan
solo a aquellos que cumplen una determinada condicion.

e El uso de expresiones sum, para contabilizar la cantidad de elementos de una
estructura de datos que cumplen una condicion.
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La carencia, en MiniZinc de un método para obtener la cardinalidad de un con-
junto. Sin embargo, MiniZinc si que permite acceder al i-ésimo elemento del
conjunto a, simplemente usando a[i]. Ademas, permite comprobar si un ele-
mento e pertenece al conjunto a, simplemente usando (e in a), y permite
transformar este resultado en un entero, utilizando la primitiva bool2int.

La necesidad de convertir a cualquier parametro v que vaya a mostrarse como
parte de la solucién en el bloque output, en una variable de decisién (FD).
Esto también implica, como efecto colateral, la conversion de cualquier otro
parametro v’ asociado a v.

El uso de restricciones de implicacion ¢_1 -> c_2. En ellas, c_1 debe soportar
reificacion y c_2 se impone Unicamente cuando c_1 se reduce a true.

El uso de variables locales.

En el caso de los sistemas C++ CP(FD), estas caracteristicas incluyen:

El uso de un estilo de programacién imperativo, que controla explicitamente el
orden de ejecucion del modelo.

El uso de métodos, que proporcionar una mayor modularidad en el codigo.

El paso de parametros por valor y por referencia, permitiendo un uso mas efi-
ciente de la memoria.

El uso de la biblioteca estandar, que abstrae la gestién de vector.

En el caso de los sistemas CFLP(FD), estas caracteristicas incluyen:

El uso de funciones de orden superior, que dan lugar a una formulacion mas
concisa.

El uso de variables extras en el lado derecho de una regla de funcién.

El uso de la evaluacion perezosa, que permite evaluar los argumentos de una fun-
cién bajo demanda (el uso de la llamada por valor, utilizado en LP, en contraste
con el uso de la llamada bajo demanda, utilizado en FP [147]).

El uso de declaraciones de tipos, que permite el desarrollo de programas mas
seguros y mantenibles. Es importante sefialar que la declaracién de tipo es
opcional, ya que el sistema siempre infiere un tipo para cada funcién, tanto si
este se declara como si no. Finalmente, el sistema también soporta argumentos
polimorficos.

El uso de la aplicacion parcial.

El uso de encaje de patrones, que permite discriminar la regla de una funcion a
aplicar.
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En el caso de los sistemas CLP(FD), algunas de sus caracteristicas son directamente
comparadas con las de los sistemas CFLP(FD):

e La formulacién de los predicados resulta ser menos compacta que la de fun-
ciones, debido a la ausencia de orden superior.

e Lacantidad de variables utilizada. En concreto la ausencia de funciones de orden
superior hace explicita la declaracién de variables auxiliares, que en CFLP(FD) se
pueden declarar de manera implicita. Por otro lado, en CFLP(FD), gracias a los
argumentos polimorficos, una misma funcidn de orden superior se puede aplicar
en distintos escenarios, mientras que en CLP(FD) se requiere la creacién de un
predicado especifico para cada uno de estos escenarios.

e El uso de argumentos de entrada/salida.

e La posible aplicacién de encaje de patrones también en el resultado de un cém-
puto.

e El uso del operador de corte (!), que impide la evaluacion futura de las cladsulas
restantes del predicado (lo cual, en caso de hacer encaje de patrones, dispararia
su ejecucion). Dicho operador no esta soportado en CFLP(FD), por lo que, para
evitar que multiples reglas puedan hacer encaje de patrones, todas ellas deben
ser mutuamente excluyentes. En cualquier caso, la ausencia de un operador de
corte no se debe ver como un inconveniente, ya que este representa un meca-
nismo no declarativo (pues convierte en relevante el orden en que se definen las
cldusulas de un predicado).

4.2 Comparativa de resolucion

Se ha establecido un marco comun para la realizacién de los experimentos teniendo en
cuenta el computador y las versiones de cada sistema utilizados, asi como el algoritmo
seguido para resolver los problemas, el conjunto de variables y restricciones usado
(incluyendo a las restricciones globales), el modo de propagacion, la estrategia de bus-
queda y la medicion del tiempo empleado para obtener la solucién. Se ha justificado
cualquier ligera desviacion de cada sistema con respecto a esta configuracién comun.

Se han considerado a las instancias G-9 y ETP-7 (resueltas en décimas de segundo),
G-10 y ETP-15 (resueltas en segundos) y, finalmente, G-11 y ETP-21 (resueltas en mi-
nutos). Como era de esperar, a medida que las instancias aumentan lo suficiente, la
exploracion de busqueda se convierte en el factor clave en el tiempo empleado para
solucionar el problema. En este contexto, G-9, G-10, G-11y ETP-21 se pueden clasificar
como instancias de solo busqueda (del inglés just search: js), ya que, para ellas, las
tres versiones de 7OY(FD) dedican mas del 98% de su tiempo de resolucién a la bus-
queda, convirtiendo a dicha resolucion en puramente CP(FD) dependiente. Por otra
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parte, ETP-7 y ETP-15 se pueden clasificar como instancias de diferentes factores (del
inglés, different factors: df), ya que, para ellas, las tres versiones de TOY(FD) dedican
entre un 0%-98% de su tiempo de resolucion a la bdsqueda, lo que convierte a dicha
resolucién en dependiente tanto de CP(FD) como de la sobrecarga inherente a tareas
de cada paradigma.

Los resultados de resolucién generales ponen de manifiesto que para las instan-
cias js hay un orden claro en el rendimiento alcanzado por los diferentes resolutores
de restricciones, pues los tres sistemas que utilizan un resolutor Gecode, ILOG Solver
y SICStus clpfd alcanzan respectivamente las posiciones 1-3, 4-6, 7-9 (con SWI-Prolog
en el décimo lugar). Para las instancias df este ranking entre los resolutores se rompe
parcialmente: por un lado, SICStus e ILOG Solver obtienen un mejor posicionamiento
para ETP-7 y ETP-15, asi como PAKCS, TOY(FDs) y SWI-Prolog, aunque estos ultimos
lo hacen solo para ETP-7. Por otro lado, MiniZincy 7TOY(FDi) obtienen un peor posi-
cionamiento para ETP-7 y ETP-15, asi como TOY(FDg) e ILOG OPL, aunque estos ulti-
mos solo para ETP-7.

En Golomb, la clasificacidn completa de las tres instancias es: (1) MiniZinc, (2)
Gecode, (3) TOY(FDy), (4) TOY(FDi), (5) ILOG Solver, (6) ILOG OPL, (7) SICStus
Prolog, (8) PAKCS, (9) TOY(FDs) y (10) SWI-Prolog. Por lo tanto, se puede afirmar
que Golomb es un problema estable, ya que el orden obtenido para las tres instancias
es fijo. Por otra parte, el peor rendimiento de cada sistema (con respecto al sistema
mas rapido, MiniZinc) aumenta a medida que las instancias aumentan. Este peor ren-
dimiento con respecto a MiniZinc es respectivamente de 2,0-2,5, 4,0-5,5 y 7,0-9,5 veces
mas lento para los restantes sistemas basados en los resolutores de Gecode, ILOG
Solver y SICStus clpfd. Sin embargo, si se compara al sistema mejor posicionado
basado en el resolutor Gecode, ILOG Solver y SICStus clpfd (y, asimismo, a los tres
sistemas posicionados como segundos basados en estos resolutores y a los tres sis-
temas posicionados como terceros, respectivamente) entonces el peor rendimiento de
los sistemas ILOG Solver y SICStus clpfd (con respecto a los sistemas Gecode) dismi-
nuye en aproximadamente un 50%-60%.

En ETP-21 (la Unica instancia js de ETP), el orden completo es: (1) Gecode, (2)
TOY(FDg), (3) MiniZinc, (4) ILOG Solver, (5) TOY(FDsi), (6) ILOG OPL, (7) SICStus
Prolog, (8) PAKCS, (9) TOY(FDs) y (10) SWI-Prolog. El peor rendimiento (con respecto
al sistema mas rapido, Gecode) de los restantes sistemas Gecode, ILOG Solver y
SICStus clpfdesde 1,01-1,53, 1,89-2,52 y 3,85-6,83 veces mas lento, respectivamente.
En este caso, si se compara los sistemas posicionados como primeros, como segundos
y como terceros (respectivamente) basados en estos resolutores, entonces el rendi-
miento se modifica, convirtiéndose en un 15% mejor o peor (dependiendo de si los
sistemas escogidos ocupan la segunda o tercera posicion).

Considerando a las tres instancias de ETP, se puede afirmar que este es un pro-
blema menos estable, ya que el orden obtenido por cada sistema depende de la ins-
tancia concreta que se esté ejecutando. El peor rendimiento del sistema con orden
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2 (respecivamente 3, 4 y asi sucesivamente) con respecto a Gecode (que mantiene la
primera posicidn en las tres instancias) disminuye a medida que las instancias aumen-
tan. Sin embargo, como este orden entre sistemas varia para las distintas instancias,
se requiere una segunda comparativa donde se compare a cada sistema concreto s
con Gecode. Esta segunda comparacion no permite obtener conclusiones generales:
dependiendo del sistema elegido, su peor rendimiento con respecto a Gecode dismi-
nuye, aumenta, e incluso disminuye para despues aumentar, a medida que las instan-
cias aumentan. Por otra parte, el orden se vuelve casi estable cuando se compara a los
sistemas (basados en los resolutores de Gecode, ILOG Solver y SICStus clpfd) posi-
cionados como primeros, segundos y terceros, respectivamente. Sin embargo, en este
caso la sobrecarga inherente de cada paradigma juega un papel clave en la resolucion
de ETP-7, modificando el orden de rendimiento en la resolucion, que ahora pasa a ser
(1) Gecode, (2) SICStus y (3) ILOG Solver. Asimismo, en ETP-7, el peor rendimiento de los
sistemas ILOG Solver y SICStus c1pfd posicionados como segundos y terceros (respec-
tivamente) disminuye en un 40%-80% con respecto al peor rendimiento de los sistemas
ILOG Solver y SICStus c1pfd posicionados como primeros. En ETP-15, la sobrecarga de
cada paradigma no modifica el orden de rendimiento (1) Gecode, (2) ILOG Solver y (3)
SICStus. Sin embargo, para esta instancia no pueden extraerse conclusiones generales
acerca de como varia el rendimiento cuando se comparan a los sistemas posicionados
como segundos y terceros (con respecto a los posicionados como primeros).

Finalmente, los resultados de los tres sistemas basados en Gecode, ILOG Solver y
SICStus c1lpfd se consideran de manera independiente. Para cada uno de estos sub-
conjuntos, la hipotesis inicial del analisis es que, en los modelos nativos (C++ CP(FD)
Gecode, C++ CP(FD) ILOG Solver y CLP(FD) SICStus) la red de restricciones del COP se
genera explicitamente, mientras que en MiniZinc, TOY(FDg), ILOG OPL, TOY(FDs),
PAKCS y TOY(FDs) esta red de restricciones se genera implicitamente, ya que de-
pende de una compilacién a la entrada aceptada por el resolutor en cuestion.

En cuanto a los sistemas basados en el resolutor de Gecode, el orden para las ins-
tancias de Golomb es: (1) MiniZinc, (2) Gecode y (3) TOY(FDg). Sin embargo, para
las instancias de ETP este orden es: (1) Gecode, (2) TOY(FDyg) y (3) MiniZinc. En la
comparacion entre Gecode y TOY(FDyg), el primero es siempre mas rapido que el
segundo. Sin embargo, mientras que, para las instancias df, el peor rendimiento de
TOY(FDyg) es bastante grande, para las instancias js el rendimiento de TOY(FDg)
es practicamente idéntico al de Gecode. La interfaz de TOY(FD) a la API de Gecode
impone (al formular a los COP de Golomb y ETP) la misma red de restricciones que la
impuesta por los modelos nativos C++ de Gecode. MiniZinc también impone la misma
red de restricciones para el COP de Golomb, pero para ETP impone una red de res-
tricciones 2,5 veces mas grande que la impuesta por el modelo nativo Gecode. Sin em-
bargo, el factor que esta determinando la obtencién de un mayor o menor rendimiento
es la cantidad de restricciones que estan siendo propagadas, asi como la eficiencia del
contructor de copia copy() de la clase Space. En cuanto a las propagaciones, se
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ha comprobado que TOY(FDg) efectda practicamente las mismas que Gecode (entre
1,01 y 1,02 veces mas propagaciones). En el caso de MiniZinc, este efectda solo un
0,30 de las propagaciones de Gecode para Golomb, siendo asi 2,56 veces mas rapido.
Para ETP, MiniZinc efectda de 1,33 a 1,47 veces mas propagaciones (para los distintos
equipos) que Gecode, siendo asi de 1,53 a 1,57 veces mas lento. En cuanto al método
copy, se ha comprobado que el modelo Gecode que utiliza vectores bidimensionales
(para modelar a tt y trans_tt) obtiene un rendimiento de 1,22 a 1,31 veces mas lento
(para los distintos equipos) que el modelo Gecode que utiliza vectores unidimensio-
nales. Ademas, esta diferencia del modelo bidimensional proviene directamente del
peor rendimiento de su método copy () (con respecto al del modelo unidimensional)
durante la exploracién de busqueda. En el caso de TOY(FDg), el tiempo empleado
en ejecutar su método copy () durante la exploracion de busqueda es practicamente
idéntico al del modelo Gecode unidimensional. Finalmente, se ha comprobado que
tanto Gecode como 7TOY(FDyg) conducen a la exploracion del mismo arbol de bus-
queda (exactamente con la misma poda de los dominios de las variables en cada nodo
del arbol). Sin embargo, se ha utilizado una restriccion adicional para comprobar que,
incluso alcanzando la misma poda de dominios, el orden y la cantidad de restricciones
propagadas en Gecode y en TOY(FDg) difieren.

En cuanto a los sistemas basados en el resolutor de ILOG Solver, el orden para las
instancias de Golomb es: (1) TOY(FDs3), (2) ILOG Solver e (3) ILOG OPL. En ETP, mien-
tras que el orden de las instancias df es (1) ILOG Solver, (2) ILOG OPL Yy (3) TOY(FDi),
el orden para la instancia js de ETP-21 es (1) ILOG Solver, (2) TOY(FDi) y (3) ILOG OPL.
Esto revela dos comportamientos diferentes por parte de 7OY(FDi): por un lado, su
rendimiento se ve claramente penalizado en las instancias df, modificando el orden
obtenido con respecto al de la instancia js. En este sentido, mientras que el peor ren-
dimiento obtenido para las instancias df es muy grande, para la instancia js este se
reduce a entre 1,06 y 1,33. Desafortunadamente, ni la API de ILOG OPL ni el de ILOG
Solver proporcionan un método para calcular la cantidad de restricciones propagadas
durante la exploracidn de busqueda, lo que supone un inconveniente para el analisis
de estos sistemas. En este contexto, se observa que los tres sistemas imponen sobre
el almacén redes de restricciones diferentes y que, cuanto menor es esta red, mayor
es el rendimiento del resolutor al efectuar la busqueda. Respecto a estas redes, re-
sulta interesante sefialar que la diferencia de variables y restricciones impuestas en
ILOG Solver y TOY(FDi) es dependiente del COP: mientras que TOY(FDi) utiliza
menos variables y restricciones que ILOG Solver para G-11, para ETP-21 utiliza mas.
Finalmente, las ejecuciones de ILOG Solver y TOY(FDi) han sido monitorizadas, iden-
tificando que hay casos en los que la interfaz de 7OY(FD:) permite ahorrar variables
y restricciones con respecto al modelo nativo C++ de ILOG Solver, y viceversa.

En cuanto a los sistemas basados en el resolutor de SICStus clpfd, el orden para
las instancias de Golomb y ETP es: (1) SICStus Prolog, (2) PAKCS y (3) TOY(FDs). El
peor rendimiento de PAKCS y TOY(FDs) con respecto a SICStus es mayor para las
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instancias df debido a la mayor sobrecarga del estrechamiento perezoso con respecto
a la resolucion SLD. Sin embargo, tampoco en las instancias js coincide el tiempo de
resolucion de SICStus, PAKCS y TOY(FDs), revelando que hay un desajuste entre los
modelos clpfd generados por los tres sistemas. En este contexto, independiente-
mente del COP resuelto, PAKCS oscila entre 1,05y 1,07 veces mas lento que SICStus (en
unos resultados similares a los obtenidos por TOY(FDg) con respecto a Gecode). Sin
embargo, el peor rendimiento de TOY(FDs) con respecto a SICStus es dependiente
del problema: mientras que, para Golomb, este oscila entre 1,07 y 1,11, para ETP- 21
aumenta notablemente, hasta 1,78. Esta diferencia de rendimiento entre Golomb y
ETP se hace aln mas clara cuando se compara con PAKCS. Mientras que el peor ren-
dimiento de TOY(FDs) con respecto a PAKCS decrece a medida que las instancias de
Golomb aumentan, este aumenta a medida que las instancias de ETP aumentan. Se ha
presentado un ejemplo sencillo en el que se imponia una Unica restriccion 7D, pero
desde dos escenarios diferentes. Se ha comprobado que clpfd realiza dos traduc-
ciones diferentes para dicha restriccion, dando lugar a dos indexicals semanticamente
equivalentes, pero basados en diferentes niveles de consistencia en sus algoritmos de
propagacion. Ademas, se ha comprobado que este nivel de propagacion no es con-
figurable en SICStus. Por otra parte, aunque ambos escenarios dan lugar a diferentes
podas del dominio de las variables, esto no se refleja en las estadisticas de busqueda
mostradas, donde la Unica diferencia observada se refiere a la cantidad de veces que
se ejecuta el algoritmo de filtrado. Obviamente, este es el factor que esta determi-
nando el tiempo de resolucion de cada ejecucion. Sin embargo, estos resultados no
son relevantes por si mismos, ya que seria necesario conocer el tiempo que emplea
cada algoritmo en ejecutarse y (en ejemplos con varios indexicals) el numero de veces
que se ejecuta cada uno de estos algoritmos. Desafortunadamente, SICStus no pro-
porciona esta informacion. Finalmente, el predicado call_residue se ha utilizado
para mostrar el almacén de restricciones de SICStus y TOY(FDs) antes de iniciar la
exploracion de busqueda para una instancia minima G-5. Se ha comprobado que el
conjunto de indexicals generado en ambos modelos difiere ligeramente, dando lugar
a diferentes niveles de consistencia en sus algoritmos de propagacion.
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5 Conclusionesy trabajo futuro

En esta seccidn se presentan las principales conclusiones de la investigacidn realizada
en esta tesis, que ha sido dividida en tres partes: la mejora del rendimiento de reso-
lucién de TOY(FD), dos aplicaciones reales de TOY(FD), y un posicionamiento de
TOY(FD) con respecto a otros sistemas CP(FD) de vanguardia para el modelado y
resolucién de dos COP. Las secciones 5.1, 5.2 y 5.3 presentan las conclusiones de cada
una de estas partes, y la seccion 5.4 presenta posibles vias de trabajo futuro para cada
una de ellas.

5.1 Mejora del rendimiento de 7OY(FD)

Se ha presentado un esquema para integrar resolutores de restricciones C++ CP(FD) en
TOY(FD) (en un contexto facilmente adaptable a otros sistemas CLP(FD) o CFLP(FD)
implementados en Prolog). Se han descrito las dificultades adicionales surgidas por la
falta de correspondencia entre las variables, restricciones y tipos soportados por el sis-
tema y resolutor. Ademas, se ha descrito la adaptacién de un resolutor C++ CP(FD) a
los requisitos de un sistema CFLP(FD), como son el razonamiento por modelos, el uso
de multiples estrategias de busqueda (intercaladas con el almacenamiento de nuevas
restricciones) y un modo de propagacion tanto incremental como por lotes. El es-
quema ha resultado ser ciertamente génerico, puesto que ha permitido integrar dos
resolutores diferentes (como son Gecode e ILOG Solver, dando lugar a las nuevas ver-
siones del sistema TOY(FDg) y TOY(FDi), respectivamente) siguiendo simplemente
los pasos que se describen en el esquema.

El rendimiento de resolucion de las tres veriones TOY(FD) ha sido analizado me-
diante el uso de tres CSP clasicos (series magicas, reinas y nimeros de Langford) y un
COP clasico (reglas de Golomb). Estos problemas abarcan todo el repertorio de res-
tricciones FD soportadas por TOY(FD). Ademas, mediante el uso de tres instancias
por problema (resueltas en érdenes de magnitud de décimas de segundo, segundos
y minutos, respectivamente) se ha comparado el rendimiento de TOY(FD) a medida
que la complejidad computacional del problema aumenta.

Se ha comprobado que TOY(FDg) y TOY(FDi) mejoran el rendimiento de re-
solucién de TOY(FDs), pero la mejora lograda (que va desde 1,15 a 3,57 veces mas
rapido) es dependiente del problema e instancia concreta a resolver. Para los proble-
mas de series magicas y Golomb, la mejora de TOY(FDg)y TOY(FDi) con respecto a
TOY(FDs) permanece estable a medida que las instancias aumentan. Para los casos
de las reinas y de Langford, la mejora alcanzada aumenta desde la instancia resuelta
en décimas de segundo a las instancias resueltas en segundos y minutos. En cualquier
caso, el modo de propagacién no juega un papel clave en el tiempo de resolucion, ya
que, aunque el modo por lotes es mas rapido que el incremental para todos los casos,
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las diferencias obtenidas son muy pequefias (aproximadamente un orden de magnitud
menor que el tiempo de resolucién de la instancia, o incluso menos).

Por otra parte, existe una clara correlacion entre el porcentaje de tiempo de resolu-
cién del problema que se dedica a la busqueda y la mejora de rendimiento alcanzada.
Asi, mientras el porcentaje se mantiene estable en los problemas de series magicas
y Golomb, este aumenta claramente desde las instancias de las reinas y Langford re-
sueltas en décimas de segundo a las instancias resueltas en segundos y minutos. Esto
convierte a la resolucién de TOY(FD) en una tarea completamente dependiente de
CP(FD). Es decir, el tiempo que cada versién de TOY(FD) emplea para la resolucién
de un problema viene determinado univocamente por el rendimiento ofrecido por su
resolutor 7D para acometer una busqueda (mediante la propagacion de restricciones
basicas y globales).

En este sentido, el otro enfoque adecuado para mejorar el rendimiento de reso-
lucion de TOY(FDg) y TOY(FDi) se centra en la estrategia de busqueda aplicada;
especificamente, en sustituir una estrategia basica por una nueva estrategia ad hoc
que explote el conocimiento acerca de la estructura del problema y sus soluciones. Es
decir, manteniendo el mismo resolutor para acometer la busqueda, modificar el mo-
delo TOY(FD) para especificar una estrategia de busqueda que requiera una menor
exploracion para encontrar las soluciones al problema. La motivacién de esta apro-
ximacion (facilmente adaptable a otros sistemas CLP(FD) o CFLP(FD) implementados
en Prolog e integrando resolutores C++ CP(FD)) se basa en aprovechar tanto la gran
expresividad de TOY(FD) para especificar estrategias de busqueda, como la alta efi-
ciencia de Gecode e ILOG Solver para acometer estas busquedas.

Por un lado se han presentado ocho nuevas primitivas de busqueda que incluyen
algunos conceptos novedosos (no directamente disponibles en Gecode ni en ILOG
Solver): una exploracion exhaustiva en anchura sobre los primeros niveles del arbol
(ordenando posteriormente los nodos satisfactibles por un criterio especifico); una
fragmentacion del dominio de las variables, acotando cada una de ellas a un subcon-
junto de los valores de su dominio (en lugar de asignandolas directamente a un valor
concreto); y la aplicacion de estas estrategias de asignacion o de fragmentacion Unica-
mente a un subconjunto de las variables involucradas. Por otro lado, también se ha re-
marcado la expresividad y flexibilidad de TOY(FD) para especificar algunos criterios
de busqueda, asi como que el uso de un razonamiento por modelos permite aplicar
diferentes estrategias de bldsqueda (generando diferentes escenarios) a la resolucion
de un problema.

Las nuevas versiones de TOY(FDg) y TOY(FDi) han ampliado las bibliotecas
de Gecode e ILOG Solver utilizando sus diferentes mecanismos de busqueda subya-
centes (Search Engine, Brancher y recomputacién hibrida en Gecode; I1oGoal,
constructor de IloGoal y pila de ejecucién de I1oGoal en ILOG Solver). En primer
lugar, se ha presentado un esquema abstracto que enumera los requisitos necesarios
para integrar estas estrategias de busqueda en TOY(FD) (y que ha sido instanciado
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posteriormente a Gecode e ILOG Solver). Ademas, se ha analizado el impacto en la
arquitectura del sistema de la implementacién de estas primitivas. Esto ha revelado
que la especificacion de criterios de busqueda directamente en TOY(FD) genera una
sobrecarga computacional debido a la interaccién recursiva entre las capas Prolog y
C++ de dicha arquitectura.

Los modelos TOY(FD) para las series magicas, reinas, nimeros de Langford y
Golomb se han revisado, discutiendo la estructura de las soluciones de cada problema
y analizando cémo el uso de las nuevas estrategias de busqueda propuestas permite
reducir la exploracién para encontrar estas soluciones. Se han desarrollado nuevos
modelos TOY(FD), equivalentes a los anteriores, pero con una nueva estrategia de
busqueda ad hoc. Se ha comprobado que estas estrategias mejoran el rendimiento de
resolucion de TOY(FDg) y TOY(FDi) con respecto a los modelos originales (en un
rango desde 1,05 veces mas rapido a mas de 1000). En particular, mientras que para
los problemas de las reinas y de Langford el mayor rendimiento alcanzado claramente
aumenta a medida que el tamafio de las instancias aumentan, para las series magicas
este mayor rendimiento se mantiene estable, y para Golomb disminuye. Por otra parte,
el mayor rendimiento alcanzado por TOY(FDg) con respecto a TOY(FDi) aumenta
con respecto al obtenido para los modelos originales, lo que revela que el enfoque de
Gecode para ampliar su biblioteca con nuevas estrategias de busqueda es mas eficiente
que el de ILOG Solver.

5.2 Aplicaciones reales de 7OY(FD)

Se han presentado dos aplicaciones industriales del sistema. La primera de ellas ha
consistido en un problema de asignacion de trabajadores a turnos de trabajo (ETP)
proveniente de la industria de las comunicaciones. A diferencia del conjunto de pro-
blemas de prueba utilizado en la primera parte de la investigacién (series magicas,
reinas, nimeros de Langford y Golomb), este ETP explota tanto la gran expresividad
de TOY(FD) como su mayor rendimiento de resolucién recién alcanzado en las ver-
siones TOY(FDg)y TOY(FDi).

La aproximacién para abordar el COP ha sido presentada en detalle, siendo esta
totalmente paramétrica, no monolitica e incluyendo componentes independientes de
CP(FD). Se han propuesto tres instancias (con tiempos de resolucion de 6rdenes de
magnitud de décimas de segundo, segundos y minutos, respectivamente), para com-
parar las conclusiones de ETP con las obtenidas para el conjunto de problemas de
prueba. Se ha comprobado que ETP se comporta de manera similar a los problemas
de las reinas y de Langford. En concreto la mejora de rendimiento de TOY(FDyg) y
TOY(FDi) con respecto a TOY(FDs) aumenta a medida que el tamafio de las instan-
cias aumenta. También aumenta el porcentaje de tiempo de resolucién dedicado a la
busqueda y el impacto de la estrategia de busqueda ad hoc aplicada.

298



Sin embargo, los resultados para ETP son mas dependientes de la instancia con-
creta que se ejecuta que los resultados de los problemas de las reinas y Langford:
TOY(FDg) todavia supera a TOY(FDs), pero el rango de mejora alcanzada es mas
amplio que para las reinas y de Langford. 7OY(FD:) se comporta peor, igual o mejor
que TOY(FDs) para las tres instancias de ETP, respectivamente. En cualquier caso, el
porcentaje de exploracion de busqueda de TOY(FDg) y TOY(FDi) para las instan-
cias de ETP resueltas en décimas de segundo y segundos es mucho menor que el de
TOY(FDs), e incluso que los de TOY(FDg) y TOY(FDi) para las instancias de las
reinas y de Langford. En cuanto a la propagacion por lotes, en TOY(FD:) esta es mu-
cho mas eficiente que el modo incremental para las instancias resueltas en décimas
de segundo y segundos, y en TOY(FDs) para las instancias resueltas en segundos
y minutos. Finalmente, el impacto de aplicar una estrategia de bldsqueda ad hoc es
menor en ETP que en los casos de las reinas y Langford. Ademas, el mejor rendimiento
de TOY(FDg) con respecto a TOY(FDi) no aumenta a medida que las instancias
aumentan.

Una segunda aplicacidn real ha consistido en un analisis empirico acerca de la
complejidad computacional del problema de asignacidon de elementos unidimensio-
nales a contenedores (BPP). Este analisis ha incluido un conjunto de instancias gene-
radas paramétricamente mediante configuraciones del modelo estadistico de Weibull.
El conjunto de instancias se ha resuelto aplicando dos modelos CP(FD) equivalentes
(Gecode y TOY(FDg))y cuatro heuristicas (MAXREST, FIRSTFIT, BESTFIT y NEXTFIT). Las
conclusiones obtenidas son interesantes para el futuro desarrollo de resolutores es-
pecializados que aborden a diferentes COP de configuracion (que pueden verse como
generalizaciones del BPP) provenientes de la optimizacion en la industria de centros de
datos.

Se ha analizado la flexibilidad de Weibull, comprobandose que permite generar
una gran variedad de distribuciones en el tamafio de los elementos mediante el uso
de diferentes combinaciones de los pardmetros (k, A). Se han modelado (con gran pre-
Cisién) un conjunto de instancias BPP reales usando Weibull (con graficos de maxima
verosimilitud y Q-Q, para mostrar visualmente la calidad del ajuste, asi como con tests
estadisticos KSy x?, para probar este ajuste de un modo mds riguroso). Se ha generado
un conjunto de 19.900 instancias mediante 199 categorias o combinaciones diferentes
de (k, A), con 100 instancias para cada una de estas. Especificamente, el parametro
X ha sido fijado a 1000 (expandiendo el tamafio de los elementos de la distribucion
hasta tres érdenes de maginitud), y el parametro & ha oscilado en el rango [0,1, 0,2,
... 19,9]. Una vez fijado el conjunto de instancias, se han analizado 11 capacidades de
contenedor C diferentes, oscilando su tamario entre 1,0 y 2,0 (con incrementos de 0,1)
veces el tamafio del elemento mas grande de la instancia a resolver.

El analisis de los resultados de CP(FD) ha revelado que, para todo valor de C, exis-
ten categorias (k, \) para los que esta aproximacidn encuentra dificil resolver buena
parte del conjunto de las 100 instancias. Mas especificamente, la complejidad que una
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determinada categoria resulta para CP(FD) se clasifica en 5 grupos, segun el porcentaje
de instancias resueltas: 80%-100%, 60%-80%, 40%-60%, 20%-40% y 0%-20%. En este
sentido se ha comprobado que incrementar C' también aumenta la complejidad com-
putacional del problema, de manera que la cantidad de instancias resueltas disminuye
segln aumenta C. Con C' = 1,0, 178 categorias pertenecen al grupo 80%-100% y 21
al grupo 60%-80%. Con C' = 1,5, 150 categorias pertenecen al grupo 80%-100%, 17
al grupo 60%-80%, 18 al grupo 40%-60% y 14 al grupo 20%-40%. Con C = 2,0, 87 ca-
tegorias pertenecen al grupo 80%-100%, 20 al grupo 60%-80%, 12 al grupo 40%-60%,
18 al grupo 20%-40% y 62 al grupo 0%-20% (incluyendo 12 categorias para los que el
porcentaje se reduce practicamente al 0%). Ademas, existe una correlacién entre el
porcentaje de instancias resueltas y el tiempo dedicado a la busqueda de la solucién
optima.

Por otra parte, a medida que k aumenta, también lo hace la cantidad de contene-
dores utilizados en la solucion 6ptima. Por ello, como todas las instancias contienen
100 elementos, se puede decir que hay una correspondencia entre cada categoria
(perteneciente a uno de los grupos) y el ratio de elementos asignados a cada con-
tenedor. Sin embargo, fijando k, se comprueba que este ratio varia a medida que varia
C. Por un lado, se puede concluir que, si la categoria requiere un ratio de menos de
1,60 0 mas de 4,00 elementos por contenedor, entonces la categoria va a ser clasifi-
cada dentro del grupo 80%-100%. Por otro lado, para el resto de grupos no se pueden
extraer conclusiones generales con respecto a las diferentes configuraciones de C. En
concreto paraC = 2,0y k = [10,0,...,19,9] hay categorias de todos los grupos, todas
ellas con una misma cantidad media de 2,0 elementos por contenedor.

Las heuristicas resuelven el conjunto de instancias en una cantidad insignificante
de tiempo, por lo que, para ellas, el analisis se ha centrado en la desviacion media
de MAXREST (con resultados muy similares a los de FIRSTFIT y BESTFIT) y NEXTFIT con
respecto al nimero 6ptimo de contenedores computado por CP(FD). En este sen-
tido, la desviacion media de MAXREST es un orden de magnitud menor (entre 0,0y 1,4
contenedores) que la de NexTFIT (entre 0,0 y 20,0 contenedores). En MAXREST, a me-
dida que C aumenta, también aumenta la diferencia media con las soluciones dptimas
computadas por CP(FD). Ademas, existe una clara correlacion entre las categorias
pertenecientes a cada uno de los grupos y la diferencia en el nimero de contenedores
computados por la heuristica y CP(FD). Con NexTFIT, se ha comprobado que hay una
frontera en C' = 1,5. Asi, mientras que, desde C = 1,0 a C = 1,5, la diferencia de
contenedores entre la heuristica y CP(¥D) aumenta, desde C = 1,6 a C = 2,0 esta
diferencia disminuye. Desafortunadamente, no hay ninguna correlacién entre las ca-
tegorias y la diferencia obtenida. En general, mientras que la heuristica MAXREST (y,
por tanto, también FIRSTFIT y BESTFIT) representa una muy buena alternativa a CP(FD)
(ya que obtiene muy buenas aproximaciones a la solucién 6ptima en una cantidad casi
insignificante de tiempo), la diferencia obtenida por NEXTFIT no la hace una alternativa
tan interesante.
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5.3 TOY(FD) comparado con otros sistemas CP(FD)

Se ha realizado una comparativa acerca del modelado y resolucién de los COP de
Golomb y ETP entre varios sistemas CP(FD) de vanguardia. En concreto se han selec-
cionado los sistemas CP(FD) algebraicos MiniZinc e ILOG OPL, los sistemas C++ CP(FD)
Gecode e ILOG Solver, los sistemas CLP(FD) SICStus Prolog y SWI-Prolog, asi como los
sistemas CFLP(FD) PAKCS y TOY(FD) (este ultimo con sus tres versiones diferentes
TOY(FDg), TOY(FDi)y TOY(FDs)).

Desde el punto de vista del lenguaje TOY(FD), se concluye que su uso resulta
una alternativa atractiva para el modelado de estos COP, ya que proporciona una se-
rie de ventajas: abstrae la nocién del resolutor de restricciones, gestionando el uso de
diferentes resolutores y el almacenamiento de las restricciones en ellos de un modo
transparente al usuario. Proporciona un libre acceso a las variables involucradas en
el COP. Permite modelar los problemas en un solo archivo, capturando la arquitectura
de varias etapas del algoritmo p_tt mediante la simple enumeracion en orden de estas.
Soporta el uso de estructuras de datos dindmicas, y proporciona un acceso sencillo a
sus elementos. Permite ahorrar aquellas variables 7D del problema que se puedan
unificar directamente a otras variables o a valores enteros, efectuando estas unifica-
ciones antes de imponer ninguna restriccion FD sobre la variable en cuestion. Propor-
ciona primitivas para los modos de propagacidn incremental y por lotes, lo que permite
aplicar diferentes modos de propagacidn a diferentes partes del programa. En térmi-
nos generales, proporciona un lenguaje declarativo de propdsito general, incluyendo
caracteristicas de modelado muy expresivas, como son las funciones indeterministas,
el uso de tipos, el orden superior, la evaluacién perezosa, el encaje de patrones o la
aplicacién parcial. Todo ello permite al usuario escribir formulaciones mas claras y
concisas. En concreto se ha comprobado que Unicamente los sistemas CP(FD) alge-
braicos requieren una menor cantidad de lineas de c6digo para el modelado de los
problemas.

Desde el punto de vista de TOY(FDy), se concluye que su uso es altamente re-
comendable para la resolucidn de estos COP. Se ha comprobado que la interfaz de
TOY(FD) ala API de Gecode permite generar un modelo Gecode practicamente idén-
tico al modelo C++ CP(FD) (logrando asi el mismo rendimiento que al programar
un modelo nativo Gecode). En este contexto, como tanto Gecode como 7 OY(FDg)
contienen practicamente la misma red de restricciones, el tiempo que dedican a la
busqueda es practicamente idéntico (con una minima sobrecarga de un 1%-2% en
TOY(FDyg), debida a la propagacién de unas pocas restricciones mas durante la bus-
queda). Para las instancias df, el rendimiento de TOY(FDy) sigue siendo peor que el
de Gecode, ya que este es penalizado por las sobrecargas debidas al estrechamiento
perezoso y la comunicacion con el resolutor externo. Pero para las instancias js, donde
la busqueda es el Gnico factor determinante para el tiempo de resolucién, TOY(FDg)
practicamente alcanza el rendimiento de Gecode, convirtiéndose en el segundo sis-
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tema mas rapido para la resolucion de Golomb, y en el sistema mas rapido para la
resolucion de ETP.

Desde el punto de vista de TOY(FDi), se concluye que su uso es recomendable
para la resolucién de estos COP, aunque su rendimiento es claramente dependiente de
la formulacién del problema. La interfaz de TOY(FD) necesita un mayor codigo de
pegamento para coordinar la gestion de los objetos de ILOG Concert e ILOG Solver, lo
que implica una sobrecarga adicional relevante. Mientras que esta sobrecarga es cru-
cial para las instancias df (provocando un rendimiento mucho peor que el del modelo
nativo ILOG Solver) este se vuelve casi insignificante para las instancias js. Ademas,
este codigo adicional produce un desajuste entre la red de restricciones generada por
TOY(FDi) y la generada por el modelo ILOG Solver nativo (tanto en la cantidad de
variables 7D como de restricciones FD utilizadas). Se ha comprobado que, mientras
que hay casos en las que 7TOY(FDi) ahorra variables y restricciones con respecto a
ILOG Solver, en otras ocasiones es justo al revés. Por lo tanto, la red de restricciones
generada por TOY(FDi) e ILOG Solver es totalmente dependiente de la formulacion
del problema a tratar (mas especificamente, de la cantidad de estas situaciones de de-
sajuste que se producen en dicha formulacion). En este contexto, el rendimiento de
TOY(FDi)esdeun 6% aun 11% mas rapido que el de ILOG Solver para las instancias
de Golomb (convirtiéndose asi en practicamente el cuarto sistema mas rapido), pero
un 17% mas lento para ETP-21 (convirtiéndose asi en practicamente el quinto sistema
mas rapido).

Desde el punto de vista de TOY(FDs), se concluye que su uso es recomendable
para la resolucién del COP puramente CP(FD) de Golomb, pero no tan aconsejable
para la resolucidon del COP industrial de ETP. Respecto a Golomb, el rendimiento de
TOY(FDs) sufre una sobrecarga de un 7% a un 10% con respecto al modelo nativo
SICStus, y alcanza un rendimiento practicamente idéntico al de PAKCS. Sin embargo,
respecto al ETP, la sobrecarga de TOY(FDs) oscila entre un 70% y un 80% con res-
pecto al modelo nativo SICStus, siendo por tanto mucho menos competitivo con res-
pecto a este (y también con respecto a PAKCS). Se ha comprobado que este desajuste
en el rendimiento es debido a la traduccién entre restricciones e indexicals realizada
por clpfd. Esta difiere entre las ejecuciones de SICStus y TOY(FDs), dando lugar a
diferentes redes de restricciones (es decir, conjuntos de indexicals de idéntica cardi-
nalidad, pero basados en diferentes algoritmos de propagacion).

En resumen, mas alla del interés general de comparar estos sistemas CP(FD) de
vanguardia, los resultados han mostrado a TOY(FD) como un sistema competitivo
con respecto a los demas sistemas involucrados en el andlisis, tanto para el modelado
como para la resolucién de estos COP. Esto es relevante, pues fomenta tanto el uso del
sistema como del propio paradigma CFLP(FD) al que pertenece.
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5.4 Trabajo futuro

El esquema genérico propuesto en la seccion 2.1 se puede reutilizar para integrar
nuevos resolutores C++ CP(FD) que proporcionen un mayor rendimiento que los de
Gecode e ILOG Solver. Ademas de esto, la compleja naturaleza de muchos CSP y COP
hace que su especificacién contenga varios dominios de variables. Aunque Gecode e
ILOG Solver soportan variables enteras, Booleanas, de conjuntos e incluso reales, en
ocasiones la complejidad computacional de estos CSP y COP hace intratable la reso-
lucion del problema mediante la simple aplicacion de una bdsqueda exhaustiva. Un
claro ejemplo de esto son los BPP generalizados provenientes de la optimizacion en la
industria de centros de datos, donde se necesitan complejos planes dindmicos para su
resolucion. En estos casos se requiere la combinacién de CP(FD) con otras técnicas.
Por ejemplo, la generacion perezosa de clausulas [187] ha combinado recientemente
CP(FD) con resolucién SAT, y se ha comprobado su eficacia para resolver gran canti-
dad de problemas industriales para los que todavia no se conocia una solucién 6ptima
[174].

En TOY existe una versién del sistema que combina CP(FD) con técnicas de pro-
gramacion matematica [68] mediante la coordinacidn de los resolutores de restriccio-
nes SICStus c1lpfdy clpr (de ahora en adelante TOY(FD&R)). Este usa un resolutor
especifico M, que actia como mediador para la gestidon de las restricciones puente
X #== Y que aparecen en el codmputo de un objetivo. Cada una de estas restriccio-
nes solicita a la variable real Y tomar un valor equivalente al de la variable entera
X. A partir de este punto, los resolutores clpfdy clpr trabajan de forma indepen-
diente, pero cualquier poda en X 0 Y es transmitida explicitamente de un resolutor a
otro mediante proyecciones de la restriccion puente [104]. En este sentido, el sistema
TOY(FDi) se puede extender para reproducir el esquema propuesto, con ILOG Solver
reemplazando a SICStus clpfd e ILOG CPLEX [13] reemplazando a SICStus clpr. El
mayor rendimiento de ILOG Solver e ILOG CPLEX con respecto a SICStus clpfdy clpr
(respectivamente) permitiria mejorar el rendimiento de resolucion de la nueva versiéon
del sistema TOY(FD&R) con respecto a la actual (del mismo modo que el mayor ren-
dimiento de ILOG Solver con respecto a SICStus c1pfd mejoré el rendimiento de re-
solucion de TOY(FDi) con respecto a TOY(FDs)). Ademas, tanto ILOG Solver como
ILOG CPLEX hacen uso de la misma biblioteca de modelado ILOG Concert. Por ello,
la nueva version del sistema podria implementar al propio resolutor mediador M en
ILOG Concert, en lugar de en la capa Prolog de la arquitectura del sistema, mejorando
aun mas el rendimiento de resolucién. Como un aspecto negativo, hay que decir que
ILOG CPLEX siempre proporciona una respuesta extensional del sistema de ecuaciones
propuesto (asignando a las variables a un valor concreto), en lugar de ofrecer una res-
puesta intensional (simplificando el sistema), como hace SICStus clpr.

Las estrategias de busqueda ad hoc, propuestas en la seccién 2.2, se podrian aplicar
a conjuntos de problemas de prueba CP(FD) clasicos. Se podrian analizar maltiples y
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muy precisos escenarios de busqueda, mediante el uso de técnicas de procesamiento
como las propuestas para 7OY(FDg) en la seccion 3.2 (basadas en funciones indeter-
ministas). En particular, seria interesante analizar una combinacién exhaustiva de la
aplicacién de una o varias estrategias de busqueda (asi como del subconjunto de va-
riables etiquetadas o fragmentadas por cada una de estas). Los resultados obtenidos
serian analizados con el fin de averiguar qué estrategias han dado lugar a una solucién
del problema, o, al menos, a un espacio de busqueda minimo que contenga una solu-
cién. Por otra parte, este analisis ayudaria a descubrir nuevos patrones acerca de la
relacion existente entre la estructura de un problema y la estrategia de bidsqueda (o
combinacion de estrategias de bldsqueda) a aplicar para resolverlo con éxito.

El modelo de ETP de la seccion 3.1 es totalmente paramétrico, por lo que se po-
drian analizar multiples nuevas instancias. Estas podrian variar en el numero de dias
a planificar, nUmero de equipos y de trabajadores por equipo, la periodicidad con que
el trabajador adicional se puede seleccionar, el factor extra al que sus horas de tra-
bajo se deben pagar, el nimero de diferentes tipos de jornadas de trabajo (y los turnos
concretos solicitados en cada una de ellas), las ausencias de trabajadores y el nivel de
homogeneidad requerido en la distribucion de cada tipo de turno de trabajo entre los
trabajadores de cada equipo. Por otra parte, el uso de multiples equipos disjuntos es
una caracteristica particular de la formulacion del problema, pero la posibilidad de uti-
lizar un Unico equipo también se puede considerar (estableciendo simplemente que
el parametro concreto tome valor uno). Esto permitiria aumentar la aplicabilidad del
modelo propuesto, reutilizandolo para otros muchos problemas industriales de asig-
nacién de recursos.

Las conclusiones del analisis empirico de BPP, presentado en la seccidn 3.2, consti-
tuyen una base para el futuro desarrollo de resolutores de restricciones especializados,
que aborden instancias generalizadas provenientes de la optimizacion en la industria
de centros de datos. Aplicando técnicas de maxima verosimilitud a instancias reales,
es facil determinar los pardmetros de Weibull (k,\) que permiten una mejor represen-
tacion de la distribucion de elementos de la instancia. Comparando estos parametros
(o categoria) obtenidos con los resultados del analisis empirico, seria sencillo determi-
nar si es mejor hacer uso de CP(FD) o de las heuristicas para resolver el problema.
Finalmente, la generacién paramétrica de un conjunto de instancias, siguiendo un mo-
delo estadistico, se podria extender a otros problemas importantes de asignacion de
recursos (como forma de estudiar instancias reales).

Por otra parte, como ya se indicé en la seccion 1.4, existen multiples aplicaciones
reales de CP(FD), provenientes de una amplia gama de dominios de aplicacién. Basan-
dose Unicamente en los articulos publicados en la pasada edicién de CP'13, se puede
encontrar ejemplos de planificacion para: centrales eléctricas [26], terrenos para la
agricultura [35], sistemas urbanos para compartir bicicletas [77], sistemas cadticos
dinamicos [84], utilizacién de materiales en la industria del metal [117], comportamiento
atémico en la industria quimica [129], asignacion de redes inhalambricas [143], asig-
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nacion de vehiculos para la construccién [208] y mezcla de vino [196]. Asimismo, se
pueden encontrar aplicaciones para la verificacion de hardware [140] y generacién de
preguntas para juegos matematicos [191]. Por lo tanto, seria interesante analizar la
aplicacién de TOY(FD) a algunos de estos problemas y dominios de aplicacion.

En cuanto a la comparacidn de sistemas CP(FD) (como la realizada en la seccién
4), se podrian considerar mas problemas, tanto clasicos (como los existentes en el ca-
talogo de CSPlib) como reales (como los que se acaban de mencionar, provenientes
del CP'13). En el caso de ETP, siguiendo la propuesta de analizar multiples nuevas ins-
tancias que exploten la parametricidad del problema, se podrian afiadir estas nuevas
instancias a la comparativa de resolucidon. Ademas, se podrian considerar mas sistemas
CP(FD) de vanguardia, como por ejemplo Comet [60], Minion [81] o Numberjack [98]
(para sistemas CP(FD) algebraicos), JaCoP [110], Choco [54] o YACS [206] (para sistemas
Java CP(FD)), y GNU Prolog [5], Ciao Prolog [4], B-Prolog [31] o ECLiPSe [16] (para sis-
temas CLP(FD)).

Por otra parte, TOY(FD) podria compararse con respecto a la aplicacién de otras
técnicas diferentes de CP(FD), como la programaciéon matematica y la resolucién SAT.
En primer lugar, el problema de ETP se podria modelar con ILOG CPLEX, desarrollando
un modelo nativo C++ CP(R). Una comparacién entre los modelos de ILOG Solver,
TOY(FDi) e ILOG CPLEX permitiria discutir las ventajas que CP(FD) proporciona para
la formulacién de un problema tan orientado a restricciones como lo es este. Ademas,
un analisis para la resolucién de multiples instancias de ETP permitiria comparar el ren-
dimiento de aplicar una busqueda exhaustiva o un enfoque basado en el simplex [141].
En segundo lugar, la nueva versién de TOY(FD&R) propuesta también se podria
aplicar al problema. En este caso, una comparativa de modelado entre TOY(FD&R)
y el modelo nativo C++ CP(R) de ILOG CPLEX permitiria evaluar cémo la mayor abs-
traccion de TOY(FD&R) facilita la formulacion del problema y comparar esta dife-
rencia de abstraccion con la existente entre ILOG Solver y TOY(FD). Siguiendo con
TOY(FD&R), una comparativa de su rendimiento de resolucién con el de ILOG CPLEX
permitiria analizar si la interfaz de TOY(FD&R) a ILOG CPLEX produce el mismo tipo
de desajustes en la red de restricciones generadas que el producido entre TOY(FD)y
los modelos nativos de ILOG solver (donde el desajuste en la red de restricciones gene-
rada era dependiente de la formulacion del problema). Finalmente, se podria analizar
una reformulacion del problema ETP para su modelado en un resolutor SAT.
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