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2 Univ. de Málaga. Dpto. de Lenguajes y Ciencias de la Computación, Spain

3 Univ. Complutense de Madrid, Dpto. de Inteligencia Artificial e Ing. SW, Spain

Abstract. This paper provides unreported implementation details of a
programming system which implements a seamless integration of con-
straint, functional, and logic paradigms, and that recently has incorpo-
rated a mechanism for solver cooperation on several domains: Herbrand
(with equality and disequality constraints), finite domains (for constraint
programming constraints over integers), and real numbers (for linear
and non-lineal constraints). In particular, the cooperation of constraint
solvers over numerical domains is specially interesting because of their
practical use for developing many heterogeneous applications relating
variables in both domains. This paper gives information about the com-
pilation scheme of the system, its specific libraries, and focuses particu-
larly on how solver cooperation has been integrated into the system. Re-
garding this last issue, the paper also provides preliminary performance
results that supports the suitability of this cooperation mechanism.

1 Introduction

The addition of constraint solving technology to declarative programming sys-
tems has caused that these systems are now being considered suitable options
(i.e., alternatives to traditional programming systems such as the imperative
programming-based systems) for programming complex and real problems. Ex-
isting declarative constraint languages are high level programming tools that
ease the task of programming (wrt. the formulation of the problem and/or pro-
gram analysis) and provide a reasonable balance between program formulation
and solving efficiency. Moreover, declarative constraint systems combine a high
level of abstraction and a declarative nature with an extreme flexibility in the
design of their implementations (e.g., wrt. their execution model). This means
that they can be used not only as development tools for implementing non-trivial
applications but also as platforms where research on key concepts of the imple-
mentation of programming languages (including concurrent/parallel models and
memory management) can be done.

In this context, the design, implementation, and optimization of declara-
tive constraint programming systems can be considered one of the major issues
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treated in recent years in the constraint programming and logic programming
areas. In this paper, we consider specifically the constraint functional logic pro-
gramming (CFLP) language T OY [1, 2]. This language combines functional and
relational notation, curried expressions, higher-order functions, patterns, par-
tial applications, non-determinism, lazy evaluation, logical variables, types, do-
main variables, and constraint composition. It also provides technology for finite
domain (FD) constraint solving (including a wide set of FD constraints com-
parable to existing CLP(FD) systems and which is competitive with them as
shown by performance results [3]), support for managing arithmetic linear and
non-linear constraints defined on the real domain R [4], and provision of strict
equality and disequality constraints [5] defined in the Herbrand domain H. Each
domain-specific constraint is solved in the associated domain-specific solver (i.e.,
solveFD, solveR, solveH, respectively) that are connected to the system via an
adequate interface.

The set of constraint solvers of T OY provides support for solving a wide
set of practical problems that require constraint solving over each single do-
main. However, there exist many practical problems that are better expressed
using heterogeneous constraints (i.e., involving more than one domain) and, as
a consequence, the formulation of these practical problems has to be artificially
adapted to one of the domains supported by the connected solvers. With the aim
of extending the applicability of the system, T OY has incorporated recently new
features such as solver cooperation. The implementation of this feature in T OY
is based on the theoretical framework described in [6].

This paper focuses specifically on implementation issues, not reported so far,
of the T OY system. Among these issues, the paper briefly describes the com-
pilation procedure and, more particularly, how solver cooperation, as described
in [6], has been implemented. Thus, this paper can help other implementors of
declarative constraint systems to understand the implementation fundamentals
of T OY, and can provide them further ideas to incorporate in their systems.
In addition, some performance results are given to show the effectiveness of the
solver cooperation mechanism implemented in T OY.

2 Compiling Programs

T OY programs consist of datatypes, type alias, infix operator definitions, and
rules for defining functions. The syntax is mostly borrowed from Haskell with
the remarkable exception that variables and type variables begin with upper-
case letters, whereas constructor symbols and type symbols begin with lower-
case (see Example in Section 4.3). In particular, functions are curried and the
usual conventions about associativity of application hold. As usual in functional
programming, types are inferred, checked and, optionally, can be declared in the
program.

Instead of using an abstract machine for running byte-code or intermedi-
ate code from compiled programs, the T OY system relies on an efficient Prolog
system (i.e., SICStus Prolog [7]) for running T OY programs compiled to Pro-
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log, as in other related systems [8]. The compilation follows a demand driven
computation strategy for lazy narrowing [9], and its data-flow is described next.

A T OY program program.toy is compiled as follows (see Figure 1): First,
functions, types and constructors defined in this user program are joined with
predefined ones (coded in the file basic.toy). Next, lexical, syntactical, and se-
mantical analysis are done, and the result contains type declarations, functional
dependencies, and definitional trees [10]. Finally, from the last intermediate file,
non-declared types are inferred and user-declared types are checked, generat-
ing the compiled Prolog code in program.pl. In addition, this result contains,
among others, code for dynamic cut [11], totality constraints [12], type declara-
tions for predefined functions and constructors, head normal form (hnf) compu-
tations, definitions for partial applications and declarations of precedence and
associativity for infix operators. This Prolog code is compiled (from Prolog to
the underlying SICStus abstract machine) and loaded into the SICStus system,
in order to be able to evaluate expressions (i.e., solve goals) typed at the system
prompt.

 

program.toy basic.toy 

program.pl 

program.tmp.toy 

program.tmp.tmp 

program.tmp.out 

Type inference 
and checking 

 

lexical, 
syntactical,  
and semantical  

analysis 
 

Fig. 1. Compilation Data-Flow

3 Libraries

T OY provides a number of independent libraries that contain specific definitions
for types, data constructors and functions that enable an adequate handling of
files, graphics, constraints over real numbers, and constraints over finite domains
for integers (Herbrand constraints are always available). When these libraries
are loaded, via the appropriate commands typed at the system prompt, these
definitions are added to the basic ones. More specifically:

– Files: This library provides functions to handle text files, and includes op-
erations to read from and write to files.

– Graphics: This library contains functions for building GUIs (Graphical User
Interfaces) based on the Tcl/Tk library.
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– Constraints over Reals: This library enables the constraint domain R
with arithmetical constraints over real numbers, both linear and non-linear.
However, these last ones are suspended until they become linear via instanti-
ations. Note that loading this library implies that arithmetical (in)equations
require no groundness on their variables.

– Constraints over Finite Domains: This library enables the constraint
domain FD with finite domain constraints over integer numbers. For a de-
tailed explanation of this kind of constrains see [1].

4 Implementing Solver Cooperation

This section describes the implementation fundamentals of the cooperation mech-
anism. Initially, an outline about the architectural components involved in the
implementation of the cooperation mechanism is given, and a global overview
of the two main pillars of this mechanism (i.e., bridges and projections) is pro-
vided. Further, an example of cooperation using both bridges and projections
is shown. Later, the implementation of bridges and projections is described in
detail. The section ends by giving some relevant comments about how constraint
information is exchanged among solvers supported in T OY , and by discussing
related work.

4.1 Architectural Components of the Cooperation Schema

Figure 2 shows the Herbrand domain H for equality and disequality constraints
dealing with constructed terms, R for (linear and non-linear) arithmetical con-
straints over real numbers, FD for finite domain constraints over integers, and
the mediatorial constraint domain M for communication constraints among
solvers, allowing their cooperation by means of bridges and projections. This
last domain is a hybrid domain that supplies bridge constraints (X #== Y) for
the communication among H, FD and R domains (cf. Section 4.2).

Each constraint domain (H,R, FD, andM) has an attached constraint store
(H, R, FD, and M, resp.) and solver (solveH, solveR, solveFD, and solveM,
resp.). We take advantage of the SICStus Prolog constraint stores for storing R
and FD primitive constraints.
T OY provides lazy narrowing dealing with constraints and takes care of de-

composing constraints by introducing new local (produced) variables [13]. Even-
tually, primitive constraints for R and FD arise, which must be submitted to
their respective solvers i.e., solveR and solveFD, resp., and stored in their cor-
responding stores. T OY uses the FD and R solvers provided by SICStus along
with Prolog glue code for interfacing them with solveFD and solveR, respec-
tively, code for implementing solveH, and code for implementing lazy narrowing
dealing with constraints. solveM follows [6, 14] and the implementation of its
bridge constraint is described next in Section 4.4.

Equality and disequality constraints for H are implemented as already re-
ported in [5]. Also, disequality constraints may affect a variable whose type is
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T OY
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CLP(FD) CLP(R)

SICStus Prolog

Fig. 2. Architectural Components of the Cooperation Schema in TOY

unknown [15]. These constraints are assumed to involve constructed terms and,
therefore handled by solveH. But, along computation, these variables may be
instantiated to a number, so that the corresponding disequality constraint is
moved to solveR, or solveFD, depending on whether this number is a real or an
integer, resp.

4.2 Bridges and Projections: Cooperation Fundamentals

Basically, the cooperation mechanism implemented in the system allows the
communication among H, FD, and R, using special communication constraints
called bridges. Bridges implement binding, equivalence between numbers in those
constraint domains, as well as disequalities (antibridges) between variables in
those constraint stores. A bridge X #== Y constrains X ∈ Z and Y ∈ R to take
the same integer value. Bridges are kept in a special store and they are used for
two purposes, namely binding and projection. Binding simply instantiates a vari-
able occurring at one end of a bridge whenever the other end becomes a numeric
value. Projection is a more complex operation which takes place whenever a
pure constraint is submitted to solveFD or solveR. At that moment, projection
rules relying on the available bridges are used for building a mate constraint
[14, 6] which is submitted to the mate solver (think of solveFD as the mate
of solveR, and vice versa). Thus, projection enables each of the two solvers to
take advantage of the constraints sent to the mate solver. In order to maximize
the opportunities for projection, the goal solving procedure has been enhanced
with operations to create bridges whenever possible, according to certain rules.
Obviously, independent computing of solvers remains possible.

The goal solving rules in [14] describe the process of solver cooperation by
means of the creation of new bridge constraints stored in M with the aim of
enabling projections of mate constraints via bridges. Solver cooperation can be
enabled only for bridges and also for both bridges and projections, which allows
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to analyze the trade-off between communication flow and performance gain, so
that the user can decide the best option for a given program.

4.3 Example

We show a problem (taken from [16]) which requires the cooperation of an FD
solver and a continuous domain solver. In this example there exists an electric
circuit with some connected resistors (modelled with real variables) and there is
a set of capacitors (modelled with FD variables). The goal consists of knowing
which capacitor has to be used so that its voltage reaches the 99% of the final
voltage given a time range. The T OY program formulating the problem is shown
below.

include "cflpfd.toy"

ecircuit :: real -> int
ecircuit C = KI <==

R1 == 10000,
10000 <= R2, R2 <= 40000,
R == R1*R2/(R1+R2),
50000.0 <= R, R <= 80000.0,
T == -(ln 0.01)*R*K/10000000.0 + ET,
0.5 <= T, T <= 1.0, -C <= ET, ET <= C,
belongs KI [10,25,50,100,200,500],
KI #== K,
labeling [] [KI]

In this program, some relational constraint operators have been used (==
for strict equality, and <= for “less or equal than”). Further, a finite domain
constraint belongs is used, which prunes the domain of KI to take values in
the given list of capacitor values. An FD enumeration procedure is applied with
labeling, which selects the predefined enumeration strategy over the single
variable KI. Finally, a bridge is used to connect the FD variable KI and the real
variable K (that represents the continuous value of the capacitor). Note that,
due to the imprecision of the real solver, a coupled variable ET is added. Real
variables C and T represent, respectively, an input tolerance parameter and the
time.

The following goal computes which capacitor has to be used if we consider
the time interval [0.5,1] (measured in seconds).

Toy(R+FD)> ecircuit 0.001 == K
{ K -> 25 }
Elapsed time: 16 ms.

sol.1, more solutions (y/n/d/a) [y]?
no
Elapsed time: 0 ms.
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4.4 Bridges

Our Prolog implementation of bridges codes the application of the transforma-
tion rules for solveM in Tables 3 and 4 of [6]. Each defined function in T OY is
implemented as a Prolog predicate with the following arguments: its function
arguments (as many as its arity), the function result, and two arguments rep-
resenting the input constraint store and the output (i.e., modified) constraint
store. The code excerpt below shows the basic implementation of the constraint
bridge (i.e., #==):

(1) #==(L, R, Out, Cin, Cout):-

(2) hnf(L, HL, Cin, Cout1),

(3) hnf(R, HR, Cout1, Cout2),

(4) tolerance(Epsilon),

(5) ( (Out=true,

(6) Cout3 = [’#==’(HL,HR)|Cout2],

(7) freeze(HL, {HL - Epsilon =< HR, HR =< HL + Epsilon} ),

(8) freeze(HR, (HL is integer(round(HR)))));

(9) (Out=false,

(10) Cout3 = [’#/==’(HL,HR)|Cout2],

(11) freeze(HL, (F is float(HL), {HR =\= F})),

(12) freeze(HR, (0.0 is float_fractional_part(HR) ->

(13) (I is integer(HR), HL #\= I); true)))),

(14) cleanBridgeStore(Cout3,Cout).

As the T OY constraint bridge has arity 2, its Prolog implementation has
two first arguments: L and R for the left (integer) and right (real) arguments of
#==, respectively. Out is the argument for the result of its evaluation. Cin and
Cout are the arguments for the incoming and outcoming constraint store. This
store implements the stores H and M, including constraints from both domains
H and M, i.e., disequality constraints for constructed terms, and bridges and
antibridges, resp. Notice that there is no need of explicit accounting for equality
constraints on H since they are handled by Prolog unification.

Lines (2) and (3) flattens both L and R by calculating their head normal
forms (hnfs), which always delivers either a variable or a number, therefore
ensuring that no suspensions will occur from line (4) on. So, this implements the
demandness of these arguments: They are required to be a variable or a number
for a bridge constraint relating them to be posted. In addition, note that a hnf
computation may develop new H disequality constraints during narrowing that
have to be added to its constraint store.

Note that a bridge constraint X #== Y accepts reification. This means that
if the value for Out is true, then the constraint X #== Y is posted to the store
M (line (6)), whereas if the value is false, then the complementary constraint
(the antibridge X #/== Y) is otherwise posted (line (10)). Also, note that this
constraint can be used to impose an integral constraint over its right argument.

Implementing both X #== Y and X #/== Y is accomplished by using the con-
current predicate freeze available in SICStus Prolog. This predicate suspends
the evaluation of its second argument until the first one becomes ground.
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For the first case (#==), we need to reflect in this constraint the equality of
its two arguments (variables or constants), which are of different type, i.e., real
and integer, so that type casting is needed. HR is assigned to the float version
of HL (line (7)) and HL is is assigned to the integer version of HR (line (8)).
But, due to the imprecision nature of real solvers, occasionally, HR must take an
approximation to an integer value. So, in order to avoid failures due to requiring
exact integer values, it is necessary to introduce a tolerance value via the user-
defined parameter Epsilon (line (4)), which is zero by default. Casting from
floats to integers is performed by the Prolog operators round and integer (line
(8)).

For the second case (#/==), we have to state in solveM that both arguments
are not equal, which cannot be directly handled, as before. So, whenever an
argument becomes (or is) ground in a domain FD or R, then a disequality
constraint between the casted ground variable and its mate variable can be
posted to the underlying solver (lines 11-13).

Finally, the store is cleaned of ground bridges (i.e., variable-free) in line (14).
As well, variables occurring at the same end of two bridges are unified whenever
the variables occurring at the other end become unified.

4.5 Projection: FD to R
Projecting a constraint in FD to R is possible if the user has enabled projection
and the constraint is allowed to be projected (see Table 1 in [14] or Table 3 in [6]).
The projection amounts to, first, create bridges for the rest of variables in the FD
constraint that are not involved in bridges, therefore creating new R variables
with integral values which may be further related in other R constraints, and,
second, send a mate constraint from FD to R. The code excerpt below shows
its basic implementation for the concrete constraint #> (i.e., greater than):

(1) #>(L, R, Out, Cin, Cout):-

(2) hnf(L, HL, Cin, Cout1),

(3) hnf(R, HR, Cout1, Cout2),

(4) ((Out=true, HL #> HR);

(5) (Out=false, HL #=< HR)),

(6) toSolverFD(HL,Cout2,Cout3),

(7) toSolverFD(HR,Cout3,Cout4),

(8) (proj_active -> (

(9) searchVarsR(HL,Cout4,Cout5,HLR),

(10) searchVarsR(HR,Cout5,Cout,HRR),

(11) ((Out==true, { HLR > HRR });

(12) (Out==false, { HLR =< HRR })));

(13) Cout=Cout4).

This code implements the application of the rules for the cooperation (see
Table 4 of [6]) among solvers. It follows the same prototype (line (1)) as #==,
since it is a binary function. Its two input arguments (L and R) are demanded to
be in hnf (lines (2-3)), and a primitive constraint is posted to the underlying
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FD solver, depending on the Boolean result of the function (lines (4)-(5)).
Moreover, these variables can be involved in (Herbrand) disequality constraints
because they were not identified as FD variables already. If so, FD disequal-
ity constraints are also posted to solveFD (lines (6-7)). This scenario appears
because the type of a variable is not always known since types are checked and
inferred at compile-time, but this information is not present at run-time.

If projection is active (indicated by the dynamic predicate proj active in
line (8)), then bridges relating the arguments of #> are looked for in the me-
diatorial store in order to find mate variables in R (lines (9-10)). This search,
if unsuccessful, will otherwise create bridges relating new mate variables in R.
Finally, a mate constraint is sent to the underlying R solver (lines (11-12)).

4.6 Projection: R to FD
Projecting a constraint from R to FD is possible in the same conditions stated
in the previous section. The projection amounts to send mate constraints as
before, but bridges for the rest of variables in an R constraint are not created
since their integral nature is not for sure. The code excerpt below shows its
basic implementation (without considering obvious optimizations) for a concrete
constraint > (i.e., greater than):

(1) >(L, R, Out, Cin, Cout):-

(2) hnf(L, HL, Cin, Cout1),

(3) hnf(R,HR, Cout1, Cout2),

(4) (Out = true, {HR > HL} ;

(5) Out = false, {HL =< HR}),

(6) toSolver(HL, Cout2, Cout3),

(7) toSolver(HR, Cout3, Cout4),

(8) toSolver(Out, Cout4, Cout),

(9) (proj_active ->

(10) (searchVarsFD(HL, Cout, BL, FDHL),

(11) searchVarsFD(HR, Cout, BR, FDHR),

(12) ((BL == true, BR == true, Out == true, FDHL #> FDHR);

(13) (BL == true, BR == true, Out == false, FDHL #=< FDHR);

(14) (BL == true, BR == false, Out == true, FDHL #> FDHR);

(15) (BL == true, BR == false, Out == false, FDHL #=< FDHR);

(16) (BL == false, BR == true, Out == true, FDHL #>= FDHR);

(17) (BL == false, BR == true, Out == false, FDHL #< FDHR);

(18) true);

(19) true).

After analogous steps to the previous subsection, lines (6)-(8) deal with
the explicit interaction between solveH and solveR [17], checking whether the
disequality affects a real variable; if so, the constraint is sent to the underlying
solver for reals and removed from the Herbrand store.

Next, if projection is active, a similar procedure to the one performed for
the projection in the other direction follows. However, notice that there are
more possibilities for sending a mate constraint to solveFD (see Table 4 in [6]),
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depending on values of BL, BR, and Out. For BL and BR, a true value means
that a bridge relating this variable has been found; a false value means that
HL (resp. HR) is a real value with non-zero fractional part. Following the lines
(10)-(11), FDHL (resp. FDHR) is the greatest integral value less or equal to HL
(resp. HR).

Lines (12)-(13) correspond to true values for BL and BR therefore the
mate constraint #> is sent to solveFD, or its counterpart #=<, depending on
the Boolean result of the function.

Lines (14)-(17) determine the correct mate constraint which is sent to
solveFD, which is selected in terms of the values for BL, BR, and Out, as specified
in [6]. For example, line (14) is selected for solving the right argument of the
conjunctive goal X #== RX, RX > 4.3. Here, BL is true as the real variable RX
has a mate finite variable X, (FDHL is X), BR is false because 4.3 has a non-zero
fractional part (so, FDHR is 4). Finally, the mate constraint X #> 4 is posted to
solveFD.

4.7 Handling of Numerical Types

T OY is a typed programming language, based essentially on the Hindley-Milner-
Damas polymorphic type system [18]. Programs are tested for well-typedness at
compile time. In particular, each occurrence of an expression in a T OY program
has a type that can be determined at compile time. Syntactically, types are built
from type variables tvar(τ) and type constructors TC. Any identifier starting
with an uppercase letter can be used as a type variable, while identifiers for type
constructors must start with a lowercase letter. Type constructors are introduced
in datatype declarations, along with data constructors. Primitive types (such as
bool, int, and real) can be viewed as type constructors of arity 0.

Function symbols are required to come along with a so-called principal type
declaration, which indicates its most general type. For example, the types of the
function “greater than” are >::real -> real -> bool and #>::int -> int
-> bool, distinguishing the FD version from the real number one by the prefix
symbol #; the exception is the equality and disequality constraints (== and /==
respectively) that are overload in order to work in both domains.

Type of variables is not always known at run-time because type inference
information is not kept. Thus, a disequality constraint between variables is as-
sumed to range over H, so that it is sent to the Herbrand store. During the
constraint solving process, FD and real constraints are continuously involved
in a projection process that gives rise to the update of different FD and real
variables; as a consequence, the disequality constraints stored may be affected by
the updates on any finite domain or real variable; if so, each of these disequality
constraints is sent to the underlying solver for FD or real domain in order to
look for inconsistences.

Equality constraints are treated differently since these are handled by uni-
fication. Narrowing process reduces both arguments to hnf, but T OY uses a
sophisticated process that analyzes the structure of both arguments in order to
cut the search space.
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In our system, some problems arose with types in different scenarios. For
example, we can solve the goals X+2>4 and X+2/=4, but the goal X+2==4 throws
an exception because it tries to unify a real value (i.e., the result of the narrowing
of the expression X+2) with the integer value 4. This can be avoided in T OY
by identifying correctly the nature of the result; in the example, the exception
is not thrown if we type X+2==4.0 (note that the left argument of the equality
provides always a real value as function + is defined as +::real -> real ->
real and thus the value 2 is interpreted as a real value).

4.8 Related Work

In general, solver cooperation has been widely analyzed in the literature and
there are a number of declarative constraint systems that provide support for
the interaction among solvers. For example: CLP(BNR) [19], Prolog III [20] and
Prolog IV [21] allow solver cooperation, mainly limited to Booleans, reals and
naturals. Also, the language NCL [22] provides an integrated constraint frame-
work that strongly combines Boolean logic, integer constraints, and set reason-
ing. The integration of new constraint domains such as the reals is described
as future work in [22]. In general, all those systems provide a limited form of
cooperation that is very specific to the predefined computation domains existing
in the system. Solver cooperation as integrated in T OY is quite different from
all those systems as its implementation follows the theoretical principles recently
described in [6]. Particularly, solver cooperation in T OY follows an interopera-
tive approach, which means that the system has the ability to communicate and
use independently-written software components, thus allowing independent sys-
tems to cooperate. In the literature, one can find different proposals catalogued
in this approach. For instance, [23] proposes a C++ constraint solving library
called aLiX for communicating different solvers, possibly written in different
languages. One of the main shortcomings of the current aLiX version is that a
component for solving continuous constraints is not integrated into the system
yet (this is claimed to be one of their main priorities for future development
work).

Also, [24] describes a client/server architecture to enable communication
among the component solvers. This consists of both managers of the system
and the solvers that must be defined on the same computational domain (e.g.,
real numbers) but with different classes of admissible constraints (e.g., linear
and non-linear constraints). The CLP system CoSAc is an implementation of
their system. This system is very different from our proposal as the exchange of
information is managed by means of pipes and the exchanged data is a character
string. Also, in his thesis [25], Monfroy constructed the system BALI (Binding
Architecture for Solver Integration) that facilitates the integration of heteroge-
neous solvers, as well as the specification of solver cooperation via a number
of cooperations primitives. There are may differences with our implementation
but one of the most significant is that Monfroy’s approach assumes that all the
solvers work over a common store, while our present proposal requires commu-
nication among different stores.
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Perhaps, regarding solver cooperation, the most similar system to T OY is
the system Meta-S [26], a meta-solver framework that implements the ideas pro-
posed in [27] for the dynamic integration of external stand-alone solvers to enable
the collaborative processing of constraints. The similarities between T OY and
Meta-S are because solver cooperation in Meta-S also relies on two main con-
structs, namely constraint propagation (that enables to submit a constraint be-
longing to some domain D to its constraint store, say SD) and projection of
constraint stores (that consults the contents of a given store SD and deduces
constraints for another domain). Our projection differs from Meta-S projection
in the creation and use of bridges; Meta-S propagation corresponds to our goal
solving rules for placing constraints in stores and invoking constraint solvers. An
important difference is the lack of bridges in Meta-S approach that corresponds
to the lack of mediatorial domains within the combined domains that can be
constructed in this system. From the implementation point of view, there are
additional structural differences between T OY and Meta-S. So, Meta-S does not
provide facilities for constraint optimization (as T OY). Also, Meta-S is imple-
mented in Common Lisp whereas T OY is implemented in Prolog.

5 Performance

In this section, we briefly show empirically that the projection mechanism of
T OY helps to accelerate the cooperative constraint solving. To do so, we have
considered a number of benchmarks4: a non-linear crypto-arithmetic (nl-csp)
problem (9 FD variables with non-linear equations), two problems for solving
systems of 10 (eq10) and 20 (eq20) linear equations with 7 FD variables, an
electrical circuit problem, a knapsack optimization problem, and a set of cryp-
toarithmethic problems i.e., send+more=money (smm) problem (8 FD vari-
ables, 1 linear equation, 2 disequations, and 1 all different constraint), the
Wrong+Wrong=Wright (wwr) problem (8 FD variables, 1 linear equation, 1
all different constraint), the alpha problem (26 FD variables, 20 linear equa-
tions, and 1 all different constraint), and the donald problem (10 FD variables,
1 linear equations, and 1 all different constraint). All the benchmarks were coded
to require FD constraint solving as well as solving of (non-)linear equations in
solveR.

All the benchmarks were executed on the same Linux machine, operating
system Suse Linux 9.3, with an Intel(R) Pentium(R) M processor running at
1.70GHz and with a RAM memory of 1 GB. For the sake of brevity, in Ta-
ble 1 we only provide the results for first solution search. The first column
displays the configuration employed: (1) T OY(FD +R), which corresponds to
T OY with both numerical solvers activated, and (2) T OY(FD +R)-proj which
corresponds to T OY(FD +R) with the mechanism for constraint projections
activated. In addition, two labeling strategies were considered: näıve, in which
variables are labelled in a prefix order, and first fail (ff), in which the variable
with the smallest domain is chosen first for enumerating. The label (FD ∼ R)
4 All the benchmarks are available in http://www.lcc.uma.es/∼afdez/cflpfdr.
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means that labelling of FD variables and global constraints are executed in
solveFD whereas (non-)linear-equations are sent to solveR. The numbers for
the different versions of T OY represent the average of ten runs. Note that, in
general, activating the projection mechanism provides a significant performance
improvement. Further experiments with more benchmarks have also been exe-
cuted leading to the same conclusion.

Configuration knapsack donald smm nl-csp wwr eq10 eq20 alpha circuit

T OY(FD +R)

näıve FD ∼ R 16 304970 22528 411 411 266 402 314 14
ff FD ∼ R 15 288700 22627 383 420 271 408 272 13

T OY(FD +R)-proj

näıve FD ∼ R 11 8305 41 44 54 290 433 291 14
ff FD ∼ R 16 601 40 87 58 269 397 283 20

Speed-Up

näıve FD ∼ R 1.45 36.72 549.43 9.34 7.61 0.91 0.92 1.07 1
ff FD ∼ R 0.93 480.36 565.67 4.4 7.24 1 1.02 0.96 0.65

Table 1. Running time (milliseconds) for first solution search

6 Conclusions and Future Work

In this paper, we have dealt with implementation issues of the constraint func-
tional logic programming system T OY unreported up to now. Among these im-
plementation issues, we have described the data-flow program compilation pro-
cess, available libraries, and the integration of constraint solving technology in
the system. With special emphasis, we have explained how solver cooperation
has been recently incorporated in T OY. This is a very important issue as the
interaction among solvers makes it easier to express compound problems, and
good communication can help the efficiency of the systems [28].

More specifically, we have described the internal communication among H,
R and FD via bridges and projections. We have sketched their implementa-
tion, and shown that bridges manage the communication between two variables
that belong to different computation domains, whereas propagation generates,
from a primitive constraint defined on one source computation domain, new
(semantically-equivalent) constraints that are propagated to another computa-
tion domain which demands cooperation with the source domain. This solver
cooperation can lead to drastic reductions in the search space of the problem,
and can be translated into a reduction of the solving time as it was shown in
[6].
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Acknowledgements

First and third authors were partially supported by the Spanish National
Projects MERIT-FORMS (TIN2005-09027-C03-03) and PROMESAS-CAM(S-
0505/TIC/0407). Second author was partially supported by Spanish MCyT
projects under contracts TIN2004-7943-C04-01 and TIN2005-08818-C04-01.

References

1. Arenas, P., Fernández, A., Gil, A., López-Fraguas, F., Rodŕıguez-Artalejo,
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