
Playing with T OY: Constraints and Domain
Cooperation

Sonia Estévez-Mart́ın1, Antonio J. Fernández2, and Fernando Sáenz-Pérez3,�

1 Univ. Complutense de Madrid, Dpto. de Sistemas Informáticos y Comp, Spain
2 Univ. de Málaga. Dpto. de Lenguajes y Ciencias de la Computación, Spain

3 Univ. Complutense de Madrid, Dpto. de Inteligencia Artificial e Ing. SW, Spain

Abstract. This paper describes T OY, an implementation of a Con-
straint Functional Logic Programming scheme CFLP (C), where C is a
coordination domain involving the cooperation among several constraint
domains D1, ..., Dn via a mediatorial domain M . This implementation
follows a cooperative goal solving calculus for CFLP (C) based on lazy
narrowing, invocation of solvers for each domain Di, and projection op-
erations for converting Di constraints into Dj constraints with the aid
of mediatorial constraints supplied by M . Mediatorial constraints allow
solving programs that require constraints of different domains, and pro-
jection may improve performance, allowing certain solvers to profit from
(the projected forms) of constraints originally intended for other solvers.
As a relevant concrete instance of our CFLP (C), we implemented the
cooperation among Herbrand, real arithmetic and finite domain con-
straints, and the mediatorial constraints relate numeric variables belong-
ing to the last two domains. These mediatorial constraints are the bridge
#== :: int -> real -> bool (that evaluates to true if their arguments
are equivalent -i.e., the real value is considered to represent the integer
one- and false otherwise), and the antibridge #/== :: int -> real ->
bool (with a countermeaning).

1 Introduction

T OY [1] is a constraint functional logic language and system, designed to sup-
port the main declarative programming styles and their combination. From
http://toy.sourceforge.net the preferred distribution for T OY can be down-
loaded. There are some possibilities: Choose either a binary distribution (a
portable application that does not need installation) or a source-code distri-
bution (which requires SICStus Prolog previously installed). Therefore, almost
any platform can run T OY (e.g., the system can be started as a Windows appli-
cation or in a Linux console). It features a command interpreter for submitting
goals and system commands. In addition, it has been connected to ACIDE [2],

� First and third authors were partially supported by the Spanish National
Projects MERIT-FORMS (TIN2005-09027-C03-03) and PROMESAS-CAM(S-
0505/TIC/0407). Second author was partially supported by Spanish MCyT projects
under contracts TIN2005-08818-C04-01 and TIN-2007-67134.

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 112–115, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Playing with T OY: Constraints and Domain Cooperation 113

a graphical and configurable integrated development environment. Further de-
velopments are also guided to port the system to free Prolog interpreters such
as B-Prolog.

Programs in T OY can include definitions of types, operators, lazy functions
in Haskell style, as well as definitions of predicates in Prolog style. A predicate is
viewed as a particular kind of function whose right-hand side is true. A function
definition consists of an optional type declaration and one or more defining rules,
which are possibly conditional rewrite rules. Both functions and predicates must
be well-typed with respect to a polymorphic type system [3].

Programs can use constraints within the definitions of both predicates and
functions. Constraints supported by the system include symbolic equations and
disequations [4], linear and non-linear arithmetic constraints over the real num-
bers [5] and finite domain constraints [6].

T OY computations solve goals and display computed answers. T OY solves
goals by means of a demand driven lazy narrowing strategy [7] combined with
constraint solving. Answer constraints can represent bindings for logic variables,
as in answers computed by a Prolog system. Some features of T OY are:

1. Curried style. This allows that partial applications of curried functions can
be used to express functional values as partial patterns.

2. Non-deterministic functions. These are defined either by means of defining
rules with overlapping left-hand sides or using extra variables in the right-
hand side that do not occur in the left-hand side.

3. Sharing for values of all variables which occur in the left-hand sides of defin-
ing rules and have multiple occurrences in the right-hand side and/or the
conditions. Sharing implements so-called call-time choice semantics of non-
deterministic functions.

4. Higher-order functions in the style of Haskell, except that lambda abstrac-
tions are not allowed. In T OY , higher-order can be naturally combined with
non-determinism.

5. Dynamic Cut. Optimization that detects deterministic functions at compile
time, and the generated code includes a test for detecting at run-time the
computations that can actually be pruned [8].

6. Finite Failure. The primitive Boolean function fails is a direct counterpart
to finite failure in Prolog.

2 Constraint Functional Logic Programming Scheme
CFLP (C)

T OY implements a Constraint Functional LogicProgramming scheme CFLP (D)
over a parametrically given constraint domain D, proposed in [9]. CFLP (D) is
a logical and semantic framework for lazy Constraint Functional Logic Program-
ming over D, which provides a clean and rigorous declarative semantics for CFLP
languages.

In particular, D is the coordination domain C introduced in [10] as the
amalgamated sums of the domains to be coordinated, D1, . . . , Dn, along with a

114 S. Estévez-Mart́ın, A.J. Fernández, and F. Sáenz-Pérez

mediatorial domain M which supplies special communication constraints, called
bridges, used to impose the equivalence between values of different base types.

The CooperativeConstrained LazyNarrowingCalculus CCLNC(C) presented
in [10] provides a fully sound formal framework for functional logic programming
with cooperating solvers over various constraint domains. CCLNC(C) has been
proved fully sound w.r.t. CRWL(C) semantics [9].

3 Cooperation in T OY: Bridges and Projections

T OY comes equipped with solvers corresponding to three constraint domains:

1. Herbrand, with equality and disequality constraints.
2. Real Arithmetic, with arithmetical constraints over real numbers.
3. Finite domain, with constraints over integer numbers.

The Herbrand Solver is always available, and the real and finite domain solvers
can be optionally loaded. With the aim of extending the system applicability,
a mechanism for solver cooperation on these domains has been recently incor-
porated. This mechanism has two main pillars: Bridges, necessary for solver
communication, and Projections, that improve the efficiency of some programs.

A bridge is a special kind of ‘hybrid’ constraint which allows the communi-
cation among the real and finite (‘pure’) domains and instantiates a variable
occurring at one end of a bridge whenever the other end becomes a numeric
value. Note that, a bridge constraint can be used to impose an integral con-
straint over its right argument. As an example, suppose we want to know if two
different lines can meet at one integer point. A line can be described algebraically
by the linear equation y = m * x + b, and the corresponding T OY program is:

Program
meetLines M1 B1 M2 B2=(X,Y)
<== X #== RX,

Y #== RY,
RY == M1*RX + B1,
RY == M2*RX + B2

Goal Answer
meetLines 2 4 1 2 == L L -> (-2, 0)
meetLines 1 1 1 2 == L no %parallel
meetLines 1 1 3 2 == L no %real point

Projection takes place during goal solving whenever a pure constraint is sub-
mitted to its solver. At that moment, projection builds a mate constraint which
is submitted to the mate solver (think of finite domain solver as the mate of
real solver, and vice versa). Projection rules described in [10,11] relying on the
available bridges are used for building mate constraints. For example, suppose
we want to calculate the intersection of a triangular region (defined in the con-
tinuous plane) with an (N ×N)-size square discrete grid (defined in the discrete
plane). A T OY program that solves the problem, for any given even integer
number N , is shown below; the triangular region is described by the inequalities
whereas the square grid is described by the finite domain constraints (i.e., those
labelled with # and the function labeling/2).

Playing with T OY: Constraints and Domain Cooperation 115

Program Mate Constraints
bothIn L X Y N :- X#==RX, Y#==RY, N#==NX,

RY >= (NX/2) - 0.5, ⇒ Y #>= �NX/2 #- 0.5�,
RY - RX <= 0.5, ⇒ Y #- X #<= �0.5�,
RY + RX <= NX + 0.5, ⇒ Y #+ X #<= �NX #+ 0.5�,
domain [X,Y] 0 N, ⇒ 0<=RX, RX<=N, 0<=RY, RY<=N
labeling L [X,Y]

Mate constraints, generated during goal solving, allow the finite domain solver
to drastically prune the domains of X and Y. Therefore, if we have a huge grid
and a tiny triangle and the projection is enabled, then the computation time is
drastically reduced. Note that not all the constraints are projected, for example
the labeling constraint.

We have borrowed the idea of constraint projection from the work of P. Hof-
stedt [12], adapting it to our CFLP scheme and adding bridge constraints as a
novel technique which makes projections more flexible and compatible with type
discipline.

References
1. Arenas, P., Fernández, A., Gil, A., López, F., Rodŕıguez, M., Sáenz, F.: T OY . In:

Caballero, R., Sánchez, J. (eds.) A Multiparadigm Declarative Language. Version
2.3.0 (2007), Available at http://toy.sourceforge.net

2. Sáenz-Pérez, F.: ACIDE: An Integrated Development Environment Configurable
for LaTeX. The PracTeX Journal 2007(3) (2007)

3. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL
1982, pp. 207–212. ACM Press, New York (1982)

4. Arenas, P., Gil, A., López, F.: Combining Lazy Narrowing with Disequality Con-
straints. In: Penjam, J. (ed.) PLILP 1994. LNCS, vol. 844, pp. 385–399. Springer,
Heidelberg (1994)

5. Hortalá, T., López, F., Sánchez, J., Ullán, E.: Declarative Programming with Real
Constraints. Research Report SIP 5997, U.C.M (1997)

6. Fernández,A.J.,Hortalá,T.,Sáenz,F.,delVado,R.:ConstraintFunctionalLogicPro-
gramming over Finite Domains. Theory Pract. Log. Program. 7(5), 537–582 (2007)

7. Loogen, R., López-Fraguas, F.J., Rodŕıguez-Artalejo, M.: A demand driven com-
putation strategy for lazy narrowing. In: Penjam, J., Bruynooghe, M. (eds.) PLILP
1993. LNCS, vol. 714, pp. 184–200. Springer, Heidelberg (1993)

8. Caballero, R., Garćıa-Ruiz, Y.: Implementing dynamic cut in toy. Electr. Notes
Theor. Comput. Sci. 177, 153–168 (2007)

9. López, F., Rodŕıguez, M., del Vado, R.: A new generic scheme for functional logic
programming with constraints. Higher-Order and Symbolic Computation 20(1/2),
73–122 (2007)

10. Estévez, S., Fernández, A.J., Hortalá, M.T., Rodŕıguez, M., del Vado, R.: A fully
sound goal solving calculus for the cooperation of solvers in the CFLP scheme.
ENTCS 177, 235–252 (2007)

11. Estévez, S., Fernández, A., Hortalá, T., Rodŕıguez, M., Sáenz, F., del Vado, R.: A
Proposal for the Cooperation of Solvers in Constraint Functional Logic Program-
ming. ENTCS 188, 37–51 (2007)

12. Hofstedt, P., Pepper, P.: Integration of declarative and constraint programming.
Theory Pract. Log. Program. 7(1-2), 93–121 (2007)

http://toy.sourceforge.net

	Introduction
	Constraint Functional Logic Programming Scheme CFLP(C)
	Cooperation in TOY: Bridges and Projections

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

