A Functional Logic Language with Finite Domain Constraints

Antonio J. Fernández\(^1\), Teresa Hortalá-González\(^2\) and Fernando Sáenz-Pérez\(^2\)

\(^1\) Depto. de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain
\(^2\) Depto. de Sistemas Informáticos y Programación Universidad Complutense de Madrid, Spain
afdez@lcc.uma.es, \{teresa,fernan\}@sip.ucm.es

Abstract. We present a constraint functional logic programming approach over finite domain (CFLP(FD)) for integrating finite domain constraints into the functional logic language TOY. CFLP(FD) programs consist of TOY rules with finite domain constraints declared as functions. CFLP(FD) seamlessly combines the power of the constraint logic programming over finite domains with the higher order characteristics of the functional logic programming paradigm. This paper describes a language for CFLP(FD), an implementation of our language for CFLP(FD) and programming examples that demonstrate the potential of the integration.

Keywords: Constraint Programming, Scheduling, Functional Logic Programming, Finite Domains.

1 Introduction

Declarative programming (DP) is intended to separate the problem formulation from the procedure to solve the problem itself. Well known DP instances are logic programming (LP) on which the problem can be expressed in first order predicate calculus and functional programming (FP) that allows to express problems in terms of higher order functions. Recently, constraint logic programming (CLP) emerged to increase both the expressiveness and efficiency of LP programs \[JM94\]. The basic idea in CLP consists of replacing the classical LP unification by constraint solving on a given computation domain. Then, different instances of the computation domain generate different CLP instances that are used in the solving of problems of distinct nature.

Among the domains for CLP, the Finite Domain (FD) \[Hen89\] is one of the most and best studied since it is a suitable framework for solving discrete constraint satisfaction problems. The importance of the CLP languages based on

\(^*\) The work of this author has been partially supported by the project TIC2001-2705-C03-02 funded by the Spanish Ministry of Science and Technology.

\(^{**}\) The work of the last two authors has been supported by the Spanish project PR 48/01-9901 funded by UCM.
FD is their impact in the industry since a lot of problems in the real life involve variables ranging on discrete domains. This means that CLP languages for FD are appropriate to solve many real-world industrial problems. Unfortunately, literature lacks proposals to integrate FD constraints in the functional setting. This seems to be caused by the relational nature of the FD constraints that do not fit well in FP.

Another instance of DP is functional logic programming (FLP) that emerges with the aim to integrate the declarative techniques used in both FP and LP and that gives rise to new features not existing in FP or LP [Han94]. This paper describes our work of integrating FD constraints as functions in the FLP language TOY [LS99,Rod01], which includes pure LP and lazy FP programs as particular cases. Our work is a contribution for further augmenting the expressive power of FLP by adding the possibility of solving FD constraint problems in the functional logic setting. As far as we know, there is no concrete realization of a pure F(L)P language embodying FD constraints with reasonable efficiency. In this paper, we show the integration of FD constraints into a FLP language. The implementation uses the efficient FD library provided by Sicstus Prolog.

Most of the work to integrate constraints in the DP paradigm has been developed on LP [CD96,CO+97]. However, there exist some attempts to integrate constraints in the functional (logic) framework. For instance, [AH+96,LS99] show how to integrate both linear constraints over real numbers and disequality constraints into the FLP language TOY. Also, [Lux01] describes the addition of linear constraints over real numbers to the FLP language Curry [Han00]. With respect to FD, the only functional system (to our knowledge) supporting FD constraints is Oz (currently called Mozart) [Smo95] which is a functional logic language based on concurrent constraint solving. However, this system is very different from pure FP systems as it is based on the concept of state in the object oriented paradigm. Also, [AH00] provides a hint on how the integration of FD constraints in F(L)P could be carried out.

The structure of the paper is as follows: Section 2 shows our implementation of CFLP(FD), the TOY(FD) language. Section 3 highlights some advantages obtained from integrating constraints into a functional logic language. Section 4 introduces some program examples which show how to benefit from the integration of FLP and FD. Finally, section 5 summarizes some conclusions and points out future work.

2 TOY(FD) : a CFLP(FD) Implementation

This section describes part of TOY(FD), that is, our CFLP(FD) implementation that extends the TOY system to deal with FD constraints and that also shows how to increase the FLP paradigm by integrating FD constraints as functions. (See [LS99] for a description of the base language and [FHS02] for a more detailed description of TOY(FD).)
2.1 Constraints as Functions

TOY(FD) provides support for six different categories of FD constraints: (1) relational constraints, (2) arithmetic constraints, (3) combinatorial constraints, (4) membership constraints, (5) enumeration constraints, and (6) statistics constraints. For reasons of space, we only briefly describe part of the first five categories.

Assume that L, L_1, L_2 are either lists (i.e., vectors) of integers or FD variables with length n; X, Y, N are either FD variables or integer values; V, V_1, V_2 are integers and $RelOp$ is a value that represents a relational operator. Suppose also that $equiv(RelOp)$ is a function that returns the classical FD arithmetic operator equivalent to the value $RelOp$ (i.e., $equiv(\lt)$ is ‘#<’, $equiv(eq)$ is ‘#=’, $equiv(le)$ is ‘#<=’, $equiv(ge)$ is ‘#>=’, $equiv(gt)$ is ‘#>’ and $equiv(neq)$ is ‘#\neq’).

Relational Constraints include equality and disequality constraints in the form $e \diamond e'$ where $\diamond \in \{\lt, \leq, \geq, \gt, \neq\}$ and e and e' are either integers, or FD variables or functional expressions.

Arithmetic Constraints include all the classical arithmetic operators as well as the dedicated constraints ‘sum/3’ and ‘scalar_products/4’ where

- ‘$\sum_{e \in L} e equiv(RelOp) V$’ returns true if

$$\sum_{e \in L} e equiv(RelOp) V$$

holds.

- ‘$scalar_products L_1 L_2 RelOp V$’ returns true if the scalar product of L_1 and L_2 is related with the value V by the operator $RelOp$, i.e., if

$$L_1\ sp\ L_2\ equiv(RelOp)\ V$$

is satisfied with sp defined as the usual scalar product of integer vectors.

As expected, the expressions constructed from both the arithmetic and relational constraints may be non-linear.

Combinatorial Constraints include well known global constraints that are useful in the solving of problems formulated on discrete domains [?]. TOY(FD) supports the following constraints:

- ‘$assignment/2$’ is applied over two lists of domain variables with length n where each variable takes a value in $\{1, \ldots, n\}$ which is unique for that list. Then, ‘$assignment L_1 L_2$’ returns true if for all $i, j \in \{1, \ldots, n\}$, and $X_i \in L_1, Y_j \in L_2$, then $X_i = j$ if and only if $Y_j = i$.

- ‘$all_different L$’ and ‘$all_distinct L$’ return true if each variable in L is constrained to have a value that is unique in the list L and there are no duplicate integers in the list L, i.e., this is equivalent to say that for all $X, Y \in L$,
The difference between both constraints is that \textit{all_different}/1 uses a complete algorithm that maintains the domain consistency [Reg94] whereas \textit{all_distinct}/1 uses an incomplete one. There are extended versions that allow one more argument which is a list of options, where each option may have one of the following values

1. ‘on value’, ‘on domains’ or ‘on range’ to specify that the constraint has to be woken up, respectively, when a variable becomes ground, when the domain associated to a variable changes, or when a bound of the domain (in interval form) associated to a variable changes.

2. ‘complete true’ or ‘complete false’ to specify if the propagation algorithm to apply is complete or incomplete.

- ‘circuit \(L_1\)’ returns true if the values in \(L_1\) form a Hamiltonian circuit. This constraint can be thought of as constraining \(n\) nodes in a graph to form a Hamiltonian circuit where the nodes are numbered from 1 to \(n\) and the circuit starts in node 1, visits each node and returns to the origin. \(L_1\) is a list of FD variables or integers of length \(n\), where the \(i\)-th element of \(L_1\) is the successor of \(i\) in the graph.

- ‘element \(X L Y\)’ returns true if the \(X\)-th element in the list \(L\) is \(Y\) (in the sense of FD).

- ‘count \(V L \text{RelOp} Y\)’ returns true if the number of elements of \(L\) that are equal to \(V\) is \(N\) and also \(N\equiv\text{RelOp}\ Y\).

Membership Constraints restrict variables to have values in a set of integers (i.e., an interval). The expression ‘\textit{domain} \(L V_1 V_2\)’ returns true if each element in the list \(L\) belongs to the interval \([V_1, V_2]\).

Enumeration Constraints reactivate the search process when no more constraint propagation is possible. TOY(FD) provides the following constraints:

1. ‘\textit{indomain} \(X\)’ that assigns a value, from the minimum to the maximum in its domain, to \(X\).

2. ‘\textit{labeling Options} \(L\)’ that returns true if an assignment of the variables in \(L\) can be found such that all of the constraints are satisfied. \textit{Options} is a list of four elements of type ‘\textit{labelingType}’ that allows to specify the nature of the search.

2.2 Implementation Issues and Constraint Solving

TOY(FD) is implemented on top of Sicstus Prolog 3.8.4 and provides an interface from TOY to the FD constraint solver of SICStus [CO+97]. The evaluation of FD is defined internally by using mainly two predicates: \textit{hnf} \((E, H)\), which specifies that \(H\) is one of the possible results of narrowing the expression \(E\) into head normal form, and \textit{solve}/1, which checks the satisfiability of constraints (in rules and goals) previously to the evaluation of a given rule. This predicate is defined as follows:
solve((\(\varphi, \varphi'\))) :- solve(\(\varphi\)), solve(\(\varphi'\)).

(2) solve(L == R) :- hnf(L, L'), hnf(R, R'), equal(L', R').

(3) solve(L ≠ R) :- hnf(L, L'), hnf(R, R'), notequal(L', R').

(4) solve(L /\= R) :- hnf(L, L'), hnf(R, R'), \{L' /\= R'\}.

where \(\diamond \in \{<, \leq, >, \geq, =, \neq\}\).

(5) solve(C A_1 \ldots A_n) :- hnf(A_1, A'_1), \ldots, hnf(A_n, A'_n), \{C(A'_1, \ldots, A'_n)\}.

where C is any constraint returning a boolean value.

The above code does not correspond exactly to the implementation, which is the result of many transformations and optimizations. The interaction with the SICStus’ FD constraint solver is reflected in the last two clauses: every time a constraint (or an operation) over FD expressions appears, the solver is eventually invoked (Sicstus syntax encloses constraints between brackets). The expressions have to be ‘rewritten’ in order to allow the solver to solve the constraint. By rewriting we mean computing the head normal forms (hnf) of both expressions. Doing this, we get a ‘rewritten’ constraint following the proper solver syntax, due to the fact that these hnf are going to be either logic (FD) variables or integers.

3 Advantages of the Integration

3.1 Semantic Advantages

Functional logic programming languages express problems as higher order functions with logic variables, which allows one-way expression reduction. As with logic languages\(^3\) and functional languages, general relations cannot concisely be expressed. Constraint programming languages allow to express relations with a pure declarative reading (so that multi-way uses of the variables in the relation can be applied, i.e., different modes for the variables: input or output). The integration therefore allows expressing relations involving logic variables combined with functional applications.

3.2 Operational Advantages

Solving in logic programming languages (including functional logic) is based on different techniques including SLD resolution (logic programming), narrowing, and residuation (functional logic programming). These languages feature the concept of logic variable. A logic variable is assigned only once to at most a unique value during the search for a solution (a computation branch). Due to their nondeterminism, several solutions may exist (and, therefore, several computation branches). The multiset of solutions is characterised by all the sets of possible assignments for each variable in the goal during the computation\(^4\).

\(^3\) The problem of expressing (dis)equations in Prolog is well-known.

\(^4\) Several computation branches may lead to the same solution due to redundant alternatives.
search space is the union of all the computation branches. Nondeterminism provides the way to formulate combinatorial problems since alternatives for rules (FLP) or clauses (LP) may provide different assignments to the same variable. Combinatorial problems can therefore be expressed with such languages, but an exhaustive enumerative procedure is implicitly used for the search of solutions.

Solving in constraint systems is based on constraint propagation and labeling. The first prunes the search space by reducing domains, and the second finds solutions by assigning values to variables.

A constraint system starts solving by propagating the effects of the constraints over the domains of variables. This means that, in general, propagation implies that each current domain will decrease its cardinality (pruning). There are several propagation algorithms in the literature which behave differently and may reach different fixed points. The fixed point is reached whenever there is no further domain reduction. These algorithms implement an iterative procedure which looks for a stable situation (fixed point), or a failure (a domain becomes empty, i.e., there is no possibility of finding an assignment for the related variable such that all the constraints are satisfied.) Finding a fixed point with non-singleton domains does not mean that there are definitely multiple solutions to the problem, and it does not even ensure that at least one solution exists. Propagation is not complete in the sense of ensuring the existence of solutions. Instead, it is used to find out what assignments definitely do not lead to a solution. The premise in this approach is to identify in advance, as soon as possible, what partial solution (where not all domains are singletons) is not a solution before trying to assign all the variables. Note that this follows a different approach than those from the enumeration techniques, which try to find solutions by simultaneously assigning values to all the variables, so that a solution is known when all variables have been assigned.

Once propagation procedure reaches a fixed point and at least one domain is not a singleton, labeling can be initiated in order to find feasible assignments. Indeed, the search for solutions could be seen at this point from an enumeration point of view. However, each time a variable is assigned to a value, propagation can be started until a fixed point had been reached. Next, a new assignment can be made, a new propagation cycle started, and so on, until a solution is computed or not found. The latter means that backtracking must be started in order to find another possible assignment. Each time a variable is labeled (assigned to a value among the possible values in its domain), a choice point must be annotated in order to try different assignments through backtracking.

Solving in a (constraint logic) system embodying logic variables, an enumerative search procedure (as those for LP and FLP), and a constraint solving procedure (propagation and labeling), allows to constrain variable domains during the enumerative search, therefore hopefully identifying a failure in advance (before the assignment of the variable). This improves efficiency in general since computation branches are pruned in advance with the information given by the constraints. In addition, lazy narrowing avoids computations which are not demanded, therefore saving computation time.
Observing the functional component of the integration, we get some advantages. First, since type checking is used throughout the language, in particular CFLP(FD) constraints are declared as functions so that a wrong use can be straightforwardly detected in the typical type checking process (in FLP) a priori, before execution. Therefore, this saves time in both correcting and debugging programs. Second, functions are used instead of just conjunctions in a logic programming language. Third, functions allows more concise programs since we can use them in arguments. And fourth, higher order applications provide more expressive power.

4 Programming in TOY(FD)

Observe that CLP(FD) is an instance of CFLP(FD) as any CLP(FD)-program can be straightforwardly translated into a CFLP(FD)-program. Therefore, this determines a wide range of applications for our language. We will not insist here on this matter, but prefer to concentrate on the extra capabilities of the language. We illustrate here different features of CFLP(FD) by means of examples. We would like to emphasize that all the pieces of code are executable in TOY(FD) and the answers for example goals correspond to actual execution of the program. Further programming examples in pure functional logic programming can be found in [LS99] and [FHS02].

4.1 A Scheduling Problem

Here, we consider the problem of scheduling tasks that require resources to complete, and have to fulfill precedence constraints. Figure 1 shows a precedence graph for six tasks which are labeled as \(tX^Y_mZ \), where \(X \) stands for the identifier of a task \(t \), \(Y \) for its time to complete (duration), and \(Z \) for the identifier of a machine \(m \) (a resource needed for performing task \(tX \)).

![Fig. 1. Precedence Graph.](image)

The following program models the posed scheduling problem. Please observe in the syntax that function arguments are not enclosed in parentheses in order to allow higher order applications. Also, syntactic sugar is provided for expressing
Boolean functions à la Prolog. The rules that define a function follow its type declaration. The type declaration consists of the types for each argument and for the result separated by \(\rightarrow \). Lists adhere to the syntax as Prolog lists. \texttt{int} is a predefined type (for integers) in TOY. Please also note functional applications in arguments, such as \((\text{End-D})\) in the second rule defining \texttt{horizon}. (Logic) Variables start with uppercase, whereas the remaining symbols start with lowercase.

\begin{verbatim}
data taskName = t1 | t2 | t3 | t4 | t5 | t6
data resourceName = m1 | m2
type durationType = int
type startType = int
type precedencesType = [taskName]
type resourcesType = [resourceName]
type task = (taskName, durationType, precedencesType, resourcesType, startType)

start :: task -> int
start (Name, Duration, Precedences, Resources, Start) = Start

duration :: task -> int
duration (Name, Duration, Precedences, Resources, Start) = Duration

schedule :: [task] -> int -> int -> bool
schedule TL Start End :-
 horizon TL Start End, scheduleTasks TL TL

horizon :: [task] -> int -> int -> bool
horizon [] S E = true
horizon [(N, D, P, R, S)|Ts] Start End :-
 domain [S] Start (End-D), horizon Ts Start End

scheduleTasks :: [task] -> [task] -> bool
scheduleTasks [] TL = true
scheduleTasks [(N, D, P, R, S)|Ts] TL :-
 precedeList (N, D, P, R, S) P TL,
 requireList (N, D, P, R, S) R TL,
 scheduleTasks Ts TL

precedeList :: task -> [taskName] -> [task] -> bool
precedeList T [] TL = true
precedeList T1 [TN|TNs] TL :-
 belongs (TN, D, P, R, S) TL, precedes (TN, D, P, R, S) T1,
 precedeList T1 TNs TL

precedes :: task -> task -> bool
precedes T1 T2 = (start T1) #+ (duration T1) #<= (start T2)

requireList :: task -> [resourceName] -> [task] -> bool
requireList T [] TL = true
requireList T [R|Rs] TL :- requires T R TL, requireList T Rs TL
\end{verbatim}
A task is modeled (via the type `task`) as a 5-tuple which holds its name, duration, list of precedence tasks, list of required resources, and the start time. Two functions for accessing the start time and duration of a task are provided (`start` and `duration`, respectively) that are used by the function `precedes`. This last function imposes the precedence constraint between two tasks. The function `requireList` imposes the constraints for tasks requiring resources, i.e., if two different tasks require the same resource, they cannot overlap. The function `noOverlaps` states that for two non overlapping tasks \(t_1 \) and \(t_2 \), either \(t_1 \) precedes \(t_2 \) or vice versa. The main function is `schedule`, which takes three arguments: a list of tasks to be scheduled, the scheduling start time, and the maximum scheduling final time. These last two arguments represent the time window that has to fit the scheduling. The time window is imposed via domain pruning for each task’s start time (a task cannot start at a time so that its duration makes its end time greater than the end time of the window; this is imposed with the function `horizon`). The function `scheduleTasks` imposes the precedence and requirement constraints for all of the tasks in the scheduling. Precedence constraints and requirement constraints are imposed by the functions `precedeList` and `requireList`, respectively.

With this model, we can submit the following goal, which defines the set of tasks, and asks for a possible scheduling in the time window (1,20):

```prolog
Tasks == [(t1,3,[],[m1],S1),
          (t2,8,[],[m1],S2),
          (t3,8,[t4,t5],[m1],S3),
          (t4,6,[],[m2],S4),
          (t5,3,[t1],[m2],S5),
          (t6,4,[t1],[m2],S6)],
schedule Tasks 1 20, labeling [] [S1,S2,S3,S4,S5,S6]
```
4.2 A More Involved Example

A more interesting example comes from the hardware arena. In this setting, many constrained optimization problems arise in the design of both sequential and combinational circuits as well as the interconnection routing between components. Constraint programming has been shown to effectively attack these problems. In particular, the interconnection routing problem (one of the major tasks in the physical design of very large scale integration - VLSI - circuits) have been solved with constraint logic programming [Zho96].

For the sake of conciseness and clarity, we focus on a constraint combinational hardware problem at the logical level but adding constraints about the physical factors the circuit has to meet. This problem will show some of the nice features of TOY for specifying issues such as behavior, topology and physical factors.

Our problem can be stated as follows. Given a set of gates and modules, a switching function, and the problem parameters maximum circuit area, power dissipation, cost, and delay (dynamic behavior), the problem consists of finding possible topologies based on the given gates and modules so that it meets the switching function and it commits to the constraint physical factors.

In order to have a manageable example, we restrict ourselves to the logical gates NOT, AND, and OR. We also consider circuits with three inputs and one output, and the physical factors aforementioned.

In the sequel we will introduce the problem by first considering the features TOY offers for specifying logical circuits, what are its weaknesses, and how they can effectively be solved with the integration of constraints in TOY(FD).

Example 1. FLP Simple Circuits. With this example we show the FLP approach that can be followed for specifying the problem stated above. We use patterns to provide intensional representation of functions. The alias behavior is used for representing the type bool → bool → bool → bool. Functions of this type are intended to represent simple circuits which receive three Boolean inputs and return a Boolean output. Given the Boolean functions not, and, or defined elsewhere, we specify three-input, one-output simple circuits as follows.

\[
i_0, i_1, i_2 :: \text{behavior}\\
i_0 \ I_2 \ I_1 \ I_0 = I_0\\n\text{notGate} :: \text{behavior} \Rightarrow \text{behavior}\\n\text{notGate} \ B \ I_2 \ I_1 \ I_0 = \text{not} (B \ I_2 \ I_1 \ I_0)\\n\text{andGate}, \text{orGate} :: \text{behavior} \Rightarrow \text{behavior} \Rightarrow \text{behavior}\\n\text{andGate} \ B_1 \ B_2 \ I_2 \ I_1 \ I_0 = \text{and} (B_1 \ I_2 \ I_1 \ I_0) \ (B_2 \ I_2 \ I_1 \ I_0)\\n\text{orGate} \ B_1 \ B_2 \ I_2 \ I_1 \ I_0 = \text{or} (B_1 \ I_2 \ I_1 \ I_0) \ (B_2 \ I_2 \ I_1 \ I_0)\\
\]

Functions \(i_0, i_1,\) and \(i_2\) represent inputs to the circuits, that is, the minimal circuit which just copies one of the inputs to the output (in fact, this can be thought as a fixed multiplexer - selector.) They are combinatorial modules as
depicted in Figure 2. The function \texttt{notGate} outputs a Boolean value which is the result of applying the NOT gate to the output of a circuit of three inputs. In turn, functions \texttt{andGate} and \texttt{orGate} output a Boolean value which is the result of applying the AND and OR gates, respectively, to the outputs of three inputs-circuits (see Figure 2).

These functions can be used in a higher order fashion just to generate or match topologies. In particular, the higher order functions \texttt{notGate}, \texttt{andGate} and \texttt{orGate} take behaviors as parameters and build new behaviors, corresponding to the logical gates NOT, AND and OR. For instance, the multiplexer depicted in Figure 3 can be represented by the pattern:

\[
\text{orGate (andGate i0 (notGate i2)) (andGate i1 i2)}
\]

This first-class citizen higher order pattern can be used for many purposes. For instance, it can be compared to another pattern or it can be applied to actual values for its inputs in order to compute the circuit output. So, with the previous pattern, the conjunctive goal:

\[
P == \text{orGate (andGate i0 (notGate i2)) (andGate i1 i2)},
0 == P \text{ true false true}
\]
is evaluated to true and produces the substitution \(0 == \text{false}\). The rules that define the behavior can be used to generate circuits, which can be restricted to satisfy some conditions. If we use the standard arithmetics, we could define the following set of rules for computing or limiting the power dissipation.

```haskell
power :: behavior -> int
power i0 = 0
power i1 = 0
power i2 = 0
power (notGate C) = notGatePower + (power C)
power (andGate C1 C2) = andGatePower + (power C1) + (power C2)
power (orGate C1 C2) = orGatePower + (power C1) + (power C2)
```

Then, we can submit the following goal (provided the function `maxPower` acts as a problem parameter that returns just the maximum power allowed for the circuit) in which the function `power` is used as a behavior generator: `power B == P, P < maxPower`.

As outcome, we get the following solutions, which are denoted by a set of 4-tuples \(\langle E, \sigma, C, \delta \rangle\) as a computed answer, where \(E\) is the TOY expression corresponding to the evaluation of the goal, \(\sigma\) is the set of variable substitutions, \(C\) is the set of disequality constraints, and \(\delta\) is the set of pruned domains. \(\langle i0, \{P==0\}, \{\}, \{\} \rangle, \langle i1, \{P==0\}, \{\}, \{\} \rangle, \langle i2, \{P==0\}, \{\}, \{\} \rangle, \langle \neg i0, \{P==1\}, \{\}, \{\} \rangle, \ldots, \langle \neg (\neg i0), \{P==2\}, \{\}, \{\} \rangle, \ldots\). Declaratively, it is fine; but our operational semantics requires a head normal form for the application of the arithmetic operand +. This implies that we reach no more solutions beyond \(\langle \neg (\ldots (\neg i0) \ldots), \text{maxPower}, \{\}, \{\} \rangle\) because the application of the fourth rule of `power` yields to an infinite computation. This drawback is solved by having recourse to successor arithmetics as shown below and where `notGatePower`, `andGatePower` and `orGatePower` are of type `nat`:

```haskell
data nat = z | s nat

plus :: nat -> nat -> nat
plus z Y = Y
plus (s X) Y = s (plus X Y)

less :: nat -> nat -> bool
less z (s X) = true
less (s X) (s Y) = less X Y

power' :: behavior -> nat
power' i0 = z
power' i1 = z
power' i2 = z
power' (notGate C) = plus notGatePower (power' C)
power' (andGate C1 C2) = plus andGatePower (plus (power' C1) (power' C2))
power' (orGate C1 C2) = plus orGatePower (plus (power' C1) (power' C2))
```

So, we can submit the goal `less (power' P) (s (s (s z)))`, where we have written down explicitly the maximum power (3 power units).
With the second approach we get a more awkward representation due to the use of successor arithmetics. The first approach to express this problem is indeed more declarative than the second one, but we get no termination. FD constraints can be profitably applied to the representation of this problem as we show in the next example.

Example 2. CFlP(FD) Simple Circuits. As for any constraint problem, modelling can be started by identifying the FD constraint variables. Recalling the problem specification, circuit limitations refer to area, power dissipation, cost, and delay. Provided we can choose finite units to represent these factors, we choose them as problem variables. A circuit can therefore be represented by the 4-tuple state \((\text{area, power, cost, delay})\). The idea to formulate the problem consists of attaching this state to an ongoing circuit so that state variables reflect the current state of the circuit during its generation. By contrast with the first example, we do not “generate” and then “test”, but we “test” when “generating”, so that we can find failure in advance. A domain variable has a domain attached indicating the set of possible assignments to the variable. This domain can be reduced during the computation. Since domain variables are constrained by limiting factors, during the generation of the circuit a domain may become empty. This event prunes the search space avoiding to explore a branch which is known to yield no solution. Let’s firstly focus on the area factor. The following function generates a circuit characterized by its state variables.

```haskell
type area, power, cost, delay = int

type state = (area, power, cost, delay)

type circuit = (behavior, state)

genCir :: state -> circuit
genCir (A, P, C, D) = (i0, (A, P, C, D))
genCir (A, P, C, D) = (i1, (A, P, C, D))
genCir (A, P, C, D) = (i2, (A, P, C, D))
genCir (A, P, C, D) = (notGate B, (A, P, C, D)) <==
    domain [A] ((fd_min A) + notGateArea) (fd_max A),
    genCir (A, P, C, D) == (B, (A, P, C, D))

    domain [A] ((fd_min A) + andGateArea) (fd_max A),
    genCir (A, P, C, D) == (B1, (A, P, C, D)),

genCir (A, P, C, D) = (orGate B1 B2, (A, P, C, D)) <==
    domain [A] ((fd_min A) + orGateArea) (fd_max A),
    genCir (A, P, C, D) == (B1, (A, P, C, D)),
```

The function `genCir` has an argument to hold the circuit state and returns a circuit characterized by a behavior and a state. (Please note that we can avoid the use of the state tuple as a parameter, since it is included in the result.) The template of this function is like the previous example. The difference lies in that we perform domain pruning during circuit generation with the membership constraint `domain`, so that each time a rule is selected, the domain variable
representing area is reduced by the size of the gate selected by the operational mechanism. For instance, the circuit area domain is reduced by a number of `notGateArea` when the rule for `notGate` has been selected. For domain reduction we use the reflection functions `fd_min` and `fd_max`, which respectively return the minimum and maximum values of a variable.

This approach allows us to submit the following goal:

```
domain [Area] 0 maxArea, genCir (Area, Power, Cost, Delay) == Circuit
```

which initially sets the possible range of area between 0 and the problem parameter area expressed by the function `maxArea`, and then generates a `Circuit`. Recall that testing is performed during search space exploration, so that termination is ensured because the add operation is monotonic. The mechanism which allows this “test” when “generating” is the set of propagators, which are concurrent processes that are triggered whenever a domain variable is changed (pruned). The state variable delay is more involved since one cannot simply add the delay of each function at each generation step. The delay of a circuit is related to the maximum number of levels an input signal has to traverse until it reaches the output. This is to say that we cannot use a single domain variable for describing the delay. Therefore, considering a module with several inputs, we must compute the delay at its output by computing the maximum delays from its inputs and adding the module delay. So, we use new fresh variables for the inputs of a module being generated and assign the maximum delay to the output delay. This solution is depicted in the following function:

```
genCirDelay :: state -> delay -> circuit
ngenCirDelay (A, P, C, D) Dout = (i0, (A, P, C, D))
genCirDelay (A, P, C, D) Dout = (i1, (A, P, C, D))
genCirDelay (A, P, C, D) Dout = (i2, (A, P, C, D))
genCirDelay (A, P, C, D) Dout = (notGate B, (A, P, C, D)) ==
    domain [Dout] ((fd_min Dout) + notGateDelay) (fd_max Dout),
genCirDelay (A, P, C, D) Dout = (B, (A, P, C, D))
    domain [Din1, Din2] ((fd_min Dout) + andGateDelay)(fd_max Dout),
genCirDelay (A, P, C, D) Din1 == (B1, (A, P, C, D)),
domain [Dout] (maximum (fd_min Din1) (fd_min Din2)) (fd_max Dout)
genCirDelay (A, P, C, D) Dout = (orGate B1 B2, (A, P, C, D)) ==
    domain [Din1, Din2] ((fd_min Dout) + orGateDelay) (fd_max Dout),
genCirDelay (A, P, C, D) Din1 == (B1, (A, P, C, D)),
domain [Dout] (maximum (fd_min Din1) (fd_min Din2)) (fd_max Dout)
```

Observing the rules for the AND and OR gates, we can see two new fresh domain variables for representing the delay in their inputs. These new variables are constrained to have the domain of the delay in the output but pruned with the delay of the corresponding gate. After the circuits connected to the inputs had been generated, the domain of the output delay is pruned with the maximum of the input module delays. Please note that although the maximum is computed
after the input modules had been generated, the information in the given output delay has been propagated to the input delay domains so that whenever an input delay domain becomes empty, the search branch is no longer searched and another alternative is tried. Putting together the constraints about area, power dissipation, cost, and delay is straightforward, since they are orthogonal factors that can be handled in the same way. In addition to the constraints shown, we can further constrain the circuit generation with other factors such as fan-in, fan-out, and switching function enforcement, to name a few. Then, we could submit the following goal:

\[
\text{domain [A] 0 maxArea, domain [P] 0 maxPower, domain [C] 0 maxCost, domain [D] 0 maxDelay, genCir (A,P,C,D) == (B, S), switchingFunction B == sw}
\]

where \text{switchingFunction} could be defined as the function that returns the result of a behavior \text{B} for all its input combinations, and \text{sw} is the function that returns the intended result (\text{sw} is referred as a problem parameter, as well as maxArea, maxPower, maxCost, and maxDelay).

The solution to this problem has shown how to apply FD constraints to a functional logic language, which benefits from both worlds, i.e., taking functions, higher order patterns, partial applications, non-determinism, logical variables, and types from FLP and domain variables, constraints, and propagators from the FD constraint programming. This leads to a more declarative way of expressing problems which cannot be reached from each counterpart alone. Note also that our approach is far more declarative than other constraint programming systems as algebraic constraint programming languages (OPL, AMPL), mainly since they do not benefit neither from complex terms and patterns nor from non-determinism.

5 Conclusions

We have presented CFLP(FD), a functional logic programming approach to FD constraint solving. We have shown how FD constraints can be defined as functions and therefore integrated naturally on FLP languages. Due to its functional component, CFLP(FD) provides better tools, when compared to CLP(FD), for a productive declarative programming. Due to the use of constraints, the expressivity and capabilities of our approach are clearly superior to both those of the functional and purely constraint programming approaches. We have also presented the language TOY(FD) for CFLP(FD). Our proposal can be applied to a wide range of problems which include all CLP(FD) applications and typical uses of functional programming for combinatorial problems. In particular, we have shown by example the benefits of integrating FLP and FD. We have seamlessly integrated constraint solving into a sophisticated, state-of-the-art execution mechanism for lazy narrowing. Our implementation translates CFLP(FD)-programs into Prolog-programs in a system equipped with an efficient constraint solver. In addition, we claim that our approach can be extended to other kind of interesting constraint systems, such as non-linear real constraints, constraints over sets, or Boolean constraints, to name a few.
References

