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??

1 Depto. de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain
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Abstract. We present a constraint functional logic programming ap-
proach over finite domain (CFLP(FD)) for integrating finite domain
constraints into the functional logic language TOY. CFLP(FD) programs
consist of TOY rules with finite domain constraints declared as functions.
CFLP(FD) seamlessly combines the power of the constraint logic pro-
gramming over finite domains with the higher order characteristics of the
functional logic programming paradigm. This paper describes a language
for CFLP(FD), an implementation of our language for CFLP(FD) and
programming examples that demonstrate the potential of the integra-
tion.
Keywords: Constraint Programming, Scheduling, Functional Logic Pro-
gramming, Finite Domains.

1 Introduction

Declarative programming (DP) is intended to separate the problem formulation
from the procedure to solve the problem itself. Well known DP instances are
logic programming (LP) on which the problem can be expressed in first order
predicate calculus and functional programming (FP) that allows to express prob-
lems in terms of higher order functions. Recently, constraint logic programming
(CLP) emerged to increase both the expressiveness and efficiency of LP programs
[JM94]. The basic idea in CLP consists of replacing the classical LP unification
by constraint solving on a given computation domain. Then, different instances
of the computation domain generate different CLP instances that are used in
the solving of problems of distinct nature.

Among the domains for CLP, the Finite Domain (FD) [Hen89] is one of
the most and best studied since it is a suitable framework for solving discrete
constraint satisfaction problems. The importance of the CLP languages based on
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FD is their impact in the industry since a lot of problems in the real life involve
variables ranging on discrete domains. This means that CLP languages for FD
are appropriate to solve many real-world industrial problems. Unfortunately,
literature lacks proposals to integrate FD constraints in the functional setting.
This seems to be caused by the relational nature of the FD constraints that do
not fit well in FP.

Another instance of DP is functional logic programming (FLP) that emerges
with the aim to integrate the declarative techniques used in both FP and LP
and that gives rise to new features not existing in FP or LP [Han94]. This
paper describes our work of integrating FD constraints as functions in the FLP
language TOY [LS99,Rod01], which includes pure LP and lazy FP programs as
particular cases. Our work is a contribution for further augmenting the expressive
power of FLP by adding the possibility of solving FD constraint problems in the
functional logic setting. As far as we know, there is no concrete realization of a
pure F(L)P language embodying FD constraints with reasonable efficiency. In
this paper, we show the integration of FD constraints into a FLP language. The
implementation uses the efficient FD library provided by Sicstus Prolog.

Most of the work to integrate constraints in the DP paradigm has been devel-
oped on LP [CD96,CO+97]. However, there exist some attempts to integrate con-
straints in the functional (logic) framework. For instance, [AH+96,LS99] show
how to integrate both linear constraints over real numbers and disequality con-
straints into the FLP language TOY. Also, [Lux01] describes the addition of
linear constraints over real numbers to the FLP language Curry [Han00]. With
respect to FD, the only functional system (to our knowledge) supporting FD
constraints is Oz (currently called Mozart) [Smo95] which is a functional logic
language based on concurrent constraint solving. However, this system is very
different from pure FP systems as it is based on the concept of state in the object
oriented paradigm. Also, [AH00] provides a hint on how the integration of FD
constraints in F(L)P could be carried out.

The structure of the paper is as follows: Section 2 shows our implementation
of CFLP(FD), the TOY(FD) language. Section 3 highlights some advantages ob-
tained from integrating constraints into a functional logic language. Section 4
introduces some program examples which show how to benefit from the integra-
tion of FLP and FD. Finally, section 5 summarizes some conclusions and points
out future work.

2 TOY(FD) : a CFLP(FD) Implementation

This section describes part of TOY(FD), that is, our CFLP(FD) implementation
that extends the TOYsystem to deal with FD constraints and that also shows
how to increase the FLP paradigm by integrating FD constraints as functions.
(See [LS99] for a description of the base language and [FHS02] for a more detailed
description of TOY(FD).)
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2.1 Constraints as Functions

TOY(FD) provides support for six different categories of FD constraints: (1)
relational constraints, (2) arithmetic constraints, (3) combinatorial constraints,
(4) membership constraints, (5) enumeration constraints, and (6) statistics con-
straints. For reasons of space, we only briefly describe part of the first five cate-
gories.

Assume that L,L1, L2 are either lists (i.e., vectors) of integers or FD vari-
ables with length n; X, Y, N are either FD variables or integer values; V, V1, V2

are integers and RelOp is a value that represents a relational operator. Suppose
also that equiv(RelOp) is a function that returns the classical FD arithmetic
operator equivalent to the value RelOp (i.e., equiv(lt) is ‘#<’, equiv(eq) is ‘#=’,
equiv(le) is ‘#<=’, equiv(ge) is ‘#>=’, equiv(gt) is ‘#>’ and equiv(neq) is
‘#\=’).

Relational Constraints include equality and disequality constraints in the
form e¦ e′ where ¦ ∈ {#<,#=,#<=, #>=, #>, #\=} and e and e′ are either
integers, or FD variables or functional expressions.

Arithmetic Constraints include all the classical arithmetic operators as well
as the dedicated constraints ‘sum/3’ and ‘scalar products/4’ where

– ‘sum L RelOp V ’ returns true if
∑

e∈L

e equiv(RelOp) V

holds.
– ‘scalar products L1 L2 RelOp V ’ returns true if the scalar product of L1

and L2 is related with the value V by the operator RelOp, i.e., if

L1 sp L2 equiv(RelOp) V

is satisfied with sp defined as the usual scalar product of integer vectors.

As expected, the expressions constructed from both the arithmetic and rela-
tional constraints may be non-linear.
Combinatorial Constraints include well known global constraints that are
useful in the solving of problems formulated on discrete domains [?]. TOY(FD)
supports the following constraints:

– ‘assignment/2’ is applied over two lists of domain variables with length
n where each variable takes a value in {1, . . . , n} which is unique for that
list. Then, ‘assignment L1 L2’ returns true if for all i, j ∈ {1, . . . , n}, and
Xi ∈ L1, Yj ∈ L2, then Xi = j if and only if Yj = i.

– ‘all different L’ and ‘all distinct L’ return true if each variable in L is con-
strained to have a value that is unique in the list L and there are no dupli-
cate integers in the list L, i.e., this is equivalent to say that for all X, Y ∈ L,
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X 6= Y . The difference between both constraints is that all different/1 uses a
complete algorithm that maintains the domain consistency [Reg94] whereas
all distinct/1 uses an incomplete one. There are extended versions that al-
low one more argument which is a list of options, where each option may
have one of the following values
1. ‘on value’, ‘on domains’ or ‘on range’ to specify that the constraint has

to be woken up, respectively, when a variable becomes ground, when the
domain associated to a variable changes, or when a bound of the domain
(in interval form) associated to a variable changes.

2. ‘complete true’ or ‘complete false’ to specify if the propagation algorithm
to apply is complete or incomplete.

– ‘circuit L1’ returns true if the values in L1 form a Hamiltonian circuit. This
constraint can be thought of as constraining n nodes in a graph to form
a Hamiltonian circuit where the nodes are numbered from 1 to n and the
circuit starts in node 1, visits each node and returns to the origin. L1 is a
list of FD variables or integers of length n, where the i-th element of L1 is
the successor of i in the graph.

– ‘element X L Y ’ returns true if the X-th element in the list L is Y (in the
sense of FD).

– ‘count V L RelOp Y ’ returns true if the number of elements of L that are
equal to V is N and also N equiv(RelOp) Y .

Membership Constraints restrict variables to have values in a set of integers
(i.e., an interval). The expression ’domain L V1 V2’ returns true if each element
in the list L belongs to the interval [V1, V2].

Enumeration Constraints reactivate the search process when no more con-
straint propagation is possible. TOY(FD) provides the following constraints:

1. ‘indomain X’ that assigns a value, from the minimum to the maximum in
its domain, to X.

2. ‘labeling Options L’ that returns true if an assignment of the variables in L
can be found such that all of the constraints are satisfied. Options is a list
of four elements of type ‘labelingType’ that allows to specify the nature of
the search.

2.2 Implementation Issues and Constraint Solving

TOY(FD) is implemented on top of Sicstus Prolog 3.8.4 and provides an interface
from TOYto the FD constraint solver of SICStus [CO+97]. The evaluation of FD
is defined internally by using mainly two predicates: hnf (E, H), which specifies
that H is one of the possible results of narrowing the expression E into head
normal form, and solve/1, which checks the satisfiability of constraints (in rules
and goals) previously to the evaluation of a given rule. This predicate is defined
as follows:
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(1) solve((ϕ,ϕ′)) :− solve(ϕ), solve(ϕ′).
(2) solve(L == R) :− hnf(L, L′), hnf(R, R′), equal(L′, R′).
(3) solve(L / = R) :− hnf(L, L′), hnf(R, R′), notequal(L′, R′).
(4) solve(L#♦ R) :− hnf(L, L′), hnf(R, R′), {L′#♦R′}.

where ♦ ∈ {<,<=, >, >=, =, \=}.
(5) solve(C A1 . . . An) :− hnf(A1, A′1), . . . , hnf(An, A

′
n), {C(A′1, . . . , A′n)}.

where C is any constraint returning a boolean value.

The above code does not correspond exactly to the implementation, which is
the result of many transformations and optimizations. The interaction with the
SICStus’ FD constraint solver is reflected in the last two clauses: every time a
constraint (or an operation) over FD expressions appears, the solver is eventually
invoked (Sicstus syntax encloses constraints between brackets). The expressions
have to be ‘rewritten’ in order to allow the solver to solve the constraint. By
rewriting we mean computing the head normal forms (hnf) of both expressions.
Doing this, we get a ‘rewritten’ constraint following the proper solver syntax,
due to the fact that these hnf are going to be either logic (FD) variables or
integers.

3 Advantages of the Integration

3.1 Semantic Advantages

Functional logic programming languages express problems as higher order func-
tions with logic variables, which allows one-way expression reduction. As with
logic languages3 and functional languages, general relations cannot concisely be
expressed. Constraint programming languages allow to express relations with a
pure declarative reading (so that multi-way uses of the variables in the relation
can be applied, i.e., different modes for the variables: input or output). The inte-
gration therefore allows expressing relations involving logic variables combined
with functional applications.

3.2 Operational Advantages

Solving in logic programming languages (including functional logic) is based on
different techniques including SLD resolution (logic programming), narrowing,
and residuation (functional logic programming). These languages feature the
concept of logic variable. A logic variable is assigned only once to at most a
unique value during the search for a solution (a computation branch). Due to
their nondeterminism, several solutions may exist (and, therefore, several com-
putation branches). The multiset of solutions is characterised by all the sets of
possible assignments for each variable in the goal during the computation4. The

3 The problem of expressing (dis)equations in Prolog is well-known.
4 Several computation branches may lead to the same solution due to redundant al-

ternatives.
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search space is the union of all the computation branches. Nondeterminism pro-
vides the way to formulate combinatorial problems since alternatives for rules
(FLP) or clauses (LP) may provide different assignments to the same variable.
Combinatorial problems can therefore be expressed with such languages, but an
exhaustive enumerative procedure is implicitly used for the search of solutions.

Solving in constraint systems is based on constraint propagation and labeling.
The first prunes the search space by reducing domains, and the second finds
solutions by assigning values to variables.

A constraint system starts solving by propagating the effects of the con-
straints over the domains of variables. This means that, in general, propagation
implies that each current domain will decrease its cardinality (pruning). There
are several propagation algorithms in the literature [?] which behave differently
and may reach different fixed points. The fixed point is reached whenever there
is no further domain reduction. These algorithms implement an iterative pro-
cedure which looks for a stable situation (fixed point), or a failure (a domain
becomes empty, i.e., there is no possibility of finding an assignment for the re-
lated variable such that all the constraints are satisfied.) Finding a fixed point
with non-singleton domains does not mean that there are definitely multiple
solutions to the problem, and it does not even ensure that at least one solu-
tion exists. Propagation is not complete in the sense of ensuring the existence
of solutions. Instead, it is used to find out what assignments definitely do not
lead to a solution. The premise in this approach is to identify in advance, as
soon as possible, what partial solution (where not all domains are singletons)
is not a solution before trying to assign all the variables. Note that this follows
a different approach than those from the enumeration techniques, which try to
find solutions by simultaneously assigning values to all the variables, so that a
solution is known when all variables have been assigned.

Once propagation procedure reaches a fixed point and at least one domain
is not a singleton, labeling can be initiated in order to find feasible assignments.
Indeed, the search for solutions could be seen at this point from an enumeration
point of view. However, each time a variable is assigned to a value, propagation
can be started until a fixed point had been reached. Next, a new assignment
can be made, a new propagation cycle started, and so on, until a solution is
computed or not found. The latter means that backtracking must be started
in order to find another possible assignment. Each time a variable is labeled
(assigned to a value among the possible values in its domain), a choice point
must be annotated in order to try different assignments through backtracking.

Solving in a (constraint logic) system embodying logic variables, an enu-
merative search procedure (as those for LP and FLP), and a constraint solving
procedure (propagation and labeling), allows to constrain variable domains dur-
ing the enumerative search, therefore hopefully identifying a failure in advance
(before the assignment of the variable). This improves efficiency in general since
computation branches are pruned in advance with the information given by the
constraints. In addition, lazy narrowing avoids computations which are not de-
manded, therefore saving computation time.
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Observing the functional component of the integration, we get some advan-
tages. First, since type checking is used throughout the language, in particular
CFLP(FD) constraints are declared as functions so that a wrong use can be
straightforwardly detected in the typical type checking process (in FLP) a pri-
ori, before execution. Therefore, this saves time in both correcting and debugging
programs. Second, functions are used instead of just conjunctions in a logic pro-
gramming language. Third, functions allows more concise programs since we
can use them in arguments. And fourth, higher order applications provide more
expressive power.

4 Programming in TOY(FD)

Observe that CLP(FD) is an instance of CFLP(FD)as any CLP(FD)-program
can be straightforwardly translated into a CFLP(FD)-program. Therefore, this
determines a wide range of applications for our language. We will not insist here
on this matter, but prefer to concentrate on the extra capabilities of the language.
We illustrate here different features of CFLP(FD) by means of examples. We
would like to emphasize that all the pieces of code are executable in TOY(FD)
and the answers for example goals correspond to actual execution of the program.
Further programming examples in pure functional logic programming can be
found in [LS99] and [FHS02].

4.1 A Scheduling Problem

Here, we consider the problem of scheduling tasks that require resources to
complete, and have to fulfill precedence constraints. Figure 1 shows a precedence
graph for six tasks which are labeled as tXY

mZ , where X stands for the identifier
of a task t, Y for its time to complete (duration), and Z for the identifier of a
machine m (a resource needed for performing task tX).
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Fig. 1. Precedence Graph.

The following program models the posed scheduling problem. Please observe
in the syntax that function arguments are not enclosed in parentheses in order to
allow higher order applications. Also, syntactic sugar is provided for expressing
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Boolean functions à la Prolog. The rules that define a function follow its type
declaration. The type declaration consists of the types for each argument and
for the result separated by ->. Lists adhere to the syntax as Prolog lists. int is a
predefined type (for integers) in TOY. Please also note functional applications in
arguments, such as (End-D) in the second rule defining horizon. (Logic) Vari-
ables start with uppercase, whereas the remaining symbols start with lowercase.

data taskName = t1 | t2 | t3 | t4 | t5 | t6

data resourceName = m1 | m2

type durationType = int

type startType = int

type precedencesType = [taskName]

type resourcesType = [resourceName]

type task = (taskName, durationType, precedencesType,

resourcesType, startType)

start :: task -> int

start (Name, Duration, Precedences, Resources, Start) = Start

duration :: task -> int

duration (Name, Duration, Precedences, Resources, Start) = Duration

schedule :: [task] -> int -> int -> bool

schedule TL Start End :-

horizon TL Start End, scheduleTasks TL TL

horizon :: [task] -> int -> int -> bool

horizon [] S E = true

horizon [(N, D, P, R, S)|Ts] Start End :-

domain [S] Start (End-D), horizon Ts Start End

scheduleTasks :: [task] -> [task] -> bool

scheduleTasks [] TL = true

scheduleTasks [(N, D, P, R, S)|Ts] TL :-

precedeList (N, D, P, R, S) P TL,

requireList (N, D, P, R, S) R TL,

scheduleTasks Ts TL

precedeList :: task -> [taskName] -> [task] -> bool

precedeList T [] TL = true

precedeList T1 [TN|TNs] TL :-

belongs (TN, D, P, R, S) TL, precedes (TN, D, P, R, S) T1,

precedeList T1 TNs TL

precedes :: task -> task -> bool

precedes T1 T2 = (start T1) #+ (duration T1) #<= (start T2)

requireList :: task -> [resourceName] -> [task] -> bool

requireList T [] TL = true

requireList T [R|Rs] TL :- requires T R TL, requireList T Rs TL
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requires :: task -> resourceName -> [task] -> bool

requires T R [] = true

requires (N1, D1, P1, R1, S1) R [(N2, D2, P2, R2, S2)|Ts] :-

N1 /= N2, belongs R R2,

noOverlaps (N1, D1, P1, R1, S1) (N2, D2, P2, R2, S2),

requires (N1, D1, P1, R1, S1) R Ts

requires T1 R [T2|Ts] :- requires T1 R Ts

belongs :: A -> [A] -> bool

belongs R [] = false

belongs R [R|Rs] = true

belongs R [R1|Rs] = belongs R Rs

noOverlaps :: task -> task -> bool

noOverlaps T1 T2 :- precedes T1 T2

noOverlaps T1 T2 :- precedes T2 T1

A task is modeled (via the type task) as a 5-tuple which holds its name,
duration, list of precedence tasks, list of required resources, and the start time.
Two functions for accessing the start time and duration of a task are provided
(start and duration, respectively) that are used by the function precedes.
This last function imposes the precedence constraint between two tasks. The
function requireList imposes the constraints for tasks requiring resources, i.e.,
if two different tasks require the same resource, they cannot overlap. The func-
tion noOverlaps states that for two non overlapping tasks t1 and t2, either t1
precedes t2 or vice versa. The main function is schedule, which takes three
arguments: a list of tasks to be scheduled, the scheduling start time, and the
maximum scheduling final time. These last two arguments represent the time
window that has to fit the scheduling. The time window is imposed via domain
pruning for each task’s start time (a task cannot start at a time so that its
duration makes its end time greater than the end time of the window; this is
imposed with the function horizon.) The function scheduleTasks imposes the
precedence and requirement constraints for all of the tasks in the scheduling.
Precedence constraints and requirement constraints are imposed by the func-
tions precedeList and requireList, respectively.

With this model, we can submit the following goal, which defines the set of
tasks, and asks for a possible scheduling in the time window (1,20):

Tasks == [(t1,3,[],[m1],S1),

(t2,8,[],[m1],S2),

(t3,8,[t4,t5],[m1],S3),

(t4,6,[],[m2],S4),

(t5,3,[t1],[m2],S5),

(t6,4,[t1],[m2],S6)],

schedule Tasks 1 20, labeling [] [S1,S2,S3,S4,S5,S6]
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4.2 A More Involved Example

A more interesting example comes from the hardware arena. In this setting,
many constrained optimization problems arise in the design of both sequential
and combinational circuits as well as the interconnection routing between com-
ponents. Constraint programming has been shown to effectively attack these
problems. In particular, the interconnection routing problem (one of the major
tasks in the physical design of very large scale integration - VLSI - circuits) have
been solved with constraint logic programming [Zho96].

For the sake of conciseness and clarity, we focus on a constraint combinational
hardware problem at the logical level but adding constraints about the physical
factors the circuit has to meet. This problem will show some of the nice features
of TOY for specifying issues such as behavior, topology and physical factors.

Our problem can be stated as follows. Given a set of gates and modules, a
switching function, and the problem parameters maximum circuit area, power
dissipation, cost, and delay (dynamic behavior), the problem consists of finding
possible topologies based on the given gates and modules so that it meets the
switching function and it commits to the constraint physical factors.

In order to have a manageable example, we restrict ourselves to the logical
gates NOT, AND, and OR. We also consider circuits with three inputs and one
output, and the physical factors aforementioned.

In the sequel we will introduce the problem by first considering the features
TOYoffers for specifying logical circuits, what are its weaknesses, and how they
can effectively be solved with the integration of constraints in TOY(FD) .

Example 1. FLP Simple Circuits. With this example we show the FLP approach
that can be followed for specifying the problem stated above. We use patterns
to provide intensional representation of functions. The alias behavior is used
for representing the type bool → bool → bool → bool. Functions of this type
are intended to represent simple circuits which receive three Boolean inputs and
return a Boolean output. Given the Boolean functions not, and, and or defined
elsewhere, we specify three-input, one-output simple circuits as follows.

i0, i1, i2 :: behavior

i0 I2 I1 I0 = I0

i1 I2 I1 I0 = I1

i2 I2 I1 I0 = I2

notGate :: behavior -> behavior

notGate B I2 I1 I0 = not (B I2 I1 I0)

andGate, orGate :: behavior -> behavior -> behavior

andGate B1 B2 I2 I1 I0 = and (B1 I2 I1 I0) (B2 I2 I1 I0)

orGate B1 B2 I2 I1 I0 = or (B1 I2 I1 I0) (B2 I2 I1 I0)

Functions i0, i1, and i2 represent inputs to the circuits, that is, the minimal
circuit which just copies one of the inputs to the output (in fact, this can be
thought as a fixed multiplexer - selector.) They are combinatorial modules as
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depicted in Figure 2. The function notGate outputs a Boolean value which is
the result of applying the NOT gate to the output of a circuit of three inputs.
In turn, functions andGate and orGate output a Boolean value which is the
result of applying the AND and OR gates, respectively, to the outputs of three
inputs-circuits (see Figure 2).
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Fig. 2. Basic Modules.

These functions can be used in a higher order fashion just to generate or
match topologies. In particular, the higher order functions notGate, andGate and
orGate take behaviors as parameters and build new behaviors, corresponding to
the logical gates NOT, AND and OR. For instance, the multiplexer depicted in
Figure 3 can be represented by the pattern:
orGate (andGate i0 (notGate i2)) (andGate i1 i2)

0
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Symbol Sum of products equivalence

Fig. 3. Two-Input Multiplexer Circuit.

This first-class citizen higher order pattern can be used for many purposes.
For instance, it can be compared to another pattern or it can be applied to
actual values for its inputs in order to compute the circuit output. So, with the
previous pattern, the conjunctive goal:

P == orGate (andGate i0 (notGate i2)) (andGate i1 i2),

O == P true false true
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is evaluated to true and produces the substitution O == false. The rules that
define the behavior can be used to generate circuits, which can be restricted to
satisfy some conditions. If we use the standard arithmetics, we could define the
following set of rules for computing or limiting the power dissipation.

power :: behavior -> int

power i0 = 0

power i1 = 0

power i2 = 0

power (notGate C) = notGatePower + (power C)

power (andGate C1 C2) = andGatePower + (power C1) + (power C2)

power (orGate C1 C2) = orGatePower + (power C1) + (power C2)

Then, we can submit the following goal (provided the function maxPower acts as a
problem parameter that returns just the maximum power allowed for the circuit)
in which the function power is used as a behavior generator: power B == P,
P < maxPower.

As outcome, we get the following solutions, which are denoted by a set of
4-tuples 〈E, σ,C, δ〉 as a computed answer, where E is the TOYexpression cor-
responding to the evaluation of the goal, σ is the set of variable substitutions,
C is the set of disequality constraints, and δ is the set of pruned domains.
{〈i0, {P==0}, {}, {}〉, 〈i1, {P==0}, {}, {}〉, 〈i2, {P==0}, {}, {}〉, 〈not i0,
{P==1}, {}, {}〉, . . . , 〈not (not i0), {P==2}, {}, {}〉, . . . }. Declaratively, it is
fine; but our operational semantics requires a head normal form for the applica-
tion of the arithmetic operand +. This implies that we reach no more solutions
beyond 〈 not( . . . (not i0) . . . ), maxPower, {}, {}〉 because the application of
the fourth rule of power yields to an infinite computation. This drawback is
solved by having recourse to successor arithmeticsas shown below and where
notgatePower, andgatePower and orgatePower are of type nat:

data nat = z | s nat

plus :: nat -> nat -> nat

plus z Y = Y

plus (s X) Y = s (plus X Y)

less :: nat -> nat -> bool

less z (s X) = true

less (s X) (s Y) = less X Y

power’ :: behavior -> nat

power’ i0 = z

power’ i1 = z

power’ i2 = z

power’ (notGate C) = plus notGatePower (power’ C)

power’ (andGate C1 C2) = plus andGatePower (plus (power’ C1) (power’ C2))

power’ (orGate C1 C2) = plus orGatePower (plus (power’ C1) (power’ C2))

So, we can submit the goal less (power’ P) (s (s (s z))), where we
have written down explicitly the maximum power (3 power units).
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With the second approach we get a more awkward representation due to the
use of successor arithmetics. The first approach to express this problem is indeed
more declarative than the second one, but we get no termination. FD constraints
can be profitably applied to the representation of this problem as we show in
the next example.

Example 2. CFLP(FD) Simple Circuits. As for any constraint problem, mod-
elling can be started by identifying the FD constraint variables. Recalling the
problem specification, circuit limitations refer to area, power dissipation, cost,
and delay. Provided we can choose finite units to represent these factors, we
choose them as problem variables. A circuit can therefore be represented by the
4-tuple state 〈area, power, cost, delay〉. The idea to formulate the problem con-
sists of attaching this state to an ongoing circuit so that state variables reflect
the current state of the circuit during its generation. By contrast with the first
example, we do not “generate” and then “test”, but we “test” when “generat-
ing”, so that we can find failure in advance. A domain variable has a domain
attached indicating the set of possible assignments to the variable. This domain
can be reduced during the computation. Since domain variables are constrained
by limiting factors, during the generation of the circuit a domain may become
empty. This event prunes the search space avoiding to explore a branch which is
known to yield no solution. Let’s firstly focus on the area factor. The following
function generates a circuit characterized by its state variables.

type area, power, cost, delay = int type state = (area, power,

cost, delay) type circuit = (behavior, state)

genCir :: state -> circuit

genCir (A, P, C, D) = (i0, (A, P, C, D))

genCir (A, P, C, D) = (i1, (A, P, C, D))

genCir (A, P, C, D) = (i2, (A, P, C, D))

genCir (A, P, C, D) = (notGate B, (A, P, C, D)) <==

domain [A] ((fd_min A) + notGateArea) (fd_max A),

genCir (A, P, C, D) == (B, (A, P, C, D))

genCir (A, P, C, D) = (andGate B1 B2, (A, P, C, D)) <==

domain [A] ((fd_min A) + andGateArea) (fd_max A),

genCir (A, P, C, D) == (B1, (A, P, C, D)),

genCir (A, P, C, D) == (B2, (A, P, C, D))

genCir (A, P, C, D) = (orGate B1 B2, (A, P, C, D)) <==

domain [A] ((fd_min A) + orGateArea) (fd_max A),

genCir (A, P, C, D) == (B1, (A, P, C, D)),

genCir (A, P, C, D) == (B2, (A, P, C, D))

The function genCir has an argument to hold the circuit state and returns a
circuit characterized by a behavior and a state. (Please note that we can avoid
the use of the state tuple as a parameter, since it is included in the result.)
The template of this function is like the previous example. The difference lies in
that we perform domain pruning during circuit generation with the membership
constraint domain, so that each time a rule is selected, the domain variable
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representing area is reduced by the size of the gate selected by the operational
mechanism. For instance, the circuit area domain is reduced by a number of
notGateArea when the rule for notGate has been selected. For domain reduction
we use the reflection functions fd_min and fd_max, which respectively return the
minimum and maximum values of a variable.

This approach allows us to submit the following goal:

domain [Area] 0 maxArea, genCir (Area, Power, Cost, Delay) == Circuit

which initially sets the possible range of area between 0 and the problem pa-
rameter area expressed by the function maxArea, and then generates a Circuit.
Recall that testing is performed during search space exploration, so that ter-
mination is ensured because the add operation is monotonic. The mechanism
which allows this “test” when “generating” is the set of propagators, which are
concurrent processes that are triggered whenever a domain variable is changed
(pruned). The state variable delay is more involved since one cannot simply add
the delay of each function at each generation step. The delay of a circuit is re-
lated to the maximum number of levels an input signal has to traverse until it
reaches the output. This is to say that we cannot use a single domain variable
for describing the delay. Therefore, considering a module with several inputs, we
must compute the delay at its output by computing the maximum delays from
its inputs and adding the module delay. So, we use new fresh variables for the
inputs of a module being generated and assign the maximum delay to the output
delay. This solution is depicted in the following function:

genCirDelay :: state -> delay -> circuit

genCirDelay (A, P, C, D) Dout = (i0, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (i1, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (i2, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (notGate B, (A, P, C, D)) <==

domain [Dout] ((fd_min Dout) + notGateDelay) (fd_max Dout),

genCirDelay (A, P, C, D) Dout == (B, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (andGate B1 B2, (A, P, C, D)) <==

domain [Din1, Din2] ((fd_min Dout) + andGateDelay)(fd_max Dout),

genCirDelay (A, P, C, D) Din1 == (B1, (A, P, C, D)),

genCirDelay (A, P, C, D) Din2 == (B2, (A, P, C, D)),

domain [Dout] (maximum (fd_min Din1) (fd_min Din2)) (fd_max Dout)

genCirDelay (A, P, C, D) Dout = (orGate B1 B2, (A, P, C, D)) <==

domain [Din1, Din2] ((fd_min Dout) + orGateDelay) (fd_max Dout),

genCirDelay (A, P, C, D) Din1 == (B1, (A, P, C, D)),

genCirDelay (A, P, C, D) Din2 == (B2, (A, P, C, D)),

domain [Dout] (maximum (fd_min Din1) (fd_min Din2)) (fd_max Dout)

Observing the rules for the AND and OR gates, we can see two new fresh
domain variables for representing the delay in their inputs. These new variables
are constrained to have the domain of the delay in the output but pruned with
the delay of the corresponding gate. After the circuits connected to the inputs
had been generated, the domain of the output delay is pruned with the maximum
of the input module delays. Please note that although the maximum is computed
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after the input modules had been generated, the information in the given output
delay has been propagated to the input delay domains so that whenever an
input delay domain becomes empty, the search branch is no longer searched and
another alternative is tried. Putting together the constraints about area, power
dissipation, cost, and delay is straightforward, since they are orthogonal factors
that can be handled in the same way. In addition to the constraints shown, we
can further constrain the circuit generation with other factors such as fan-in,
fan-out, and switching function enforcement, to name a few. Then, we could
submit the following goal:

domain [A] 0 maxArea, domain [P] 0 maxPower, domain [C] 0 maxCost,

domain [D] 0 maxDelay, genCir (A,P,C,D) == (B, S),

switchingFunction B == sw

where switchingFunction could be defined as the function that returns the
result of a behavior B for all its input combinations, and sw is the function that
returns the intended result (sw is referred as a problem parameter, as well as
maxArea, maxPower, maxCost, and maxDelay).

The solution to this problem has shown how to apply FD constraints to a
functional logic language, which benefits from both worlds, i.e., taking functions,
higher order patterns, partial applications, non-determinism, logical variables,
and types from FLP and domain variables, constraints, and propagators from
the FD constraint programming. This leads to a more declarative way of express-
ing problems which cannot be reached from each counterpart alone. Note also
that our approach is far more declarative than other constraint programming
systems as algebraic constraint programming languages (OPL, AMPL), mainly
since they do not benefit neither from complex terms and patterns nor from
non-determinism.

5 Conclusions

We have presented CFLP(FD), a functional logic programming approach to FD
constraint solving. We have shown how FD constraints can be defined as func-
tions and therefore integrated naturally on FLP languages. Due to its functional
component, CFLP(FD) provides better tools, when compared to CLP(FD), for
a productive declarative programming. Due to the use of constraints, the ex-
pressivity and capabilities of our approach are clearly superior to both those
of the functional and purely constraint programming approaches. We have also
presented the language TOY(FD) for CFLP(FD). Our proposal can be applied
to a wide range of problems which include all CLP(FD) applications and typical
uses of functional programming for combinatorial problems. In particular, we
have shown by example the benefits of integrating FLP and FD. We have seam-
lessly integrated constraint solving into a sophisticated, state-of-the-art execu-
tion mechanism for lazy narrowing. Our implementation translates CFLP(FD)-
programs into Prolog-programs in a system equipped with an efficient constraint
solver. In addition, we claim that our approach can be extended to other kind
of interesting constraint systems, such as non-linear real constraints, constraints
over sets, or Boolean constraints, to name a few.
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