A Constraint Functional Logic Language over
Finite Domains

Antonio J. Fernandez!*, Teresa Hortald-Gonzalez?, and Fernando Saenz-Pérez? **
bl bl

! Depto. de Lenguajes y Ciencias de la Computacién, Universidad de Malaga, Spain
2 Depto. de Sistemas Informéticos y Programacién Universidad Complutense de
Madrid, Spain

afdez@lcc.uma.es, {teresa,fernan}@sip.ucm.es

Abstract. We present a constraint functional logic programming language
over finite domain for solving typical combinatorial problems. Our approach
combines the power of constraint logic programming and the higher-order
characteristics of functional logic programming (FLP).

Keywords: Constraint Programming, Functional Logic Programming, Fi-
nite Domains.

1 Introduction

Traditionally, Prolog has been a logic programming (LP) language used in many
fields of artificial intelligence. However, it suffers a lack of expressiveness and also
efficiency when solving combinatorial problems. Constraint programming languages
add efficiency and expressiveness, but they lack several other important features
as higher-order programming, functional applications, and lazy evaluation mecha-
nisms. We provide a language combining features from logic, constraint, and func-
tional programming (FP).

This paper describes our work of integrating FD constraints as functions in the
FLP language TOY [5], which include pure LP and lazy FP programs as particular
cases. Our work is a contribution for further augmenting the expressive power of
FLP by adding the possibility of solving FD constraint problems in the functional
logic setting. Our language gives rise to constraint functional logic programming
on finite domain (CFLP(FD) for short) that seamlessly combines the power of the
constraint logic programming over finite domains (CLP(FD)for short) with the
higher-order characteristics of the FLP paradigm. Moreover, as far as we know,
there is no concrete realization of a pure F(L)P language embodying FD con-
straints with reasonable efficiency. In this paper, we show a reasonably-efficient
implementation of a CFLP(FD) language.

2 CFLP(FD) Programs

This section presents, by following the formalization given in [4], the basics about
syntax, type discipline, and declarative semantics of CFLP(FD) programs.

* The work of this author has been partially supported by the project TIC2001-2705-
C03-02 funded by the Spanish Ministry of Science and Technology.
** This work has been supported by the Spanish project PR 48/01-9901 funded by UCM.

2.1 CFLP(FD) Fundamental Concepts

Types and Signatures: We assume a countable set TVar of type variables a, 3, ...
and a countable ranked alphabet TC = | J,,cx TC"™ of type constructors C € TC™.
Types 7 € Type have the syntax

ti=a |[Crn...tq |77 |(1,-..,™)

By convention, C 7, abbreviates C 71 ...7,, “—” associates to the right, 7, — 7
abbreviates — --- = 7, = T, and the set of type variables occurring in 7 is
written tvar(r). A type without any occurrence of “—” is called a datatype. The
type (71,...,7) is intended to denote n-tuples. FD variables are integer variables.
A signature over TC is a triple X = (T'C, DC, FS), where DC = |J,,cy DC™ and
FS = J,,cn F'S™ are ranked sets of data constructors resp. defined function symbols.

Each n-ary ¢ € DC™ comes with a principal type declaration ¢ :: 7, — C ag,
where n,k > 0,a1,... ,ap are pairwise different, 7; are datatypes, and tvar(r;) C
{a1, ..., ag} for all 1 <i < n. Also, every n-ary f € F'S™ comes with a principal
type declaration f :: T, — 7, where 7;, T are arbitrary types. In practice, each

CFLP(FD) program P has a signature which corresponds to the type declarations
occurring in P. For any signature Y, we write X', for the result of extending X
with a new data constructor L :: «, intended to represent an undefined value that
belongs to every type. As notational conventions, we use ¢,d € DC, f,g € F'S and
h € DC UFS, and we define the arity of h € DC™ U FS™ as ar(h) = n.

Table 1. Data Types for FD Constraints

data labelingType = fI | flc | leftmost | mini | maxi | step | enum | bisect | up
| down | all | toMinimize int | toMaximize int | assumptions int
data statistics = resumptions | entailments | prunings | backtracks | constraints
data opRel =1t | eq | le | ge | gt | neq
data reasoning = value | domains | range
data options = on reasoning | complete bool
data typeprecedence = d (int,int,liftedInt)
data liftedInt = superior | lift int
data newOptions = precedences [typeprecedence] | path_consistency bool
| static_sets bool | edge_finder bool | decomposition bool

FD constraints: A FD constraint is a primitive function declared with type either

— int — int — int to transform pairs of FD variables into FD variables (e.g.,
the arithmetic functions #+, #—, #x and #/), or
— T, — bool such that for all 7 in 7, 7; € Typerp and Typerpp C Type is

Type pp, = {int, [int], [LabelingType|, statistics, opRel, [options], [newoptions]}.

int is a predefined type for integers, and [r] is the type ‘list of 7. The rest
of data types in Typepp are predefined types for FD and their definitions are

Table 2. The set of FD Constraints in TOY(FD)

RELATIONAL CONSTRAINTS ARITHMETIC CONSTRAINTS (OPERATORS)

(#>) 1 int = int — bool (#*) 1 int = int — int

(#<) 1 int = int — bool (#/) :: int = int — int

(#>=) = int = int — bool (#+) :: int — int — int

(#<=) = int = int — bool (#-) :: int — int — int

(# =) :: int — int — bool sum :: [int] & opRel — int — bool

(#\=) = int = int — bool scalar_product :: [int] = [int] = opRel — int — bool
COMBINATORIAL CONSTRAINTS

assignment :: [int] — [int] — bool all_different :: [int] — bool

circuit :: [int] = bool all_different’ :: [int] — [options] — bool

circuit’ :: [int] — [int] — bool serialized :: [int] — [int] — bool

all_distinct :: [int] = bool serialized’ :: [int] — [int] & [newOptions] — bool
all_distinct’::[int]— [options]—bool count:: int — [int] — opRel — int — bool

element :: int — [int] — int — bool cumulative :: [int] — [int] — [int] — int — bool
exactly :: int — [int] = int — bool cumulative’::[int]— [int]—[int] —int—[newOptions]—+bool

MEMBERSHIP CONSTRAINTS
domain :: [int] — int — int — bool

ENUMERATION CONSTRAINTS STATISTICS CONSTRAINTS
labeling::[labelingType]—[int] +bool fd_statistics :: statistics — int — bool
indomain :: int — bool fd statistics’ :: bool

shown in Table 1. Examples of this sort of constraints are the relations #<, and
#> as well as the functions all_distinct’ /3, and labeling/3. In the following,
FSgp C FS™ denotes the set of FD constraints that return a Boolean value.

The whole set of FD constraints supported in our language is shown in Table 2.

Expressions and Patterns: In the sequel, we always assume a given signature

X, often not made explicit in the notation. Assuming a countable set Var of (data)
variables X,Y, ... disjoint from TVar and X, partial expressions e € Exp | have the
syntax

ex=1 | X |hle€ | (e, ..., n)

where X € Yar, h € DCUF'S. Expressions of the form e e’ stand for the application

of expression e (playing as a function) to expression €' (playing as an argument),

while expressions (ei,...,e,) represent tuples with n components. As usual, we

assume that application associates to the left and thus ey e;... e, abbreviates

(...(e0 €1)...) en. The set of data variables occurring in e is written var(e).
Partial patternst € Pat) C Ezp | are built as

tio=1 |X|Ct1tm|ft1tm

where X € Yar,c € DC*,0 < m <k, f € FS*",0 < m < n and t; € Pat, for
all 1 < i < m. They represent approzimations of the values of expressions. Partial
patterns of the form f ¢;...t, with f € FS™ and m < n serve as a convenient
representation of functions as values [4]; therefore functions becoming first-class

citizens of the language. Expressions and patterns without any occurrence of | are
called total. The sets of total expressions and patterns are denoted, respectively,
by Ezp and Pat. Actually, the symbol L never occurs in a program’s text.

Substitutions: A substitution is a mapping 6 : Var — Pat with a unique ex-
tension § : Ezp — FEzp, which is also denoted as 6. As usual, § = {X; —~
t1, ..., Xn > t,} stands for the substitution with domain {Xi, ..., X,,} which
satisfies 8(X;) =t; for all 1 <i < n.

Up to this point we have considered data substitutions. Type substitutions can
be defined similarly, as mappings 6; : TVar — Type with a unique extension
8; : Type — Type, also denoted 8;. TSubst denotes the set of all type substitutions.

Finite Domains: A finite domain (FD) is a mapping 6 : Var — p(Integer) (as
usual p(C) denotes the powerset of the set C), with a unique extension 5: Exp —
Ezp, which will be denoted also as 8, and Integer is the set of integers. We use
6 =4{X1 €i1,..., Xy, € i}, which stands for the FD with domain {X, ..., X,,}
and satisfies 6(X;) = 4; for all 1 < i < n, where i; C Integer.

By convention, if § is either a FD or a substitution we write ed instead of d(e),
and do for the composition of § and o s.t. e(ég) = (ed)o for any e.

2.2 Well-typed CFLP(FD) Expressions and Programs

Well-typed Expressions: Inspired by Milner’s type system we now introduce
the notion of well-typed expression. We define a type environment as any set T' of
type assumptions X :: 7 for data variables s.t. T' does not include two different
assumptions for the same variable. The domain dom(T') and the range ran(T) of a
type environment are the set of all data variables (resp. type variables) that occur
in T. For any variable X € dom(T), the unique type 7 s.t. (X : 7) € T is de-
noted as T'(X). The notation (h :: T) €yqr X is used to indicate that X includes
the type declaration A :: 7 up to a renaming of type variables. Type judgements
(X, T) Fwr e :: T are derived by means of the following type inference rules:

2 TYkwr X o, U T(X) =1.

(E,T) Fwr h 1o, if (h b T) Epar 21, 01 € TSubst.

(EaT) Fwr (e 61) mr,if (EaT) Fwr e:: (Tl — T)a (EaT) Fwr er 1,
for some 11 € Type.

TP (X, T) bwr (e1,...,en) (T, ..,), EMe{l,... ,n}: (X, T) bwr e;::75.

VR
ID
AP

An expression e € Ezp | is called well-typed iff there exist some type environment
T and some type 7, s.t. the type judgement T by e :: T can be derived. Expressions
that admit more than one type are called polymorphic. A well-typed expression
always admits a so-called principal type (PT) that is more general than any other.
A pattern whose PT determines the PTs of its subpatterns is called transparent.

Well-typed CFLP(FD) Programs: A well-typed CFLP(FD) program P is a set
of well-typed defining rules for the function symbols in its signature. Defining rules
for f € F'S™ with principal type declaration f :: 7, — 7 have the form

left hand side right hand side Condition

(R) ftl...tn = r = C
—_—

and must satisfy the following requirements:

1. #;...%, is a linear sequence of transparent patterns and r is an expression.

2. The condition C is a sequence of atomic conditions C1,...,Cy, where each C;
can be either a joinability statement of the form e == ¢, or a disequality
statement of the form e /= €', with e, e’ € Ezp, or a Boolean function g of the
form g ey ... e, with e; € Exp and g € F.S™ (of course, perhaps g € FSpp).

3. There exists some type environment 7' with domain var(R) which well-types

the defining rule in the following sense:
(a) Forall 1<i<n: (X, T)Fwr t; = 7.

(b)y (X2, T)Fwrr = 1.

(c) Foreach (e==¢€') € C,qu € Type s.t. (X, T)Fwre = p = €.
(d) For each (e/=¢') € C,u € Type st. (X, T)Fwre = p = €.
(e) Foreach (gej... ey) € C, where g:: 7y — ... = 7 — bool,

(X, Ty Fwr e; 2 Ti,and 13 € Type, for all 1 <i < m.

Here, (X, T)Fwr a7, (X,T)Fwr b7 denotes (X,T)bFwrp a::7::b.

Informally, the intended meaning of a program rule as (R) above is that a
call to a function f can be reduced to r whenever the actual parameters match
the patterns ¢;, and both the joinability conditions, the disequality conditions
and the Boolean functions (included the FD constraints) are satisfied. A condi-
tion e == ¢ is satisfied by evaluating e and €' to some common total pattern.
Predicates are viewed as a particular kind of functions, with type p = 7, —
bool. As a syntactic facility, we can use clauses as a shorthand for defining rules
whose right-hand side is true. This allows to write Prolog-like predicate definitions;
each clause p t; ... t, :— Ci,...,Cr abbreviates a defining rule of the form
pt ... ty,=true<Cq,...,Cg

3 TOY(FD): A CFLP(FD)Implementation

Here, we briefly describe part of TOY (FD), that is, our CFLP(FD) implementation
that extends the TOY system [5] to deal with FD constraints. Table 2 shows the six
different categories of FD constraints provided by TOY(FD) . For reasons of space,
we do not describe the constraints in detail and encourage the interested reader to
visit the link proposed in [3] for a more detailed explanation (this link also shows
several examples of TOY (FD) programs).

TOY(FD)is implemented on top of Sicstus Prolog 3.8.4 and provides an in-
terface from TOY to the FD constraint solver of SICStus [2]. FD constraints are
integrated in TOY(FD) as functions and evaluated internally by using mainly two
predicates: hnf(E, H), which specifies that H is one of the possible results of nar-
rowing the expression F into head normal form, and solve/1, which checks the
satisfiability of constraints (of rules and goals) previously to the evaluation of a
given rule. This predicate is, basically, defined as follows®:

2 The code does not correspond exactly to the implementation, which is the result of
many transformations and optimizations.

(1) solve((p, ¢')) :— solve(yp),solve(y’).

(2) solve(L ==R) :— hnf(L,L'),hnf(R,R’), equal(l’,R’).
(3) solve(L /=R) :— hnf(L,L'),hnf(R,R’),notequal(l’,R’).
(4) solve(L#{ R) :— hnf(L,L'),hnf(R,R'), {L'#OR'}.

where § € {<,<=,>,>=,=,\=}.
(5) solve(C A;...A,) :— hnf(Ay, A7),... ,hnf(A,, AL), {C(AL,... A}
where C is any constraint returning a Boolean value.

The interaction with SICStus FD constraint solver is reflected in the two last
clauses: every time a FD constraint appears, the solver is eventually invoked with a
goal {G} where G is the translation of the FD constraint from TOY(FD) to SICStus
Prolog. The idea is always the same: the expressions have to be ‘simplified’ in order
to allow the solver to solve the constraint. By simplifying we mean computing the
head normal forms (hnf) of both expressions.

4 Programming in TOY (FD)

4.1 An Introductory TOY (FD) Example

Since CLP(FD)is an instance of CFLP(FD)(i.e., any CLP(FD)-program can be
straightforwardly translated into a CFLP(FD)-program) our proposal determines
initially a wide range of applications for our language. As an example below we show
the TOY (FD) code to solve the classical arithmetic puzzle “send more money”.
TOY (FD) allows to use infix constraint operators such as #> to build the expres-
sion X #> Y, which is understood as #> X Y.

smm: :int ->int ->int ->int ->int ->int ->int ->int ->[labelingType] ->bool
stm SENDMOR Y Label :- domain [S,E,N,D,M,0,R,Y] O 9,
S # 0, M #> 0, all_different [S,E,N,D,M,0,R,Y],
1000#*5 #+ 100#xE #+ 10#*N #+ D
#+ 1000#*M #+ 100#x0 #+ 10#*R #+ E
#= 10000#xM #+ 1000#%0 #+ 100#*N #+ 10#+E #+ Y,
labeling Label [S,E,N,D,M,0,R,Y]

4.2 A Scheduling Problem

Here, we consider a more realistic problem: the scheduling of tasks that require
resources to complete, and have to fulfill precedence constraints. Figure 1 shows
a precedence graph for six tasks which are labeled as tX}g z, where X stands for
the identifier of a task ¢, Y for its time to complete, and Z for the identifier of a
machine m (a resource needed for performing task ¢X).

The following program models the posed scheduling problem:

data taskName = t1 | t2 | t3 | t4 | t5 | t6
data resourceName = ml | m2

type durationType = int

type startType = int

[taskName]

type precedencesType =
type resourcesType = [resourceNamel

oo

Fig. 1. Precedence Graph.

type task=(taskName,durationType,precedencesType,resourcesType,startType)

start :: task -> int
start (Name, Duration, Precedences, Resources, Start) = Start

duration :: task -> int
duration (Name, Duration, Precedences, Resources, Start) = Duration

schedule :: [task] -> int -> int -> bool
schedule TL Start End = true <== horizon TL Start End, scheduleTasks TL TL

horizon :: [task] -> int -> int -> bool

horizon [] S E = true

horizon [(N, D, P, R, S)I|Ts] Start End :- domain [S] Start (End-D),
horizon Ts Start End

scheduleTasks :: [task] -> [task] -> bool

scheduleTasks [] TL = true

scheduleTasks [(N, D, P, R, S)|Ts] TL:-precedelList (N, D, P, R, S) P TL,
requireList (N, D, P, R, S) R TL, scheduleTasks Ts TL

precedelist :: task -> [taskName] -> [task] -> bool

precedelist T [1 TL = true

precedelList T1 [IN|INs] TL :- belongs (IN, D, P, R, S) TL,
precedes (IN, D, P, R, S) T1, precedelList T1 TNs TL

precedes :: task -> task -> bool
precedes T1 T2 = (start T1) #+ (duration T1) #<= (start T2)

requireList :: task -> [resourceName] -> [task] -> bool
requireList T [] TL = true
requireList T [RIRs] TL :- requires T R TL, requirelList T Rs TL

requires :: task -> resourceName -> [task] -> bool

requires T R [1 = true

requires (N1, D1, P1, R1, S1) R [(N2, D2, P2, R2, S$2)|Ts] :-
N1 /= N2, belongs R R2,
noOverlaps (N1, D1, P1, R1, S1) (N2, D2, P2, R2, S2),

requires (N1, D1, P1, R1, S1) R Ts
requires T1 R [T2|Ts] :- requires T1 R Ts

belongs :: A -> [A] -> bool
belongs R []1 = false

belongs R [RIRs] = true

belongs R [R1|Rs] = belongs R Rs

nolverlaps :: task —-> task —-> bool
noQverlaps T1 T2 :- precedes T1 T2
noQverlaps T1 T2 :- precedes T2 T1

A task is modeled (via the type task) as a 5-tuple which holds its name, du-
ration, list of precedence tasks, list of required resources, and the start time. Two
functions for accessing the start time and duration of a task are provided (start and
duration, respectively) that are used by the function precedes. This last function
imposes the precedence constraint between two tasks. The function requirelist
imposes the constraints for tasks requiring resources, i.e., if two different tasks
require the same resource, they cannot overlap. The function noOverlaps states
that two non overlapping tasks t1 and ¢2 either t1 precedes {2 or vice versa. The
main function is schedule which takes three arguments: a list of tasks to be sched-
uled, the scheduling start time, and the maximum scheduling final time. These
last two arguments represent the time window that has to fit the scheduling. The
time window is imposed via domain pruning for each task’s start time (a task
cannot start at a time so that its duration makes its end time greater than the
end time of the window; this is imposed with the function horizon). The function
scheduleTasks imposes the precedence and requirement constraints for all of the
tasks in the scheduling. Precedence constraints and requirement constraints are
imposed by the functions precedeList and requireList, respectively.

With this model, we can submit the following goal, which defines the set of
tasks, and asks for a possible scheduling in the time window (1,20):

Tasks == [(¢1,3,[1, [m11,51), (¢2,8,[1, [m1]1,52), (t3,8,[t4,t5],[m1],53),
(t4,6,[1, [m2]1,54), (+5,3,[t1], [m2],85), (t6,4,[t1],[m2],56)]1,
schedule Tasks 1 20, labeling [] [S1,$2,53,54,55,56]

4.3 A Hardware Design Problem

A more interesting example comes from the hardware area. In this setting, many
constrained optimization problems arise in the design of both sequential and combi-
national circuits as well as the interconnection routing between components. Con-
straint programming has been shown to effectively attack these problems. In par-
ticular, the interconnection routing problem (one of the major tasks in the physical
design of very large scale integration - VLSI - circuits) have been solved with con-
straint logic programming [8]. For the sake of conciseness and clarity, we focus on
a constraint combinational hardware problem at the logical level but adding con-
straints about the physical factors the circuit has to meet. This problem will show
some of the nice features of TOY for specifying issues such as behavior, topology
and physical factors.

Our problem can be stated as follows. Given a set of gates and modules, a
switching function, and the problem parameters maximum circuit area, power dis-
sipation, cost, and delay (dynamic behavior), the problem consists of finding pos-
sible topologies based on the given gates and modules so that a switching function
and constraint physical factors are met. In order to have a manageable example, we
restrict ourselves to the logical gates NOT, AND, and OR. We also consider circuits
with three inputs and one output, and the physical factors aforementioned. In the
sequel we will introduce the problem by first considering the features TOY offers
for specifying logical circuits, what are its weaknesses, and how they can effectively
be solved with the integration of constraints in TOY(FD).

Example with FLP Simple Circuits. With this example we show the FLP
approach that can be followed for specifying the problem stated above. We use
patterns to provide intensional representation of functions. The alias behavior is
used for representing the type bool — bool — bool — bool. Functions of this
type are intended to represent simple circuits which receive three Boolean inputs
and return a Boolean output. Given the Boolean functions not, and, and or defined
elsewhere, we specify three-input, one-output simple circuits as follows.

i0,i1,i2 :: behavior notGate :: behavior -> behavior

i0 I2 I1 I0 = IO notGate B I2 I1 I0 = not (B I2 I1 I0)
il I2 I1 10 = I1

i2 I2 I1 I0 = I2

andGate, orGate :: behavior -> behavior -> behavior

andGate B1 B2 I2 I1 I0 = and (B1 I2 I1 IO) (B2 I2 I1 IO)
orGate Bl B2 I2 I1 I0 = or (B1 I2 I1 IO) (B2 I2 Il IO)

Functions 10, i1, and 12 represent inputs to the circuits, that is, the minimal circuit
which just copies one of the inputs to the output. (In fact, this can be thought as a
fixed multiplexer - selector.) They are combinatorial modules as depicted in Figure
2. The function notGate outputs a Boolean value which is the result of applying
the NOT gate to the output of a circuit of three inputs. In turn, functions andGate
and orGate output a Boolean value which is the result of applying the AND and
OR gates, respectively, to the outputs of three inputs-circuits (see Figure 2).

These functions can be used in a higher-order fashion just to generate or match
topologies. In particular, the higher-order functions notGate, andGate and orGate
take behaviors as parameters and build new behaviors, corresponding to the logical
gates NOT, AND and OR. For instance, the multiplexer depicted in Figure 3 can
be represented by the following pattern:

orGate (andGate i0 (notGate i2)) (andGate il i2)

This first-class citizen higher-order pattern can be used for many purposes. For
instance, it can be compared to another pattern or it can be applied to actual
values for its inputs in order to compute the circuit output. So, with the previous
pattern, the goal:

P ==orGate (andGate i0 (notGate i2)) (andGate il i2), P true false true ==

Input 0 Input 1 Input 2
Module Module Module

-] |

Not Gate And Gate Or Gate
Module Module Module

el o} @2}

Vv

i0 i0

—0
. — i
il 1 .

i2

Symbol Sum of products equivalence

Fig. 3. Two-Input Multiplexer Circuit.

is evaluated to true and produces the substitution 0 == false. The rules that
define the behavior can be used to generate circuits, which can be restricted to
satisfy some conditions. If we use the standard arithmetics, we could define the
following set of rules for computing or limiting the power dissipation.

power :: behavior -> int

power i0 = 0

power il = 0

power i2 = 0

power (notGate C) = notGatePower + (power C)

power (andGate C1 C2) = andGatePower + (power C1) + (power C2)
power (orGate Cl1 C2) = orGatePower + (power C1) + (power C2)

Then, we can submit the goal power B == P, P <maxPower (provided the func-
tion maxPower acts as a problem parameter that returns just the maximum power
allowed for the circuit) in which the function power is used as a behavior genera-
tort. As outcome, we get several solutions ({10, {P==0}, {}, {}), (i1, {P==0}, {},
{}), (i2, {P==0}, {}, {}), (mot i0, {P==1},{},{}), ..., (not (mot i0), {P==2},
{}, {}}, - .. , which are denoted by a set of 4-tuples (F,o,C,d) as a computed an-
swer, where E is a TOY expression, o is the set of variable substitutions, C is a

4 Equivalently and more concisely, power B < maxPower could be submitted, but doing
so we make the power unobservable.

set of disequality constraints, and ¢ is the set of pruned domains). Declaratively,
it is fine; but our operational semantics requires a head normal form for the appli-
cation of the arithmetic operand +. This implies that we reach no more solutions
beyond (not (... (not iO) ...), maxPower, {}, {}) because the application of
the fourth rule of power yields to an infinite computation. This drawback is solved
by recursing to successor arithmetics, that is:

data nat = z | s nat plus :: nat -> nat -> nat
plus z Y =Y
pPlus (s X) Y = s (plus X Y)

power’ :: behavior -> nat less :: nat -> mnat -> bool
power’ i0 = z less z (s X) = true
power’ il = z less (s X) (s Y) = less X Y

power’ i2 = z

power’ (notGate C) = plus notGatePower (power’ C)

power’ (andGate C1 C2) = plus andGatePower (plus (power’ C1) (power’ C2))
power’ (orGate C1 C2) = plus orGatePower (plus (power’ C1) (power’ C2))

So, we can submit the goal less (power’ P) (s (s (s z))), where we have
written down explicitly the maximum power (3 power units).

With the second approach we get a more awkward representation due to the
use of successor arithmetics. The first approach to express this problem is indeed
more declarative than the second one, but we get no termination. FD constraints
can be profitably applied to the representation of this problem as we show in the
next example.

Example with CFLP(FD) simple Circuits. As for any constraint problem,
modelling can be started by identifying the FD constraint variables. Recalling the
problem specification, circuit limitations refer to area, power dissipation, cost, and
delay. Provided we can choose finite units to represent these factors, we choose
them as problem variables. A circuit can therefore be represented by the 4-tuple
state (area, power, cost, delay). The idea to formulate the problem consists of
attaching this state to an ongoing circuit so that state variables reflect the current
state of the circuit during its generation. By contrast with the first example, we do
not “generate” and then “test”, but we “test” when “generating”, so that we can
find failure in advance. A domain variable has a domain attached indicating the
set of possible agsignments to the variable. This domain can be reduced during the
computation. Since domain variables are constrained by limiting factors, during the
generation of the circuit a domain may become empty. This event prunes the search
space avoiding to explore a branch which is known to yield no solution. Let’s firstly
focus on the area factor. The following function generates a circuit characterized
by its state variables.

type area, power, cost, delay = int
type state = (area, power, cost, delay)
type circuit = (behavior, state)

genCir :: state -> circuit

genCir (4, P, C, D) = (i0, (4, P, C, D))
genCir (4, P, C, D) = (i1, (4, P, C, D))
P, C
P, C

genCir (A, , D) (i2, (A, P, C, D))

genCir (A, , D) = (notGate B, (A, P, C, D)) <==
domain [A] ((fd_min A) + notGateArea) (fd_max A),
genCir (A, P, C, D) == (B, (A, P, C, D))

genCir (A, P, C, D) = (andGate Bl B2, (A4, P, C, D)) <==
domain [A] ((fd_min A) + andGateArea) (fd_max A),
genCir (A, P, C, D) == (B1, (A, P, C, D)),
genCir (A, P, C, D) == (B2, (4, P, C, D))

genCir (A, P, C, D) = (orGate B1 B2, (A, P, C, D)) <==
domain [A] ((fd_min A) + orGateArea) (fd_max A),
genCir (A, P, C, D) == (B1, (A, P, C, D)),
genCir (A, P, C, D) == (B2, (4, P, C, D))

The function genCir has an argument to hold the circuit state and returns a
circuit characterized by a behavior and a state. (Please note that we can avoid
the use of the state tuple as a parameter, since it is included in the result.) The
template of this function is like the previous example. The difference lies in that we
perform domain pruning during circuit generation with the membership constraint
domain, so that each time a rule is selected, the domain variable representing area, is
reduced in the size of the gate selected by the operational mechanism. For instance,
the circuit area domain is reduced in a number of notGateArea when the rule for
notGate has been selected. For domain reduction we use the reflection functions
fd_min and £d_max. This approach allows us to submit the following goal:

domain [Area] O maxArea, genCir (Area, Power, Cost, Delay) == Circuit

which initially sets the possible range of area between 0 and the problem parameter
area expressed by the function maxArea, and then generates a Circuit. Recall that
testing is performed during search space exploration, so that termination is ensured
because the add operation is monotonic. The mechanism which allows this “test”
when “generating” is the set of propagators, which are concurrent processes that
are triggered whenever a domain variable is changed (pruned). The state variable
delay is more involved since one cannot simply add the delay of each function at
each generation step. The delay of a circuit is related to the maximum number of
levels an input signal has to traverse until it reaches the output. This is to say
that we cannot use a single domain variable for describing the delay. Therefore,
considering a module with several inputs, we must compute the delay at its output
by computing the maximum delays from its inputs and adding the module delay.
So, we use new fresh variables for the inputs of a module being generated and
assign the maximum delay to the output delay. This solution is depicted in the
following function:

genCirDelay :: state -> delay -> circuit

genCirDelay (A, P, C, D) Dout = (i0, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (i1, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (i2, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (notGate B, (4, P, C, D)) <==
domain [Dout] ((fd_min Dout) + notGateDelay) (fd_max Dout),
genCirDelay (A, P, C, D) Dout == (B, (A, P, C, D))

genCirDelay (A, P, C, D) Dout = (andGate Bl B2, (4, P, C, D)) <==

domain [Dinl, Din2] ((fd_min Dout) + andGateDelay) (fd_max Dout),
genCirDelay (A, P, C, D) Dinl == (B1, (4, P, C, D)),
genCirDelay (A, P, C, D) Din2 == (B2, (4, P, C, D)),
domain [Dout] (maximum (fd_min Dinl) (fd_min Din2)) (fd_max Dout)
genCirDelay (A, P, C, D) Dout = (orGate Bl B2, (4, P, C, D)) <==
domain [Dinl, Din2] ((fd_min Dout) + orGateDelay) (fd_max Dout),
genCirDelay (A, P, C, D) Dinl == (B1, (4, P, C, D)),
genCirDelay (A, P, C, D) Din2 == (B2, (4, P, C, D)),
domain [Dout] (maximum (fd_min Dinl) (fd_min Din2)) (fd_max Dout)

Observing the rules for the AND and OR gates, we can see two new fresh
domain variables for representing the delay in their inputs. These new variables
are constrained to have the domain of the delay in the output but pruned with
the delay of the corresponding gate. After the circuits connected to the inputs had
been generated, the domain of the output delay is pruned with the maximum of
the input module delays. Please note that although the maximum is computed
after the input modules had been generated, the information in the given output
delay has been propagated to the input delay domains so that whenever an input
delay domain becomes empty, the search branch is no longer searched and another
alternative is tried. Putting together the constraints about area, power dissipation,
cost, and delay is straightforward, since they are orthogonal factors that can be
handled in the same way. In addition to the constraints shown, we can further
constrain the circuit generation with other factors as fan-in, fan-out, and switching
function enforcement, to name a few. Then, we could submit the following goal:

domain [A] O maxArea, domain [P] O maxPower, domain [C] 0 maxCost,
domain [D] O maxDelay, genCir (4,P,C,D)==(B, S),switchingFunction B == sw

where switchingFunction could be defined as the function that returns the result
of a behavior B for all its input combinations, and sw is the function that returns
the intended result (sw is refereed as a problem parameter, as well as maxArea,
maxPower, maxCost, and maxDelay).

The solution to this problem has shown how to apply FD constraints to a
functional logic language, which benefits from both worlds, i.e., taking functions,
higher-order patterns, partial applications, non-determinism, logical variables, and
types from FLP and domain variables, constraints, and propagators from the FD
constraint programming. This leads to a more declarative way of expressing prob-
lems which cannot be reached from each counterpart alone.

5 Comparative Work

Previously to our implementation [1] described an efficient implementation of the
FLP language Curry to enable the use of existing constraint solvers for LP. As far
as we know, our implementation is the first complete FLP system that includes
truly solving on FD constraints. However, recently we have known about the exis-
tence of an (unpublished) implementation (called PAKCS) of the Curry language
that supports (a small set of) FD constraints [6]. Specifically PAKCS provides
the following constraints: (1) a set of arithmetic operations {#x,#+,#—,# =
) = # < # <=,# >,# >=}, (2) a membership constraint similar to our

constraint domain/3, (3) an all_different/1 constraint and (4) an enumeration con-
straint labeling/1 that just provides naive labeling.

PAKCS is an efficient implementation that provides a smaller set of FD con-
straints than TOY(FD). We think it is worth to compare them. Due to space
limitations we restrict this comparison to efficiency.

In the comparison we have used the Curry2Prolog compiler, which is the most
efficient implementation of Curry inside PAKCS. In addition, we also compare the
performance of our CFLP(FD) implementation with the FD constraint library of
the efficient and well-known system SICStus Prolog (version 3.8.4).

Labeling It is well-known that constraint solving can be seen as a combination
of constraint propagation and labeling. Here, we consider two labelings, the naive
labeling (i.e., choose the leftmost variable of a list and then select the smallest value
in its domain) and the first fail labeling (i.e., choose the variable with the smallest
domain). The naive labeling assures that both variable and value ordering are the
same for all the systems and hence in many ways, although less efficient, is better
for comparing the different systems when only one solution is required.

The Benchmarks We have used a set of five classical benchmarks [7]: sendmore
(a cryptoarithmethic problem with 8 variables ranging over {0,...,9}), with one
linear equation and 36 disequations; equation 10 and equation 20 (systems of
10 and 20 linear equations respectively with 7 variables ranging over {0,...,10});
queens (N) (place N queens on a N x N chessboard such that no queen attacks
each other) and magic sequences (N) (calculate a sequence of N numbers such
that each of them is the number of occurrences in the series of its position in the
sequence).

The programs sendmore, equation 10 and equation 20 test the efficiency
of the systems to solve linear equation problems. The N queens and magic se-
quences programs are scalable and therefore useful to test how the systems works
for bigger instances of the same problem. For fairness, we use exactly the same
formulation of the problems for all systems as well as the same FD constraints.

Results All the benchmarks were tested on the same SPARCstation under SunOs
5.8. Due to space limitations we only provide the results for first solution search.
Table 3 shows the results using naive labeling. The meaning for the columns is as
follows. The first column gives the name of the benchmark used in the comparison.
The next three columns show the running (elapsed) time (measured in milliseconds)
to find the first answer for each system. The fourth and fifth columns indicate the
slow-down of TOY(FD) and PACKS with respect to SICStus. The last column
shows the slow-down of the PAKCS with respect to our implementation.

Table 4 shows similar results but using first fail labeling. Observe that PAKCS is
not included as it only provides naive labeling (which is not very useful in practice as
it is well-known). The meaning for the columns is as follows. The three first columns
are as in Table 3. The fourth column indicates the slow-down of TOY(FD) with
respect to SICStus. The last two columns show the slow-down of the solution using
naive labeling (n) with respect to the solution using first fail labeling (f).

In these tables, the symbol 77 means that a solution was not received in a rea-
sonable time and (?) indicates a vague value. The symbol N in the PAKCS column

Table 3. Performance Results for First Solution Search and Naive Labeling.

Benchmark SICStus TOY(FD) PAKCS E?géfz) £ %gfui T};Ayligg)
sendmore 10 10 40 1.00 4.00 4.00
equationl0 20 70 80 3.50 4.00 1.14
equation20 30 130 160 4.33 5.33 1.23
queens (8) 10 20 30 2.00 3.00 1.50
queens (16) 1180 1220 4430 1.03 3.75 3.63
queens (20) 26430 31390 129510 1.18 4.90 4.12
queens (24) 57100 64770 326090 113 5.71 5.03
queens (30) 77 77 77 (7))
magic (64) 790 890 N 1.12 00 00
magic (100) 2270 2300 N 1.01 o0 o0
magic (150) 5840 5990 N 1.02 00 00
magic (200) 11450 11920 N 1.04 o0 o0
magic (300) 31280 34200 N 1.09 00 00

Table 4. Performance Results for First Solution Search and First Fail Labeling.

Benchmark SICStus TOY(FD) E?géfﬁ) g;ggigig;; ;g%((;g))((?))
sendmore 5 5 1.00 2.00 2.00
equationl0 10 50 5.00 2.00 1.40
equation20 20 110 5.50 1.50 1.18
queens (8) 10 15 1.50 1.00 1.33
queens (16) 40 50 1.25 29.50 24.40
queens (20) 80 160 2.00 330.37 196.18
queens (24) 70 90 1.28 815.71 719.66
queens (30) 130 660 5.07 00 00
magic (64) 320 330 1.03 2.46 2.69
magic (100) 640 690 1.07 3.54 3.33
magic (150) 1500 1510 1.00 3.89 3.96
magic (200) 2510 2620 1.04 4.56 4.54
magic (300) 6090 6180 1.01 5.13 5.53

means that we could not formulate that benchmark because of insufficient provi-
sion for constraints. Particularly, the classical formulation of the magic sequence
problem requires to use reified constraints in the form X =Y & B with B being
a (Boolean) FD variable. In these cases, when a problem cannot be expressed in
PAKCS, the symbol oo is used in the average columns. All the benchmarks are
available in [3].

In general, as it is expected, our implementation behaves closely to that of
SICStus (which is known to be efficient) except for solving linear equations (in
these cases it is about three and five times slower). The reason seems to be in the
transformation process previous to the invocation of the FD solver. Expressions
have to be transformed in head normal form what means that their arguments are
also transformed in head normal form. Thus, there seems to be an overhead when
expressions (such as those for linear equations) involve a high number of arguments
and sub-expressions.

6 Conclusions

We have presented CFLP(FD), a functional logic programming approach to FD
constraint solving and have described TOY (FD), a language for CFLP(FD) , whose
implementation translates CFLP(FD)-programs into Prolog-programs in a system
equipped with a constraint solver. We have also have shown that TOY (FD) is fairly
efficient as, in general, behaves closely to that of SICStus FD solver.

In this paper we have not discussed in detail the benefits of integrating FLP
and FD and have preferred to concentrate our efforts in showing the capabilities of
TOY (FD) by means of programming examples. Of course, we believe that a detailed
comparison of CFLP(FD) with respect to CLP(FD) is necessary. Unfortunately due
to space limitations this is not done here and is the issue of a further paper (cur-
rently in preparation). For the moment, we can say that CFLP(FD) maintains the
power and expressiveness of CLP (FD) whereas adds new characteristics not existing
in CLP(FD) such as functional and curried notation, types, curried and higher-order
functions (e.g., higher-order constraints), constraint composition, higher-order pat-
terns, lazy evaluation and polymorphism among others.

Note: A revised version of this paper will be published in PADL’03.

References

1. S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into prolog.
In H. Kirchner and C. Ringeissen, editors, 3rd International Workshop on Frontiers of
Combining Systems, number 1794 in LNCS, pages 171-185. Springer-Verlag, 2000.

2. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In U. Montanari and F. Rossi, editors, 9th International Symposium on Pro-
gramming Languages: Implementations, Logics and Programs (PLILP’97), number
1292 in LNCS, pages 191-206, Southampton, UK, 1997. Springer-Verlag.

3. A. J. Ferndndez, T. Hortald-Gonzélez, and F. Sdenz-Pérez. TOY(FD): User manual,
latest version. Available at http://www.lcc.uma.es/~afdez/cflpfd/, 2002.

4. J.C. Gonzdlez-Moreno, M.T. Hortald-Gonzdlez, and M. Rodriguez-Artalejo. Polymor-
phic types in functional logic programming. In Aart Middeldorp and Taisuke Sato, edi-
tors, 4th International Symposium on Functional and Logic Programming (FLOPS’99),
number 1722 in LNCS, pages 1-20, Tsukuba, Japan, November 1999. Springer-Verlag.
There is special issue of the Journal of Functional and Logic Programming, 2001. See
http://danae.uni-muenster.de/lehre/kuchen/JFLP.

5. F.J. Lépez-Fraguas and J. Sdnchez-Herndndez. TOY: A multiparadigm declarative
system. In P. Narendran and M. Rusinowitch, editors, 10th International Confer-
ence on Rewriting Techniques and Applications, number 1631 in LNCS, pages 244—
247, Trento, Italy, 1999. Springer-Verlag. The system and further documentation in-
cluding programming examples is available at http://babel.dacya.ucm.es/toy and
http://titan.sip.ucm.es/toy.

6. M. Hanus (editor). Pakcs 1.4.0, user manual. The Portland Aachen Kiel Curry System.
Available from http : //www.informatik.uni — kiel.de/ pakcs/, 2002.

7. P. Van Hentenryck. Constraint satisfaction in logic programming. The MIT Press,
Cambridge, MA, 1989.

8. N-F. Zhou. Channel Routing with Constraint Logic Programming and Delay. In 9th
International Conference on Industrial Applications of Artificial Intelligence, pages
217-231. Gordon and Breach Science Publishers, 1996.

