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Abstract

This paper highlights the power of T OY(FD),
a functional logic language with support for fi-
nite domain constraints, and shows, by means
of examples, how combinatorial and optimiza-
tion problems are easily coded and solved.

The paper also introduces a novel proposal,
in functional logic languages, to allow the re-
covering and management, at the user level,
of internal information about the constraint
solving process at runtime.
keywords: Functional Logic Programming,
Finite Domain Constraints.

1 Introduction

In [1] we proposed the integration of finite
domain (FD) constraints into the functional
logic programming (FLP) language T OY [3]
and, as a result, we presented the language
T OY(FD) that integrates the best features of
existing functional and logic languages, and
FD constraint solving. Now, this paper illus-
trates, by means of examples, the features of
T OY(FD), and shows its flexibility to solve
combinatorial optimization problems.

The paper also presents a glass box mecha-
nism provided in T OY(FD) that is a contribu-
tion to functional logic programming as it en-
ables the user to recover, at runtime, internal
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information about the constraint solving pro-
cess. This mechanism consists of a set of pre-
defined functions, called reflection constraints,
that can be used, for instance, to define new
constraints or search methods at the user level.

2 An Overview of T OY(FD)

T OY(FD) programs are T OY programs
where FD constraints are defined as func-
tions which are solved by an efficient
solver connected to T OY. Basically,
T OY(FD) programs consist of datatypes,
type alias, infix operator definitions, and rules
(see below) for defining functions. The syntax
is mostly borrowed from Haskell with the
remarkable exception that variables begin
with upper-case letters whereas constructor
symbols use lower-case, as function symbols
do. In particular, functions are curried and
the usual conventions about associativity
of application hold. A T OY(FD) program
defines a set FS of functions. Each f ∈ FS
has an associated principal type of the form
τ1 → . . . → τm → τ (where τ does not contain
→). As usual in functional programming
(FP), types are inferred and, optionally, can
be declared in the program.

Basically, a T OY(FD) program P is a set
of defining rules for the function symbols in
its signature. Defining rules for a function f
have the basic form f t1 . . . tn = r ⇐ C.
Informally, the intended meaning of a pro-



gram rule is that a call to f can be reduced to
r whenever the actual parameters match the
patterns ti, and the conditions in C are satis-
fied. Predicates are viewed as a particular kind
of functions, with type p :: τ1 → . . .→ τn →
bool. As a syntactic facility, we can use
clauses as a shorthand for defining rules whose
right-hand side is true. This allows to write
Prolog-like predicate definitions; each clause
p t1 . . . tn :− C1, . . . , Ck abbreviates a
defining rule of the form p t1 . . . tn = true ⇐
C1, . . . , Ck.

2.1 FD Constraints in T OY(FD)

An FD constraint in T OY(FD) is a primitive
function. Table 1 shows a small subset of
the FD constraints supported by T OY(FD) ,
where int is a predefined type for integers,
and [τ] is the type ‘list of τ ’. The datatype
labelType is a predefined type which is used
to define the many search strategies for finite
domain labeling [2].

RELATIONAL CONSTRAINTS
(#>), (#<), (#>=), (#<=), (# =),
(#\=) :: int → int → bool
ARITHMETICAL CONSTRAINT OPERATORS
(#∗),(#/),(#+),(#−) :: int → int → int
COMBINATORIAL CONSTRAINTS
assignment :: [int] → [int] → bool
all_different, all_distinct :: [int] → bool
ENUMERATION CONSTRAINTS
labeling :: [labelType] → [int]→ bool
MEMBERSHIP CONSTRAINTS
domain :: [int] → int → int → bool
PROPOSITIONAL CONSTRAINTS
#<=> :: bool → bool → bool

Table 1: Some Predefined FD Constraints

T OY(FD) supports relational constraints
including equality and disequality, arithmeti-
cal constraints including all the classical
arithmetical operators, a wide set of well-
known global constraints (e.g., all_diffe-
rent/1, which ensures different values for the
elements in its list argument), a membership
constraint to restrict a list of variables to have
values in an interval of integers, propositional
constraints to define constraint reification, and
enumeration constraints 1 with a number of

1In general, constraint propagation is not enough

options (including some for optimization). As
in other constraint languages, we explicitly
distinguish the relational operators which are
overloaded as constraints (in our case, with the
symbol #).

For reasons of space, we do neither mention
nor explain all the constraints in detail and en-
courage the interested reader to visit the link
proposed in [2] for a more detailed explana-
tion. We emphasize that all the pieces of code
in this paper are executable in T OY(FD) and
the answers for example goals correspond to
actual executions of the programs.

2.2 A Simple Programming Example

Below, a T OY(FD)program to solve the clas-
sical N-queen problem is shown.

include "misc.toy"
include "cflpfd.toy"

queens :: [labelType] -> int -> [int]
queens Label N = L <== length L==N, domain L 1 N,

constrain_all L,labeling Label L

constrain_all :: [int] -> bool
constrain_all [] = true
constrain_all [X|Xs] = true <==

constrain_between X Xs 1, constrain_all Xs

constrain_between :: int -> [int] -> int -> bool
constrain_between X [] N = true
constrain_between X [Y|Ys] N = true <==

no_threat X Y N, N1 == N+1,
constrain_between X Ys N1

no_threat:: int -> int -> int -> bool
no_threat X Y I = true <== X #\= Y,

X #+ I #\= Y, X #- I #\= Y

The intended meaning of the functions
should be clear from their names and defi-
nitions, provided that length L returns the
length of the list L, domain L A B constrains
the domain of the elements in the list L to the
closed integer interval [A,B], and labeling S
L enumerates the variables in the list L follow-
ing the search strategies specified in the list S.

to solve a constraint problem and, as a consequence,
it is very frequent to employ an additional strat-
egy called labeling, enumeration or search to solve
it. Basically, labeling consists of selecting a variable,
when no more constraint propagation is possible, to
divide its domain and generate different computa-
tion branches in the search tree for further contin-
uing with the propagation on each of the branches
independently.
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The first two lines are needed to include pre-
defined functions in T OY(FD). Also, the first
line in a function definition shows the type of
its arguments followed by the type of its re-
sult, separated by ->. An example of solving
at the command prompt is shown below where
yes stands for a true result.

TOY(FD)> queens [ff] 15 == L
yes
L == [1,3,5,14,11,4,10,7,13,15,2,8,6,9,12]
Elapsed time: 0 ms.

3 Solving Constraint Problems

This section highlights the expressive power
of T OY(FD) by proposing very expressive so-
lutions to a number of constraint satisfaction
problems. In general, all the examples de-
scribed in this section show, among another
features (e.g., constraint optimization, con-
straint composition, or curried notation) the
combination of higher order (HO) applications
and (indeterministic) lazy generation of con-
straints.

3.1 Optimization: the Golomb Ruler

Golomb Rulers are a class of undirected graphs
that, unlike usual rulers, measure more dis-
crete lengths than the number of marks it car-
ries. Their particularity is that on any given
ruler, all differences between pairs of marks are
unique. This feature makes Golomb Rulers to
be really interesting for practical applications
such as radio astronomy, X-ray crystallogra-
phy, circuit layout, geographical mapping, ra-
dio communications, and coding theory.

An Optimal Golomb Ruler (OGR) is de-
fined as the shortest Golomb ruler for a num-
ber of marks, and the search for OGRs is a
task extremely difficult as this is a combina-
torial problem whose bounds grow geometri-
cally with respect to the solution size [4]. To
date, the highest Golomb ruler whose short-
est length is known is the ruler with 23 marks
Solutions to OGRs with a number of marks be-
tween 10 and 19 were obtained by very special-
ized techniques, and best solutions for OGRs
between 20 and 23 marks were obtained by

massive parallelism projects2.
T OY(FD) enables the solving of opti-

mization problems by using the function
labeling with the value toMinimize X
and/or toMaximize X (these values are in-
tended for the minimization and maximiza-
tion, respectively, of X). Below, we show a
T OY(FD) program to solve OGRs with N
marks3 and the solving of a goal for N = 12.

golomb :: int -> [int]
golomb N L = true <== length L == N,

NN == trunc(2^(N-1)) - 1, domain L 0 NN,
append [0|_] [Xn] == L, %Typical Append
distances L Diffs, domain Diffs 1 NN,
all_different Diffs, append [D1|_] [Dn] == Diffs,
D1 #< Dn, labeling [toMinimize Xn] L

distances :: [int] -> [int] -> bool
distances [] [] = true
distances [X|Ys] D0 = true <==

distancesB X Ys D0 D1,
distances Ys D1

distancesB :: int -> [int] -> [int] -> [int] -> bool
distancesB _[] D D = true
distancesB X [Y|Ys] [Diff|D1] D0 = true <==

Diff #= Y#-X, distancesB X Ys D1 D0

Toy(FD)> golomb 12 L
yes
L == [0,2,6,24,29,40,43,55,68,75,76,85]
Elapsed time: 10918040 ms.

3.2 Laziness: Process Network

Processes can be considered as functions con-
suming data (i.e., arguments) and producing
values for other functions. Processes are of-
ten suspended until the evaluation of certain
expression is required (by other process). In
these cases, lazy evaluation corresponds to
particular coroutines for the processes.

One interesting application is to solve the
communication between a client and a server
with the Input/Output model via Streams: if

2http://www.distributed.net/ogr/. These solu-
tions took several months to be found.

3We have proved that T OY(FD) solves 10-marks
OGRs in 17 seconds and 12-marks OGRs in 10,918
seconds (i.e., about three hours), in a Pentium 1.4
Ghz under Windows, that is a reasonable time. For
instance, the efficient constraint logic programming
(CLP) system ECLiPSe solves these instances in 287
and 75,300 seconds, respectively, although this of
course depends on the problem model and the com-
putation machine. See http://www.icparc.ic.ac.uk/-
eclipse/examples/golomb.ecl.txt
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the client generates requests from one initial
requirement, the server will generate answers
that will be again processed by the client and
so on. For simplicity, we consider that requests
and answers are integer numbers. This process
network can be defined with recursive defini-
tions as follows:
requests, answers :: [int]
requests = client initial answers
answers = server requests

Suppose now that the client returns the re-
quest and generates a new one (i.e., a next one)
from the first answer of the server and that
the server processes each request to generate
a new answer. This is defined in T OY(FD) as
follows:
client :: int -> [int] -> [int]
client Ini [R|Rs] = [Ini | client (next R) Rs]

server :: [int] -> [int]
server [P|Ps] = [process P | server Ps]

The architecture is completed by defining
adequately the initial requirement, the pro-
cessing function and the selection of the next
request. As an example, and for the sake of
simplicity, we can define them as follows:
process :: int -> int
process = (+3)

initial :: int
initial = 4

next :: int -> int
next = id % Idempotence

However, this is not enough to produce an
exit as a goal requests goes into a non-ending
loop. However, the lazy evaluation mechanism
of T OY(FD) allows to evaluate a finite num-
ber (N) of requests; this can be done by redefin-
ing the functions client, server, answers
and requests as follows:
client :: int -> [int] -> [int]
client Ini Rs =

[Ini | client (next (head Rs)) (tail Rs)]

server :: [int] -> [int]
server [P|Ps] = [process P| server Ps]

answers :: int -> [int]
answers N = server (requests N)

requests :: int -> [int]
requests N = take N

(client initial (take N (answers N)))

where head/1 and tail/1 returns the head
and tail of a list respectively. Below, we show
an example of solving that evaluates exactly
the first 15th requests.

TOY(FD)> requests 15 == L
yes
L == [4,7,10,13,16,19,22,25,28,31,34,37,40,43,46]
Elapsed time: 15 ms.

Observe that this example illustrates no
constraint feature of T OY(FD) but it has
been described to show the flexibility of the
language and introduce a more interesting ex-
ample in the next section that make use of the
constraint facilities of the language.

3.3 Pipelines

Pipelines can be a powerful tool to solve het-
erogeneous constraint satisfaction problems,
and they are easily expressed at a high level
in T OY(FD) via applying HO constraints
and curried notation. For example, con-
sider the OGR, N-queens and Client-Server
T OY(FD) programs shown in preceding sec-
tions. Then, the goal (for some natural N)

map(map(queens [ff]))(map golomb (requests N))==L

corresponds directly to the scheme shown in
Figure 1 if we redefine the function process of
Section 3.2 as process = (+1). The solving of
this goal, as in the preceding example of client-
server architecture, generates N answers in the
form of an N-elements list A from an initial
request 4; each element ai ∈ A (i.e., each an-
swer of the server with i ∈ {1,...,N} and ai

= Initial + i - 1) is used to solve the OGR
problem with ai marks, returning a new list S
containing N solutions for OGRs with marks
a1,...,aN . Finally, for each solution sai =
[o1,...,oai] to the OGR with ai marks in
S, the first solution of the ok-queens problem
(with k ∈ {1,...,ai}) is calculated.

For example, the goal shown above (for
N = 2) first calculates the solutions for the
OGR with 4 and 5 marks (i.e., [0,1,4,6] and
[0,1,4,9,11]), and feeds the queens solver
with each mark returning the first solution for
0,1,4,6,0,1,4,9 and 11 queens.
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Figure 1: Pipeline with Client-Server Architecture

TOY(FD)> map (map (queens [ff]))
(map golomb (requests 2)) == L

yes
L==[[ [], [ 1 ], [ 2, 4, 1, 3 ],

[ 2, 4, 6, 1, 3, 5 ] ],
[ [], [ 1 ], [ 2, 4, 1, 3 ],

[ 1, 3, 6, 8, 2, 4, 9, 7, 5 ],
[ 1, 3, 5, 7, 9, 11, 2, 4, 6, 8, 10 ]]]

Elapsed time: 31 ms.

This example illustrates how easy and nat-
ural may be the combination of different prob-
lems in T OY(FD) 4. This level of expressive-
ness cannot be reached in a CLP(FD) system.

4 Reflection Functions

T OY(FD) is a system that combines efficient
black box constraints (i.e., those already shown
that use specialized propagation mechanisms
for the FD constraints, leading thus to a ma-
jor efficiency) and glass box constraints (i.e.,
those that allow the user to define new con-
straints in terms of primitive constraints). To
our knowledge, this is the first time that a pure

4Note that no additional T OY(FD) code is re-
quired, except that formulating the solutions to the
N-queens and golomb ruler problems, and the goal
shown above completely captures the architecture de-
picted in Figure 1.

constraint FLP language provides this capabil-
ity.

4.1 Recovering Internal Information at
Runtime

In T OY(FD) , the glass box approach is based
on a set of predefined functions called reflec-
tion constraints that allow, at runtime, to
recover internal information about the con-
straint solving process. These functions in-
crease the flexibility of the language as they
allow the user to construct specific constraint
mechanisms such as new constraints or even
new search strategies. Below, we show part of
this set of reflection constraints [2]:

fd_var :: int -> bool
fd_min :: int -> int
fd_max :: int -> int
fd_size :: int -> int
fd_degree :: int -> int
fd_neighbors :: int -> [int]

empty_interval :: int -> int -> bool
fd_set :: int -> [fdset] -> bool
is_fdset :: [fdset] -> bool
empty_fdset :: [fdset] -> bool
fdset_size :: [fdset] -> int
fdset_min :: [fdset] -> int
fdset_add_element :: [fdset] -> int -> [fdset]
fdset_del_element :: [fdset] -> int -> [fdset]
fdset_intersection :: [fdset] -> [fdset] -> [fdset]
fdset_member :: int -> [fdset] -> bool
fdset_equal :: [fdset] -> [fdset]-> bool
fdset_subset :: [fdset] -> [fdset]-> bool
fdset_subtract :: [fdset] -> [fdset] -> [fdset]

fdset_union :: [fdset] -> [fdset] -> [fdset]
fdset_complement :: [fdset] -> [fdset]
fdset_belongs :: int -> int -> bool

fd_set is a built-in type that captures the
internal representation of a domain. There are
constraints that recover information about the
constrained variables. For instance, fd_min X
and fd_max X return, respectively, the mini-
mum and maximum value in the domain as-
sociated to X; fd_size X is the cardinality of
the domain of variable X, and fd_neighbors
X calculates the list of variables related, di-
rectly or not, with X via some constraint.
Also fd_degree X returns the number of con-
straints involving variable X, and fd_var X is
true if X is a FD variable and its domain is not
a singleton value.
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Other constraints return specific informa-
tion about the domains. For instance,
empty_interval Min Max is true if the inter-
val [Min,Max] is not empty and fd_set X Dom
is true if Dom unifies with the internal rep-
resentation of the domain of variable X, and
fdset_size Set calculates the cardinality of
the domain represented internally by Set. The
meaning of the rest should be clear from their
names.

4.2 Programmable Search

As an example of using reflection functions,
here we program one of the most popular la-
beling strategies, the so-called first fail that
basically selects the variable with the least
number of values in its domain, and it is of-
ten supported by existing constraint systems5.
See below a user defined T OY(FD) function
labelff/1 that implements it.

labelff :: [int] -> bool
labelff [] = true
labelff [X] = false <== fd_set X SX,

empty_fdset SX
labelff [X] = true <==

domain [X] (fd_min X) (fd_min X)
labelff [X] = true <== Next == (fd_min X) +1,

domain [X] Next (fd_max X),
labelff [X]

labelff [X,X1|Xs] = true <==
choose_min [X,X1|Xs] Y Ys,
labelff [Y],
labelff Ys

choose_min :: [int] -> int -> [int] -> bool
choose_min [X] X [] = true
choose_min [X,Y|Ys] M [Y|Rs] =

choose_min [X|Ys] M Rs <==
fd_set X SX,
fd_set Y SY,
fdset_size SX <= fdset_size SY

choose_min [X,Y|Ys] M [X|Rs] =
choose_min [Y|Ys] M Rs <==

fd_set X SX,
fd_set Y SY,
fdset_size SX > fdset_size SY

Observe that when there are several vari-
ables to label, this function selects the one
with the minimum domain cardinality (via the
function choose_min/3) by making use of in-
formation recovered by reflection constraints

5T OY(FD) also provides it by making use of the
LabelType value ff in the labeling constraint for this
strategy as shown in the example of Section 2.2.

fd_set/2 and fdset_size/1). Also, when
there is just one variable X, it reactivates the
search process by dividing X’s domain by the
value (fd_min X).

5 Conclusions

This paper demonstrates, by examples, the po-
tential of T OY(FD) , a functional logic lan-
guage that integrates FD constraint solving,
lazy evaluation, higher order applications of
functions and constraints, polymorphism, type
checking, composition of functions (and, in
particular, constraints), combination of rela-
tional and functional notation, and a number
of other characteristics. In particular, these
features allow to write more concise programs,
therefore increasing the expressivity level.

We have also introduced the reflection con-
straints supported by T OY(FD), that are new
in the constraint functional logic programming
arena, and have shown by examples how it
is possible to construct new user-defined con-
straint constructs (e.g., labeling strategies) via
these constraints. T OY(FD) is freely avail-
able in [2].
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