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Abstract. This paper highlights the power of T OY(FD), a functional
logic language with support for finite domain constraints, and shows,
by means of examples, how combinatorial and optimization problems
are easily coded and solved in T OY(FD). Moreover, a comparison
with respect to the traditional CLP(FD) approach demonstrates that
T OY(FD) is not only an alternative but is more flexible and provides
higher expressivity.
The paper also introduces a novel proposal in functional logic languages
to recover and manage, at the user level, internal information about
the constraint solving processing at runtime. This proposal increases the
constraint capacity of the language as it allows the user to implement
specific constraint mechanisms (e.g., new search strategies).
Keywords: Functional Logic Programming Languages, Constraint Logic
Programming, Rewriting Systems, Constraint Solvers.

1 Introduction

In [3] we proposed the integration of finite domain (FD) constraints into the
functional logic programming (FLP) language T OY [9, 11] and, as a result, we
presented the language T OY(FD) that integrates the best features of existing
functional and logic languages, as well as FD constraint solving. We described
the basics about syntax and type discipline of T OY(FD) programs. We also pre-
sented an implementation of the language and showed that it keeps a similar effi-
ciency to existing constraint logic programming over finite domains (CLP(FD) )
solvers (e.g., SICStus Prolog) and better performance than a related FLP(FD)
system (PAKCS). Afterwards, in [4] we provided a sketch of the operational se-
mantics consisting of a novel combination of lazy evaluation and FD constraint
solving not existing, to our knowledge, in any published constraint solver.

Now, this paper illustrates, by means of examples, the features of T OY(FD),
and shows its flexibility to solve combinatorial (optimization) problems. More-
over, the paper demonstrates (again by examples) that T OY(FD) is more flex-
ible and expressive than the existing CLP(FD) approaches.

The paper also presents a glass box mechanism provided in T OY(FD) that is
a contribution to functional logic programming as it enables the user to recover,
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at run-time, internal information about the constraint solving. This mechanism
consists of a set of predefined functions, called reflection functions, that can be
used, for instance, to define new search methods at the user level.

2 An Overview of T OY(FD)

T OY(FD) programs are T OY programs where FD constraints are defined as
functions which are solved by an efficient solver connected to T OY (see [4]).
T OY(FD) programs consist of datatypes, type alias, infix operator definitions,
and rules (see below) for defining functions. The syntax is mostly borrowed
from Haskell with the remarkable exception that variables begin with upper-
case whereas constructor symbols use lower-case, as function symbols do. In
particular, functions are curried and the usual conventions about application
associativity hold.

Each function f has an associated principal type of the form τ1 → . . . →
τm → τ (where τ does not contain →). As usual in functional programming
(FP), types are inferred and, optionally, can be declared in the program. Defining
rules for a function f have the basic form f t1 . . . tn = r ⇐ C. Informally, the
intended meaning of a program rule is that a call to f can be reduced to r
whenever the actual parameters match the patterns ti, and the conditions in
C are satisfied. Predicates are viewed as a particular kind of functions, with
type p :: τ1 → . . . → τn → bool. As a syntactic facility, we can use clauses
as a shorthand for defining rules whose right-hand side is true. This allows
to write Prolog-like predicate definitions; each clause p t1 . . . tn :− C1, . . . , Ck

abbreviates a defining rule of the form p t1 . . . tn = true ⇐ C1, . . . , Ck.

2.1 FD Constraints in T OY(FD)

An FD constraint in T OY(FD) is a predefined function. Table 1 shows a small
subset of the FD constraints supported by T OY(FD), where int, [τ] and
labelType are predefined types, respectively, for integers, the type ‘list of τ ’
and a type used to define search strategies for finite domain labeling [5].

Table 1. Some Predefined FD Constraints and Enumeration Functions

RELATIONAL CONSTRAINT OPERATORS ARITHMETICAL CONSTRAINT OPERATORS

#>, #<, #>=, #<=, # =, #\= :: #∗, #/, #+, #− :: int → int → int

int → int → bool

COMBINATORIAL CONSTRAINTS MEMBERSHIP CONSTRAINTS

all different :: [int] → bool domain :: [int] → int → int → bool

PROPOSITIONAL CONSTRAINTS ENUMERATION FUNCTIONS

#<=> :: bool → bool → bool labeling :: [labelType]→[int]→ bool

T OY(FD) supports relational constraint operators including equality, dise-
quality, arithmetical constraint operators, a wide set of well-known global con-
straints (e.g., all different/1, which ensures different values for the elements



in its list argument), membership constraints (e.g., domain/3, to restrict a list
of variables to have values in an interval of integers), propositional constraints
(e.g., #<=>/2, to define constraint reification), and enumeration functions (e.g.,
labeling/2, with a number of strategies) with optimization. As in other con-
straint languages, we explicitly distinguish the relational operators which are
overloaded as constraints (in our case, with the symbol #).

For reasons of space, we do neither mention nor explain all the constraints in
detail and encourage the interested reader to visit the link proposed in [5] for a
more detailed explanation. We emphasize that all the pieces of code in this paper
are executable in T OY(FD) and the answers for example goals correspond to
actual executions of the programs.

3 T OY(FD) vs. {CLP(FD) , F(L)P}
We discuss the advantages of T OY(FD)with respect to classical CLP(FD) ,
FP and FLP languages. When necessary, we illustrate different features of
T OY(FD) by means of examples.

It is well-known that CLP(FD) is a successful declarative instance of con-
straint programming. For this reason, it is obliged to make note the advantages
of T OY(FD)with respect to CLP(FD). This section explains why the presence
of functions in terms of FD constraint handling provides additional advantages
to those provided in the logic programming setting. Also, T OY(FD) increases
the power of F(L)P with FD constraint solving, which means to extend the range
of problems over which the functional approach can be profitably applied, and
adds efficiency in the solving of combinatorial problems.

CLP(FD) ⊂ T OY(FD). In general, CLP(FD) languages may be considered
as a subset of T OY(FD). The reason is that, as T OY(FD) keeps a logic compo-
nent (and includes Prolog-like predicate definitions), any CLP(FD) program can
be straightforwardly translated into a T OY(FD) program. A direct consequence
is that our language is able to cope with a wide range of applications. We will
not insist here on this matter, but prefer to concentrate on the extra capabilities
of T OY(FD)with respect to CLP(FD).

Extra Capabilities wrt. CLP(FD). Due to its functional component,
T OY(FD) adds further expressiveness to CLP(FD) as it allows the declaration
of functions and their evaluation in the FP style. Additionally, it provides a col-
lection of useful functions (e.g., map, iterate, filter) usually presented in
functional languages. In the following, we enumerate and discuss other features
not presented (or unusual) in the CLP(FD) paradigm.

Types. Our language is strongly typed and thus involves all the well-known
advantages of a type checking process. FD constraints are functions with clear
declarations, which means their wrong uses can be straightforwardly detected
in the typical type checking process. It is commonly acknowledged that types
enhance program development and maintenance.



Functional Notation. It is well-known that functional notation reduces
the number of variables with respect to relational notation, and thus,
T OY(FD) increases the expressiveness of CLP(FD) as it combines relational and
functional notation. For instance, in CLP(FD) the constraint conjunction N=2,
X ∈ [1,10-N] cannot be expressed directly and must be written as either
N=2, Max is 10-N, domain([X],1,Max) or N=2, Max is 10-N, X in 1..Max
that uses an extra variable (and just for a very simple constraint). However,
T OY(FD) expresses that constraint directly as N==2, domain [X] 1 (10-N).

Currying. Again, due to its functional component, T OY(FD) allows the cur-
rying of functions (and thus constraints); for instance, see in Example 1 below
the application of curried FD constraint (3 #<)/1.

Higher Order and Polymorphism. In T OY(FD), functions are first-class
citizens, i.e., a function (and thus an FD constraint) can appear in any place
where a data can. As a direct consequence, an FD constraint may appear as an
argument (or even as a result) of another function or constraint. The functions
managing other functions are called higher order (HO) functions.
Example 1. A traditional example of a polymorphic HO function is the function
map:

map :: (A -> B) -> [A] -> [B]
map F [] = []
map F [X|Xs] = [(F X) | (map F Xs)]

where lists adhere to the syntax of Prolog lists. Now, suppose that X and Y
are FD variables ranging in the domain [0,100] (e.g., via domain [X,Y] 0 100).
Then, the goal map (3#<) [X,Y] returns the Boolean list [true,true] result-
ing from evaluating the list [3#<X,3#<Y], and X and Y are also restricted to have
values in the range [4,100] as the constraints 3#<X and 3#<Y are sent to the
constraint solver. Note also the use of the curried function (3#<).

Laziness. In logic languages, the arguments (of predicates) are evaluated be-
fore the call (call-by-value). This is known as eager evaluation (all the possible
evaluations are performed). An alternative to this evaluation supported by the
functional setting is the call-by-need, in which arguments are evaluated to the
required extent. In a functional setting, call-by-need evaluation often corresponds
to lazy evaluation whereas call-by-value often corresponds to eager evaluation1.
T OY(FD) increases the power of CLP(FD) by incorporating a novel mechanism
(to our knowledge, presented in no CLP(FD) language) that combines lazy eval-
uation and FD constraint solving, in such a way that only the really necessary
constraints are sent to the solver. In general, lazy narrowing avoids computa-
tions which are not demanded, therefore saving computation time. This opens
new possibilities for FD constraint solving (e.g., it allows to manage infinite
structures).
1 Strictly speaking, lazy evaluation may also correspond to the notion of only once

evaluated in addition to only required extent.



Example 2. Consider the following recursive function that generates an infinite
list of FD variables ranging in the interval [0,N-1] for some N passed as argument.

generateFD :: int -> [int]
generateFD N =[ X | generateFD N ] <== domain [X] 0 (N-1)

and the goal take 3 (generateFD 10) == List, where take N L returns a list
with the first N elements of L. An eager evaluation of this goal does not terminate
as it tries to completely evaluate the second argument, yielding to an infinite
computation. However, a lazy evaluation generates just the first 3 elements of
the list (i.e., a list with 3 FD variables ranging in the interval [0,9]).

4 Solving Constraint Problems

In the following, we show two practical constraint satisfaction problems that can
be easily coded in T OY(FD). The first one is an optimization problem.

4.1 Golomb Rulers

Golomb Rulers are a class of undirected graphs that, unlike usual rulers, measure
more discrete lengths than the number of marks it carries. Their particularity
is that on any given ruler, all differences between pairs of marks are unique.
This feature makes Golomb Rulers to be really interesting for practical applica-
tions such as radio astronomy, X-ray crystallography, circuit layout, geographical
mapping, radio communications, and coding theory.

Traditionally, researchers are usually interested in discovering rulers with
minimum length and Golomb rulers are not an exception. An Optimal Golomb
Ruler (OGR) is defined as the shortest Golomb ruler for a number of marks.
OGRs may be multiple for a specific number of marks. However, the search for
OGRs is a task extremely difficult as this is a combinatorial problem whose
bounds grow geometrically with respect to the solution size [12]. This has been
a major limitation as each new ruler to be discovered is by necessity larger than
its predecessor. Fortunately, the search space is bounded and, therefore, solvable
[8]. To date, the highest Golomb ruler whose shortest length is known is the
ruler with 23 marks [13]. Solutions to OGRs with a number of marks between
10 and 19 were obtained by very specialized techniques, and best solutions for
OGRs between 20 and 23 marks were obtained by massive parallelism projects
(these solutions took several months to be found) [13].

T OY(FD) enables the solving of optimization problems by using the function
labeling with the value toMinimize X and/or toMaximize X (these values are
intended for the minimization and maximization, respectively, of an FD variable
X). Below, we show a T OY(FD) program to solve OGRs with N marks and the
solving of a goal for N = 12.

golomb :: int -> [int] -> bool
golomb N L = true <== length L == N, NN == trunc(2^(N-1)) - 1,



domain L 0 NN, append [0|_] [Xn] == L, % Typical Append
distances L Diffs, domain Diffs 1 NN,
all_different Diffs, append [D1|_] [Dn] == Diffs,
D1 #< Dn, labeling [toMinimize Xn] L % Optimization Search

distances :: [int] -> [int] -> bool
distances [ ] [ ] = true
distances [X|Ys] D0 = true <==

distancesB X Ys D0 D1, distances Ys D1

distancesB :: int -> [int] -> [int] -> [int] -> bool
distancesB _ [ ] D D = true
distancesB X [Y|Ys] [Diff|D1] D0 = true <==

Diff #= Y#-X, distancesB X Ys D1 D0
Toy(FD)> golomb 12 L

yes L == [0,2,6,24,29,40,43,55,68,75,76,85]

T OY(FD) solves 10-marks OGRs in 17 seconds and 12-marks OGRs in
10,918 seconds (i.e., about three hours), in a Pentium 1.4 Ghz under Windows.
See [3] for performance results.

4.2 DNA Sequencing

In this section, we show a simplified version of restriction site mapping (RSM)
taken from [7]. A DNA sequence is a finite string over the elements {A,C,G,T}.
An enzyme partitions a DNA sequence into certain fragments. The problem
consists of reconstructing the original DNA sequence from the fragments and
other information taken from experiments. To keep the problem concise, we
consider a simplification of this problem, which only deals with the length of the
fragments, instead of the fragments themselves.

Consider the use of two enzymes. The first enzyme partitions the DNA se-
quence into A1,...,AN and the second into B1,...,BM . A simultaneous use of
the two enzymes also produces a partition into D1,...,DK , which corresponds
to the combination of the previous two partitions, that is:

∀i ∃j: A1...Ai = D1...Dj ∧ ∀i ∃j: B1...Bi = D1...Dj ,
and, conversely, ∀j ∃i: D1...Dj = A1...Ai ∨ D1...Dj = B1...Bi,
where ‘A1...Ai’ denotes the sequence of fragments A1 to Ai, and ‘=’ denotes
syntactic equality.

Let ai (bi and di, resp.) denote the length of Ai (Bi and Di, resp.). Let ai

denote the subsequence a1 . . . ai, 1 ≤ i ≤ N (and similarly for bi and di)
The problem is stated as follows: given the multisets a = {a1,...,aN}, b =

{b1,...,bN}, and d = {d1,...,dN}, construct the sequences aN = a1...aN,
bM = b1...bM , and dK = d1...dK .

The algorithm to solve this problem generates d1, d2, ... in order and
extends the partitions for a and b using the following invariant property which
can be obtained from the problem definition above. Either



– dk is aligned with ai, that is, d1 + · · · + dk = a1 + · · · + ai, or
– dk is aligned with bj , but not with ai, (for simplicity, we assume we never

have all three partitions aligned except at the beginning and at the end),
that is, d1 + · · · + dk = a1 + · · · + ai.

The following Boolean function solve/6 takes three input lists representing
a, b, and d, in its three first arguments respectively. The output represents the
possibilities to construct d from the fragments taken from a, and b.

solve:: [int] -> [int] -> [int] -> [int] -> [int] -> [int] -> bool
solve A B D [AF|MA] [BF|MB] [DF|MD] :-

choose_initial A B D AF BF DF A2 B2 D2,
rsm A2 B2 D2 AF BF DF MA MB MD, labeling [] [BF|MB]

rsm :: [int] -> [int] -> [int] -> int -> int ->
int -> [int] -> [int] -> [int] -> bool

rsm [] [] [] LenA LenB LenD [] [] [] = true

rsm A B D LenA LenB LenA [Ai|MA] MB [Dk|MD] :- LenA #< LenB,
Dk #<= LenB #- LenA, Ai #>= Dk, choose Ai A == A2,
choose Dk D == D2, NLenA #= LenA #+ Ai, NLenD #= LenA #+ Dk,
rsm A2 B D2 NLenA LenB NLenD MA MB MD

rsm A B D LenA LenB LenB MA [Bj|MB] [Dk|MD] :- LenB #< LenA,
Dk #<= LenA #- LenB, Bj #>= Dk, choose Dk D == D2,
choose Bj B == B2, NLenB #= LenB #+ Bj, NLenD #= LenB #+ Dk,
rsm A B2 D2 LenA NLenB NLenD MA MB MD

choose_initial :: [int] -> [int] -> [int] -> int -> int ->
int -> [int] -> [int] -> [int] -> bool

choose_initial A B D AF BF DF A2 B2 D2 :-
choose AF A == A2, choose BF B == B2, choose DF D == D2

choose :: int -> [int] -> [int]
choose X [] = []
choose Ai [Ai|A2] = A2
choose Ai [A1, A2|A] = [A1|choose Ai [A2|A]]

For instance, one goal for this program could be:

TOY(FD)> solve [3,2,4,5,9] [7,8] [3,2,3,4,2,2,3,4] L1 L2 L3
yes L1 == [ 4, 2, 5, 9, 3 ]

L2 == [ 8, 7, 3, 5 ]
L3 == [ 4, 2, 2, 3, 4, 3, 2, 3 ]

which means that L1 (L2 resp.) constructs L3 by aligning the fragments as the
following table indicates:



L1 L3 L2 L3
4 4 8 4,2,2
2 2 7 3,4
5 2,3 3 3
9 4,3,2 5 2,3
3 3

In the program code, rsm/9 provides the choice of partitioning with either
one of the two available enzymes. The last three arguments hold the length of
the subsequences found so far. The function choose initial/9 chooses the first
fragment and the first call to rsm is made with this invariant holding. Finally,
the procedure choose/2 deletes some element from the given list and returns
the resultant list.

Note that the Boolean functions solve/6, rsm/9, and choose initial/9
have been written in a Prolog-like fashion, thanks to the syntactic sugaring
allowed in our system, whereas choose/2 has been written as a function which
returns the list resulting from deleting an element of its input list.

5 Lazy Applications

This section highlights the expressive power of T OY(FD) by proposing very ex-
pressive solutions to a number of constraint satisfaction problems that can be
described and solved via lazy evaluation of infinite lists. This level of expressive-
ness and conciseness cannot be directly reached by using a CLP(FD) language.

In general, all the examples described here show, among other features (e.g.,
constraint composition or curried notation) the combination of higher order
(HO) applications and (indeterministic) lazy generation of constraints.

5.1 Process Network: Client-Server Interaction

Processes can be considered as functions consuming data (i.e., arguments) and
producing values for other functions. Processes are often suspended until the
evaluation of certain expression is required (by other process). In these cases,
lazy evaluation corresponds to particular coroutines for the processes.

One interesting application is to solve the communication between a client
and a server with the Input/Output model via Streams: If the client generates
requests from one initial requirement, the server will generate answers that will
be again processed by the client and so on. For simplicity, we consider that
requests and answers are integer numbers. This process network can be clearly
defined in T OY(FD)with recursive definitions as follows:
requests, answers :: [int]
requests = client initial answers
answers = server requests

Suppose now that the client returns the request and generates a new one
(i.e., a next one) from the first answer of the server and that the server processes
each request to generate a new answer. This is defined in T OY(FD) as follows:



client :: int -> [int] -> [int]
client Ini [R|Rs] = [Ini | client (next R) Rs]
server :: [int] -> [int]
server [P|Ps] = [process P | server Ps]

The architecture is completed by defining adequately the initial requirement,
the processing function and the selection of the next request. As example, and
for simplicity, we can define them as follows:

process :: int -> int initial :: int next :: int -> int
process = (+3) initial = 4 next = id %Idempotence

Note that this is not enough to produce an outcome as the goal requests
goes into a non-ending loop. However, the lazy evaluation mechanism of
T OY(FD) allows to evaluate a finite number (N) of requests; this can be done
by redefining the functions client, answers and requests as follows:

client :: int -> [int] -> [int]
client Ini Rs = [Ini | client (next (head Rs)) (tail Rs)]
answers :: int -> [int]
answers N = server (requests N)
requests :: int -> [int]
requests N = take N (client initial (take N (answers N)))

where head/1 and tail/1 return the head and tail of a list respectively. Below,
we show an example of solving that evaluates exactly the first 15 requests.

TOY(FD)> requests 15 == L
yes L == [4,7,10,13,16,19,22,25,28,31,34,37,40,43,46]

Observe that this example illustrates no constraint feature of T OY(FD) but
it has been described to show the flexibility of the language and introduce a
more interesting example in the next section that makes use of the constraint
facilities of the language.

5.2 Pipelines

Pipelines can be a powerful tool to solve heterogeneous constraint satisfaction
problems, and these are easily expressed at a high level in T OY (FD) via ap-
plying HO constraints and curried notation. For example, consider the Optimal
Golomb ruler (OGR), N-queens and client-server programs shown in preceding
sections. Then, the goal (for some natural N)

map (map (queens [ff]))(map golomb (requests N)) == L

corresponds directly to the scheme shown in Figure 1 if we redefine the function
process of Section 5.1 as process = (+1). The solving of this goal, as in the
preceding example of client-server architecture, generates N answers in the form
of a N-elements list A from an initial request initial = 4; each element ai ∈
A (i.e., each answer of the server with i ∈ {1,...,N} and ai = initial + i



- 1) is used to feed the OGR solver with ai marks producing a new list S = [
sa1,...,saN

] containing N solutions for OGRs with marks a1,...,aN. Finally,
each element ok (with k∈{1,...,ai}) belonging to the solution to the OGR
with ai marks in S (i.e., sai = [o1,...,oai]) feeds the ok-queens solver and
the first solution to the ok-queens problem is computed.

4,5,6,7,8,.....

OGR
Solver

0

4

6

OGR

1

0

1

4

9

11

OGR
Solution for

Solution for
4−marks

5−marks

..

.

.

.

....

[ ]

[ 1 ]

[ 2,4,3,1 ]

[ 1,3,6,8,2,4,9,7,5 ]

[1,3,5,7,9,11,2,4,6,8,10]

[ ]

[ 1 ]

[ 2,4,3,1 ]

[ 2,4,6,1,3,5]

0−Queens solver

1−Queens solver

4−Queens solver

6−Queens solver

0−Queens solver

1−Queens solver

4−Queens solver

9−Queens solver

11−Queens solver

Process..
answers

requests

requests

Client Server

4

5,6,7,8,.........

Fig. 1. Pipeline with Client-Server Architecture

For example, the goal shown above (for N = 2) first calculates the solutions
for the OGR with 4 marks (i.e., [0,1,4,6]) and 5 marks (i.e., [0,1,4,9,11]),
and feeds the queens solver with each mark returning the first solution for
0,1,4,6,0,1,4,9 and 11 queens.

TOY(FD)> map (map (queens [ff])) (map golomb (requests 2)) == L
yes
L==[[ [], [ 1 ], [ 2, 4, 1, 3 ], [ 2, 4, 6, 1, 3, 5 ] ],

[ [], [ 1 ], [ 2, 4, 1, 3 ], [ 1, 3, 6, 8, 2, 4, 9, 7, 5 ],
[ 1, 3, 5, 7, 9, 11, 2, 4, 6, 8, 10 ]]]

This example illustrates how easy and natural may be the combination of
different problems in T OY(FD)without adding extra code.

6 Reflection Functions

Here we present an innovative mechanism in FLP languages to allow users to
define their own specialized constraint constructs.



6.1 Black Box vs. Glass Box

In the beginning, CLP systems provided particular built-in constraints to solve
specific applications. These constraints are black boxes from the user point of
view in the sense that the user can make use of them but does not need to
understand in full detail their execution behavior. So far, we have shown that
T OY(FD) also follows a black box approach. The advantage is evident: the as-
sociated FD constraint solver of the system uses specialized propagation mech-
anisms for the FD constraints leading thus to a major efficiency in the solving
of well-known and complex problems (i.e., specific problems). However, there
are also clear disadvantages: firstly, they are built-in into the system and coded
internally in very complex manners. Thus, it is very difficult to understand their
operational behavior. Secondly, these complex constraints lack adaptability for
being used in non-standard problems that require, for instance, specific search
strategies or unusual constraints.

To overcome this lack of flexibility and applicability of black box constraints,
some existing constraint systems follow an alternative approach called glass-box.
This approach allows the user to define new constraints in terms of primitive
constraints provided by the system. The advantages are clear. In practice, there
are many constraints that are not specific to standardized applications and the
users can define their own glass box constraints specialized for particular applica-
tions. Also, glass box constraints are useful in the re-utilization of code since they
are easily adapted to solve similar problems to those problems for which they
were designed. Moreover, the user understands totally the operational behavior
of their constraints so that it is very easy to modify them in order to find for the
most adequate constraint solving for a problem. This global understanding of
the process allows for general optimizations, as opposed to the many local and
particular optimizations hidden inside the black box constraints. Two main criti-
cisms to the glass box approach can be done. Firstly, as glass box constraints are
not specific to particular applications, their efficiency depends directly on how
the user defines them. Secondly, the user has to be cautious about correctness
and completeness of the definition of the glass box constraints.

As both approaches have advantages and disadvantages, it seems clear that
a system combining both approaches should be desirable, and this is the current
proposal of T OY(FD). To our knowledge, this is the first time that a pure
constraint FLP language provides this capability.

6.2 Recovering Internal Information at Runtime

The glass box approach of T OY(FD) is based on a set of predefined functions
called reflection functions supported by the system, that allow, at runtime, to
recover internal information about the constraint solving process. These func-
tions increase the flexibility of the language as they allow the user to construct
specific constraint mechanisms such as new search strategies. Below, we show
part of this set of reflection functions:

fd_min, fd_max, fd_size, fd_degree :: int -> int



fd_neighbors :: int -> [int]
fd_var :: int -> bool
empty_interval :: int -> int -> bool
empty_fdset :: [fdset] -> bool
fd_set :: int -> [fdset] -> bool
fdset_size :: [fdset] -> int

where fd set is a built-in type that captures the internal representation of a
domain. There are constraints that recover information about the constrained
variables. For instance, fd min X and fd max X return, respectively, the mini-
mum and maximum value in the domain associated to X; fd size X returns the
cardinality of the domain of variable X, and fd neighbors X returns the list of
variables related, directly or not, with X via some constraint. Also fd degree X
returns the number of constraints involving variable X, and fd var X is true if
X is an FD variable and its domain is not a singleton value. empty fdset is true
if its input FD set is empty.

Other constraints return information specifically about the domains. For in-
stance, empty interval Min Max is true if the interval [Min,Max] is empty and
fd set X Dom is true is Dom unifies with the internal representation of the do-
main of variable X, and fdset size Set calculates the cardinality of the domain
represented internally by Set. T OY(FD) provides more reflection functions; see
[5] for more details.

6.3 Programmable Search

As an example of practical use of the reflection functions, here we show a user
defined T OY(FD) function labelff/1 that implements one of the most popular
labeling strategies, often supported by the constraint systems, the so-called first-
fail, that selects the variable with the least number of values in its domain.

labelff :: [int] -> bool
labelff [] = true
labelff [X] = false <== fd_set X SX, empty_fdset SX
labelff [X] = true <== domain [X] (fd_min X) (fd_min X)
labelff [X] = true <== Next == (fd_min X)+1,

domain [X] Next (fd_max X), labelff [X]
labelff [X,X1|Xs] = true <==

choose_min [X,X1|Xs] Y Ys, labelff [Y], labelff Ys

choose_min :: [int] -> int -> [int] -> bool
choose_min [X] X [] = true
choose_min [X,Y|Ys] M [Y|Rs] = choose_min [X|Ys] M Rs <==

fd_set X SX, fd_set Y SY, fdset_size SX <= fdset_size SY
choose_min [X,Y|Ys] M [X|Rs] = choose_min [Y|Ys] M Rs <==

fd_set X SX, fd_set Y SY, fdset_size SX > fdset_size SY

Observe that when there are several variables to label, this function selects
the one with the minimum domain cardinality (via choose min/3) by making use



of information recovered by the reflection functions fd set/2 and fdset size/1.
Also, when there is just one variable X, it reactivates the search process by
dividing its domain by the value (fd min X).

7 Related Work

There exist some attempts to integrate constraints into the functional logic
framework. For instance, [9] show how to integrate both linear constraints over
real numbers and disequality constraints into the FLP language T OY. Our work
is guided to FD constraints, instead of real constraints (although they are pre-
served), which allows to use non linear constraints and adapts better to a range
of combinatorial applications.

T OY(FD)may also be considered from a multiparadigmatic view, i.e., it
combines constraint programming with several paradigms in one setting. In this
context, there are some similarities with the language Oz [16] as this provides
salient features of FP such as compositional syntax and first-class functions,
and features of LP and constraint programming including logic variables, con-
straints, and programmable search mechanisms. However, Oz is quite different
to T OY(FD) because of a number or reasons: (1) Oz does not provide main
features of classical functional languages such as explicit types or curried no-
tation; (2) functional notation is provided in Oz as a syntactic convenience; (3)
the Oz computation mechanism is not based on rewriting logic like T OY(FD) ;
(4) Oz supports a class of lazy functions based on a demand-driven compu-
tation, but this is not an inherent feature of the language (as in T OY(FD) )
and functions have to be made lazy explicitly (e.g., via the concept of futures);
(5) functions and constraints are not really integrated, that is to say, they do
not have the same category as in T OY(FD) (i.e., constraints are functions) and
both coexist in a concurrent setting, and (6) Oz programs follow a far less concise
program syntax than T OY(FD). In fact Oz generalizes the CLP and concur-
rent constraint programming paradigms to provide a very flexible approach to
constraint programming very different to our proposal.

Also, LIFE [1] is an experimental language proposing to integrate logic pro-
gramming and functional programming but, also, the proposal is quite different
to T OY(FD) as firstly, it is considered in the framework of object-oriented pro-
gramming, and, secondly, LIFE enables the computation over an order-sorted
domain of feature trees by allowing the equality (i.e., unification) and entailment
(i.e., matching) constraints over order-sorted feature terms.

There exist other constraint systems that share some aspects with
T OY(FD) although they are very different. One of those systems is FaCiLe
[2] an interesting constraint programming library that provides constraint solv-
ing over integer finite domains, HO functions, type inference, strong typing, and
user-defined constraints. However, despite these similarities, FaCiLe is very dif-
ferent to T OY(FD) as it is built on top of the functional language OCaml that
provides full imperative capabilities and does not have a logical component; also
Ocaml is a strict language, as opposed to lazy ones. In fact, as Oz , it allows the



manipulation of potentially infinite data structures by explicit delayed expres-
sions, but laziness is not an inherent characteristic of the resolution mechanism.
Moreover, FaCiLe is a library and thus it lacks programming language features.
A few earlier constraint frameworks were designed over functional languages such
as Lisp as the seminal object oriented PECOS system [10] or SCREAMER [14].

Finally, other interesting system is OPL [15] that cannot be compared to
our work because it is an algebraic language which, therefore, is not a general
programming language.

Generally speaking, T OY(FD) is, from its nature, different to all the con-
straint systems discussed above since T OY(FD) is a pure FLP language that
combines characteristics of pure LP and pure FP paradigms, and its operational
mechanism is the result of combining the operational methods of logic languages
(i.e., unification and resolution) and functional languages (i.e., rewriting).

8 Conclusions

This paper continues our work about the integration of finite domain constraints
into a state-of-the-art implementation of a functional logic language by showing
its applicability. We have used examples to show the integration of FD constraint
solving, lazy evaluation, higher order applications of functions and constraints,
polymorphism, composition of functions (and, in particular, constraints), combi-
nation of relational and functional notation, and a number of other characteris-
tics. In particular, these features allow to write more concise programs, therefore
increasing the expressivity level. Moreover, usual techniques as type checking,
make faster program development and maintenance.

We have also shown the advantages of our proposal with respect to others
which do not embody LP+FP+FD. We are only aware of a work in this line
(PAKCS [6]), although there is no specific publication, to our knowledge, of their
results up to date. However, we have compared their limited system with ours
in [3], showing that, first, our system clearly outperforms theirs, and, second,
we provide a quite larger set of predefined constraints. Also, we have discussed
related work and shown that existing multiparadigmatic FD constraint systems
are very different from T OY(FD) , whose operational mechanism is based on a
novel combination of constraint solving and lazy narrowing.

We have also introduced the reflection functions supported by T OY(FD).
These constraints allow the user to recover information about the constraint
solving process at runtime, and we have shown by examples how it is possible to
construct user-defined labeling strategies via these constraints. These constraints
provide a glass box approach to the T OY(FD) system that, to our knowledge,
is new in the constraint functional logic programming.

Therefore, T OY(FD) combines the black box and glass box approaches. This
is a contribution to pure FLP languages based on rewriting logic. As black box
constraints (e.g., the labeling constraint) guarantee efficiency, the user should
use them whenever possible and when the application allows them. Otherwise,
the user is allowed to define, at a high level, specific constructs for particular
applications.



This paper demonstrates that T OY(FD) allows a flexible modelling and
quick prototyping at a very high level that cannot be reached by most of the
existing constraint systems. T OY(FD) is freely available in [5].
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11. M. Rodŕıguez-Artalejo. Functional and constraint logic programming. In
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