
WFLP 2006

Programmed Search in a Timetabling
Problem over Finite Domains 1

R. González-del-Campo2 F. Sáenz-Pérez3

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid

Madrid, Spain

Abstract

Labeling is crucial in the performance of solving timetabling problems with constraint programming. Tradi-
tionally, labeling strategies are based on static and dynamic information about variables and their domains,
and selecting variables and values to assign. However, the size of combinatorial problems tractable by these
techniques is limited. In this paper, we present a real problem solved with constraint programming using
programmed search based on the knowledge about the solution structure as a starting point for classical
propagation and labeling techniques to find a feasible solution. For those problems in which solutions are
close to the seed because of its structure, propagation and labeling can reach a first solution within a
small response time. We apply our approach to a real timetabling problem, and we tackle its implementa-
tion with two different languages, OPL and T OY, using the constraint programming paradigm over finite
domains. While OPL is a commercial, algebraic, and specific-purpose constraint programming language,
T OY is a prototype of a general-purpose constraint functional logic programming language. We present
the specification of the problem, its implementation with both languages, and a comparative performance
analysis.

Keywords: Finite Domains, Search, Applications, Timetabling

1 Introduction

In the last years, the number of applications of timetabling has grown spectacularly.
Timetabling [6] refers to the allocation, subject to constraints, of given resources to
objects being placed in space-time, in such a way as to satisfy as nearly as possible a
set of desirable objectives (also known as the cost function). Timetabling problems
are NP-complete and, therefore, these problems have been usually tackled with four
techniques: evolutionary computing [25,15], integer programming [13], constraint
programming [18], and constraint logic programming [19]. Evolutionary computing
is based on rules simulating natural evolution and solutions are stochastically looked
for, reaching reasonable solutions but, in general, not optimal w.r.t. a cost function
[28]. In addition, problem formulation lacks of a clear reading. See, for instance,

1 This work has been funded by the projects TIN2005-09207-C03-03 and S-0505/TIC/0407.
2 Email: rgonzale@estad.ucm.es
3 Email: fernan@sip.ucm.es

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:rgonzale@estad.ucm.es
mailto:fernan@sip.ucm.es

González-del-Campo and Sáenz-Pérez

the works [27,26,9,10] that apply this technique to timetabling. Both integer [33]
and constraint programming [23] applied to timetabling problems in particular can
reach optimal solutions w.r.t a cost function, and problem formulation becomes al-
gebraic, which is a very abstract programming paradigm, but they lack the benefits
of a general purpose programming language. OPL [30] is an outstanding example of
a (commercial) constraint programming language with a quite effective state-of-the-
art constraint solver. These timetabling problems have also been formulated under
the constraint logic programming paradigm [1,21], and the advantages coming out
from both its declarative nature and general purpose approach makes them more
amenable for problem solving. In addition, optimal solutions can be found in this
paradigm (as well as in constraint programming) because, besides they enjoy effi-
cient solution space cutting due to concurrent propagators, a complete enumeration
procedure can be applied.

Another step beyond declarative languages has been raised with the integra-
tion of higher order functions, lazy evaluation, types and partial applications into
constraint logic programming, giving as a result the constraint functional logic pro-
gramming paradigm [22]. Examples of this paradigm are T OY [12] and Curry [16],
which are equipped, in particular, with finite domain solvers adequated for the for-
mulation of timetabling problems. We can see an example of applications of the
constraint functional logic programming paradigm in timetabling problems in [2].

Finite domain constraint solvers usually found in constraint languages (both
algebraic or general purpose languages) include labeling strategies for enumerating
the search space. These strategies are based on static and dynamic information
about variables and their domains, and the selection of variables and values to
assign. Because of their enumeration nature, the size of the combinatorial problems
which can be tackled with such an approach is limited. In order to overcome this
situation, incomplete enumeration strategies are proposed [31,32], trying to find
feasible (but no necessarily optimal) solutions. In many cases, this is a suitable
approach since one is interested in quickly finding a reasonable solution. However,
one can also be interested on being able to find all the feasible solutions, although
insisting on a quick approximation to the optimum. An example of this application
is the finding of timetables for a company staff.

In this paper, we perform a programmed search based on the knowledge about
the solution structure. It amounts to generate a seed [24], as a case of local search
space pruning [5,29,4,7]. This search consists of a fast generation of a seed which
will be used as a starting point for the classical propagation and labeling techniques
present in constraint solving (see also [20,8]). In contrast to other approaches,
as stochastical (such as evolutionary computing and simulated annealing), we will
be able to quickly find a first solution but retaining the ability of searching the
whole solution space by using the efficient constraint solving classical techniques
(i.e., propagation and labeling). We can apply this technique for those problems
in which solutions are close to the seed because of the problem structure itself.
Incidentally, this is the case of real problems with a regular solution structure, as
we have found in a particular company staff timetabling. In this problem, solutions
occur close in the search space in the sense that, in general, few variables need to
be assigned to distinct values for subsequent solutions, and we conjecture that our

228

González-del-Campo and Sáenz-Pérez

approach could be applied to other problems showing the same property.
In addition, we apply our approach to this real case using two constraint sys-

tems: OPL, a commercial, algebraic, and specific-purpose constraint programming
language, and T OY, a prototype of a general-purpose declarative constraint pro-
gramming language. We test and compare the performance of both programming
systems solving this problem over finite domain constraints 4 .

This paper is organised as follows. Section 2 presents the specification of the
timetabling problem in the concrete real case we faced. In Section 3, we describe
our approach to the programmed search. Section 4 and 5 introduce, respectively, an
outline of the implementation with both OPL 3.7 and T OY 2.1.0 systems. Section
6 resumes the performance results during a calendar up to one year, comparing and
analysing the results from both systems. Finally, in Section 7, we summarise some
conclusions and propose future work.

2 A Real-Case Problem

We were faced to this problem during our professional service in the data processing
department of a big national company (for which we omit its name and concrete
data for the problem because of confidential issues), in which the problem of finding
feasible assignments for workers in the working calendar revealed as a complex task.
This company offers a continuous service in a given department to fulfill an annual
agenda. There are thirteen workers which are organised by four teams of three
workers with skills enough to provide the service. There is also an extra worker
(a joker) for coping with incidents, which may be because of holidays or other
absences (sick leaves, maternity leaves, and so on). These workers present different
qualification levels and, therefore, an adequate assignment is needed for a team or
part of a team in order to have enough abilities to fulfill their duties. In addition,
there are some possible time slots that workers can be assigned to, that tightly
depend on the needs of the company. In particular, we can find the following time
slots:

• T1: 8:00 to 8:00 (24 working hours)
• T2: 8:00 to 22:00 (14 working hours)
• T3: 18:00 to 8:00 (14 working hours)
• T4: 15:00 to 8:00 (17 working hours)
• T5: 8:00 to 21:00 (13 working hours)
• T6: 8:00 to 14:00 (6 working hours)

Each worker works during a time slot. With respect to worker qualification, we
find two levels: workers with level 1 are experienced and can be workers in charge
on all time slots. Workers with level 2 are apprentices and cannot be in charge of
a team. In every team there is a worker with qualification level 2 and two workers
with qualification level 1. A worker which has been working during a night must
rest during the next two working days, at the least. The number of working hours

4 For a comparative analysis of several finite domain constraint programming systems, see [12].

229

González-del-Campo and Sáenz-Pérez

during a year is established by a working calendar, and there are maximum and
minimum limits, both monthly and annual, over working hours which cannot be
violated. In every team, only one worker can simultaneously enjoy holidays.

Workers have to be assigned to time slots during the working calendar, which
usually extends to one year, although plannings can observe shorter time intervals.
Usually, a team works every four days. In a working day, there should be three
workers available. Every worker has to be assigned to a different time slot (T1, T2
or T3). The joker has assigned the time slot T6 in absence of incidents. Saturdays
and holidays feature two workers available with time slot T1 and the extra worker
does not work. Time slots rotate for the workers in a team each time they complete
a time slot. December 24th and 31st are special days without continuous service in
which there must be two workers available, every one gets the time slot T5, and
at least one worker must have a qualification level 1. When an incident happens
because a worker is absent, and if the joker is available, then the joker replaces the
absent. Otherwise, only two workers will cover the absence with time slots T1 or
T4.

3 Seed Generation and Programmed Search

As stated in the introduction, in order to gain performance in the search-for-
solutions process, we quickly generate a seed which is not expected to fulfill all
the constraints imposed by the problem, and then we apply classical propagation
and labeling techniques. The idea is to generate an assignment for the decision vari-
ables present in the implementation of the problem such that the solution structure
is observed. This means for our particular problem that we assign rotating time
slots to each member of all the teams each four days in a consistent way with the
working calendar, and ignoring some other constraints. Although this seed may
not meet all the constraints, such as the limits imposed on the maximum number
of working hours during the planning, it behaves as a good starting point for the
classical constraint solving techniques to find a first solution.

The procedure to develop the seed is to assign the time slots T1, T2 and T3 to
workers for working days, and T1 to two workers of the same team if either the day
is Saturday or there is a known incident. Time slots rotate next days. Then, we
assign incidents to workers. In such a way, the number of working hours of each
worker is uniform along the planned calendar. If there are few incidents, we have
found that the seed is close to a feasible solution because the labeling strategy finds
a solution by processing a few nodes in the search tree.

Once this first assignment is done, a feasible solution will be hopefully close to
a solution. If so, the process of labeling will have few failures and the first solution
will be met within a small running time, which is the case of our problem, as we
will see in Section 6. After the initial assignment of the seed has been applied and
the first solution found, we develop a search based on the remaining variables in
the corresponding domains in an ordered way, i.e., observing the problem structure
and imposing disequality constraints on values found to be a solution so far.

230

González-del-Campo and Sáenz-Pérez

4 Implementing with OPL

OPL [17] is a commercial and specific-purpose programming language, which was
motivated by modeling languages such as AMPL [14] and GAMS [3] that provide
computer equivalents to the traditional algebraic notation. It provides similar sup-
port for modeling linear, integer, and constrained programs. OPL adds support for
constraint programming and complex structures of data: arrays, records, variables
over enumerated sets, and variables and expressions as indices. In addition, OPL
provides predefined search procedures as well as constructs for defining user-defined
search strategies.

OPL programs must conform with a sectioned arrangement in which several
sections are included: data initialisation, decision variable and constraint declara-
tions, and search procedures. In the section intended for data initialisation, all
data parameters needed for posing the constraints are declared and initialised.
For example, the declaration int+ totalHours below is the number of hours in
a timetable with the exact working hours. int+ variation= ...; is the variation
allowed in the number of hours of each worker, where dots (...) indicate that
variables are assingned from a data file. int+ stands for the type of positive inte-
gers. timeSlotDuration[timeSlots] is an array with duration of time slots. The
enumeration workersRange represents all the workers, and daysRange, the working
calendar. timeSlots is an integer range that represents time slots. Time slots and
teams are represented by subranges of integers.

int+ totalHours = ...;
int+ variation = ...;
range durationRange 0..24;
durationRange timeSlotDuration[timeSlots] = ...;

timeSlots new [workersRange, daysRange];

In the declaration section, we specify decision variables and constraints. For
instance, the timetable is represented by the two-dimensional array timetable with
elements of type timeSlots, which ranges over the subrange of integers 1 to 6,
denoting the possible time slots. The prefix var indicates that timetable is a
decision variable.

var timeSlots timetable [workersRange, daysRange];

We then impose constraints over this two-dimensional decision array, and show,
as an example, how the constraint about the variation limit on working hours is
posed.

forall (t in workersRange) {
abs (sum (d in daysRange)

timeSlotDuration[timetable[t,d]] - totalHours)
<=
variation;
};

which is intended to be equivalent to the following algebraic expression:

231

González-del-Campo and Sáenz-Pérez

∀t∈workersRange

|Σd∈daysRange(timeSlotDuration[timetable[t, d]])− totalHours|
≤ variation

Observe that, in this OPL formulation for this constraint, we have used decision
variables as array indexes.

The seed is generated in an auxiliary two-dimensional array new of the same type
and size as timetable, which will hold all the assigments for decision variables.

The next code fragment shows how the searching is implemented in the OPL
section devoted to user-defined search procedures. It features some (reflection)
functions as dsize(v), which returns the size of the domain of v. bound(v) is true
if the domain of v is a singleton. dmin returns the minimum value in the domain
of v. let m = expression assigns to m the value computed for expression. try
v = value 1 | v = value 2 assigns to v the value 1 and adds this assignment to
the constraint store together with a choice point. On backtracking, v is assigned to
the value 2 and the choice point is removed.

The search procedure listed below includes these sentences and reflection func-
tions, and it implements the building of the whole search tree.

search {
forall (t in workersRange)
forall (d in daysRange)
if dsize(timetable[t,d]) > 1 then
try timetable[t,d] = new[t,d] |

{timetable[t,d] <> new[t,d];
while not bound(timetable[t,d]) do
let m = dmin(timetable[t,d]) in
try timetable[t,d] = m |

timetable[t,d] <> m
endtry;}

endtry
endif;

};

The OPL program implementing the problem specification has 615 code lines.

5 Implementing with TOY

T OY is an implementation of a constraint functional logic language which enjoys,
in particular, finite domain constraints. This language adds the power of con-
straint programming over finite domains to the characteristics of functional logic
programming. T OY increases the expressiveness and power of constraint logic pro-
gramming over finite domains (CLP(FD)) by combining functional and relational
notation, curried expressions, higher order functions, patterns, partial applications,
non-determinism, constraint composition, lazy evaluation, logical variables, types,
domain variables, constraints, and constraint propagators. T OY combines both
the efficiency and expressiveness of CLP(FD) with new features not existing in

232

González-del-Campo and Sáenz-Pérez

CLP(FD) that contribute to increase the expressiveness of constraint declarative
languages. Its basic data structure is the list, which is specified as in Prolog, and
its elements can only be sequentially accessed. T OY programs include data type
declarations and defined functions, but do not present a sectioned arrangements as
OPL programs.

A timetable is represented by a list of lists of decision variables, each one of type
t timeSlot. The type for the timetable (t planificacion) is then declared as:

type t_timetable = [t_worker]
type t_worker = [t_timeSlot]
type t_timeSlot = int

[T] denotes a list with elements of type T, and each decision variable (a cell in
the timetable that represents an assignment for a given worker and day) is of type
integer, as the above declaration states, instead of a proper subrange. This subrange
is limited by constraining each domain variable, a task that needs to be performed
by sequential access to the list of lists, in contrast to OPL, which allows a direct
access to each decision variable. However, as constraints are posted sequentially in
our problem, the timetable does not need a random access.

The seed is generated again in an auxiliary list of lists of parameters, instead of
an array as before, with the same type and size as timetable (a list of lists of decision
variables), which will hold all the assigments. Note that neither a timetable nor its
seed is declared as a data structure for the decision variables, but it is created at
run-time during narrowing as an argument of the main function which implements
the timetabling procedure. Again, this is in contrast to OPL, in which a static
memory assignment is performed.

As an example of implementing constraints over the list of lists of decision vari-
ables, we return to the limitation about working hours during the calendar. As the
example in the previous section, we want this number of hours to be inside a given
interval. In the following code fragment, workerHours D is applied over a vector
which is the list of the time slots for all the days in the working calendar, and re-
turns an integer which is the total sum of hours worked by the worker. This function
uses another one, duration D, which returns the hours corresponding to a given
time slot D. The function yearHours posts constraints about the limits of exceeded
working hours. It takes the timetable as a first argument, M as an input parameter
representing the number of working hours in the calendar, and R as also an input
parameter representing the allowed variation in the number of worked hours along
the calendar.

workerHours :: t_worker -> int workerHours W = foldl (#+) 0 (map
duration W)

yearHours :: t_timetable -> int -> int -> bool yearHours [] M R =
true yearHours [T|Ts] M R = true

<== workerHours T #> (M-R), workerHours T #< (M+R),
yearHours Ts M R

Durations for each time slot are represented by the function duration, instead of
the array timeSlotDuration[timeSlots] indexed by constraint variables as used

233

González-del-Campo and Sáenz-Pérez

in OPL. In addition, we implement two versions of this function for comparing its
readability and performance in order to analyse the trade-off between such factors.
The first implementation is shown below and uses arithmetical constraint operators:

duration:: int -> int duration T = m0_0 T #+ m1_24 T #+ m2_14 T #+
m3_14 T#+

m4_17 T #+ m5_13 T #+ m6_6 T #+ m7_6 T #+ m8_0 T

We show a case of the functions involved in duration, which are intended to
compute the duration of a given time slot:

m4_17:: int -> int m4_17 T = 17#*T#*(T #- 1)#*(T #- 2)#*(T #-
3)#*(5#- T)#*

(6 #- T)#*(7 #- T)#*(8 #- T)#/576

The second implementation involves two non-existing propositional constraint
operators in T OY version 2.1.0, namely implication (#=>) and disjunction (#\/),
so that we have implemented them into the system.

duration:: int -> int duration T = D <== (((((T #= 1) #=> (D #= 24))
#\/

((T #= 2) #=> (D#= 14))) #\/
(((T #= 3) #=> (D #= 14)) #\/
((T #= 4) #=> (D #= 17)))) #\/

((((T #= 5) #=> (D #= 13)) #\/
((T #= 6) #=> (D #= 6))) #\/
(((T #= 7) #=> (D #= 6)) #\/
((T #= 8) #=> (D #= 0))))) #\/
((T #= 0) #=> (D #= 0))

The generation of the seed in T OY is similar to OPL, but we make the elements
of the list [V|Vs] to be assigned to suitable values. The list [X|Xs] of lists of finite
domains variables is assigned to the seed list.

In the following code fragment, remove V List removes V from its second ar-
gument (List). fromXuntilY V W generates a list with all values between V and
W. The reflection function fd min V returns the minimum value in the domain of
V, whereas fd max V returns the maximum. rest V W removes the value W from
the domain of the decision variable V. generate list X V generates a list of values
including the value V and all the values in the domain variable X, assumed that
maybe V is not a feasible assignment for X. The first element of the generated list
is the value of the seed for X. try V [W|Ws] tries, by backtracking, to label the
decision variable V with every value W of its second argument. my search [X|Xs]
[V|Vs] tries to assign each value V in the list, which is in its first argument, to each
corresponding decision variable X, which is in its second argument. ++ is the list
concatenation operator.

rest :: int -> int -> [int] rest X V = remove V (fromXuntilY
(fd_minX) (fd_max X))

234

González-del-Campo and Sáenz-Pérez

generate_list :: int -> int -> [int] generate_list X V = [V] ++ rest
X V

try :: int -> [int] -> bool try X [V|Vs] = true <== X==V try X
[V|Vs] = true <== try X Vs

my_search :: [int] -> [int] -> bool my_search [] [] = true my_search
[X|Xs] [V|Vs] = true

<== try X (generate_list X V),
my_search Xs Vs

The T OY program implementing the problem specification has 1,010 code lines,
which represents an excess of about a forty percent compared to the OPL program
that implements the same functionality. We find that OPL is in particular more
suitable to express algebraic expressions implementing constraints than T OY since
it allows a more compact formulation of the problem.

6 Performance Analysis

In this section, we show the performance results we have obtained for finding the
first solution of the stated real problem as implemented in the systems T OY 2.1.0
and OPL 3.7, both running on a Pentium III at 1 GHz with 256 Mb of RAM and
Windows 2000 Professional. We have considered several calendar sizes, ranging from
a week to a year, and also we consider built-in search strategies of these languages
in order to compare with our programmed search based on the generation of a seed.
We have obtained running times for these parameters as the average of four runs.

Table 1 shows these results and has several columns: The column Size represent
the size of the problem in terms of the number of months of the timetable. The
column TO stands for the labeling strategy equally specified in both systems that
assigns values to variables using their textual (static) order, and its possible values in
ascending order. The column FF stands for the first-fail strategy. The column FFC
stands for the first-fail strategy considering suspended constraints. The column
S-B stands for the Slice-Based strategy. The column D-B stands for the Depth-
Bounded strategy. The last column, ES, stands for our proposal, a programmed
search strategy. Each cell in the table shows up to three values separated by a slash
(/): The first value indicates the execution time in seconds for the test run under
OPL, the second value indicates the same for T OY, and the third value, if present,
the speed-up of OPL w.r.t. T OY. A dash (–) instead of a value represents that the
test could not be done because the corresponding strategy is not implemented in the
system. An infinite symbol (∞) means that the elapsed time for finding a solution
is greater than one day. The execution time for generating the seed is included in
ES.

From the numbers above we check that our proposal performs better than the
rest of labeling strategies in all cases. Classical search procedure do not even find
a solution within a reasonable time (one day of computing). Although not shown
in the tables, alternative solutions are found without a noticeable delay, which

235

González-del-Campo and Sáenz-Pérez

Size TO FF FFC S-B D-B ES

1/4 0.04/0.54/12.2 –/0.52 –/0.55 0.04/– 0.04/– 0.05/0.76/15.2

1/2 0.07/1.09/14.7 –/1.11 –/1.06 0.07/– 0.07/– 0.09/1.41/15.6

1 0.87/13.77/15.9 –/18.85 –/3.84 0.91/– 0.90 /– 0.19 /2.78/14.6

2 12.15 / 209.99/17.2 –/309.62 –/27.23 12.68/– 12.52/– 0.31/5.86/18.9

3 ∞ / ∞ –/∞ –/∞ ∞ /– ∞ /– 0.41/10.00/24.4

4 ∞ / ∞ –/∞ –/∞ ∞ /– ∞ /– 0.53 /14.89/28.1

5 ∞ / ∞ –/∞ –/∞ ∞ /– ∞ /– 0.65 /20.84/32.1

6 ∞ / ∞ –/∞ –/∞ ∞/– ∞ /– 0.77 /27.43/35.6

8 ∞ / ∞ –/∞ –/∞ ∞ /– ∞ /– 0.98 /43.52/44.4

10 ∞ / ∞ –/∞ –/∞ ∞ /– ∞ /– 1.25 /63.56/50.9

12 ∞ / ∞ –/∞ –/∞ ∞ /– ∞ /– 1.69 /86.58/51.2

Table 1
Programmed Search vs. Classical Constraint Solving for OPL and T OY

indicates the locality of solutions. However, for small problem sizes (less than one
month), classical strategies are slightly better than explicit search.

If, on the other hand, we compare the execution times for OPL and T OY, we
find that programmed search in OPL behaves better than in T OY because OPL has
several features which are not present is T OY and makes it more appropriate for
performance. For instance, OPL has conditional and disjunction constraint opera-
tors, static decision and data variables with direct memory access, and arrays. To
overcome the drawbacks derived from the absence of such features, the T OY pro-
gram has to rely on building structures (lists of lists, in particular) with sequential
access by means of recursive functions.

In order to identify in more detail the factors intervening in the total goal solving
time for both systems, we have accounted for the ones shown in Table 2. The
column ”Size” stands for the size of the problem, as before. Next column, ”Data
Structure”, stands for the time involved in computing the data structures. The
column labeled with ”Seed” stands for the time employed in building the seed.
The columns ”Posting and Propagation” and ”Labeling” show the time for these
processes, whereas the last column shows the total time. The cells in the table
follow the same data format as Table 1. Note that there are times shown as 0.00,
which means that the time measure is less than 0.01 seconds.

Size Data Structure Seed Posting and Labeling Total

Propagation

1/4 0.00/0.13/– 0.00/0.16/– 0.05/0.47/9.44 0.00/0.00/– 0.05/0.76/15.2

1/2 0.00/0.22/– 0.00/0.23/– 0.09/0.89/9.89 0.00/0.07/– 0.09/1.41/15.6

1 0.00/0.30/– 0.01/0.48/48.4 0.18/1.87/10.4 0.00/0.13/– 0.19 /2.78/14.6

2 0.00/0.46/– 0.02/1.11/55.5 0.29/3.93/13.6 0.00/0.36/– 0.31/5.86/18.9

3 0.00/0.63/– 0.05/2.07/41.3 0.37/6.85/19.0 0.00 /0.46/– 0.41/10.00/24.4

4 0.00/0.77/– 0.06/3.23/53.8 0.46/10.20/22.7 0.02/0.69/34.5 0.53 /14.89/28.1

5 0.00/0.86/– 0.08/4.89/61.1 0.53/14.40/27.2 0.04/0.70/19.3 0.65 /20.84/32.1

6 0.00/1.06/– 0.11/6.57/59.7 0.62/18.77/30.3 0.04/1.05/26.3 0.77 /27.43/35.6

8 0.00/1.37/– 0.16/10.98/68.6 0.81/29.81/39.7 0.07/1.36/19.4 0.98 /43.52/44.4

10 0.00/1.66/– 0.22/16.38/74.4 1.11/43.03/46.8 0.11/2.50/22.7 1.25 /63.56/50.9

12 0.00/1.93/– 0.28/22.98/82.1 1.27/58.98/46.4 0.14/2.70/19.3 1.69 /86.58/51.2

Table 2
Factors involved in Goal Solving for OPL and T OY

236

González-del-Campo and Sáenz-Pérez

Building structures in OPL is negligible, whereas T OY takes as much as almost
2 seconds. In this last system, seed generation quickly grows with problem size,
more than the former, which means that the specific-purpose algorithms in OPL to
build structures behave better than the general-purpose computation performed in
T OY. Posting and propagating constraints also grow, but the gain of OPL w.r.t.
T OY is less than before. The gain of the labeling is, in the average, about 23.5,
with small deviations. The last column shows the same data as Table 1 and is kept
for reference.

Next, Table 3 shows the impact of propagation alone over the total computation
time for both systems. This table highlights the power of the underlying constraint
solver. In particular, the second column shows a maintained gain of about 10.3 in
the average, showing that the growing gain of OPL w.r.t. T OY noticed in former
tables is not due to propagation, but for the nature of the declarative language
involving less efficient data structures and the lazy narrowing mechanism inherent
to the system. This table also contains the number of constraints (which is the
same for the former tables) and this number is about 22 in the average.

Finally, in Table 4 we compare the two implementations of the function duration
in T OY, measuring the timings for several factors: posting and propagation, prop-
agation, and propagation for the function vs. total propagation. In this table, the
format of timing cells changes as follows. There are three values separated by a
slash (/): The first value indicates the execution time in seconds for the first imple-
mentation of duration with arithmetical operators, the second value indicates the
same for its implementation with propositional constraint operators, and the third
value, the speed-up of the first implementation w.r.t. the second one.

We note that the first implementation behaves better than the second in about 19
percent of total time. Also, posting and propagating constraints is about 28 percent
better. Propagation time grows up to almost 5 percent. The ratio of propagation
time of the constraints due to duration w.r.t. total propagation time is constant.
In the first case it is 0.38, whereas in the second case is 0.67. There is about a 10
percent more constraints in the second case. The ratio of the number of constraints
due to duration w.r.t. total number of constraints is constant. In the first case
is 0.93, whereas in the second case is 0.94. Although the second implementation
behaves worse than the first one, the additional costs may be accepted in favour of

Size Propagation Rest of Program Number of Constraints Propagation/Total

1/4 0.03/0.25/8.33 0.02/0.51/25.5 585/10,638/18.18 0.60/0.34

1/2 0.06/0.56/9.33 0.03/0.85/28.33 1,047/22,741/21.72 0.67/0.41

1 0.14/1.02/7.29 0.05/1.77/35.40 2,163/46,948/21.71 0.73/0.38

2 0.22/1.95/8.86 0.09/3.91/43.44 4,011/89,278/22.26 0.71/0.37

3 0.25/2.80/11.2 0.16/7.20/45.00 6,057/136,138/22.48 0.61/0.33

4 0.31/3.81/12.29 0.22/11.09/50.41 8,037/181,428/22.57 0.58/0.30

5 0.37/4.90/13.24 0.28/ 15.95/56.96 10,083/228,360/22.65 0.57/0.28

6 0.46/5.16/11.21 0.31/22.27/71.84 12,063/273,686/22.69 0.60/0.25

8 0.57/6.35/11.14 0.41/37.17/90.65 16,155/367,424/22.74 0.58/0.22

10 0.74/8.41/11.36 0.51/55.15/108.14 20,181/459,646/22.78 0.59/0.21

12 1.05/9.12/8.69 0.64/77.47/121.05 24,207/551,850/22.80 0.62/0.19

Table 3
Propagation vs. Goal Solving for OPL and T OY

237

González-del-Campo and Sáenz-Pérez

Propagation

Posting for duration Number

Size Total and Propagation / of

Propagation Total Constraints

Propagation

1/4 0.76/0.88/1.16 0.47/0.59/1.25 0.25/0.52/2.08 0.51/0.78 10,638/11,824/1.11

1/2 1.41/1.68/1.19 0.89/1.16/1.30 0.56/1.08/1.95 0.48/0.73 22,741/25,488/1.12

1 2.78/3.44/1.24 1.87/2.53/1.35 1.02/2.21/2.17 0.31/0.75 46,948/51,656/1.10

2 5.86/7.15/1.22 3.93/5.23/1.32 1.95/4.42/2.26 0.31/0.74 89,278/98,322/1.10

3 9.99/11.96/1.20 6.85/8.81/1.28 2.80/6.92/2.47 0.35/0.69 136,138/150,046/1.10

4 14.89/17.52/1.18 10.20/12.83/1.26 3.81/9.76/2.56 0.32/0.67 181,428/200,064/1.10

5 20.84/24.24/1.16 14.40/17.80/1.24 4.89/13.08/2.67 0.34/0.62 228,360/251,560/1.10

6 27.43/31.67/1.15 18.77/23.01/1.23 5.16/16.09/3.12 0.36/0.63 273,686/301,878/1.10

8 43.52/54.53/1.25 29.81/40.82/1.37 6.35/28.51/4.49 0.37/0.65 367,424/407,841/1.11

10 63.56/76.01/1.20 43.03/54.47/1.27 8.41/37.40/4.45 0.42/0.59 459,646/505,611/1.10

12 86.58/100.77/1.16 58.98/73.17/1.24 9.12/43.90/4.82 0.45/0.54 551,850/612,554/1.11

Table 4
Comparing both Implementations of the Function duration in T OY

a more readable implementation.

7 Conclusions and Future Work

Traditionally, labeling strategies are based on static and dynamic information about
variables and their domains, and selecting variables and values to assign. However,
this information is not sufficient for many hard problems to be tractable. Labeling
produces many fails during searching for solutions and the response time grows
exponentially with problem size. With a programmed search based on the knowledge
about the program structure, a seed close to a solution can be found in a reasonable
time, which means than the enumeration strategy produces few fails. The key
question is whether one can find close solutions in the problem, which strongly
depends on the solution structure, a point that should be eventually addressed.

In this work, two of the best state-of-the-art constraint programming systems
(in their corresponding settings) have been taken into account for implementing the
specification of a real problem. From the performance results we have found that
the average time for finding the first solution is low compared to classical techniques
in the field of constraint solving, even if the seed is not a solution. It is therefore not
necessary to specify a first solution to depart from in our searching proposal. The
execution time becomes moderate with few different values in variable domains.
OPL gives responses faster than T OY because T OY version 2.1.0 did not enjoy
key features present in OPL as arrays indexed by decision variables. Implication
and disjunction constraints were also not included, and we have implemented them,
showing that their use augments program readability and introducing a reasonable
burden.

Although OPL behaves clearly better than T OY, this system enjoys a more
homogeneous syntax for solving problems in the sense that the same program con-
structs are used to generate the seed, post constraints, and specify the search strat-
egy. That is, there is no the impedance mismatch that can be found in OPL when

238

González-del-Campo and Sáenz-Pérez

used from a host language. OPL, in turn, has three sections in a program with iso-
lated syntaxes: initialisation of data, decision variable and constraint declarations,
and search procedures section (among others such as database handling). We have
found that the implementation of the problem is easier in a language as T OY since
it seamlessly embodies constraints into a very expressive general purpose language
because of its declarative nature. In addition, the propagation solver for the T OY
underlying system behaves reasonable fine w.r.t. the solver of OPL. Finally, while
OPL is a commercial system, T OY is for free.

Some lines we emphasise as being amenable to explore as future work are: First,
the inclusion of the array data structure with direct access on its elements, along the
possibility to index such an array by means of decision variables. Second, a memory
usage analysis (including garbage collection) in the context of a complex operating
system. Finally, an algebraic component should be added to the language in order
to be able to compactly declare constraints and decision variables. The algebraic
notation would allow more compact programs, whereas (static) decision variable
declarations would do for faster memory allocations.

References

[1] Azevedo, F. and P. Barahona, Timetabling in Constraint Logic Programming, in: Proceedings of 2nd
World Congress on Expert Systems, Estoril, Portugal, 1994.

[2] Brauner, N., R. Echahed, G. Finke, H. Gregor and F. Prost, Specializing narrowing for timetable
generation: A case study., in: PADL, 2005, pp. 22–36.

[3] Brooke, A., D. Kendrick and A. Meeraus, GAMS: A User’s Guide (1992).

[4] Burke, E. and J. Landa Silva, The design of memetic algorithms for scheduling and timetabling
problems, in: S. J. Krasnogor N., Hart W., editor, Recent Advances in Memetic Algorithms, 2004,
pp. 289–312.

[5] Burke, E. and S. Petrovic, Recent Research Directions in Automated Timetabling, European Journal
of Operational Research 140 (2002), pp. 266–280.

[6] Burke, E. K., K. Jackson, J. H. Kingston and R. F. Weare, Automated University Timetabling: The
State of the Art, Comput. J. 40 (1997), pp. 565–571.

[7] Burke, E. K., J. P. Newall and R. F. Weare, A Memetic Algorithm for University Exam Timetabling, in:
Practice and Theory of Automated Timetabling. Volume 1153 of Lecture Notes in Computer Science,
Lecture Notes in Computer Science 1153 (1995), pp. 241–250.

[8] Castro, C., M. Moossen and M. Riff, A Cooperative Framework Based on Local Search and Constraint
Programming for Solving Discrete Global Optimisation, in: Advances in Artificial Intelligence SBIA
2004 (2004), pp. 93–102.

[9] Corne, D., P. Ross and H.-L. Fang, Evolutionary Timetabling: Practice, Prospects and work in Progress,
in: Proceedings of the UK Planning and Scheduling SIG Workshop Strathclyde, 1994.

[10] Corne, D., P. Ross and H.-L. Fang, Fast Practical Evolutionary Timetabling, in: Lecture Notes in
Computer Science, vol 865 (Evolutionary Computing AISB Workshop, Leeds, UK, April 1994) (1994),
pp. 251–263.

[11] Dı́az, A., “Optimización Heuŕıstica y Redes Neuronales,” Editorial Paraninfo, 1996.

[12] Fernández, A. J., T. Hortalá-González, F. Sáenz-Pérez and R. del Vado, Constraint functional logic
programming over finite domains, Theory and Practice of Logic Programming (2006), in Press.

[13] Garfinkel, R. and G. Nemhauser, “Integer Programming,” John Wiley & Sons, New York, 1972.

[14] Gay, D. M., Symbolic-Algebraic Computations in a Modeling Language for Mathematical Programming.

[15] Goldberg, D. E., “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989.

239

González-del-Campo and Sáenz-Pérez

[16] Hanus, M., Curry: a Truly Integrated Functional Logic Language (1999), http://www.informatik.uni-
kiel.de/∼curry/.

[17] Hentenryck, P. V., L. Michel, L. Perron and J.-C. Régin, Constraint Programming in OPL, in:
G. Nadathur, editor, Proceedings of the International Conference on Principles and Practice of
Declarative Programming (PPDP’99), Lecture Notes in Computer Science 1702, 1999, pp. 98–116.

[18] Hentenryck, P. V. and V. Saraswat, Strategic Directions in Constraint Programming, ACM Comput.
Surv. 28 (1996), pp. 701–726.

[19] Jaffar, J. and J. Lassez, Constraint Logic Programming, in: 14th ACM Symposium on Principles of
Programming Languages (POPL’87) (1987), pp. 111–119.

[20] Khemmoudj, M., M. Porcheron and H. Bennceur, Using Constraint Programming and Local Search for
Scheduling of Electricité de France Nuclear Power Plant Outages (1998).

[21] Lajos, G., Complete University Modular Timetabling using Constraint Logic Programming, in: Selected
papers from the First International Conference on Practice and Theory of Automated Timetabling
(1996), pp. 146–161.

[22] López-Fraguas, F. J., A General Scheme for Constraint Functional Logic Programming, in: Proceedings
of the Third International Conference on Algebraic and Logic Programming (1992), pp. 213–227.

[23] Marte, M., “Models and Algorithms for School Timetabling - A Constraint-Programming Approach,”
Dissertation/Ph.D. thesis, Institute of Computer Science, LMU, Munich (2003).

[24] Merlot, L. T. G., N. Boland, B. D. Hughes and P. J. Stuckey, A Hybrid Algorithm for the Examination
Timetabling Problem, in: Proceedings of the 4th International Conference on the Practice and Theory
of Automated Timetabling. Volume 2740 of Lecture Notes in Computer Science, Lecture Notes in
Computer Science 2740 (2002), pp. 207–231.

[25] Michalewicz, Z., “Genetic Algorithms + Data Structures = Evolution Programs (3rd ed.),” Springer-
Verlag, London, UK, 1996.

[26] Ross, P., D. Corne and H.-L. Fang, Improving Evolutionary Timetabling with Delta Evaluation and
Directed Mutation, in: Y. Davidor, H.-P. Schwefel and R. Männer, editors, Parallel Problem Solving
from Nature – PPSN III (1994), pp. 556–565.

[27] Ross, P., D. Corne and H.-L. Fang, Successful Lecture Timetabling with Evolutionary Algorithms, in:
A. E. Eiben, B. Manderick and Z. Ruttkay, editors, Applied Genetic and other Evolutionary Algorithms:
Proceedings of the ECAI’94 Workshop, Springer, Berlin, 1995 .

[28] Ross, P., E. Hart and D. Corne, Some Observations about GA-Based Exam Timetabling, in: PATAT
’97: Selected papers from the Second International Conference on Practice and Theory of Automated
Timetabling II (1998), pp. 115–129.

[29] Rossi-Doria O., P. B., A memetic algorithm for university course timetabling, in: Combinatorial
Optimisation 2004 Book of Abstracts, Lancaster, UK, Lancaster University, 2004.

[30] Van Hentenryck, P., “The OPL Optimization Programming Language,” The MIT Press, Cambridge,
MA, 1999.

[31] Walsh, T., Depth-bounded Discrepancy Search, in: Proceedings of the International Joint Conference
on Artificial Intelligence IJCAI, 1997, pp. 1388–1395.

[32] William D. Harvey, M. L. G., Limited Discrepancy Search, in: C. S. Mellish, editor, Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95); Vol. 1 (1995), pp.
607–615.

[33] Winston, W., “Operations Research: Applications and Algorithms,” International Thomson Publishing,
Boston, Massachusetts, 1991.

240

