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Abstract. In this paper, we present a straightforward way for inter-
facing the functional logic language 7(O) with a finite domain solver.
Since 7)Y programs are compiled to Sicstus Prolog programs, we use
the Sicstus’ finite domain library to allow the expression of a finite do-
main problem in 7O)Y . Finite domain 7 Q) programs consist of func-
tional logic 7OY rules interfaced with constraint Sicstus clauses. This
approach allows us to take advantage of the full functionality of Sicstus
Prolog constraints.
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1 Introduction

Declarative programming is intended to separate the problem formulation from
the procedure to solve the problem itself. With logic programming, one can
express the problem in first order predicate calculus. Functional programming
allows to express problems in terms of higher order functions. In turn, constraint
programming (see [Smi95] for a tutorial) entails a new step in declarative pro-
gramming by allowing to express constrained optimization problems (COPs) as
unknowns (variables with an associated domain), and constraints which must
be satisfied by all such variables. Depending on the chosen variable domain for
constraint programming, expressiveness is guided to different problem domains.
Real-life problems to be typically solved with constraint programming include
planning, scheduling, and resource allocation. Mathematical programming (see
[Fou99] for a survey) can be seen as a classical approach to solve problems ex-
pressed with disequations of variables in a real domain or a combination of the
real and integer domains. It has proven both useful and capable to cope with
complex problems but it suffers from a lack of expressiveness which can be dealt
with constraint programming (for instance, non-linear constraints, which prevent
the use of the fast solving methods based on the simplex and branch and bound
methods). In addition, using integer non-binary variables imply a performance
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degradation that means a tradeoff between expressiveness and efficiency (non-
binary problems can be coded with binary variables at the cost of an awkward
problem reformulation in general) typically used in mathematical programming.
On the other hand, constraint programming allows a clear expression of non-
linear constraints. Interval reasoning is used for handling non-linear constraints
on real variables in constraint systems, which means a poor efficiency. For some
complex applications in an integer domain, constraint programming has been
proven to outperform integer programming [DL+97,Smi96,JD95]. Current re-
search aims to the integration of the techniques inherited from both constraint
and mathematical programming.

Functional logic programming (FLP), in turn, aims to integrate functional
and logic programming, allowing the use of techniques from both paradigms into
the same declarative framework (see [Han94] for a survey). Moreover, the com-
bination of ideas of the two worlds gives rise to new features specific to FLP.
This work is a contribution for further augmenting the expressive power of FLP
by adding the possibility of solving finite domain (FD) constraint problems in
the context of the functional logic programming language 70O) [LS99],[Rod01],
[AA+01]. We use the Sicstus’ finite domain library to allow the expression
of a finite domain problem with Prolog predicates which are interfaced with
T OYprograms. This allows to express finite domain problems with predicates
which are handled from a 7Q) program.

There has been a huge work in developing the constraint logic programming
paradigm (see [JM94] for a survey), which replaces unification by constraint
satisfaction. General frameworks for constraint functional logic programming
(CFLP) are proposed in [FH99,Lop92], but, as expected, implementations suffer
from a lack of efficiency [Fer00,FH99]. Oz [Smo95] is a functional logic language
based on concurrent constraint solving which adds the concept of state (against
a pure functional logic programming language) by means of the object oriented
paradigm. Curry [Han00] integrates features from functional languages, logic lan-
guages and concurrent programming. In addition, there are other related works
that embody real constraints in functional logic languages. [AH+96,1.S99] in-
cludes linear constraints over real numbers and disequality constraints between
syntactic terms that works together. [Lux01] describes the addition of linear con-
straints over real numbers to Curry and also optimizing constraints. It should
also be noted that non-linear constraints are also managed by the last two ap-
proaches, by delaying non-linear terms until they become linear. In spite of these
works on adding linear constraints to a functional logic language, it should be
mentioned that, yet their own importance, real life problems do require fast solv-
ing methods, and consequently classical approaches have been notably upgraded
as [BF+00] surveys. This is to say that not only expressiveness is important, but
also efficiency.

The rest of the paper is organized as follows. Section 2 introduces the con-
straint functional logic language we use as a host language for FD constraint
solving. Section 3 introduces general concepts about constraint programming.
Section 4 shows the way FD constraints have been interfaced to 7O)Y programs.



Section 5 briefly describes the implementation of the proposed approach. Finally,
section 6 summarizes some conclusions and points out future work.

2 The 7OY Language

T QY is apurely declarative, constraint functional logic language, which is typed,
lazy, and higher order, whose solid foundations can be found in [LLR93], [GH+99],
[GHR97]. We present here the subset of the language relevant to this work (see
[AA+01] for a more complete description and a number of representative exam-
ples).

We will use constructor-based signatures X = (DC,FS), where DC =
Unen DC™ tesp. F'S = |J, oy F'S™ are respectively sets of data constructors
and defined function symbols with associated arities. As notational conventions,
we will assume ¢,d € DC, f,g € FS and h € DC U FS. We also assume that
many countable variables (noted as X, Y, Z, etc.) are available. Given any set
X of variables, we will consider the set Fxps(X) of all terms built from symbols
in X UDC U FS, and also the set Termx(X) of all terms built from symbols
in X UDC. Terms l,r,e € Fxps(X) will be called expressions, while terms
s,t € Terms(X) will be called constructor terms or also data terms. Expres-
sions without variables will be called ground or closed. Moreover, we will say
that an expression e is in head normal form iff e is a variable X or has the form
c(€y,) for some data constructor ¢ € DC™ and some n-tuple of expressions €.

A TOY program consists of datatype, type alias and infix operator definitions,
and rules for defining functions. Its syntax is mostly borrowed from Haskell
[HAS97], with the remarkable exception that variables begin with upper-case
letters whereas constructor symbols use lower-case, as function symbols do. In
particular, functions are curried and the usual conventions about associativity
of application hold.

Datatype definitions like data nat = zero | suc nat, define new (possibly poly-
morphic) constructed types and determine a set of data constructors for each
type.

Types T,7',... can be constructed types, tuples (7i,...,7,), or functional
types of the form 7 — 7/. As usual, — associates to the right. 7O)Y provides
predefined types such as [A] (the type of polymorphic lists, for which Prolog
notation is used), bool (with constants true and false), int for integer numbers,
or char (with constants 'a’,'b’, ...). Type alias definitions like type parser_rec A
= [A] — [A] are also allowed. Type alias are simply abbreviations, but they are
useful for writing more readable, self-documenting programs. Strings (for which
we have the definition type string = [char]) can also be written with double
quotes. For instance, "sugar” is the same as ['s’,'v’,'g’,'a",'r'].

A TOY program defines a set FS of functions. Each f € FS™ has an asso-
ciated principal type of the form 71 — ... — 7, — 7 (where 7 does not contain
—). Number m is called the type arity of f and well-typedness implies that
m > n. As usual in functional programming, types are inferred and, optionally,
can be declared in the program.



We distinguish two important syntactic domains: patterns and expressions.
Patterns can be understood as denoting data values, i.e. values not subject
to further evaluation, in contrast with expressions, which can be possibly re-
duced by means of the rules of the program. Patterns t,s,... are defined by
tu=X | (t1,..,tn) | ctr.. . tn] ft1...t,, where c € DC™, n < m, f € FS™,
n < m, and ¢; are also patterns. Notice that partial applications (i.e., application
to less arguments than indicated by the arity) of ¢ and f are allowed as pat-
terns, which is then called a HO pattern, because they have a functional type.
Therefore function symbols, when partially applied, behave as data construc-
tors. HO patterns can be manipulated as any other patterns; in particular, they
can be used for matching or checked for equality. With this intensional point of
view, functions become ‘first-class citizens’ in a stronger sense that in the case
of ‘classical’ FP.

Ezpressions are of the form e == X | ¢ | f | (e1,...,e,) | (e1 e2), where
c € DC, f € FS, and e; are also expressions. As usual, application associates
to the left and parentheses can be omitted accordingly. Therefore e e; ...e, is
the same as (...((e e1) e2)...)eyn). Of course, expressions are assumed to be
well-typed. First order patterns are a special kind of expressions which can be
understood as denoting data values, i.e. values not subject to further evaluation,
in contrast with expressions, which can be possibly reduced by means of the
rules of the program.

Each function f € FS™ is defined by a set of conditional rules of the form

ftl...tn =e < l1::T17~-~7lk::Tk

where (t1 ...t,) form a tuple of linear (i.e., with no repeated variable) patterns,
and e, l;,r; are expressions. No other conditions (except well-typedness) are im-
posed to function definitions. Rules have a conditional reading: f t;...t, can
be reduced to e if all the conditions [y == ry,...,lp == r; are satisfied. The
condition part is omitted if £ = 0.

The symbol == stands for strict equality, which is the suitable notion (see
e.g. [Han94]) for equality when non-strict functions are considered. With this
notion, a condition e == €' can be read as: e and €' can be reduced to the
same pattern. When used in the condition of a rule, == is better understood
as a constraint (if it is not satisfyable, the computation fails), but the language
contemplates also another use of == as a function, returning the value true in
the case described above, but false when a clash of constructors is detected while
reducing both sides.

In addition to ==, 7O) incorporates other predefined functions like the
arithmetic functions +,*, ..., or the functions if_then and if_then_else, for which
the more usual infix syntax is allowed. Symbols ==,+,* are all examples of infiz
operators. New operators can be defined in 70O) by means of infix declarations,
like infixr 50 ++ which introduces ++ (used for list concatenation, with standard
definition) as a right associative operator with priority 50. Operators for data
constructors must begin with ’.’) as in the declaration infix 40 :=. Sections, or
partial applications of infix operators, as (==3) or (3==) are also allowed.



A distinguished feature of 7OY is that no confluence properties are required
for the programs, and therefore functions can be non-deterministic, i.e. return
several values for given (even ground) arguments. For example, the rules coin
=0 and coin =1 constitute a valid definition for the 0-ary non-deterministic
function coin. Two reductions of coin are allowed, which lead to the values 0 and
1. The system try in the first place the first rule, but, if backtracking is required
by a later failure or by request of the user, the second rule is tried. Another way
of introducing non-determinism in the definition of a function is by adding extra
variables in the right side of the rules, as in z_list = [0|L]. Any list of integers
starting by 0 is a possible value of z_list. Anyway, note that in this case only one
reduction is possible.

Disequality constraints over arbitrary free data types and arithmetic con-
straints over the real numbers are already available in the 70O) system. Im-
plementing disequality constraints requires to maintain a constraint store with
constraints in solved form X /= ¢, which must be awaken whenever X becomes
bound. A first implementation technique for a subset of CFLP(H), consisting of
so-called uniform programs, was presented in [KLMR92]. Later on, an implemen-
tation of full CFLP(H), based on a translation into Prolog with demand driven
strategy, was proposed in [AGL94]. [SLI8] provides a semantics (Goal Oriented
Rewriting Calculus with disequalities) for 7O) which closely approximates the
current implementation, which is based on the more concrete approach CRLW
which in turn departs from [GH+99]. The current 7O) system relies on this
technique to solve disequality constraints, and it invokes the CLP(R) solver of
Sicstus Prolog [Sic99] to solve real arithmetic constraints. Of course, user-defined
functions occurring within arithmetic constraints have to be evaluated before in-
voking the solver. The 7)Y system has two modes of use: with or without the
arithmetic solver. The user can switch between these two modes by means of spe-
cial commands. Activating the arithmetic solver causes some overhead in those
computations that actually do not need it.

3 Constraint Programming

There are two isolated steps in using constraint programming to solve a FD
problem. First, the problem representation, which involves the declaration of
variables and constraints, and possibly the declaration of a search method. This
step is specific to the problem domain and needs a language to both declare vari-
ables and post constraints on them. This language may be declarative, or even
imperative, such as C++ [Pug94], although a more natural description is found
in the former. The second step is the solution search, which consists of finding a
suitable assignment for each variable such that all constraints are simultaneously
satisfied, and, in addition, allowing to optimize a function. This is expressed as
a cost function which, evaluated over each solution to the problem, returns a
value indicating the appropriateness of such solution under a given criterion.
While the first step is intended to be performed by the programmer, the second



step is performed by the underlying constraint solving system'. The first step,
i.e., modeling, is quite important in solving the problem so the responsibility of
building efficient models is led to the programmer. Several semantically equiv-
alent models may yield great differences in efficiency (symmetry breaking and
other techniques aims to build more efficient models [SSW99]).

A constraint optimization problem involving finite domains can be stated in
the following way. Given a tuple (V, D, C, f), where:

— VeV, .., V,, aset of domain variables,

— D € Dq,...,D,, a set of finite integers domains,

— C e (Cy,...,Cph, aset of constraints between the variables in V,
— f(V), an objective function,

the goal is to find an assignment of a value from D; to each variable V; which sat-
isfies the constraints in C and optimizes (maximizes or minimizes) the objective
function f.

Solving in constraint systems is based on constraint propagation and labeling.
The first prunes the search space by reducing domains, and the second finds
solutions by assigning values to variables.

The system starts solving by propagating the effects of the constraints over
the domains of variables. This means that, in general, propagation implies that
each current domain will decrease its cardinality (pruning). There are several
propagation algorithms in the literature [Tsa93] which behave differently and
may reach different fixed points. The fixed point is reached whenever there is
no further domain reduction. These algorithms implement an iterative proce-
dure which looks for a stable situation (fixed point), or a failure (a domain
becomes empty, i.e., there is no possibility of finding an assignment for the re-
lated variable such that all the constraints are satisfied). Finding a fixed point
with non-singleton domains does not mean that there are definitely multiple so-
lutions to the problem, and it does not even ensure that at least one solution
exists. Propagation is not complete in the sense of ensuring the existence of so-
lutions. Instead, it is used to find what assignments definitely does not lead to
a solution. The premise in this approach is to identify in advance, as soon as
possible, what partial solution (where not all domains are singletons) is not a
solution before trying to assign all the variables. Note that this is an approach
different from enumeration techniques, which try to find solutions by simultane-
ously assigning values to all the variables, so that one knows that a solution is
when all variables have been assigned.

Once propagation procedure reaches a fixed point and at least one domain is
not a singleton, labeling is initiated in order to find feasible assignments. Indeed,
the search for solutions could be seen at this point from an enumeration point
of view. However, each time a variable is assigned to a value, propagation can
be started until a fixed point had been reached. Next, a new assignment can be

! Nonetheless, it is possible for the programmer to provide a search procedure spe-
cialized with the problem knowledge for labeling, therefore being hopefully more
efficient than the predefined procedure(s) given by the underlying system.



made, a new propagation cycle started, and so on, until a solution is computed
or not found. The latter means that backtracking must be started in order to
find another possible assignment. Each time a variable is labeled (assigned to a
value among the possible values in its domain), a choice point must be annotated
in order to try different assignments through backtracking.

Our experience shows that solving real-life complex problems implies an or-
thogonal way in using constraints in a host language. Several (sequential) pro-
gramming sections can be identified: input data preparation, variable declara-
tion, constraint posting (and optionally search procedure tuning), and data out-
put. This suggested us that one important point in solving real-life constraint
problems is to provide the host language (the functional logic language 7O))
with a connection to a finite domain constraint solver. The objective is to allow
the programmer to prepare the input data in the host language, then to express
the constraint problem in the target constraint system, and finally to get the
result (output data) for continuing the computation. This orthogonal way of
problem formulation comes from the fact that a problem usually can be decom-
posed into several subproblems, which, because their nature, can be better solved
with specific programming paradigms. For instance, it is acknowledged that com-
binatorial problems in general are better expressed and efficiently solved with
constraint propagation than short-term planning, which is better solved with
mathematical programming. In addition to this situation, there is the need of
‘playing’ with the solution reached for a COP in the host language in order to
build decision support systems.

4 Interfacing 7OY with the Sicstus Constraint Solver

Sicstus Prolog [Sic99] provides a constraint logic programming library over the
finite domain of integer subsets which can be effectively used for building a
functional logic constraint system. We use this library at Prolog level taking for
granted that 7(O) programs are compiled to Prolog. Our goal in interfacing
TOY with the Sicstus Constraint Solver is depicted in figure 1. The left side
shows the composition of a generic FD problem which has to be interfaced to
TOY. Since TOY programs are compiled to Prolog, we propose to use the Sic-
stus Prolog framework to perform constraint solving in the same tier than the
compiled 7OY program will be run. This means that input parameters to the
FD problem have to be fed to the Prolog specification, and, in turn, instantiated
or constrained FD variables have to be returned to the calling function applica-
tion. Since the finite domain is a subset of integers, we consider the interface by
sending and receiving integers, so that FD functions have to be type checked for
consistency. This approach can be glued with the formalization below consider-
ing that the semantics of an FD function can be extensionally specified taking
advantage of non-determinism:
fp%---piz (t%""vt}n)

Fobph=(t,... tn)



where pg,tg € 7, and n,m, [,k € N*. This formulation expresses that for a
given pattern i of parameters (pi, ..., pl ), there is the set of solutions {(¢],...,t,) :
j € {1,ldots,1}} for the optimization problem.

Sicstus Prolog

Framework
FD Probl Compilation to
robem Prolog of Toy
Parameters Interface
Y
FD Variables Parameters Instantiated
FD Variables
Constraints v
Prolog FD Problem

Fig. 1. Interfacing 7O)Y with a Prolog FD Constraint Solver

A TOY program with calls to finite domain problem solving consists of,
firstly, an include statement which loads the Prolog FD program, and, secondly,
calls to the Prolog side by means of the 7Q) function evalfd, whose prototype
is evalfd :: [char] -> [int] -> [int]. This prototype states that evalfd
has two arguments: the name of the Prolog predicate to be called (a string), and
the (integer) input parameters; in addition, it returns a list of integer variables
which may be possibly bound via labeling.

The next code fragment shows a possible use of the proposal, where the prim-
itive includeclpfd includes the Prolog program queens.pl (the well-known
queens problem formulated with constraints), and the function append defines
list concatenation.

includeclpfd "queens.pl"

append :: [A] -> [A] —> [A]
append [] Ys = Vs
append [X[Xs] Ys = [X|append Xs Ys]

With this code loaded and compiled in the 7QO) system, one can submit
the goal evalfd "queens" [4] == L, which returns as possible solutions L. ==
[2,4,1,3],and L == [3,1,4,2]. Another goal is evalfd "queens" [1+3] ==



(append [2,4] [1,3]), which returns success. evalfd can also be used to de-

termine the input parameter, as in evalfd "queens" [X] == [2,4,1,3], which
returns X == 4, or even evalfd "queens" [X] == [2,X|Y], which returns all
solutions starting with 2 and at least two elements in the list, as X == 4, Y ==

[1,3],and X == 5, Y == [3,1,4].

Finite domain variables are constrained after the finite domain call even
they are not bound by labeling. For instance, we can submit the goal evalfd
"queens" [X] == [A,B,C,D], append [2] [4,1,3] == [A,B,C,D], whichre-
turns X == 4, A == 2)B == 4,C == 1, D ==

Additionally, we can have a higher order use of the evalfd function, as in F
== evalfd "queens", F [4] == L, which returns L == [2,4,1,3],and L ==
[3,1,4,2] both with F == (evalfd "queens").

The presented approach is not only valid for interfacing FD predicates with
TOY, but also for any other Prolog predicate obeying the interface restrictions
imposed by evalfd. This technique could be extended for defining a general
interface with Prolog predicates.

5 Implementation

The implementation follows a compilation of 7)Y programs to Sicstus pro-
grams. A 7O)Y program is implemented as a set of Sicstus Prolog clauses,
which is a classical compilation-to-Prolog approach for implementing narrow-
ing. Variables and expressions are represented via Prolog variables and terms,
respectively. 7O)Y higher order programs are firstly translated into first order
programs following [Gon93]. Equality and disequality constraints are also repre-
sented by terms following an infix representation for operators '=="and ’/=". In
this approach, we can take advantage of Prolog’s unification, saving some work
which the Sicstus underlying system efficiently performs. However, due to the
existence of disequality constraints, Prolog unification is not enough to represent
7 OY unification, and it is needed to maintain a (disequality) constraint store
which allows us to detect whether two variables can be unified in a Prolog way.

In order to commit to the conditions imposed in section 4, the user has to use
a directive in order to load the FD Prolog module that defines the FD problem.
The type checking stage ensures the conditions on parameters of an FD call as
well as its outcome.

5.1 Computing Head Normal Forms

A head normal form (HNF) is any language expression which is not a total
function application, i.e., a variable or expression which starts with a constructor.
Note that a partial application f t1...%,,, f € FS™, m < n, is regarded as a
constructor symbol in 7Q) . Hence, ft;...t,, represents a pattern and is in
HNF already. HNF's are only computed when they are demanded following the
lazy narrowing approach. A HNF is computed as shown in the following code
excerpt:



hnf (E,H,Cin,Cout) :-
var(E), !,
(
var (H),!,H=E,Cin=Cout

extractCtr(E,Cin,Coutl,CE) ,H=E,
propagate (H,CE,Coutl,Cout)
).
hnf (susp (Fun, Args,R,S) ,H,Cin,Cout) :-
',
(
S==hnf,!,hnf (R,H,Cin,Cout)

H=R,S=hnf ,hnf_susp(Fun,Args,H,Cin,Cout)
).
hnf(T,H,Cin,Cin) :- H=T.

The three clauses above correspond to variable, function application (suspen-
sion), and terms starting with a constructor symbol, respectively. The first ar-
gument is the syntactic object which has to be translated; the second argument is
its translation to HNF'; the third and fourth arguments represent the constraint
store before and after the translation, respectively. The predicate extractCtr
extracts the disequality constraints related to the syntactic object to be trans-
lated. The predicate propagate transforms constraints to solved forms by taking
into account the information in the constraint store. The term susp represent
a suspension Fun with arguments Args which may be evaluated to R, indicated
by its status S. This term is used in the second clause for identifying whether
the function is a suspension or not. The call to hnf is somewhat subtle in the
branch starting with S==hnf in the second clause. Instead of just doing R = H,
we have to take into account the constraint store looking for disequalities which
can avoid the unification of R (in HNF already) with H, since H can be partially
instantiated in a previous computation step. The call to hnf is simply a short
way to commit to the disequalities present in the store.

5.2 Strict Equality
A naive strict equality implementation is as follows:

equal(X,Y,Cin,Cout) :-
hnf (X,HX,Cin,Cout1),
hnf (Y,HY,Cout1,Cout2),
equalHnf (HX,XY,Cout2,Cout) .

But another more precise approach is followed in order to identify the different
syntactic objects as soon as possible, therefore reducing the search space (see
[SLI8] for details).



5.3 Rule Application

Demand driven strategy implemented by 70OY follows [LLR93] which in turn
uses definitional trees [Ant92]. Details of implementation can be found in [SLIS].
However, we are interested in rule application for FD functions, which has a spe-
cific treatment due to the conditions which must hold. In particular, arguments
have to be integers, as well as the result, so that head normal forms are com-
puted for input parameters. For instance, a finite domain function translation
could be:

evalfd(CL, PL, H, Cin, Cout):-
nf (CL, HCL, Cin, Coutl),
hnf (PL, HPL, Coutl, Cout),
toyListToIntPrologList (HPL,PrologList),
toyStringToProlog(HCL,PrologString),
name (Predicate, PrologString),
FDGoal =.. [Predicate,Prologlist,Result],
call (FDGoal),
intPrologListToToyList (Result,H) .

First, the Prolog predicate name CL is required to be in normal form, and
parameters PL are required to be in HNF. Second, some translations needed to
convert Prolog and 7O) representations are performed. Next, the call to the
Prolog predicate is built by adding the list of input parameters and the list of
output variables as arguments of the finite domain predicate. The Prolog FD
goal is then called, and, finally, the 7OY representation for the result is built.
This translation assumes that the finite domain predicate has arity 2, its first
argument is the input parameter list, and the second one is the output finite
domain variables list. Result is bound by the FD predicate in the Prolog side
specification of the FD problem.

6 Conclusions and Future Work

In this work we have shown a straightforward way of interfacing the functional
logic language 7 O)Y with the finite domain solver of Sicstus Prolog, by taking
advantage of the Prolog compilation approach for 7O) programs. This allows
us to orthogonally express constraint optimization problems with 70O) as a
host language, and to take advantage of the full functionality of Sicstus Prolog
FD constraint solver. The same approach can be straightforwardly applied to
other domains. In a multi-domain setting, although only one domain can be
used at the same time, i.e., there is no hybrid computation for different domains
as presented for instance in [FH99], several domains could be managed from the
same 7 Q)Y program, therefore allowing to solve different-by-nature subproblems
on a compositional approach.

A possible drawback that may be seen in our approach is that a programmer
not only has to know the 7O) syntax, but also the Prolog syntax. However, the



functional logic approach is understood as the combination of both functional
and logic paradigms, which have to be familiar to the programmer. In this line,
Prolog syntax is also allowed in 7Q) for newcomers from the logic arena. In
order to ‘overcome’ this possible drawback, our aim in improving semantics of
the 7OY language is to integrate FD constraints in a uniform framework, in
the spirit that real constraints are already integrated [AH+96]. This will imply
the adjustment of both the semantics and operational model. As an obvious ad-
vantage, it will allow to maintain the 7O} syntax in defining domain variables,
posting constraints, and defining the search procedure.

Another important point is to bring the outside world to 7O)Y, by allowing
the connection with persistent data, i.e., databases. This is an already identified
topic in commercial constraint systems, as for example, ILOG Solver [Pug94]
for constraint programming and AMPL [FGK93] for mathematical program-
ming. [Fou97] contains some interesting material about database structures for
mathematical programming models, which can be straightforwardly applied to
constraint programming models.

The need of a more declarative programming language for solving FD prob-
lems has been felt in the research community, which leads to algebraic speci-
fication languages [Hen99,Fou01]. Some work remains to be done in topics as
modularity, abstraction and combination of ideas coming from other paradigms.
For instance, object oriented programming can be thought as a way for building
program components defining constraint skeletons, which may model generic
objects, that define constraint structures which can be inherited in order to
build more specific objects. Moreover, when the domain of the application is
more specific, one can think of a specific programming language with built-in
constructors for modeling well-known components of the problem domain (like
pipes that have to obey certain constraints, nodes that must conform a flow bal-
ance, etc.) The combination of experience from different fields of programming
languages can be profited to achieve more declarative and useful language for
real-problem solving.
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