
P. JULIÁN-IRANZO AND F. SÁENZ-PÉREZ A-1

APPENDIX
GLOSSARY OF TERMS

This appendix contains a glossary of terms related to
logic programming and deductive database terms. It enjoys
hyperlinks for the terms in the definitions that are included in
the glossary (if the same term occurs several times in the same
definition, only the first occurrence is hyperlinked). Clicking
in an hyperlink (a term in a red box) redirects to the referenced
term in the glossary. References to the attached bibliography
are also enclosed with green boxes as hyperlinks. Finally,
hyperlinks are also added in bibliographic entries themselves
(as blue boxes) linking to the on-line resources (either papers
or books) if available. The printed appendix does not include
such coloured boxes. Some definitions or parts of them are
taken from public repositories. A good and classical reference
for logic programming and Prolog is [1], while for deductive
databases are [2] and [3].

• Aggregate Predicate. An aggregate predicate is a meta-
predicate that has, at least, a predicate as an argument.

• Answer. Outcome for a goal in an interactive system.
An answer in a Prolog system consists of a substitution
for each alternative. An answer in a deductive database
system consists of a (possibly multi-)set of ground terms.
In a system with fuzzy features it is usually accompanied
by a truth degree.

• Arity. Number of arguments of either a term or a
predicate.

• Assertion. An assertion is either a program directive or
a constraint.

• Atom. An atom is a term with a relation name for its
functor name.

• Body. Right hand side (antecedent) of the implication in
a rule.

• Clause. A first order logic formula which is a disjunction
of literals. Variables occurring in a clause are assumed
universally quantified. Horn clauses are clauses with
at most one positive literal. Clauses can be written in
an implication form: h ← g1 ∧ · · · ∧ gn, where h is
known as the head of the clause and g1 ∧ · · · ∧ gn is
known as the body of the clause. A textual clause in a
system implementation uses the neck symbol (:-) for the
implication, uses commas (,) for the conjunctions, and
ends with a dot (.).

• Constraint. A query that, if can be successfully solved,
indicates an inconsistent database instance. A constraint
is a clause with a false consequent. A textual constraint
in a system implementation is written as a textual clause
with no head. They are also known as specific cases of
assertions.

• Database Instance. Facts (aka table rows in relational
databases) and clauses (aka views in relational databases)
defining all the terms for every relation, excluding the
database schema.

• Database Schema. Constraints for a given database
(types, primary keys, . . . ).

• Deductive Database. A deductive database is a logic pro-
gram with syntactic restrictions to ensure safety (finite-

ness and termination).
• Deductive Database System. A database management

system which incorporates a deductive engine to make
deductions from stored rules and facts.

• Derivation. A formal proof or derivation is a sequence
of sentences each of which is an axiom or follows from
the preceding sentences in the sequence by a rule of
inference.

• Expression. A term that can be evaluated.
• Extensional Database. Part of the database which de-

fines relations in terms of tuples. See also Intensional
Database.

• Fact. A clause with a true antecedent. A textual fact in
a system implementation omits the implication and the
antecedent, and ends with a dot.

• Functor. Name and arity of the syntax tree root of a
term, written as Name/Arity.

• Goal. A clause of the form ← g1 ∧ · · · ∧ gn (i.e.,
a clause without a head). It is understood as a query
∃(g1 ∧ · · · ∧ gn) submitted to a logic system. So, it is
the root of a resolution as known in Prolog. Each gi is
called a subgoal. It is also known as a query in a deductive
database setting.

• Ground. Adjective referred to terms and instantiations so
that no substitution can make them less general.

• Head. Left hand side (consecuent) of the implication in
a clause.

• Instantiation. The application of a substitution to a syn-
tactic expression to make it more specific. For example,
given a substitution θ = {x/a}, the application of θ to an
atomic formula A(x, y), denoted A(x, y)θ, is the atomic
formula A(a, y), which is called an instance of A(x, y).

• Intensional Database. Part of the database which defines
relations in terms of other relations. See also Extensional
Database.

• Literal. A positive (i.e., non-negative) or negative atomic
formula.

• Logic Program. Collection of clauses. Also known as
(deductive) database in the deductive database setting.

• Logic Variable. A logic variable is a variable that can
be instantiated only once in a derivation.

• Meta-predicate. A meta-predicate is a predicate in
higher-order logic. Whereas pure logic programming
deals only with first-order logic, most current logic pro-
gramming systems deal with meta-predicates.

• Predicate. A set of clauses with the same symbol and
arity at the root of the head of the rules or facts which
define it.

• Predicate Dependency Graph. A predicate dependency
graph (PDG) [4] shows both the positive and negative
dependencies between predicates in the program. Each
node in this graph is a program predicate symbol. Arcs
come from each predicate in a rule body to its rule
predicate. If a predicate occurs as an aggregate argument,
its outcoming arc is labelled as negative, and positive
otherwise.

• Query. A goal as known in a deductive database setting.
• Relation. A predicate as known in the deductive database



P. JULIÁN-IRANZO AND F. SÁENZ-PÉREZ A-2

setting.
• Resolution. Proof method for logic programs developed

by Robinson in 1965 [5]. Resolution is a rule of inference
leading to a refutation theorem-proving technique for
sentences in propositional logic and first-order logic.

• Rule. A clause written as a conditional formula with a
head and a body. This denomination is commonly used
both in logic programming and in the deductive database
setting.

• Safety. Property of rules that obey syntax restrictions for
ensuring finiteness and termination [6], [7].

• SLD-Resolution. Basic inference system for logic pro-
gramming. SLD-resolution stands for Selection-function-
driven Linear resolution for Definite clauses resolution
[8]. Practical systems are based on a variant of SLDNF-
resolution (SLD-resolution with negation as failure) [9].

• Stratification. A stratification collects predicates into
numbered strata so that, given the function str(Π, p)
which assigns a stratum number to predicate p in a
database Π, then for a positive arc p←q, str(Π, p) ≤
str(Π, q), and for a negative arc p

¬←q, str(Π, p) <
str(Π, q).

• Substitution. Set of pairs x/y, indicating that the symbol
x is syntactically substituted by y.

• Subsumption. A concept closely related to instantiation.
An atom A subsumes another B if there exists a substi-
tution σ such that Aσ = B. That is, if B is an instance
of A.

• Tabling. Tabling is an implementation technique based
on dynamic programming for enhancing performance and
termination properties of logic programs [10]. With its
roots in memoization [11], this technique is based on
storing already-computed results to be reused for the
same or similar calls instead of recomputing them.

• Term. A term is a structure f(t1, . . . , tn) with arity
greater than 0, whose arguments ti can be constants, logic
variables or other terms. f/n is known as the functor of
the term.

• Unification. Unification is an algorithmic process of
solving equations between symbolic expressions. A unifi-
cation problem is an equation set for which a substitution
is a solution.

REFERENCES

[1] K. Apt, From logic programming to Prolog, ser. Prentice-Hall
international series in computer science. Prentice Hall, 1997. [Online].
Available: https://books.google.es/books?id=8Y1QAAAAMAAJ

[2] S. Ceri, G. Gottlob, and L. Tanca, “What you Always Wanted to Know
About Datalog (And Never Dared to Ask),” IEEE Transactions on
Knowledge Data Engineering, vol. 1, no. 1, pp. 146–166, 1989. [Online].
Available: http://dblp.uni-trier.de/db/journals/tkde/tkde1.html#CeriGT89

[3] T. J. Green, S. S. Huang, B. T. Loo, and W. Zhou, “Datalog and
recursive query processing.” Foundations and Trends in Databases,
vol. 5, no. 2, pp. 105–195, 2012. [Online]. Available: http:
//blogs.evergreen.edu/sosw/files/2014/04/Green-Vol5-DBS-017.pdf

[4] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian,
and R. Zicari, Advanced Database Systems. Morgan Kaufmann, 1997.

[5] J. A. Robinson, “A machine-oriented logic based on the resolution
principle,” J. ACM, vol. 12, no. 1, pp. 23–41, Jan. 1965. [Online].
Available: http://doi.acm.org/10.1145/321250.321253

[6] J. D. Ullman, Database and Knowledge-Base Systems, Vols. I (Classical
Database Systems) and II (The New Technologies). Computer Science
Press, 1988.

[7] S. Cohen, J. Y. Gil, and E. Zarivach, Datalog Programs over Infinite
Databases, Revisited. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 32–47. [Online]. Available: https://pdfs.semanticscholar.org/
2d5a/accbb6bfe6e4a20b02ca9ff75105c43e61bb.pdf

[8] R. Kowalski and D. Kuehner, “Linear resolution with selection function,”
Artificial Intelligence, vol. 2, 1971.

[9] K. R. Apt and R. N. Bol, “Logic programming and negation: A survey,”
J. Log. Program., vol. 19/20, pp. 9–71, 1994.

[10] S. Verbaeten, K. Sagonas, and D. De Schreye, “Termination
proofs for logic programs with tabling,” ACM Transactions on
Computational Logic, vol. 2, no. 1, pp. 57–92, 2001. [Online].
Available: http://dl.acm.org/citation.cfm?doid=371282.371357

[11] S. W. Dietrich, “Extension tables: Memo relations in logic
programming,” in IEEE Symp. on Logic Programming, 1987,
pp. 264–272. [Online]. Available: http://www.public.asu.edu/∼dietrich/
publications/ExtensionTablesMemoRelations.pdf

https://books.google.es/books?id=8Y1QAAAAMAAJ
http://dblp.uni-trier.de/db/journals/tkde/tkde1.html#CeriGT89
http://blogs.evergreen.edu/sosw/files/2014/04/Green-Vol5-DBS-017.pdf
http://blogs.evergreen.edu/sosw/files/2014/04/Green-Vol5-DBS-017.pdf
http://doi.acm.org/10.1145/321250.321253
https://pdfs.semanticscholar.org/2d5a/accbb6bfe6e4a20b02ca9ff75105c43e61bb.pdf
https://pdfs.semanticscholar.org/2d5a/accbb6bfe6e4a20b02ca9ff75105c43e61bb.pdf
http://dl.acm.org/citation.cfm?doid=371282.371357
http://www.public.asu.edu/~dietrich/publications/ExtensionTablesMemoRelations.pdf
http://www.public.asu.edu/~dietrich/publications/ExtensionTablesMemoRelations.pdf

	Appendix: Glossary of Terms
	References

