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Abstract

In this paper we provide techniques to integrate WordNet into a Fuzzy Logic Programming system. Because
WordNet relates words but does not give graded information of the relation between them, we have imple-
mented standard similarity measures and new directives allowing for generating the proximity equations
linking two words with an approximation degree. Proximity equations are the key syntactic structures that,
in addition to a weak unification algorithm, make possible a flexible query answering process in this kind
of programming languages. This addition widens the scope of Fuzzy Logic Programming, allowing certain
forms of lexical reasoning, and reinforcing Natural Language Processing applications.
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1 Introduction and Motivation

Fuzzy Logic Programming (Lee 1972) integrates concepts coming from fuzzy logic (Zadeh 1965)
into logic programming (van Emden and Kowalski 1976) in order to deal with the essential
vagueness of some problems by using declarative techniques. In recent years there has been a
renewed interest on this field, with multiple lines of work. When the fuzzy unification algorithm
is weakened using a similarity relation (i.e., a reflexive, symmetric, transitive, fuzzy binary rela-
tion) the approach is usually named Similarity-based Logic Programming (Fontana and Formato
1999; Fontana and Formato 2002; Loia et al. 2001; Sessa 2002).

We have extended Similarity-based Logic Programming by introducing new theoretical con-
cepts and developing two fuzzy logic programming systems: Bousi∼Prolog (BPL for short)
(Rubio-Manzano and Julián-Iranzo 2014; Julián-Iranzo and Rubio-Manzano 2017) and Fuzzy-

DES (Julián-Iranzo and Sáenz-Pérez 2017; Julián-Iranzo and Sáenz-Pérez 2018b). Their syntax
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is based on the clausal form, and they embody a Weak SLD (WSLD) resolution operational se-
mantics which uses a fuzzy unification algorithm based on the concept of proximity relation
(i.e., a fuzzy binary relation supporting unification that, although reflexive and symmetric, is not
necessarily transitive) (Julián-Iranzo and Rubio-Manzano 2015; Julián-Iranzo and Sáenz-Pérez
2018a). A proximity relation is defined by proximity equations, denoted as a∼ b = α , whose in-
tuitive reading is that two constants (either n-ary function symbols or n-ary predicate symbols),
a and b, are approximate or similar with a certain degree α .

For instance, assume a deductive database that stores information about people and their family
relationships coded using the Bousi∼Prolog language.

%% PROXIMITY EQUATIONS
ancestor~ascendant=1.0. ancestor~progenitor=0.9.

%% FACTS
father(abraham,isaac). father(isaac,esau). father(isaac,jacob).
mother(sara,isaac). mother(rebeca,jacob). mother(rebeca,esau).

%% RULES
direct_ancestor(X,Y) :- father(X,Y); mother(X,Y).

ancestor(X,Z) :- direct_ancestor(X,Z).
ancestor(X,Z) :- direct_ancestor(X,Y), ancestor(Y,Z).

In a standard Prolog system (without proximity equations), asking the progenitors of isaac

with the query progenitor(X,isaac) produces no answer. However, Bousi∼Prolog answers
X=abraham with 0.9 and X=sara with 0.9 thanks to its proximity-based unification algorithm.
Since we have specified that progenitor is close to ancestor with degree 0.9, these two terms
can “weakly” unify with approximation degree 0.9, leading to a refutation.

Here, the proximity equations are axiomatically given by the programmer. It would be inter-
esting that the system could provide assistance through its connection to a lexical resource such
as WordNet (Fellbaum 1998; Fellbaum 2006; Miller 1995). So, this work deals with generating
the set of proximity equations both automatically and with a minimal intervention of the pro-
grammer. We integrate this and the implementation of several relatedness measures and built-in
predicates, that provides the ability of reasoning with linguistic terms in the readily available sys-
tem Bousi∼Prolog. Because of the declarative nature of this system, we used Prolog technology
to face these tasks and the integration with WordNet. Usefulness of this proposal include appli-
cations such as text mining in information retrieval, text classification, and even sentiment anal-
ysis (Allahyari et al. 2017; Baeza-Yates and Ribeiro-Neto 2011; Serrano-Guerrero et al. 2015).

2 The Lexical Resource WordNet and Prolog

WordNet is a lexical English language database that stores words of five syntactic categories:
nouns, verbs, two kinds of adjectives, and adverbs. Words of the same syntactic category are
grouped into sets of synonyms called synsets. Roughly speaking, the words of a synset have the
same meaning in a determined context and they represent a concept (or word sense). Each synset
has a synset ID which is a nine byte field. Because a word has different senses (meanings), it
can belong to different synsets. WordNet is structured as a semantic net where words are inter-
linked by lexical relations, and synsets by semantic relations. Synonymy and antonymy are the
major lexical relations. Semantic relations serve to build knowledge structures (i.e., networks of
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synsets –concepts–). Depending on the syntactical category, there are different semantic relations
able to build such structures: nouns, as well as verbs, are interconnected by the hyponymy relation
(IS-A relation), which links specific concepts to more general ones.1 Hypernymy is the opposite
relation, that is, a hypernym is a word whose meaning includes a group of other words. Both re-
lations are transitive. Note also that, both nouns and verbs are organized as separate hierarchical
structures.

WordNet can be accessed either via a web interface or locally. In the last case there are different
options, but we are interested in the Prolog version for the ease of connection to our fuzzy logic
programming systems. This version is the WordNet 3.0 database released by Eric Kafe which
can be found at the URL: https://github.com/ekaf/wordnet-prolog. The information
stored in WordNet is provided as a collection of Prolog files. Each file contains the definition
of what is called an operator, which corresponds to a WordNet relation. Files are named as
wn <operator>.pl, where <operator> is the name of a specific operation (relation). There-
fore, each WordNet relation is represented by a Prolog predicate which is stored in a separate file
and defined by a set of Prolog facts. The specification of these predicates are detailed in (Fell-
baum and et. al. 2006). In the following we describe the predicates which are most interesting
for the present work.

The file wn s.pl contains all the information about words stored in WordNet. It defines the
s operator, which has an entry for each word. The structure of the s operator is s(Synset id,

W num, Word, Ss type, Sense number, Tag count), where the W num parameter, if present,
indicates which word in the synset is being referred to. The words in a synset are numbered se-
rially, starting with 1. The third argument is the word itself (which is represented by a Prolog

atom). The Ss type parameter is a one character code indicating the synset type: n (noun); v
(verb); a (adjective); s (satellite adjective) and r (adverb). The Sense number parameter spec-
ifies the sense of the word, within the part of speech encoded in the Synset id. The higher the
sense number, the least common is the word. Finally, the Tag count indicates the number of
times the word was found in a test corpus. A higher tag count number means that the word is
more common than others with a lower tag count.

The file wn hyp.pl stores hypernymy relations in the binary predicate hyp(synset ID1,

synset ID2) specifying that the second synset is a hypernym of the first synset. This semantic
relation only holds for nouns and verbs. Because hyponymy is the inverse relation of hypernymy,
the operator hyp also specifies that the first synset is a hyponym of the second synset.

3 WordNet and Lexical Semantic Similarity

WordNet relates words but does not provide their grade of relationship. Measuring lexical seman-
tic relatedness has many applications for Natural Language Processing (NLP) and its integration
in a fuzzy logic programming system such as Bousi∼Prolog is very appropriate because of its
similarity-based operational semantics. The syntax of our language uses symbols (words) that
are endowed with a fuzzy semantics via proximity equations. So, we are interested in techniques
to measure the grade of similarity between words in order to facilitate the construction of prox-
imity equations with linguistic criteria. Semantic similarity quantifies how much two words are
alike (or more precisely: how similar are the concepts they denote).

1 A verb is a hyponym of another verb if it represents a (kind of) activity of the other.
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WordNet is well suited for similarity measures because it organizes nouns and verbs into
hyponymy/hypernymy-based hierarchies of concepts (synsets). Since the different parts of speech
are isolated in distinct graph structures, they cannot be compared using this type of measures
based on path lengths in that structures. Specifically, similarity measures in WordNet are limited
to noun pairs and verb pairs.

Although a large variety of measures of semantic relatedness and similarity have been pro-
posed (Budanitsky and Hirst 2006), only a limited number of tools have been implemented to
perform this task. Perhaps, WordNet::Similarity (Pedersen et al. 2004) is the most prominent.
This tool has three similarity measures based on path lengths between concepts (PATH, WUP
(Wu and Palmer 1994) and LCH (Leacock and Chodorow 1998)), and another three based on
information content (RES (Resnik 1995), JCN (Jiang and Conrath 1997) and LIN (Lin 1998)).

Table 1 summarizes some features of these measures, where its first column contains the mea-
sure name, the second its type (either Similarity or Information Content), the third its description,
the fourth its range, and the last one whether it preserves block structure.2 In order to understand
the description of similarity measures precisely, we introduce the following standard definitions
and notations used when working in the framework of WordNet:

• We differentiate between “words” and “concepts”. We use the term “word” as a shorthand
of “word form,” and the term “concept” (i.e., “synset”) to refer to a specific sense or word
meaning. Words will be denoted by the letter w, and concepts by the letter c, possibly with
subscripts. A word w with sense s is denoted as w : s.

• Similarity measures use the so-called HyperTrees (Hypernym Trees). They are IS-A hier-
archies. Given a HyperTree, the length of the shortest path from synset c1 to synset c2 is
denoted by len(c1,c2). The depth of a node c is the length of the shortest path from the
global root to c, i.e., depth(c) = len(root,c).

• The least common subsumer (LCS) of two concepts c1 and c2 is the most specific concept
they share as an ancestor. It is denoted by lcs(c1,c2).

RES, JCN and LIN measures are based on the notion of Information Content (IC) (Resnik
1995). For a concept c, IC(c) =−ln(p(c)), where p is the probability of encountering an instance
of the concept c in a corpus. In our case, this probability is measured in terms of a relative
frequency3 of use of the concept c stored in WordNet. It is computed by adding the Tag count

of the concepts subsumed by the concept c. Then:

p(c) = Frequency(c)/Frequency(Root)

where Root is the concept (virtual or not) on the top of the concept hierarchy.
Section 5 will show how to integrate WordNet and the aforementioned lexical semantic sim-

ilarity measures into the state-of-the-art fuzzy logic programming system Bousi∼Prolog. But
before going on, we briefly summarize the architecture of this system and the role and place
allocated to the modules that make the integration with WordNet effective.

2 We have noticed that some measures have the ability to group concepts in blocks of proximity respecting certain
semantic similarity groupings that human users perform naturally. The concept of proximity block is a technical
concept described in (Julián-Iranzo and Rubio-Manzano 2015; Julián-Iranzo and Sáenz-Pérez 2018a). A proximity
block is a maximal clique of the proximity relation. Only the symbols in the same block are considered “equal” and,
therefore, can be unified.

3 Also named frequency count, which is a measure of the number of times that an item or event occurs in a particular
context.
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Table 1. Some relatedness measures and their features.

Msr. Type Description Rng. Blk.

PATH Sim. simPAT H(c1,c2) = 1/len(c1,c2) [0,1] Yes

WUP Sim. simWUP(c1,c2) =
2×depth(lcs(c1,c2))

Depth(c1)+Depth(c2)
[0,1] Yes

LCH Sim. simLCH(c1,c2) =−log( len(c1,c2)
2×max{depth(c)|c∈WordNet} ) [0,∞] Yes

RES IC simRES(c1,c2) = IC(lcs(c1,c2)) [0,∞] Yes

JCN IC simJCN(c1,c2) =
1

IC(c1)+IC(c2)−2×IC(lcs(c1,c2))
[0,∞] No

LIN IC simLIN(c1,c2) =
2×IC(lcs(c1,c2))
IC(c1)+IC(c2)

[0,1] No

4 The architecture of the Bousi∼Prolog system and the wn-connect subsytem

Bousi∼Prolog can be downloaded from dectau.uclm.es/bousi-prolog/downloads (sources
and binaries). Sources also include instructions to build binaries, and in particular, the wn-connect
subsystem is stored inside the directory wn since Bousi∼Prolog version 3.3.

The Bousi∼Prolog system is composed of three subsystems with a total of nine modules. Fig-
ure 1 shows the current structure of the system and, in broad strokes, the modules that integrate
each of its components, focusing on a simplified view of the wn-connect layered structure.

Fig. 1. Architecture of the Bousi∼Prolog system and the wn-connect subsystem.

The wn-connect subsystem provides the basis to the connection between WordNet and the
Bousi∼Prolog system, and relevant parts of its implementation and their features will be de-



6 Pascual Julián-Iranzo and Fernando Sáenz-Pérez

scribed in the following sections.4 Actually, wn-connect is a software application in itself
with ten Prolog modules, which implement predicates for managing synsets, hypernyms and
hyponyms that give support to the wn sim measures and wn ic measures modules which, in
addition, implement the standard similarity measures defined in former Section 3. The base mod-
ules are summarily described next:

• The wn synsets module implements predicates to retrieve information about words and
synsets stored in WordNet. It uses the wn module implemented by Jan Wielemaker5 which
exploits SWI-Prolog demand-loading and Quick Load Files (QLF) for ‘just-in-time’ fast
loading.
• The wn hypernyms module implements predicates to retrieve information about hyper-

nyms of a concept (synset). Part of its implementation is detailed in Subsection 5.1. It uses
the modules wn synsets and wn utilities. Notably, the predicate wn hypernyms/2

returns a list List SynSet HyperNym of hypernyms (as synset identifiers) for a word
term Hyponym.
• The wn hyponyms module implements predicates to retrieve information about hyponyms

of a concept (synset). Remarkably, the predicate wn gen all hyponyms of/2 generates
all the hyponyms of a concept (Synset ID), and it is specially useful for computing the
information content of a concept.

5 Integrating WordNet into Bousi∼Prolog

This section describes the implementation of some of the most relevant pieces in the integration
of WordNet and Bousi∼Prolog.

5.1 Implementing Similarity Measures

A first step for a more ambitious goal is to automatically extract semantic similarity informa-
tion from WordNet IS-A hierarchies, and other attributes as the frequency of use as explained
before in Section 3. Here we show the implementation of the WUP similarity measure as a spe-
cific example and some insights about the implementation of the similarity measures based on
information content.

To a greater or lesser extent, all measures of similarity are based on the computation of the LCS
of words Word1 and Word2 (actually, two concepts). The predicate wn sim measures:lcs/6

returns the LCS and also measures its depth from the root of the HyperTree. Roughly speaking,
it computes the HyperTrees of Word1 and Word2 and compares them, returning the synset ID

previous to the first mismatch (which is the LCS of both concepts). Additionally, the predicate
lcs/6 returns the depth of Word1 and Word2 because of efficiency reasons: we want to go
through the hypernym lists only once, so these quantities are calculated while calculating the
LCS.

Computing the hypernyms of a concept is performed by the predicate wn hypernyms:hyper

4 In (Julián-Iranzo and Sáenz-Pérez 2019) a more detailed description of this subsystem from the user’s point of view is
available.

5 Available at: https://github.com/JanWielemaker/wordnet.
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nym chain/2, which computes a list (SynSet HyperNyms) of synset IDs designating the hy-
pernyms of a concept (SynSet Hyponym). So, it computes a HyperTree (i.e., a chain of hyper-
nyms) that will be used in the former comparison to compute the LCS. It is implemented as
follows:

% hypernym_chain(+SynSet_Hyponym, -SynSet_HyperNyms)
%
hypernym_chain(SynSet_Hyponym, SynSet_HyperNyms):-
hypernym_chain(SynSet_Hyponym, [SynSet_Hyponym], SynSet_HyperNyms).

hypernym_chain(SS_Hyp, SS_Hyper_Accs, SS_Hypers) :-
(wordnet:wn_hyp(SS_Hyp, SS_Hyper),
hypernym_chain(SS_Hyper, [SS_Hyper|SS_Hyper_Accs], SS_Hypers)
;
\+ wordnet:wn_hyp(SS_Hyp, _SS_Hyper),
SS_Hypers = SS_Hyper_Accs).

Once the depth of the LCS and the words to be compared are known, it is easy to compute
the relationship degree between them by following the guidelines given in Section 3. For ex-
ample, the WUP measure is implemented by the predicate wn wup/3 which takes two concepts
(expressed as terms of the form Word:SS type:Sense num) and returns the degree of similarity
between them. It relies on the private predicate wup/3 that calls lcs/6 to generate and inspect a
pair of HyperTrees associated to Word1 and Word2, and obtains the degree of similarity between
Word1 and Word2 (according to that pair of HyperTrees):

% wup(+W1:T:S1, +W2:T:S2, -Degree)
%
wup(W1:T:S1, W2:T:S2, Degree) :-

lcs(W1:T:S1,W2:T:S2,_,LCS_depth,DepthW1,DepthW2),
Degree is (2 * LCS_depth / (DepthW1 + DepthW2)).

Because a concept can have more than one HyperTree, several pairs of HyperTrees are possibly
considered, and a list of similarity degrees Degrees is obtained using wup/3 on each of these
pairs of HyperTrees. Finally, the maximum degree in the list Degrees is selected as a result,
which is actually what wn wup/3 returns. This is implemented by the predicate max wup/3,
where findall/3 is responsible for computing the aforementioned list of similarity degrees
Degrees, and the private predicate max list, for selecting the maximum degree in Degrees:

% max_wup(+W1:T:S1, +W2:T:S2, -Degree)
%
max_wup(W1:T:S1, W2:T:S2, Degree) :-

findall(Deg, wup(W1:T:S1, W2:T:S2, Deg), Degrees),
max_list(Degrees, Degree).S

Regarding similarity measures based on the information content, the key idea lies in the im-
plementation of the notion of frequency of use. The operator wn s/6 stores information on how
common a word is. The tag number indicates the number of times the word was found in a test
corpus. Therefore, the higher the number, the more common the word is. So, this parameter can
be employed to obtain the use of a word and, summing the tag number of all words in a synset,
the specific use associated to a whole synset (i.e., to a concept) can be obtained. The predicate
synset tag num/2 implements this:

% synset_tag_num(+Synset_ID, -Frequency)
%
synset_tag_num(Synset_ID, Frequency) :-
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integer(Synset_ID),
Synset_ID > 100000000,
Synset_ID < 500000000,
findall(Tag_num, wn_s(Synset_ID,_,_,_, _,Tag_num), W_freqs),
sum(W_freqs, Frequency).

where sum/2 adds the word frequencies obtained by findall/3. Then, the frequency of use of
a concept is obtained by adding the “synset tag num” of all concepts subsumed by that concept:

% frequency_of_use(+Synset_ID, -Frequency),
%
frequency_of_use(Synset_ID, Frequency) :-

gen_all_hyponyms_of(Synset_ID, All_Hyponym_IDs),
sum_synset_tag_num([Synset_ID|All_Hyponym_IDs], Frequency).

In general, to compute all hyponyms of a concept is an expensive process. Therefore, we
have implemented the predicate gen all hyponyms of/2 using Definite Clause Grammar rules
which provide a neat interface to difference lists. Difference lists allows for efficiently concate-
nating lists, an operation intensively used by gen all hyponyms of/2.

As explained in Section 3, the information content of a concept is a function of the ratio
between the frequency of use of that concept and the frequency of use of the root concept of
the hierarchy. Finally, the information content based measures are computed as indicated in Ta-
ble 1 by specific predicates. Note that we have taken the option of smoothing the frequencies
of use with a value of 0, which we substitute for a very small number close to 0. So, some re-
lationship values do not exactly match to those that would be obtained when using tools like
wordnet::similarity (Pedersen et al. 2004).

5.2 Directives for Generating Proximity Equations

Bousi∼Prolog can load both ontologies (consisting of proximity equations) and fuzzy logic pro-
grams (with fuzzy logic rules and possibly proximity equations). Thus, it would be of interest
to use the similarity measures implemented in the last section to automatically construct such
ontologies.

To define the semantic similarity between selected concepts, we provide a Bousi∼Prolog di-
rective for automatically generating the proximity equations which define an ontology:

• :-wn gen prox equations(+Msr, +LL of Pats)

where Msr is the similarity measure which can be any of: path, wup, lch, res, jcn and
lin. The second argument LL of Pats is a list for which each element is another list
containing the patterns that must be related by proximity equations. The pattern can be
either a word or the structure Word:Type:Sense, where Word is the word, Type is its
type (either n for noun or v for verb),6 and Sense is the sense number in its synset. If the
pattern is simply a word, then a sense number of 1 is assumed, and its type is made to
match to all other words in the same list.

An example of this directive is:

:-wn_gen_prox_equations(wup,[[man,human,person],[grain:n:8,wheat:n:2]]).

6 Note that, because similarity measures only relate nouns with nouns and verbs with verbs, the words of a set must be
of the same part of speech.
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In this case, as only words are provided in the first list, the sense number is 1, and their types
are equal two by two (nouns for these words). The second list explicitly specifies the pattern
of each word to be related. Then, excluding for simplicity reflexive and symmetric entries, the
following proximity equations are generated for a lambda cut of 0:

sim(man, human, 1, 0.56).
sim(man, person, 1, 0.8888888888888888).
sim(person, man, 1, 0.8888888888888888).
sim(human, person, 1, 0.6086956521739131).
sim(grain, wheat, 0, 0.2608695652173913).

Note that there are two blocks, numbered with 1 for the first four equations, and with 0 for the
last one. Clearly, words in the first list are not made to be related to the ones in the second list
and therefore they must occur in different blocks. In addition, proximity equations are generated
only for the words stored in WordNet.

Another form of this directive automatically builds an ontology in terms of the tokens in the
BPL program:

• :-wn gen prox equations(+Msr, +Automatic)

where the argument Automatic is the constant auto.

Finally, only the symbols that occur in a program are related because it would not be practical
to relate the symbols of the program with all that occur in WordNet. That would lead to an
undesirable increase in the size of the program (in terms of growth in the number of proximity
equations) adding, most likely, an unnecessary complexity.

5.3 Implementing the Generation of Proximity Equations

Bousi∼Prolog processes a file (either a program or an ontology) with the load command ld

file of the BPL Shell module (named bplShell), where its argument is the name of the file to
load (with default extension bpl). Upon execution of this command, a source file (file.bpl) is
parsed, compiled to Prolog (file.tpl), and consulted.

The implementation of this procedure is as follows: When executing a command ld file ,
the predicate bplShell:load file is called, which in turn calls bplShell:load bpl, and
this predicate calls translator:translate program. This last predicate firstly calls the parser
with parser:parse program and, after some other required tasks, it firstly generates proximity
equations and then their corresponding blocks (all these as in-memory data structures). After the
translation of rules (with expand rules, which requires to know the just computed proximity
equations), the output file file.tpl is written. Finally, this output file is consulted as a normal
Prolog program. An advantage of having this file available is avoiding recompilations in further
sessions.

When parsing a directive :-wn gen prox equations, it is first checked for validity, and then
replaced in the target Prolog file with the proximity equations corresponding to the pairs formed
with the symbols derived from its arguments. As explained, there are two cases for this directive,
and they are handled in a different way:

• Explicit indication of words to be related.
Here, the proximity equations can be directly generated from each list of words, kept
in memory (as asserted Prolog facts) and output to the translated program in the .tpl

file at a later stage. The procedure is as it would be expected: for each pair of different



10 Pascual Julián-Iranzo and Fernando Sáenz-Pérez

words W1 and W2 in a list, generate the proximity equation sim(W1,W2,D), where D is
the approximation degree for the normalized measure given as the first parameter of the
directive. Normalization is required because measures are generally not in the interval
(0,1] that proximity equations range.

• Automatic generation of proximity equations.
This case is different from the former because, when processing the directive, the rules in
the program have not been parsed already, so their tokens are not available yet. Thus, it is
processed after parsing the remaining program, by performing a syntactic analysis in order
to extract the sets of constant, functor and predicate identifiers and adding the resulting
proximity equations for each separated set of tokens (with the same shape as in the other
case) to memory.

The directives that generate proximity equations are based on the private predicate gen prox

equation. It generates a proximity equation sim(Word1, Word2, NormalizedDegree) in
terms of a given measure (Measure) and a pair of words which can be completely specified with
either a pattern Word:Type:SenseNumber or only with its syntactic form as plain words. In this
last case, their first sense number is selected and the same word type is enforced:

% gen_prox_equation(+Measure, +Pattern1, +Pattern2, -Equation)
%
(1) gen_prox_equation(Measure, Pattern1, Pattern2,

sim(Word1, Word2, NormalizedDegree)) :-
(2) wn_sim_measure_goal(Measure, Module, Goal),
(3) MeasureGoal =.. [Goal, Pattern1, Pattern2, Degree],
(4) Module:MeasureGoal,
(5) measure_max_value(Measure, Max),
(6) NormalizedDegree is Degree/Max,
(7) Pattern1 = Word1:Type:_,
(8) Pattern2 = Word2:Type:_.

Its first goal wn sim measure goal in line (2) returns the name of the goal in a module to be
executed for the given measure. Next, the goal is built in line (3) with the univ operator (=..),
and it is executed in its corresponding module in line (4). The maximum value the measure can
take is retrieved in line (5), which is used to compute the normalized degree in line (6). Finally,
lines (7) and (8) extract the words in the input patterns to build the proximity equation, forcing
the same type.

An example of an actual call in line (4) is wn sim measures:wn wup(grain:n:8, wheat:

n:2,Degree) which computes the similarity of those words, in their specific meanings, using
the WUP measure.

5.4 Accessing WordNet

The wn connect subsystem must be made visible before using the built-ins (public predicates)
defined in its modules. In Bousi∼Prolog, this can be done from within a program or interactively
through the BPL command processor.

Accessing WordNet, and all the ancillary stuff for related predicates which are implemented
by wn connect, from a BPL program is via the following directive:

• :-wn connect.

This performs the necessary actions to connect Bousi∼Prolog to the WordNet resources. It
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gives access to a wide repertoire of built-in predicates that allow to interact with WordNet.
This directive must occur before any other access to WordNet, and it assumes that the
environment variable WNDB has been set to the OS directory in which the WordNet database
is stored.

The following goal enables interactive access to the wn connect subsystem:

BPL> ensure_loaded(wn(wn_connect))
true.

Note also that nearly all the predicates implemented in the wn-connect subsystem are crisp,
returning the top approximation degree. However, the binary similarity predicates (wn path/2,
wn wup/2, wn lch/2, etc.) are fuzzy predicates that return the similarity degree of two concepts.
For instance:

BPL> wn_wup(lion:n:1, tiger:n:2).
true
With approximation degree: 0.9375 .

Note that in these cases we also maintain ternary predicates available to programmers, since
they provide a direct access to the approximation degree D, which may be very useful for its
explicit handling. For instance:

BPL> wn_wup(lion:n:1, tiger:n:2, D).
D = 0.9375.

Thanks to the repertoire of built-in predicates implemented in the wn-connect subsystem, the
user of the BPL system can extract information from WordNet, deepening into the structure of
the relationships between its linguistic terms. This becomes especially evident for the predicate
wn display graph hypernyms/1. For example, by submitting the goal wn display graph

hypernyms(god), a graphical representation of the hypernym hierarchy of all senses of the word
god (see Figure 2) is displayed.7

Moreover, with these built-in predicates, a certain form of linguistic reasoning is possible.
For example, the predicate wn lcs/2, which computes the LCS of a set of concepts, can help
to obtain the most specific generalization of a set of concepts and to contribute to knowledge
discovery. Also, the predicate wn gen hyponyms upto level/3, which generates all the hy-
ponyms of a concept (Synset ID) up to a certain depth level (Level), can be used to generate
an ontology of close related terms to the given concept that can be used to implement flexible
queries and text mining tasks.

6 Conclusions

We have presented techniques to embody the information stored in the lexical database Word-
Net (Fellbaum 1998; Fellbaum 2006; Miller 1995) into the fuzzy logic programming language
Bousi∼Prolog (Rubio-Manzano and Julián-Iranzo 2014; Julián-Iranzo and Rubio-Manzano 2017;
Julián-Iranzo and Sáenz-Pérez 2018a). However, the techniques developed can be used to con-
nect WordNet to any logic programming language that uses an operational semantics based on
some variant of WSLD resolution.

The main contributions of this work have been the following:

7 In Figure 2, each node draws the representative word of the respective synset (i.e., those with W num equal to one).
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Fig. 2. Hypernyms of the word god (all senses).

1. We have implemented in Prolog all the usual repertoire of similarity measures (both those
based on counting edges and those based on the information content of the concepts) that
can be found in standard tools such as wordnet::similarity (Pedersen et al. 2004) and
sets of words can be related according to them.

2. In order to give support to the implementation of these similarity measures, a whole BPL

subsystem, named wn-connect, has been developed. It provides a number of built-in pred-
icates that can be used to obtain common but useful information about words and synsets
stored in WordNet. It is noteworthy that the predicates defined in the modules that com-
pound wn-connect can also be consulted from a Prolog interpreter, providing an enhanced
functionality to this system.

3. We have implemented several directives to generate proximity equations from a set of
words, linking them with an approximation degree. Proximity equations are key syntactic
structures that, in addition to a weak unification algorithm, allow for a flexible query an-
swering process. Hence, the relevance of this work is to make possible a fuzzy treatment
of concepts via proximity relations, and also endowing Bousi∼Prolog with linguistic char-
acteristics.

4. We have developed a working system implementing these techniques which can be in-
stalled as a desktop application (for Windows, Mac and Linux OS’s – dectau.uclm.es/

bousi-prolog), and also used in an on-line web system (dectau.uclm.es/bplweb)
which eases a first hands-on experience.
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JULIÁN-IRANZO, P. AND SÁENZ-PÉREZ, F. 2018a. An Efficient Proximity-based Unification Algorithm.
In 2018 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2018, Rio de Janeiro, Brazil, July
9-12, 2018. 1–8.
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