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2 Dept. Ingenieŕıa del Software e Inteligencia Artificial, UCM, Spain

{nieva,jaime,fernan}@sip.ucm.es

Abstract. In this paper, we present an extension of the scheme HH(C)
(Hereditary Harrop formulas with Constraints) with a suitable formula-
tion of negation in order to obtain a constraint deductive database query
language. In addition to constraints, our proposal includes logical con-
nectives (implication and quantifiers) for defining databases and queries,
which altogether are unavailable in current database query languages.

We define a proof theoretic semantic framework based on a sequent
calculus, that allows to represent the meaning of a database query by
means of a derived constraint answer in the sense of CLP. We also in-
troduce an appropriate notion of stratification, which provides a start-
ing point for suitable operational semantics dealing with recursion and
negation. We formalize a fixed point semantics for stratifiable databases,
whose fixpoint operator is applied stratum by stratum. This semantics
is proved to be sound and complete with respect to derivability in the
sequent calculus, and it provides the required support for actual imple-
mentations, as the prototype we have developed already and introduce
in this paper.

1 Introduction

The scheme HH(C) (Hereditary Harrop formulas with Constraints) [10] extends
HH by adding constraints, in a similar way the extension of LP (Logic Program-
ming) with constraints gave rise to the CLP (Constraint Logic Programming)
scheme [9]. In this scheme, a parametric domain of constraints is assumed, so
that it is possible to consider different instances (such as arithmetical constraints
over real numbers and finite domain constraints). The extension is completely
integrated into the language: Constraints are allowed to occur in goals, bodies
of clauses and answers.

For example, considering the instance HH (R), i.e., the domain of arithmetic
constraints over real numbers, a circle can be defined by its center and radius,
using non-linear constraints (in Prolog-like notation):

circle(XC,YC,R,X,Y) :- ((X-XC)**2 + (Y-YC)**2) ≤ R**2.
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We can ask, for instance, if any pair (x, y) such that x2 + y2 = 1 (the circum-
ference centered in the origin and radius 1) is inside the circle with center (0, 0)
and radius 2 by means of the goal:

∀ x ∀ y ((x**2 + y**2 ≈ 1) ⇒ circle(0,0,2,x,y)).

In this paper, we investigate the use of HH(C) not as a (general purpose)
programming language, but as the basis for database systems with constraints.
We argue that, in the same way that Datalog [20] and Datalog with constraints
[16] arise for modeling database systems inspired in Prolog and CLP respectively,
the language HH(C) can offer a suitable starting point for the same purpose.

HH(C) improves the expressivity of traditional deductive database languages
because the underlying logic embraces both new connectives and constraints.
In particular, implications can be used to write hypothetical queries, univer-
sal quantification allows encapsulation, and constraints allow managing infinite
data. To the best of our knowledge, former works (e.g., [15,18,17,5]) do not
consider all these features altogether.

Let us see an example. Assume an instance in which finite and real constraint
domains are combined. We can define the database:

flight(mad,par,1.5). flight(par,ny,10). flight(lon,ny,9).
travel(X,Y,T) :- flight(X,Y,D), T >= D.
travel(X,Y,T) :- flight(X,Z,T1), travel(Z,Y,T2), T >= T1+T2.

The relations flight and travel represent tuples <Origin, Destination,
FlightTime> for both direct and linked connections between cities (extensional
and intensional database, resp.). The implication

flight(mad, lon, T) ⇒ travel(mad, ny,11)

(a valid goal in our language) represents the query: Assuming that there is a
direct connection between Madrid and London, what duration should it have in
order to be able to travel from Madrid to New York in 11 hours at most? The
answer to this query will be the constraint 11 ≥ T + 9, which is equivalent to
T ≤ 2 in the constraint system.

Another hypothetical query to the previous database can be whether it is
possible to travel from Madrid to some place in any time greater than 1.5.
The goal formulation ∀ t (t > 1.5 ⇒ ∃ y travel(mad,y,t)) includes also
universal quantification, and the corresponding answer is true.

However, HH(C) lacks of negation, which is needed to capture set difference
in order to be complete with respect to Relational Algebra (RA). As it is well-
known, incorporating negation into logic programming languages is a difficult
task (see [2] for a survey). Negation in the specific field of deductive database
systems has been also widely studied [1,3]. In our language, negation is even more
complex due to the presence of implication and universal quantification in goals.
Based on an extension of the sequent calculus defined for HH(C) in [10], we pro-
vide a proof theoretic meaning of goals (queries) from programs (databases), in
such a way that the existence of constraints is exploited to represent answers and
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to finitely model infinite databases. This is also the case of constraint databases,
but as our core logic is very expressive, the resulting language is richer.

Using the database of the previous example, the query ¬∃ t flight(X,Y,t)
(or its equivalent ∀ t ¬ flight(X,Y,t)), which represents the cities in the
database that have no direct flights between them, is not available in extended
database languages as domain relational calculus or Datalog with constraints.
However, in our system —where formulas are interpreted in the context of the
constraint domain of the particular instance— ∀ t ¬ flight(X,Y,t) represents
a valid goal, and one of its possible answer constraints is: (¬(X ≈ mad)∨¬(Y ≈
par)) ∧ (¬(X ≈ par) ∨ ¬(Y ≈ ny)) ∧ (¬(X ≈ lon) ∨ ¬(Y ≈ ny)), which is
equivalent to X ≈ mad ∧ Y ≈ ny in the domain of the cities registered in the
current database.

After formalizing HH(C) with negation in Section 2, by means of the proof
theoretical meaning, in Section 3 we focus on the problem that arises when
dealing with recursion and negation: Termination. We adapt the usual notions
of stratified negation to our context in order to establish syntactic conditions that
characterize a limited form of negation, for which an operational semantics could
be defined. The main results of this paper appear in Section 4, where a fixed point
semantics, based on the previous notion of stratification, is defined and proved to
be sound and complete with respect to the proof theoretical one (full proofs can
be found in http://gpd.sip.ucm.es/papers/Archivos/nss-tr2008.pdf). As
it is shown in Section 5, this semantics provides support for an implementation.

2 HH(C) with Negation

The original formalisms in which HH(C) is founded [10,7] are not enough expres-
sive to represent set difference, so it is incomplete with respect to RA. We will
extend the scheme including negation to obtain a complete Constraint Deductive
Database (CDDB) language w.r.t. RA. Next, we make precise the syntax of the
formulas of HH(C) extended with negation, denoted as HH¬(C), showing how the
usual notions of programs and goals of Logic Programming can be translated
into databases and queries, respectively. The evaluation of a query with respect
to a deductive database can be seen as the computation of a goal from a set
of facts (ground atoms) defining the extensional database, and a set of clauses,
defining the intensional database. As it is common in deductive databases, the
definition of a predicate, by means of clauses, can be seen in our language as the
definition of a view in relational databases.

2.1 Syntax

As usual, formulas will be built up from terms, using predicates and connectives.
We consider defined predicate symbols, representing the names of database rela-
tions, to build atoms, and non-defined (built-in) predicate symbols, including at
least the equality predicate symbol ≈, to build constraints. We will also assume
a set of constant and operator symbols in the constraint system, and a set of
variables to build terms.
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Well formed formulas in HH¬(C) can be classified into clauses D (defining
database relations) and goals (or queries) G. They are recursively defined by the
following rules:

D ::= A | G ⇒ A | D1 ∧ D2 | ∀xD
G ::= A |¬A | C | G1 ∧ G2 | G1 ∨ G2 | D ⇒ G | C ⇒ G| ∃xG | ∀xG

A represents an atom, i.e., a formula of the form p(t1, . . . , tn), where p is a
defined predicate symbol of arity n, and ti are terms; C represents a constraint.
The incorporation of negated atoms in goals is the surplus to HH(C).

The constraints we consider belong to a generic system C = 〈LC ,�C〉 where
LC is the constraint language and �C is a binary entailment relation. Γ �C
C denotes that the constraint C is inferred in the constraint system C from
the set of constraints Γ . Some minimal conditions are imposed to C to be a
constraint system: LC contains at least every first-order formula built up using
 (true), ⊥ (false), built-in predicate symbols, the connectives ∧,¬, and the
existential quantifier ∃. Regarding to �C , it includes the inference rules related
to the considered connectives and quantifiers, valid in intuitionistic logic with
equality; in addition, it is compact and generic (see [10] for details). The novelty
is that C is required to deal with negation, because the incorporation of ¬ to HH
is propagated to the constraint system, which has the responsibility of checking
the satisfiability of answers in the constraint domain.

We say that a constraint C is C-satisfiable if ∅ �C ∃C, where ∃C stands for
the existential closure of C. C and C′ are C-equivalent if C �C C′ and C′ �C C.

For instance, the constraint systems of the examples are assumed to verify
the required minimal conditions aforementioned. Moreover, they also include the
connective ∨, constants to represent numbers and cities, arithmetical operators,
and built-in predicates (≥, . . . ).

Programs, denoted by Δ, are sets of clauses and represent databases. Any Δ
can always be given as an equivalent set, elab(Δ), of implicative clauses with
atomic heads in the way we precise now. The elaboration of a program Δ is the
set elab(Δ) =

⋃
D∈Δ elab(D), where elab(D) is defined by:

elab(A) = { ⇒ A} elab(D1 ∧ D2) = elab(D1) ∪ elab(D2)
elab(G ⇒ A) = {G ⇒ A} elab(∀xD) = {∀xD′ |D′ ∈ elab(D)}
We will assume that a view defining a predicate is a set of elaborated clauses

of the form ∀x1 . . .∀xn(G ⇒ A)1. In the examples (as before), we will use the
common notation A :- G, assuming that capital letters inside A and G represent
variables that are implicitly universally quantified, and incorporating the new
connectives in goals. A is called the head and G the body of the clause as usual.
Negation is not allowed in the head of a clause, but inside its body.

Example 1. Assume a more realistic situation of the flights example in the In-
troduction, where flight delays may happen:

1 ∀x1 . . .∀xn will be abbreviated by ∀x.
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deltravel(X,Y,T) :- flight(X,Y,T1), delay(X,Y,T2), T ≥ T1+T2.
deltravel(X,Y,T) :- flight(X,Z,T1), delay(X,Z,T2),

deltravel(Z,Y,T3), T ≥ T1+T2+T3.

Tuples of delay may be in the extensional database or may be assumed when
the query is formulated. For instance, the goal:

(∀ x delay(par,x,1),delay(mad,par,0.5)) ⇒ deltravel(mad,ny,T)

represents the query: What is the time needed to travel from Madrid to New
York assuming that for any destination there is a delay of one hour from Paris,
and the flight from Madrid to Paris is half an hour delayed? According to its
proof theoretic interpretation, in order to solve the goal deltravel(mad,ny,T),
the clauses delay(par,X,1) and delay(mad,par,0.5) will be added locally to
the database, and they will not be considered any more once the goal is solved.
Similar queries can be generalized as views (defined by clauses). For instance:

needtime(C1,C2,D,T) :- ∀ x delay(C1,x,D) ⇒ deltravel(C1,C2,T).

Notice that this clause is neither allowed by Prolog with negation nor Datalog.
Since flights may or may not be delayed, a more general view can be defined

in order to know the expected time of a trip:

trip(X,Y,T) :- nondeltravel(X,Y,T) ; deltravel(X,Y,T).
nondeltravel(X,Y,T) :- ¬ delayed(X,Y), travel(X,Y,T).
delayed(X,Y) :- ∃ t (delay(X,Y,t), ¬ t ≈ 0).

2.2 Sequent Calculus

Several kinds of semantics have been defined for HH(C) without negation, in-
cluding proof theoretic, operational [10] and fixed point semantics [7], as well as
for its higher-order version [11]. The simplest way for explaining the meaning
of programs and goals in the present framework is by using a proof theoretic
semantics. Queries formulated to a database are interpreted by means of the
inference system that governs the underlying logic. This proof system, called
UC (Uniform sequent calculus handling Constraints) [10] is a sequent calculus
that combines traditional inference rules with the entailment relation �C of the
generic constraint system C. The rules defining derivability in UC appear in
Figure 1. Sequents have the form Δ; Γ � C, where programs and sets of con-
straints are on the left, and goals on the right.

Next, we explain the rules (∃R) and (Clause), the others correspond to wide-
spread intuitionistic rules introducing connectives on the right of the sequent
(see, e.g., [13]), except (CR) which deals with goals that are pure constraints.
(∃R) captures the fact that the witness in the proof of an existentially quantified
formula can be represented by a constraint that can be more general than an
equality x ≈ t simulating a substitution (e.g., (x ∗ x ≈ 2) represents the witness√

2, which cannot be written as a term). (Clause) represents backchaining and
allows to prove an atomic goal A ≡ p(t1, . . . , tn), using a program clause whose
head A′ ≡ p(t′1, . . . , t′n) is not required to unify with A, but rather solving a
new existentially quantified goal that, by applying the (∃R) rule, will result in
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Γ �C C

Δ; Γ � C
(CR)

Δ; Γ � ∃x1 . . .∃xn((A′ ≈ A) ∧ G)

Δ; Γ � A
(Clause) (∗), where

∀x1 . . .∀xn(G ⇒ A′) is a variant of a formula of elab(Δ)

Δ; Γ � Gi

Δ; Γ � G1 ∨ G2
(∨R) (i = 1, 2)

Δ; Γ � G1 Δ; Γ � G2

Δ; Γ � G1 ∧ G2
(∧R)

Δ, D; Γ � G

Δ; Γ � D ⇒ G
(⇒R)

Δ; Γ, C � G

Δ; Γ � C ⇒ G
(⇒CR)

Δ; Γ, C � G[y/x] Γ �C ∃yC

Δ; Γ � ∃xG
(∃R)(∗∗) Δ; Γ � G[y/x]

Δ; Γ � ∀xG
(∀R)(∗∗)

(∗) x1, . . . , xn fresh for A
(∗∗) y fresh for the formulas in the conclusion

Fig. 1. Rules of the Sequent Calculus UC

a search for a constraint that implies the equality A′ ≈ A (that stands for
t′1 ≈ t1 ∧ . . . ∧ t′n ≈ tn).

UC provides only uniform proofs in the sense defined by Miller et al. [13],
i.e., goal-oriented proofs. The rules are applied backwards and, at any step, the
applied rule is that corresponding to the connective of the goal to be proved.

The Meaning of Negated Atoms. Derivability in UC provides proof theore-
tic semantics for HH(C). The incorporation of negation makes necessary to ex-
tend the notion of derivability, because there is no rule for this connective in UC.
Therefore, we extend UC with a new rule to incorporate derivability of negated
atoms. The idea of interpreting the query ¬A from a database Δ, by means of
an answer constraint C, is that whenever C′ is a possible answer to the query A
from Δ, then C �C ¬C′. This is formalized with the “metarule”:

Γ �C ¬C for every Δ; C � A

Δ; Γ � ¬A
(¬R)

We say that (¬R) is a metarule since its premise considers any derivation Δ; C �
A of the atom A. In practice, there is a derivation of ¬A when the set of answer
constraints of A from Δ is finite.

We define the inference system UC¬ as UC plus the rule (¬R). The notation
Δ; Γ �UC¬ G means that the sequent Δ; Γ � G has a proof using the rules of
UC and (¬R).

Definition 1. If Δ; C �UC¬ G then C is called an answer constraint to the
query G in the database Δ.

Example 2. Consider the program below defining the inside of a rectangle with
left-bottom corner (X1, Y1) and right-top corner (X2, Y2).

Δ = { rectangle(X1,Y1,X2,Y2,X,Y) :- X≥X1, X≤X2, Y≥Y1, Y≤Y2 }
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It is possible to formulate a query to get the difference between two rectangles
(the dashed frame in the next figure) by the goal:

rectangle(0,0,4,4,X,Y), ¬ rectangle(1,1,3,3,X,Y)

obtaining as an answer constraint:
C ≡ ((y > 3) ∧ (y ≤ 4) ∧ (x ≥ 0) ∧ (x ≤ 4))∨

((y ≥ 0) ∧ (y < 1) ∧ (x ≥ 0) ∧ (x ≤ 4))∨
((y ≥ 0) ∧ (y ≤ 4) ∧ (x > 3) ∧ (x ≤ 4))∨
((y ≥ 0) ∧ (y ≤ 4) ∧ (x ≥ 0) ∧ (x < 1))

(0,0)

(1,1)

(3,3)

(4,4)

by the following deduction:
C �R ∃a1, a2, b1, b2, x1, y1(a1≈0 . . .)

Δ; C � ∃a1, a2, b1, b2, x1, y1(a1 ≈ 0 ∧ x1 ≈ x ∧ x1 ≥ a1∧
a2 ≈ 0 ∧ y1 ≈ y ∧ x1 ≤ b1 ∧ b1≈4 ∧ y1≥a2 ∧ b2≈4 ∧ y1≤b2)

(CR)

Δ; C � rectangle(0, 0, 4, 4, x, y)
(Clause)

D

Δ; C � rectangle(0, 0, 4, 4, x, y) ∧ ¬rectangle(1, 1, 3, 3, x, y)
(∧R)

where D is the deduction:

C �R ¬(x≥1∧ y≥1
∧x ≤ 3 ∧ y ≤ 3)

. . .

Δ; x ≥ 1 ∧ y ≥ 1
∧x ≤ 3 ∧ y ≤ 3 � rectangle(1, 1, 3, 3, x, y)

Δ; C � ¬rectangle(1, 1, 3, 3, x, y)
(¬R)

In order to define an operational semantics for HH¬(C), some finiteness con-
ditions must be imposed to make viable the metarule (¬R). That is, we have
to guarantee to get only a finite number of non-equivalent computed answer
constraints for any atom that occurs negated in some goal.

In this way, it is possible to impose the following restriction: A predicate q
can not occur negated in the definition of a predicate p if “q depends on p”. This
restriction establishes a limitation on mutually recursive definitions. But, even
in the case of adopting this strong syntactic restriction, completeness w.r.t. RA
remains, since RA does not include recursion.

In the next section, we formalize the concept of positive and negative depen-
dencies, and the stratifiable database notion is introduced.

3 Dependency Graphs and Stratified Negation

A well-known problem arises in deductive database languages when negation
and recursion are considered altogether. Several approaches have been used to
deal with this problem. This is the case of answer set programming [6] or the
use of stratified negation [20]. We have found this second approach more suitable
to our scheme, because HH¬(C) provides constraints as answers, and handles
implications, which involves dynamic program increase. Stratification is based
on the definition of a dependency graph for a program. Given a set of clauses and
goals Φ, the corresponding dependency graph DGΦ is a directed graph whose
nodes are the defined predicate symbols in Φ, and the edges are determined by
the implication symbols of the formulas.



296 S. Nieva, J. Sánchez-Hernández, and F. Sáenz-Pérez

Here, we adapt those notions as a useful starting point of a fixed point se-
mantics for our language. But now, the construction of dependency graphs must
consider the fact that implications may occur not only between the head and the
body of a clause, but also inside the goals, and therefore in any clause body. This
feature will be taken into account in the following way: An implication of the
form F1 ⇒ F2 produces edges (or paths) in the graph from the defined predicate
symbols inside F1 to every defined predicate symbol inside F2. An edge will be
negatively labeled when the corresponding atom occurs negated on the left of
the implication. Since constraints do not include defined predicate symbols, they
cannot produce dependencies. In [14], we defined an algorithm to compute the
dependency graph of any set Φ.

Example 3. Consider a database Δ consisting of the predicates defined in pre-
vious examples. The dependency graph for Δ is:

delayed

trip

nondeltravel

flight delay

deltraveltravel

The query G ≡ ∃ t (deltravel(X,Y,t) ⇒ delayed(X,Y)) would intro-
duce the new edge deltravel → delayed into the previous graph.

The dependency graph is used to define stratification in HH¬(C).

Definition 2. Given a set of formulas Φ, its corresponding dependency graph
DGΦ, and two predicates p and q, we say:

– q depends on p if there is a path from p to q in DGΦ.
– q negatively depends on p if there is a path from p to q in DGΦ with at least

one negatively labeled edge.

Definition 3. Let Φ be a set of formulas and P = {p1, . . . , pn} the set of defined
predicate symbols of Φ. A stratification of Φ is any mapping s : P → {1, . . . , n}
such that s(p) ≤ s(q) if q depends on p, and s(p) < s(q) if q negatively depends
on p. Φ is stratifiable if there is a stratification for it.

Example 4. A stratification for the database Δ of Example 3 will collect all the
predicates in the stratum 1 except nondeltravel and trip, which will be in
stratum 2. Intuitively, this means that for evaluating nondeltravel, the rest of
predicates (except trip) should be evaluated before (in particular, delayed).
Adding the query G in the Example 3, Δ∪{G} remains stratifiable, but adding
trip(mad,lon,T) ⇒ delay(mad,ny, T), results in a non-stratifiable set: This
adds the dependency trip → delay, and then, any stratification s must satisfy
s(trip) ≤ s(delay) < s(nondeltravel) ≤ s(trip), that is impossible.
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A remarkable point is that we assume, on the follow, the existence of a fixed
stratification s for the considered sets Δ ∪ {G}.

It is useful to have a notion of the stratum of an atom (i.e., the stratum of
its predicate symbol), but also to extend this notion to any formula or set of
formulas.

Definition 4. Let F be a goal or a clause. The stratum of a formula F , denoted
str(F ), is recursively defined as:

str(p(t1, . . . , tn)) = s(p) str(¬A) = 1 + str(A) str(C) = 1
str(F1�F2) = max(str(F1), str(F2)), where � ∈ {∧,∨,⇒}
str(QxF ) = str(F ), where Q ∈ {∃, ∀}

The stratum of a set of formulas Φ is str(Φ) = max{str(F ) | F ∈ Φ}.

4 Fixed Point Semantics

We have extended the semantics presented in [7] in order to interpret full
HH¬(C). The semantics there defined is based on a forcing relation among pro-
grams, sets of constraints and goals that states whether an interpretation makes
true a goal G in the context 〈Δ, Γ 〉 of a program and a set of constraints. Inter-
pretations were defined as functions able to give meaning to every pair 〈Δ, Γ 〉 as
sets of atoms. The interpretation should depend on this context because, when
computing implicative goals, Δ or Γ may be augmented.

In order to deal with negation, interpretations and the fixpoint operator will
operate over strata. So, contexts will be stratifiable databases (that may aug-
ment). An interpretation over a stratum i of a database will be a set of pairs
(A, C) ∈ At × SLC (atom, C-satisfiable constraint), where str(A) ≤ i.

4.1 Stratified Interpretations and Forcing Relation

Let W be the set of stratifiable databases Δ (with respect to the same fixed
stratification s), At be the set of open atoms, and SLC be the set of C-satisfiable
constraints modulo C-equivalence.

We will consider functions I : W → P(At × SLC). In order to simplify the
notation, we write (A, C) ∈ At × SLC , assuming that C denotes any constraint
C-equivalent to it. The notation [I(Δ)]i represents the following subset of I(Δ),

[I(Δ)]i = {(A, C) ∈ I(Δ) | str(A) = i}.
Notice that if str(Δ) = k, then {[I(Δ)]i | 1 ≤ i ≤ k} is a partition of I(Δ).

Interpretations can be classified on strata. An interpretation gives information
up to its corresponding stratum.

Definition 5. Let i ≥ 1. An interpretation I over the stratum i is a function
I : W → P(At × SLC), such that for any Δ ∈ W, and any j > i, [I(Δ)]j = ∅.
We denote by Ii the set of interpretations over i.

For every i ≥ 1, an order on Ii can be defined.
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Definition 6. Let i ≥ 1 and I1, I2 ∈ Ii. I1 is less or equal than I2 at stratum
i, denoted by I1 �i I2, if for each Δ ∈ W the following conditions are satisfied:

– [I1(Δ)]j = [I2(Δ)]j , for every 1 ≤ j < i.
– [I1(Δ)]i ⊆ [I2(Δ)]i.

It is straightforward to check that for any i ≥ 1, (Ii,�i) is a poset.
The idea is that when an interpretation over a stratum i increases, the infor-

mation of the smaller strata remains invariable. In such a way, if str(¬A) = i,
since str(A) = i − 1, the truth value of ¬A at the stratum i will remain invari-
able and monotonicity of the truth relation can be guaranteed even for negative
atoms, as we will show.

In addition, the following result holds.

Lemma 1. For any i ≥ 1, any chain of interpretations of (Ii,�i), {In}n≥0,
such that I0 �i I1 �i I2 �i . . ., has a least upper bound

⊔
n≥0 In, which can be

defined as: (
⊔

n≥0 In)(Δ) =
⋃

n≥0{In(Δ)}, for any Δ ∈ W.

Proof. Straightforward using the definition of (Ii,�i). ��
The following definition formalizes the notion of a query G being “true” for an
interpretation I in the context of a database Δ, if the constraint C is satisfied.
As already said, we assume that s is not only a stratification for Δ, but also for
Δ ∪ {G}.
Definition 7. Let i ≥ 1. The forcing relation �� between pairs I, Δ and pairs
(G, C) (where I ∈ Ii, str(G) ≤ i, and C is C-satisfiable) is recursively defined
by the rules below. When I, Δ �� (G, C), it is said that (G, C) is forced by I, Δ.

– I, Δ �� (C′, C) ⇐⇒ C �C C′.
– I, Δ �� (A, C) ⇐⇒ (A, C) ∈ I(Δ).
– I, Δ �� (¬A, C) ⇐⇒ for every (A, C′) ∈ I(Δ), C �C ¬C′ holds. If there is

no pair of the form (A, C′) in I(Δ), then C ≡ .
– I, Δ �� (G1 ∧ G2, C) ⇐⇒ for each i ∈ {1, 2}, I, Δ �� (Gi, C).
– I, Δ �� (G1 ∨ G2, C) ⇐⇒ for some i ∈ {1, 2} I, Δ �� (Gi, C).
– I, Δ �� (D ⇒ G, C) ⇐⇒ I, Δ ∪ {D} �� (G, C).
– I, Δ �� (C′ ⇒ G, C) ⇐⇒ I, Δ �� (G, C ∧ C′).
– I, Δ �� (∃xG, C) ⇐⇒ there is C′ such that I, Δ �� (G[y/x], C′), where y

does not occur free in Δ, ∃xG, C, and C �C ∃yC′.
– I, Δ �� (∀xG, C) ⇐⇒ I, Δ �� (G[y/x], C) where y does not occur free in Δ,

∀xG, C.

Those rules are well-defined because if s is a stratification for Δ ∪ {G}, with
str(G) ≤ i, and G′ is a subformula of G, then s is also a stratification for
Δ ∪ {G′}, and str(G′) ≤ i. Notice that, for the particular case G ≡ D ⇒ G′, s
will be also a stratification for Δ ∪ {D, G′}.

From now on, when we write I, Δ �� (G, C) we will assume that if I ∈ Ii,
then str(G) ≤ i and C is C-satisfiable. The relation �� is not defined otherwise.
Formally, �� should be denoted ��i, because there is a forcing relation for each
Ii. We avoid the subindex in order to simplify the notation.

The following lemma establishes the monotonicity of the forcing relation.
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Lemma 2. Let i ≥ 1 and I1, I2 ∈ Ii such that I1 �i I2. Then, for any Δ ∈ W,
and (G, C) ∈ G × SLC, it holds I1, Δ �� (G, C) =⇒ I2, Δ �� (G, C).

Proof. The proof is inductive on the structure of G and it is derived from the
definitions of the forcing relation and the order between interpretations. We only
show the case of negation.

Assume I1, Δ �� (¬A, C). Then, either C �C ¬C′ for every C′ such that
(A, C′) ∈ I1(Δ), or there is no such C′ and C ≡ . Since str(¬A) ≤ i, obviously
str(A) = j, for some j < i. But then [I2(Δ)]j = [I1(Δ)]j , because I1 �i I2, and
therefore I2, Δ �� (¬A, C). ��
Lemma 3. Let i ≥ 1 and let {In}n≥0 be a denumerable family of interpretations
over the stratum i, such that I0 �i I1 �i I2 �i . . .. Then, for any Δ, G and C,⊔

n≥0 In, Δ �� (G, C) ⇐⇒ there exists k ≥ 0 such that Ik, Δ �� (G, C).

Proof. The implication to the left is a consequence of Lemma 2, since Ik �i⊔
n≥0 In holds for any k. The converse is proved by induction on the structure

of G, using the result of Lemma 1. We show one of the cases.

(∃xG′)
⊔

n≥0 In, Δ �� (∃xG′, C) ⇐⇒ there is a variable y that does not occur
free in Δ, ∃xG′, and C, such that

⊔
n≥0 In, Δ �� (G′[y/x], C′), and C �C

∃yC′. By induction hypothesis, it holds Ik, Δ �� (G′[y/x], C′) for some k ≥ 0.
Therefore, there is a k ≥ 0 such that Ik, Δ, �� (∃xG′, C). ��

Next, a continuous operator for every stratum transforming interpretations is
defined. Its least fixed point supplies the expected version of truth at each
stratum.

Definition 8. Let i ≥ 1 represent a stratum. The operator Ti : Ii −→ Ii

transforms interpretations over i as follows. For any I ∈ Ii, Δ ∈ W, and
(A, C) ∈ At × SLC, (A, C) ∈ Ti(I)(Δ) when:

– (A, C) ∈ [I(Δ)]j for some j < i or
– str(A) = i and there is a variant ∀x(G ⇒ A′) of a clause in elab(Δ), such

that the variables x do not occur free in A, and I, Δ �� (∃x(A ≈ A′∧G), C).

The crucial aspect of Ti is: For a database Δ, Ti incorporates information ob-
tained exclusively from the clauses of Δ, whose heads are atoms of the stra-
tum i, and the information of smaller strata remains invariable. Notice that if
str(A) = i, then str(∃x(A ≈ A′ ∧ G)) ≤ i and Ti is well-defined.

In order to establish the existence of a fixed point of Ti, it will be proved to
be monotonous and continuous.

Lemma 4 (Monotonicity of Ti). Let i ≥ 1 and I1, I2 ∈ Ii such that I1 �i I2.
Then, Ti(I1) �i Ti(I2).

Proof. Let us consider any Δ and (A, C) ∈ Ti(I1)(Δ). This implies that str(A) ≤
i. If str(A) = j < i, then (A, C) ∈ [I1(Δ)]j = [I2(Δ)]j , because I1 �i I2 and
j < i. Hence (A, C) ∈ Ti(I2)(Δ), by definition of Ti. If str(A) = i, then there is a
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variant ∀x(G ⇒ A′) of a clause of Δ, such that the variables x do not occur free in
A, and I1, Δ �� (∃x(A ≈ A′ ∧G), C). Using Lemma 2 and the fact that I1 �i I2,
we obtain I2, Δ �� (∃x(A ≈ A′ ∧ G), C), which implies (A, C) ∈ Ti(I2)(Δ), by
definition of Ti. ��

Lemma 5 (Continuity of Ti). Let i ≥ 1 and {In}n≥0 be a denumerable family
of interpretations over i, such that I0 �i I1 �i I2 �i . . .. Then Ti(

⊔
n≥0 In) =⊔

n≥0 Ti(In).

Proof. The inclusion ⊇ is a consequence of the monotonicity of Ti. Let us
prove the inclusion ⊆. Consider any Δ and (A, C) ∈ Ti(

⊔
n≥0 In)(Δ). Then

str(A) ≤ i. If str(A) = j < i, (A, C) ∈ [Ti(
⊔

n≥0 In)(Δ)]j = [I0(Δ)]j , then
(A, C) ∈ Ti(I0)(Δ) ⊆ ⋃

n≥0 Ti(In)(Δ) = (
⊔

n≥0 Ti(In))(Δ). If str(A) = i, there
is a variant ∀x(G ⇒ A′) of a clause of Δ, such that the variables x do not
occur free in A, and

⊔
n≥0 In, Δ �� (∃x(A ≈ A′ ∧ G), C). Thanks to Lemma

3, there exists k ≥ 0, such that Ik, Δ �� (∃x(A ≈ A′ ∧ G), C), and therefore
(A, C) ∈ Ti(Ik)(Δ). As a consequence, also in this case Ti(

⊔
n≥0 In)(Δ) ⊆⋃

n≥0 Ti(In)(Δ) = (
⊔

n≥0 Ti(In))(Δ). ��

Proposition 1. The operator T1 has a least fixed point, which is
⊔

n≥0 T n
1 (I⊥),

where the interpretation I⊥ represents the constant function ∅.

Proof. By the Knaster-Tarski fixed point theorem [19], using Lemma 5. ��

Let fix1 denote
⊔

n≥0 T n
1 (I⊥), i.e., the least fixed point at stratum 1.

Consider now the following sequence {T n
2 (fix1)}n≥0 of interpretations in

(I2,�2). Using the properties of Ti, it is easy to prove by induction on n ≥ 0
that this sequence is a chain

fix1 �2 T2(fix1) �2 T2(T2(fix1)) �2 . . . ,�2 T n
2 (fix1), . . .

As before, in accordance with Lemmas 1 and 5, {T n
2 (fix1)}n≥0 has a least

upper bound,
⊔

n≥0 T n
2 (fix1), in (I2,�2) that is a fixed point of T2, denoted by

fix2. Proceeding successively on the same way, a chain:

fixi−1 �i Ti(fixi−1) �i Ti(Ti(fixi−1)) �i . . . ,�i T n
i (fixi−1), . . .

can be defined for any stratum i > 1, and a fixed point of it

fixi =
⊔

n≥0

T n
i (fixi−1)

can be found.
In particular, if str(Δ) = k, we simplify fixk writing fix. Then, fix(Δ)

represents the pairs (A, C) such that A can be deduced from Δ if C is satisfied.
Notice that fix(Δ) is computed by saturating strata sequentially from fix1(Δ)
up to fixk(Δ), using for every i only the clauses of the stratum i.
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4.2 Soundness and Completeness

The fixed point semantics defined in [7] for HH(C) was proved to be sound and
complete with respect to the calculus UC. Our interest now is to prove soundness
and completeness of the new fixed point semantics for HH¬(C), with respect to
the extended calculus UC¬. This means that the forcing relation, considering the
least fixed point at the last stratum of a database and a query, coincides with
derivability in UC¬. More precisely, if str(G) = i, (G, C) is forced by fixi in the
context of Δ if and only if C is an answer constraint of G from Δ.

Without negation, any database Δ and query G have a stratification with
only one stratum. If this is the case, soundness and completeness are similar to
those results for HH(C).

Proposition 2. For every Δ ∈ W, and every pair (G, C) ∈ G×SLC, if str(G) =
1 then: fix1, Δ �� (G, C) ⇐⇒ Δ; C �UC¬ G.

Proof. The proof is an adaptation of those presented in [7] to the definition of
the forcing relation defined now for HH¬(C). Notice that, since we are assuming
that str(G) = 1, then the case G ≡ ¬A has not to be considered. ��
Now, we consider the general case.

Theorem 1 (Soundness and Completeness). For every i ≥ 1, Δ ∈ W, and
every pair (G, C) ∈ G × SLC, if str(G) ≤ i then:

fixi, Δ �� (G, C) ⇐⇒ Δ; C �UC¬ G.

Proof. By induction on i. Proposition 2 is the proof of the case i = 1.
For i > 1, assume the induction hypothesis: for every Δ, G, C, with str(G) ≤

i − 1: fixi−1, Δ �� (G, C) ⇐⇒ Δ; C �UC¬ G.
The proof is analogous to the base case, except for ¬A. Let us analyze this

case: fixi, Δ �� (¬A, C) ⇐⇒ for every C′ such that (A, C′) ∈ fixi(Δ), it
holds C �C ¬C′, or there is no such C′ and C ≡ . Obviously, str(¬A) ≤
i − 1, then the previous sentence is equivalent to say that for every C′ such
that fixi−i, Δ �� (A, C′), it holds C �C ¬C′, or there is no such C′ and C ≡ .
Applying the induction hypothesis, it is equivalent to say that either for every
C′ such that Δ; C′ �UC¬ A and C �C ¬C′ holds, or there is not such C′ and
C ≡ . This is equivalent to Δ; C �UC¬ ¬A.

As a consequence of this theorem: (A, C) ∈ fix(Δ) ⇐⇒ Δ; C �UC¬ A. This
means that the atoms in the fixed point of a database are those that can be
derived by the calculus.

The advantage of this fixed point semantics over the proof theoretic one is
that it can be considered as the formal basis of particular implementations of
database systems based on HH¬(C). The prototype presented in the next section
is a proof of it. Notice that the previous formalisms are defined for a generic
constraint system C as a black box for which the existence a solver that checks
C-satisfiability has been assumed. The complexity of an implementation will
depend on the particular instance domain and solver.
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5 Implementing an Instance

In this section, we briefly report a Prolog-implemented prototype of HH¬(D),
where D is a basic finite domain constraint system with equality and disequal-
ity. It has as input a database Δ and, if stratifiable, computes the set fix(Δ).
Δ contains not only the extensional and intensional databases, but also the
translation of the user query G into a clause goal(X) :- G, where X are the
free variables of G. So, if the computed fix(Δ) contains for instance the pair
(goal(X1, . . . , Xn), X1 ≈ t1 ∧ . . . ∧ Xn ≈ tn), then X1 ≈ t1 ∧ . . . ∧ Xn ≈ tn is
an answer to G.

Computing the outcome corresponding to a set Δ follows some stages: 1)
Build the dependency graph, 2) Compute a stratification (if there is any), and,
if succeeds, 3) Compute fix(Δ) as a set of pairs (A, C) for the stratification.
For the first stage, the algorithm in [14] has been used. For the second one, the
dependency graph is used as an input to an algorithm following Definition 4.

A more elaborated computation is needed for the third stage: fix(Δ) is com-
puted sequentially, from fix1(Δ) up to fixk(Δ), where k = str(Δ). When com-
puting the information of stratum i, only pairs (A, C) such that str(A) = i are
calculated, and the information of smaller strata remains invariable. Following
Definition 8, the successive iterations of the fixpoint operator Ti deliver new
pairs which are obtained by considering the pairs deduced in previous iterations
in the context of Δ and every ground instance of the clauses defining predicates
of stratum i. As Ti is monotonous (Lemma 4) and we deal with a finite domain
constraint system, a terminating loop finds all the pairs for a given fixi(Δ).
The set fixi(Δ) is completely evaluated when no pair (A, C) is added after an
iteration of Ti. Therefore, the stratum i is saturated and the computation of
fixi+1(Δ) begins, applying Ti+1 to the just calculated fixi(Δ).

The forcing relation is implemented by means of the Prolog predicate force
that makes calls to the constraint solver, which solves constraints for the parti-
cular finite domain system.

However, care has to be taken when programming force for the case D ⇒ G.
Following Definition 7, G has to be proved in the context of the database aug-
mented with the clause D. This turns out to be more complex to be computed,
since the head of the clause added to the current context may belong to stratum
j, where j < i and, therefore, fixj(Δ ∪ {D}) must be calculated, which we call
a subcomputation level (level in short) involving the local clause D. Once G is
solved, both D and the deduced pairs are ignored for the rest of the computation.

The pairs proved at each iteration of the fixpoint operator as well as the database
clauses are stored as Prolog facts. As there may be facts and clauses belonging to
different levels, we identify them with a number for the corresponding level. The
main level is identified as 0. For example, when using a clause as p(a):- q(a,b)
=> r(b) at level l, the goal q(a,b) => r(b) must be forced, for which the local
clause q(a,b) is added at level l + 1. Now, the goal r(b) will be tried to be forced
at level l + 1. When this is done, q(a,b) is removed from the database and the
computation returns to level l, where a pair corresponding to p(a) will be added
to the current fixed point if r(b) was forced in that augmented context.
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As an executable example, let us consider again Example 1, where real
constraints have been removed. The query: “Assuming a flight from Paris to
London, what cities are reachable from Madrid?” can be represented as G ≡
flight(par,lon) => trip(mad,X). The clause goal(X):- G is added to the
database for solving G. Executing this example delivers the following meaning:

[...,(goal(X),X ≈ par),(goal(X),X ≈ ny),(goal(X),X ≈ lon),...]

Therefore, we can conclude that it is possible to travel to Paris, New York and
London assuming that flight.

6 Conclusions

We have studied the application of the constraint logic programming scheme
HH(C) as a CDDB system. With this purpose, this scheme has been extended
with a suitable formulation of negation. The result provides a database language
more expressive than former ones [15,18,17,5], because HH¬(C) owns constraints
as well as implication and quantifiers altogether.

Two semantics, based on proof theory and fixed point techniques, have been
defined to formalize the system, and proved to be equivalent for stratifiable
databases. Both semantics are interesting per se. The former allows to represent
the meaning of a database query by means of a derived constraint answer. In ad-
dition, the uniformity of the sequent calculus that governs HH¬(C) is preserved,
because only a rule introducing the connective ¬ on the right (but not on the
left) of the sequent is added. Then, proofs remain guided by the structure of
the goal. However, it can not be considered as a practical operational semantics.
Some aspects, as finiteness of the set of answers for an atom A when ¬A is
computed, are obviated.

The fixed point semantics relies on stratified negation and constitutes a formal
basis for practical implementations. Stratification has been defined as a syntac-
tical criterion to determine if a query database can be potentially be computed
in a finite number of steps. When ¬A are going to be proved, the stratum of A
has been previously saturated and ¬A can be correctly computed.

The prototype introduced at the end of this paper is based in the formal mech-
anisms that support this semantic approach for a concrete constraint system. In
addition, this semantics supplies a framework in which properties of databases
can be analyzed. For instance, if Δ1, Δ2 are two stratifiable databases (consid-
ering the same stratification for simplicity), it can be said that Δ1 and Δ2 are
equivalent if fix(Δ1) = fix(Δ2).

Regarding future work: First, investigate the relaxation of the strong require-
ment about program stratification, as done in answer set programming [6], also
extended to include constraints [4,12]. Second, analyze the requirements that
should be imposed to C in order to obtain a safe instance of HH¬(C), as done
via safety levels in constraint database languages [17]. Finally, develop the cur-
rent prototype implementation to deal with other particular instances based on
useful constraint systems handling combined constraint domains [8].
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