IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000 353

A Hybrid Evolutionary Approach for Solving
Constrained Optimization Problems over Finite
Domains

Alvaro Ruiz-Andino, Lourdes Araujo, Fernando Saenz, and José Ruz

Abstract—A novel approach for the integration of evolution ¢ techniques based on exploiting heuristic information of
programs and constraint-solving techniques over finite domains the constraint network [4]-[6].

is presented. This integration provides a problem-independent , tachpiques that use a fitness function which is adapted
optimization strategy for large-scale constrained optimization during search [7]-[9]

problems over finite domains. In this approach, genetic operators . .
are based on amarc-consistencyalgorithm, and chromosomes are * hybrid techniques [10].

arc-consistent portions of the search space of the problem. The The work presented in this paper belongs to the second
paper describes the main issues arising in this integration: chro- category, that is, it is focused on solving optimization prob-
mosome representation and evaluation, selection and replacement|ems_ Several methods have been proposed for this class of

strategies, and the design of genetic operators. We also present a . e
parallel execution model for a distributed memory architecture of constrained problems. These methods can be classified into the

the previous integration. We have adopted a global parallelization following groups:
approach that preserves the properties, behavior, and fundamen- « specialized operators that transform feasible individuals
tals of the sequential algorithm. Linear speedup is achieved since into new feasible individuals [1]

genetic operators are coarse grained as they perform a search in
a discrete space carrying out arc consistency. The implementation * penalty functions that reduce the fitness of infeasible so-

has been tested on a CRAY T3E multiprocessor using a complex lutions [11], [12]
constrained optimization problem. « repairing infeasible individuals [13], [14]
Index Terms—Arc consistency, constrained combinatorial opti- * problem-specific representation and genetic operators
mization problems, evolution programs. [15], [16].
However, all of these approaches require problem-specific

programming. The approach presented in this paper is problem
independent, as long as the problem is suited to be modeled in

VOLUTION programs [1] arise from genetic algorithmsa constraint programming language over finite domains.

[2] (also see [3]), but they consider a richer set of data Constraint programming over finite domains [CP(FD)] has
structures for chromosome representation, together with an bgen one of the most important developments in programming
panded set of genetic operators. However, handling constrailagguages in recent years [17], [18]. Constraint satisfaction
in evolution programs introduces an additional complexity iis the core of many complex optimization problems arising
the design of the genetic operators. In constrained problemsnaartificial intelligence [19], including temporal reasoning,
minimal change to a feasible solution may be very likely to getiesource allocation, scheduling, and hardware design, to name
erate an infeasible one, but infeasible solutions cannot simplyddew. Constraint programming languages [20]-[23] provide
dropped from the search space because doing so would incresaggport for specifying relationships, aonstraints among
the difficulty of generating good solutions. Roughly speakingrogrammer-defined entities. These languages are becoming
constraint-handling methods in evolutionary computation cdhe method of choice for modeling many types of optimization
be divided into two categories: those aimed at solving constrajnioblems, in particular, those involving heterogeneous con-
satisfaction problems, and those aimed at solving constrairg$thints and combinatorial search. These languages can be used
optimization problems. to model constraint satisfaction problems over finite domains

In recent years, there have been several evolutionary #SP(FD)], in which the goal is to find values for a set of
proaches to the constraint satisfaction problem, especiatigriables that satisfy a given set of constraints.
for the MAXSAT (maximum satisfiability) problem. These The core of a constraint programming languages are con-
approaches can be divided into three groups: straint-solving methods, such asc consistencyan efficient
and general technique that eliminates inconsistent values from
the domains of the variables, reducing the size of the search

. . . _ space both before and while searching. Most constraint pro-
Manuscript received June 5, 1999; revised October 21, 1999. This work was

supported by Project TIC 98-0445-C03-02 of the Spain CICYT Science afj@mming languages include some kind of enumeration tech-
Technology Agency. nigue, as well as Aranch-and-boundB&B) [24], [17] proce-

The authors are with the University Complutense of Madrid, Ciudagyre for optimization problems in order to perform the search.

I. INTRODUCTION

Universitaria, 28040 Madrid, Spain (e-mail: alvaro, lurdes@sip.ucm.es; fern . L .
jiruz@eucmax.sim.ucm.es). However, for real-5|_zed applications, the searph space is too
Publisher Item Identifier S 1089-778X(00)04470-2. large to be exhaustively enumerated, even using B&B. Thus,

1089-778X/00$10.00 © 2000 IEEE

354 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

hybridization with stochastic techniques such as evolution pro- « C = {¢1,---, ¢, } is a set of constraints among the vari-
grams is a promising approach. ables inV, restricting the values that variables can simul-
According to the previous considerations, evolution programs taneously take.
and constraint programming languages complement each other D: V — FD is a mapping that assigns an initial finite
to solve large-scale constrained optimization problems over fi- domain to each variable M. D defines thesearch space
nite domains efficiently. The input to the evolution programisa of the problem, as the set of points (tupl&)u;) x -- - X
constraint graph generated by a program written in a constraint D(v,,), wherex denotes the Cartesian product.
programming language. Evolution programs are an adequat@efinition 3—Constraint: A constraintc = (V,, R,) is de-
optimization technique for large search spaces, but they do fakd by a subset of variablés C V, and a set of allowed tuples
offer a problem-independent way to handle constraints. Howf valuesR,, subset of the Cartesian product of the domains of
ever, constraint-solving techniques are adequate for any disckg€involved variable¥,. That is,R. C ® D(v;), where
combinatorial problem. & denotes the Cartesian product.
This paper presents a novel approach that integrates conap, assignmentd = (ay,---,a,) of values to the variables
straint programming languages and evolution programs. In thisy) satisfiesa constraint = (V.,R.)ifand only if Ay, € R,,
approach, genetic operators are based on constraint-soljigere 4, denotes the projection of over the subset of vari-
techniques, which provide a problem-independent optimizatighjesy, . That is, R, defines the points of the search space that
strategy to efficiently tackle constrained optimization problemg,tisfy the constraint. However, it is quite usual to define a con-
over finite domains with a large search space. The papgfaint by means of a functional relation instead of an exten-
describes the main issues arising in this integration: represgsnal one. Arithmetic constraints are a typical example of this
tation and evaluation, selection and replacement strategigs,ation.
and the design of genetic operators. This approach has beefe goal in a constraint satisfaction problem is to find an

implemented from scratch, but it can also be impIement%gSignmem of a value from eagl{v;) to each variable; € V
taking advantage of existing constraint programming languagggich satisfies every constraint € C.
such as CHIP [20] or ILOG [25]. As an example of CSP(FD), let us consider an arithmetic

The integration of constraint-solving techniques over ﬁ”itﬁroblem involving two variables, that i¥) = {X,Y}, related
domains and genetic algorithms was first proposed by Paregis three arithmetic constraint€ — (X +Y ’> 6,X

in [26]_, where a genetic algorithm was enhanced with forwa [|X — ¥| # 11, and where the initial domain for both vari-
checking to create chromosomes with unknown valued genggies js the finite interval of integer numbers from 1 to 5, that
However, our method makes use of a general constraint sol}équ(X) = {1-.-5}, andD(Y) = {1---5}. The assignment
based on arc consistency, and differs substantially in the P& — 4,Y = 2) is one of the eight solutions to this constraint
sentation and evaluation of chromosomes. satisfaction problem.

The rest of the paper is organized as follows. Section Il re-
vises the main concepts of constraint programming over finite)
domains. Section Il presents the main points of the integrati&\ Arc Consistency
of constraint solving and evolution programs. Section IV briefly The basis for finite-domain constraint solvers is an arc-con-
reviews the main approaches to parallelize an evolution prsistency algorithm [27], [28] that eliminates unsupported (in-
gram, and describes our parallel execution model. Section V dignsistent) values from the domains of the variables.
cusses the empirical results obtained for a complex constrainegefinition 4—Supported ValueGiven a CSRV, C, D), and
optimization problem, and finally, Section VI presents the corr constraint € C, ¢ = (V., R..), avaluea € D(v;), v; € V., is

v €Ve

clusions. supportedwith respect to the constraintif and only if, for all
v; € Vo — {v;}, there exists a valuk; € D(v,) such that the
[I. CONSTRAINT SOLVING OVER FINITE DOMAINS tuple (by, -+, bi1,0,bit1, -+, by) € Re.

For example, consider the set of variab{es, Y}, the con-

This section reviews the basic definitions, concepts, and te@iraint X + ¥ > 6, and the domain®(X) = {1,2} and
niques used to solve constraint satisfaction problems over finjtgy") = {1...5}. Value 1 in the domain of{ is supported
domains. They are the basis for the chromosome representaigialue 5 in the domain df sincel + 5 > 6. Similarly, value
and the design of the genetic operators in the developed schemesypported by values 4 and 5. Consequently, values 4 and 5 in

of integration. the domain off” are supported, whereas 1-3 are not supported
Definition 1—Finite Domain: A finite domain#D is a finite yg|yes.

setof valuegey, - - -, ex }. Afinite integer domairis a finite set pefinition 5—Arc ConsistencyGiven a CSP(V,C, D), a

of integers. constraintc € C, ¢ = (V,, R.), V. = {v1,---, v}, isarc con-

Definition 2—Constraint Satisfaction Problem Over Flnlt%|stentw|th respect to a search Spamﬁ and 0n|y |f, for all
Domains [CSP(FD)]: A constraint satisfaction problem over,,, < v, for all a; € D(v;), a; is supported. A CSRV,C, D)
finite domains is stated as a tulé, C, D), where the following s arc consistent if and only if al; € C are arc consistent with
hold. respect taD.

*V = {v1,---,v,} is a set of variables. They are called Convention 1-£, C: Given two search spacé&¥% andD-,
domain variablesas they are constrained to take a valugre will write Dy T D, if and only if Vv, € V: Di(v;) C
from a finite domain. Ds(v;). Similarly, D; C D» will denote thatD; C D, and

RUIZ-ANDINO et al.: HYBRID APPROACH FOR CONSTRAINED OPTIMIZATION PROBLEMS 355

that there exists at least one variabjec V such thaD; (v;) C ~ function Arc-consistency((V,C,D)) : Search subspace

Ds(v;). begin

Definiton 6—Largest Arc-Consistent Search Suk ;nlmueue(m

. . or each ¢; € C do Enqueue(¢;, Q) end-for

space: Given a CSPP = (V,C,D), D* is the largest _1:14 wot EnptyQueue(Q) do
arc-consistent search space f8rif and only if D* C D, DeQueue(Q, ¢= (V,, R.))
(V,C,D*) is arc consistent, and there is no otl®f such for each ve V, do
that (V,C,D’) is arc consistent an®* C 7’. The largest NewDomain := RemoveUnsupported(D(V), R.)
arc-consistent search space exists, and it is unique [28]. if N ‘”“DOT”‘C’E” =0 then

An arc-consistency algorithrrakes as input argument a con- elsrieft u;;l“fg mgif:’ TCEIg(U) then
straint satisfaction probler® = (V,C, D), and returns either D(v) := NewDomain
the largest arc-consistent search subspacéfdrit does not for each ¢ = (V/,R]) such that v €V’ do
contain any empty domain dNCONSISTENT f it does. A Enqueue(Q, ¢')
simplified version of the arc-consistency algorithm is shown i en:f‘ff‘for

Fig. 1. It uses a queue to keep track of constraints to be visite end-for
Unsupported values from the domains of the variables are 1 . 4-.ni1e
moved until a fixed point is reached or until inconsistency isd¢ return D
tected (a domain results empty). Whenever the domain of a vé end
able is modified as the result of revisiting a constraint, the con-
straints where the variable appears are queued. The algoriffifhl- Arc-consistency algorithm.
terminates when the queue is empty or when inconsistency is
detected. A specialized version of this algorithm for a numbgHt none of the four points ifd, 5} x {4, 5} is a solution. How-
of the most important classes of constraints run®{ad) in €ver, if P is arc consistent with respectdandD is singleton,
time, wheree is the number of constraints amlds the size of thenD is a solution tgP. Moreover, ifD is singleton and® is
the largest domain [28]. not arc consistent with respect then it is not a solution to
For example, giventhe CSP(FD)X, Y}, {X+Y > 6, X # P. Therv_afore, solution and arc-consistent singleton search space
Y,|X — Y| # 1},{1---3} x {1---5}), the output of the ar€ equivalent terms.
arc-consistency algorithm will bB(X) = {1---3}, D(Y) =
{3---5} (unsupported values have been removed from the
mains of the variables). However, for the same set of variabledn this subsection, we define a key concegt;-consistent
and constraints, but with the search spéite-- 3} x {1...3}, subspacgthe basis for representation in our approach.
the algorithm will detect inconsistency. Definition 10—Arc-Consistent Subspac&iven a CSFP =
Constraint satisfaction problems usually describe hard seaf¢h C, D), a search spac®’ is an arc-consistent subspace (AC
problems, therefore some kind of search with backtracking $gbspace) with respect ®if and only if D’ C D and the CSP
necessary to solve them. Most constraints solvers perforn{}a C,D’) is arc consistent.
search that enforces arc consistency at each node of the sear§fpnvention 2-P 11 v; in d: Given a search space
tree. The arc-consistency algorithm is invoked each time a valle= D(v1) x - -+ x D(v,) and a finite domainl, D M v; in d
is tried for a variable, removing unsupported values from tiienotes the search spel¢vi) x -+ x D(v;—1) x (D(v;) N
domains of the other variables, thus reducing the search spabex D(viy1) X - X D(vy,).

If some domain is left empty (inconsistency is detected), that The usual way to generate an arc-consistent subspawséh
branch cannot lead to a solution, and backtracking is performégspectto a CSP = (V,C, D) is to invoke the arc-consistency
Definition 7—Singleton DomainA finite domaind is a sin- algorithm, taking as input argument the CEPplus an addi-

gleton domain if and only if it consists of just one valuethat tional constraint over one of the variablesiinthat is, the CSP

is,d = {a}. A domain with more than one value will be calledV,C,D M v; in d).

a nonsingleton domain. Fig. 2 depicts a graphical representation of different arc-con-
Definition 8—Singleton VariableGiven a search spa@ a Sistent subspaces for a generic initial search spadrc-con-

domain variable; is said to be singleton if and onlyT’(v) isa Sistent subspacéC’5S; (black dot) is a singleton search space,

singleton domain. Variables whose domains consists of multigleat is, a single point, and therefore it lies in the solution space.

values are called nonsingleton variables. ACSS5 is not singleton, but it only contains points that are so-
Definition 9—Singleton Search Spac@iven a search spacelutions to the problemAC'SS3 contains some points that are

D, itwill be called a singleton search space if and only if all dgsolutions to the problem, and some others that are not. Note that

main variables are singleton, that is, it only contains one poifitis also possible to have an AC subspace that does not contain

A search space with more than one point will be called nonsi@iny point solution to the problem, but a singleton AC subspace

gleton. outside the solution space cannot exist. Fig. 3 illustrates the AC
Note that arc consistency is not complete, that is, a @SPsubspace concept in the context of an arithmetic CSP.

can be arc consistent with respect to a search s@gceut) o .)

there may be no solution 1 in D. For example, the CSP(FD) C. Constrained Optimization Problems over Finite Domains

{X, Y A{X+Y 26, X #Y,| X -Y|#1},{4,5} x{4,5}) In many occasions, we are not looking for just a feasible so-

is arc consistent (every constraint is arc consistent by its owhjtion to a constraint problem, but rather, the best feasible solu-

0%._ Arc-Consistent Search Subspaces

356 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

Search space D straint programming language OPL [23]. Keywadntl defines
constant integers, while keywondar int declares domain
variables over finite integer domains. The default optimization
strategy is based on a depth-first branch and bound algorithm.

_ - = - =~ .Solution space
ACSS)

ACSS |
/ O L4 1\;
A

\ /
\\Q__,,/’ ACSS,
ACSS;3 O

I1l. CONSTRAINED EVOLUTION PROGRAMS

This section discusses in detail the hybridization of arc-con-
sistency and evolution programs in order to solve constraint
optimization problems over finite domains. These two mech-
anisms complement each other: constraint-solving techniques
open a flexible and efficient way to handle constraints in evolu-

. _ _ _ _ tion programs, while evolution programs allow us to deal with
Fig. 2. Graphical representation of different types of arc-consistent subspa%e_sca|e search spaces. This hybridization implies coming up
for a generic constraint satisfaction problem. . .) .

with a solution for chromosome representation, chromosome
evaluation, and the design of genetic operators.

tion according to ambjective functionThis kind of problem
for which solutions are not equally preferred are calbem- A. Representation
straint optimization problemsver finite domains. Many com-

plex search problems such as resource allocation, scheduli

and hardware design can be stated as constrained optimiz {Etions, repair algorithms, or linear recombination. We

problems over finite domains. will make use of generic constraint-solving techniques over

Defi_nition 11—C0nstraintOpt_imizat_ior_l Prpblem Over I:init%nite domains in order to design a novel approach to handle
Domains [COP(FD)I: A constraint optimization problem OVET constraints. In our approach, a chromosome is not represented

fmlte domal_ns IS S,t?ted, asa pSTP,), vi\;r)\?reP = %C,D) as an array of values, but as an array of finite domains, that
is a constraint satisfaction problem, afgV x--- x &' — is, not just a single point, but a subset of the points of the

IS :[:e objectllve f;Jg(:StlF())n toh;ptlmlze (mlg;mae (?]r. rr;‘aX|m|;e). search space. Moreover, all chromosomes in the population
n example 0 Is the-queensproblem, which requires iy e arc_consistent search spaces (AC subspace) to the

us to place: queens in a x " chesshoard in S.UCh away thatn roblem, generated by means of genetic operators based on the
gueen at_tacks each_other, i.e., they are not in the same colu _consistency function, which returns AC subspaces
row, or diagonal. This problem can be modeled with a set Ofwhere inconsistent values have been removed from the domains
variablesV = {uv;,---,v,} and a search spag@= d; x --- X ot e variables. Therefore, a chromosome will be a subspace
dy, where eachl; = {1,---,n}. Each variable represents ong,¢ e jnitial search space containing many or no solutions,
row of the chessboard. The assignmeyit= 5 indicates that a and in particular, it may be a singleton search space, and thus,

queen IS posmo_ned in the fifth column of the third row. The secf solution to the constraint satisfaction problem. Evaluation,
of constraints” is selection, and replacement strategies ensure convergence to sin-
* v #v5,1 <4 <j < n(notwo queens in the samegleton chromosomes. Given this chromosome representation,
column) genetic operators are deterministic search procedures based on
* |vi —vj| # (4 —9), 1 <4 <j < n(notwo queensinthe arc-consistency techniques that take as input argument an AC
same diagonal). subspace, and generate a new AC subspace.
The constraint of no two queens in the same row is implicit in
the representation. B. Evaluation
As an example of COP(FD), consider thaluedn-queens

Classical approaches to handle constraints in evolution
grams use one or more problem-specific tricks as penalty

) Since a chromosome is an AC subspace, chromosome evalu-
problem [26] an extension of thequeens problem. Now, there ;i is more elaborate than the calculation of a fitness function

is a weight associated with each board locatiory), defined ¢, 5 gingle point of the search space. In order to take advantage
by the matrixw(z, j), 1 < ¢ < n, 1 < j < n. Now, the goal is ¢ he chromosome representation, we make a dual evaluation:

to find a solution to the:-queens problem that maximizes th%r each chromosome, we computéitaessvalue and deasi-
sum of the weights of the positions where the queens are plao&ﬂty value '

that is, the objective function is Fitness plays the usual role, so its calculation is based on the

" objective function. The need for the feasibility value comes from
_ . the fact that an AC subspace may contain just a single point (and
f(V) _Zw(vaz)' R .
in this case, it is a solution to the problem), or it may contain
many points (the whole search space in the worst case). Feasi-
Fig. 4 shows an instance of the problem for eight queens, as wality indicates how far away a chromosome is from being a sin-
as its optimal solution. gleton, measuring the relative size of the AC subspace. Chromo-
As an example of the formulation of a constrained optimizaomes closer to being singleton have a higher feasibility value.
tion problem in a constraint programming language, Fig. Selection mechanisms will exploit the advantages of this dual
shows the code for the valuedqueens problem in the con-evaluation. Similar dual-evaluation approaches have been pro-

i=1

RUIZ-ANDINO et al.: HYBRID APPROACH FOR CONSTRAINED OPTIMIZATION PROBLEMS 357

Variable Y

o1

ACSS,
ACSSI ACSS3
ACSS,
[@\@ @ . .
L @
[. . 3 @ ®
. @
| 2 3 4
Variable X

C={X+Y>=6,X!1=Y,IX-YI =1}

D(X) = {1..5) D(Y)={1.5)
X Y

ACSSy: (2} x {4}

ACSSy: {5} x {1.2.3}

ACSS3: {34} x {23)

ACSSy: (4,5} x {45)

+ Point of the search space

O Solution

Fig. 3. Examples of AC subspaces for the G, Y },{X +Y > 6, X #Y,|X — Y| # 1}, {1---5} x {1---5}). AC subspaceis singleton (thus a
solution). AC subspageonly contains solution points. AC subspa@®ntains four points, but only one of them is a solution. AC subspegstains four points,
none of them being solution, although it is also an arc-consistent subspace.

\2!

V2

V3

V4

V5

Vo6

Vi

V8

Fig. 4. Instance of the valued 8-queens problem. Each square of the boar

1

2

5

6

7

8

6 |28 9 |15|18]19 |22
9 |22 |14 |21 |23 0|3

656180/ 145
2162119162313
18 | 30 | 19 2|3 |23]25
305 12625 18] 1 2

202166 1313 |31

6 043 |27]19]2

shows its weighto(i, 7). Remarked squares form the optimal solutién=
{3,6,8,1,4,7,5,2}, which yields a valugf(V) = 181.

int N = ...;

int Weights([i..N,1..N]

var int ObjectiveVariable;

B

var int Queens([1..N] in 1..N;

maximize ObjectiveVariable subject to {

ObjectiveVariable

}
b

Fig. 5. Valuedn-queens in OPL.

sum(i in 1..N) Weights[i,Queens([il];
forall (ordered i,j in 1..M) {
Queens[i] <> Queens[j];
Queens[i] - Queens[jl <> j - 1i;
Queens [j] - Queens[i] <> j - i;

satisfies the constraints. In our approach, a chromosome is not a
point of the search space, but an arc-consistent set of points that
may include points that do not satisfy the constraints. Constraint
programming itself offers the way to evaluate the fithess func-
tion of an AC subspace. In our context, a COP(EDR)C, D, f)
is defined using a constraint programming language; thus, the
objective functionf is defined as a new domain variablgy
along with constraints relating, ; andV. The arc-consistency
algorithm prunes the domain of s as it prunes any other do-
main variable, so arc consistency returns the lower and upper
bound of the objective function for a given AC subspace. We
will refer to v, ; as the objective variable, arfel(v, ;) will de-
note its domain in a given search spdee

For instance, let us return to the valugejueens problem.
The objective function to maximize is the sum of the weights of
the positions occupied by the queens. The objective variable is
defined as

n

Vof = Z w(iv Ui)v

=1

that is, an arithmetic constraint involving the variablgsvhich
represent the queens positions. In genefdly;) is not sin-
gleton; thereforew(4, v;) would be a finite domain instead of
an integer, and so is the resulting sum.

Fig. 7 shows the approach for computing fitness. A chromo-
some (an AC subspace, denotedPyhas associated a domain
D(v,f), the domain of the variable,; in the search space
D. Fitness is computed from the value Pfv, ;) in the AC

posed [15], although with a quite different view of the feasibilitgubspace being evaluaté®), normalized with respect to the

value.

size ofD;,,; (v,), the domain ob, ; in the initial search space.

Fig. 6 shows the expected evolution of the population as gdfirst, a weighted averagét] is computed from the minimum
erations transpire. The initial population is expected to have lamd maximum values oD(v,¢) (minp, and maxp, resp.)
average values for fitness and feasibility, whereas the final pofhe weightwy;; is a problem-dependent parameter. Its most
ulation will have higher values, and in particular, there will besual value is 0.5. Finall¥it is normalized with respect to the
singleton chromosomes, that is, solutions to the problem.

1) Fitness: In a COP(FD), the objective functiofi: N x
---x N — N is defined for those points of the search space thisom 0 (worst) to 1 (best).

minimum and maximum values dP;,,;(v,y) (minp,,,, and

maxp. ., resp.), in order to obtain a final real value that ranges

ini?

358 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

Final e TTe
Population -~ & ® ®°®
;e . Singleton
% e . * Chromosomes
L]
Chromosome
[*]
s
=
/ « °® * .
e S e e ,\’
T , Initial
Population
0
0 e
Feasibility :
Fig. 6. Expected evolution of the population in the fitness/feasible dual-evaluation plane.
minp,,, = Min(Dii(ver)) mazp,, = maz(Dini(vos)) rs(v) = %
minp = min(D(v, m = ¢
(D(voy)) axp = maz(D(ver)) feay,, = rs(voy)
fit = minp + wey(mazp — minp) feay =2 x ¥ rs(v;)
Fit’n,ess('D) = _ Jimno, Feaszbzlzfy(D) =1- 'wfmfea,uol — (1 — u}f(,a)feav

MATD,, —Minp, .

Fig. 8. Feasibility calculation for an AC subsp&aReD;,,; denotes the initial

Fig. 7. Fitness calculation for an AC subspafe (for a maximization
search space.

problem).

2) Feasibility: The feasibility measures the relative size ofaking part in the calculation (fabs;, = 0.5y andw ., = 0.5).
the AC subspace with respect to the initial search space, indi-

cating how far a chromosome is from being a singleton. Fig. 8
shows the calculation of feasibility for a chromosofeFirst,
we define the functions : ¥V — R which returns the nor-
malized size of the domain of a variahlén a search spac® The main algorithm arc-consistent evolution program follows
with respect to its size in the initial search spdeg,;. Next, the structure of a steady-state genetic algorithm. Fig. 10 shows
feasibility is computed as a weighted average betwleey), the pseudocode. Functions ldface invoke the arc-consis-
andfea,, where weightv ., is a problem-dependent parametetency algorithm. Words iftalics are parameters to be set.
fea,,, is the value returned by thes function for the objective Theinitialization step is a loop that generates a cer-
variablew, s, andfea is the average value ofs(v;), v; € V. tain number gopulationsiz§ of chromosomes by means of
Feasibility values range from 0 (whé&h= D,,,;) to 1 (whenD theAC-random-search procedure. Thevaluation step
is singleton). computes the fithess and feasibility values for each AC subspace
In order to clarify the evaluation of chromosomes, considéchromosome) in the population. Inteelection step, some
the valued 8-queens example problem. The top chessboardhinomosomes are marked as survivors, so they will not be re-
Fig. 9 represents a chromosorfe. Filled squares are the pos-placed by the new AC subspaces generated by crossover. The
sible rows for each variablé, (v2), the set of columns where best chromosomes are more likely to be selected, astfe
a gueen at the second row may be placed6is thus,v» is selection procedure performs a biased stochastic selection.
a singleton inD;. So arevy,v7, andwvg. However,v;,v3,v5, An elitist policy is used, so the best chromosome always sur-
andwvg are not singleton. For exampl®(v;) = {1,3}, so the vives. Thealteration step is divided into the application of
gueen at the first row may be placed at columns 1 or 3. Ti®o genetic operator®yC-crossover andAC-mutation
bottom chessboard in Fig. 9 represents a chromosome (AC shibth AC subspace generators guided by the arc-consistency al-
space)D,, which is singleton and also a feasible solution to thgorithm. New chromosomes generated by crossover take the
problem. Note thaD, C D;. place in the population of those chromosomes not chosen to sur-
Table lillustrates values of fithess and feasibility for the chrosve. Mutation is applied to those chromosomes selected to sur-
mosomes represented in Fig. 9, as well as intermediates values with a probabilitymutationrate. New AC subspace gener-

C. Integration Algorithm

RUIZ-ANDINO et al.: HYBRID APPROACH FOR CONSTRAINED OPTIMIZATION PROBLEMS 359

o
w
o~
W
oY
-
=)

As the number of generations increases, the weight of fitness

]
vile] 28 9 |15 |18 |19 |22 (fea_weight(t)) increases, in order to help convergence to-
val o lon [1a lar |2 o |3 wafd singleton chromosqmes (solutions). Flg_..12.|IIustrates this
policy by means of level lines of equal probability in a represen-
V3 [6]l 8 |0]1a]s|n tation of the population in the fitness/feasibility plane. It shows

examples of the level lines of equal probability to be chosen to

va 30|22 |16 |21 |19 |16 |23] 13 ! _ \ _
survive for the first and last generations. Chromosomes with

Vs 30 19 2213123125 higher fitness are preferred in the first generations, while in
V6 s |2 301 a7 the last generations, chromosomes with higher feasibility are
preferred, helping convergence toward feasible solutions.

V720216620)13)3 In order to select chromosomes to take part in crossover, the
vel 6 |14 0 | 4 27119 2 sorting criterion to select one of the parents is the fitness value,
(1.3} x {6} % {1,2,3} x {7} x whereas the other parent is selected using the feasibility value

{1,4) x {1,4} x {8} x {5} as the sorting criterion. This heuristic leads to the crossover of

) 2 3 4 5 6 7 8 a promising parent in terms of fitness, with a promising parent

Vi| 6 |28 9 |15 |18 |19 |22 in terms of being closer to be a solution, expecting to produce

fit and feasible chromosomes. Fig. 13 illustrates this policy by
means of level lines of equal probability in a representation
V3| 16 6 8|0 14|51 of the population in the fithess/feasibility plane. Level lines of
probability for choosing the “fit” chromosome are horizontal,
while level lines of probability for choosing the “feasible” chro-

val o |22 14|21 |23 |[28] 0|3

V4|30 22|16 |21 |19 16 |[23]] 13

Vs 30 |19 130 | 22| 3 |23 |25 mosome are vertical.
V6|30 |5 |26 |25] 18] 1 {27 2

E. Initial Population Generation

V7ij20)2t 6 6120133 Each chromosome of the initial population is generated by

vel 6 1410 4 27 19| 2 means of theAC-random-search function. This heuristic
(3} x {6} x {2} x {7}« and stochastic procedure generates a new AC subspace which
{1} x {4} x {8} = {5} is a randomly generated subspace of the AC subspace taken
as input argument. In order to generate the initial members
Fig. 9. Example of chromosomes for the valued 8-queens problem. of the population AC-random-search is called with the
whole search space as an input argument. Fig. 14 shows the
TABLE | AC-random-search algorithm.

EVALUATION OF CHROMOSOMES IN FIG. A common way to implement an AC subspace generator is a

° variable-value choice heuristic. Variable ordering is randomly
D, | D established (permutatiop[1 --- n]). The domain to be se-

Dini(vy) [26..220] guentially assigned to each variablg; is a singleton value ran-

?I.(t”f) [13?‘6:(1)81] [15‘?5;53] domly chosen from the variable’s current domain. If the assign-

F;;mess 069 065 ment leads to inconsistency, the AC subspace is left unchanged

Tea, 022 0.00 (thus, backtracking never occurs), and the algorithm proceeds

feay 0.09 0.00 with the next variable.

Feasibility 0.85 1.00 Continuing with the valued 8-queens problem, Fig. 15 shows
an example of the execution of th&C-random-search
algorithm with the initial search space as inpft =

ated by means of the m_utation operators replaces the chromp’—, .8} x ++- x {1,---,8}. Variables are processed in the
some used to generate it. following randomly chosen ordets, vy, vs, vy, vg, v, U7, Vs.

)) Each variable is assigned a randomly chosen value from its
D. Selection and Replacement Strategies domain. The first four assignments (black circles) prune the

The dual evaluation of chromosomes allows a more elabsearch space (black squares). Each of the last four assignments
rate and sensible policy to perform the selective pressure. Thiezad to inconsistency; therefore, the AC subspace is not up-
are two points in a steady-state genetic algorithm where chdated, which leaves the board in the last arc-consistent state
mosomes have to be selected: chromosomes that survive to(ti@ardB4). For example, boar85 shows that, starting from
next generation, and chromosomes that take part in crossobeard B4 and assigning teg the value 7 (randomly chosen
In both cases, we use a rank-based selection (Fig. 11) witlarmong {1, 7}, the domain ofvg in B4) the arc-consistency
quadratic bias, but with a different sorting criterion. algorithm detects inconsistency, as and vg become sin-

In order to select chromosomes to survive, a values(¢,¢) gleton (gray circles), which leaves no option fey. Similar
is computed for each chromosoniefor each generatior. situations occur when processing variables vz, and vs.
surv(i,t) is a linear combination of the fitness and the feasiFhe final AC subspace obtained is displayed in boBed
bility: surv(i,t) = fitness(i) + fea_weight(t) x feasibility(t). {3} x {6} x {4,8} x {2} x {6} x {1,7} x {4,8} x {1,4,7}.

360 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

function AC-evolution-program ((V,.C,D), ObjectiveVariable): Solution
Var X, X, X, : AC-Subspace
Pop : Array[1..population_size] of AC-Subspace
begin
/* initialization #*/
for 1 := 1 to population_size do
Popli] := AC-random-search(V,C, D)
end-for
/* evaluation */
for i := 1 to population_size do
Fitness[i] := AC-fitness(Popl[il, D, ObjectiveV ariable)
Feasibility[i] := AC-feasible(Pop[il, D, ObjectiveVariable))

end-for
/* main loop */
for t := 1 to number_of_generations do
/* selection */
for i := 1 to (1-zover_rate) * population_size - 1 do
X := rank-selection{(Pop, Fitness + fea_weight(t)*Feasibility)
mark X to survive
end-for

mark best singleton chromosome in Pop to survive
/* alteration */

for i := 1 to population_size do
if not marked-to-survive(Pop[i]) then
Ny := rank-selection(Pop, Fitness)
N3 := rank-selection(Pop, Feasibility)

Popli] will-be-replaced-by AC-crossover(X;,X,,V,C,D)
else
if random-between(0,1) > mutation_rate then
Popli] will-be-replaced-by AC-mutation(Pop[il,V,C)
end-if
end-if
end-for
update Pop
evaluate Pop
end-for
return best singleton chromosome in Pop
end

Fig. 10. AC evolution program.

function rank-selection (Pop, Criterion) : Chromosome 1
begin
Sort Pop by Criterion Higher probability
v := random.real between(0,1) to survive
i = population_size * z*
. L]
enzeturn Poplil Chromosome
Level line

Fig. 11. Rank-based selection with a quadratic bias.
first generation

Fitness

F. Genetic Operators

Genetic operators generate the new chromosomes that will
added to the next population, taking as input chromosomes fr
the current population. In our approach, genetic operators g
erate AC subspace, whose arc consistency is guaranteed by
Arc-Consistency algorithm. Genetic operators implemen o Feasibility
stochastic AC subspace builders, taking a previous AC subspace
as input information to guide the search for a new AC sulgig 12 Level lines of equal probability for the selection of chromosomes to
space. Genetic operators are clustered in two classes: mutatigvive.
and crossover. Mutation creates a new AC subspace by means
of a small change in a single chromosome, whereas crossgveint in all evolution algorithms because they must guarantee
searches for a new AC subspace combining information fraimat new individuals inherit their ancestors’ properties, and they
two chromosomes. The design of genetic operators is a cru@ilo must allow the exploration of new areas of the search space.

Level line
last generation

RUIZ-ANDINO et al.: HYBRID APPROACH FOR CONSTRAINED OPTIMIZATION PROBLEMS 361

L squares) ig121 - -- 190} and{155} for P1 andP2, resp. Vari-
' . — ables are processed in the following order, randomly chosen:
= « ® , | Higherprobability wq,v2,vs,v4, 3,7, Vs, V6. Arandom numbek of variables are
. . . Lo ° be chosen taken directly from parenl, letk = 3. Therefore, domain
. * . . {4,5} is assigned to variable , value 2 is assigned te, and
. * . o s ® . Chromosome domain{1,4,7,8} is assigned ta;. Then, arc consistency is
’_ . * ., ﬁ enforced, obtaining boar1. The rest of the variables are se-
2 | * i A quentially processed in the established orderys, vz, vs, ve,
E . o .« T \— {}ft‘gal;‘;fem) by assigning to each variable the corresponding domain from
s o 4 ° parentP2 and enforcing arc consistency. That is, starting from
* B1, we try B1M v, in {1}, obtaining board2 after arc-con-
“x Level line sistency enforcing. Next, B2 vs in {4} is tried, which leads
= ¢ (feasible parent) to inconsistency (no value left fars), and therefore boarB2
0 is kept. Then, we try B21v7 in {3}, obtainingB4, and next
0 Feasibility ! B4mwg in {6} obtainingB5, which is a singleton chromosome.

Therefore B5 is the resulting offspring, as any further assign-
Fig. 13. Levellines of equal probability for selection of chromosomes to tal@em will leave the board unChanged_or lead _tO Inconsistency.
part in crossover. B5 yields a value of 168 for the objective function.

2) Mutation: The traditional mutation operator generates a
new chromosome by means of a small change in an old one, al-

function AC-random-search(V,C,D): AC-Subspace lowing the exploration of new areas of the search space, and es-

besal‘ .a] := random-permutation-between(l, n) caping from local optima. The mutation operator in our system
for i := 1 to n do has been designed not just to allow exploration, but also to per-
k := random_int_between(min(D(u,;)), max(D{v,;))) formlocal search, aweak pointin traditional genetic algorithms.
NewD := Arc-Consistency(V,C, D M uyy in {k}) Fig. 18 shows the algorithm of the mutation operator. The role
if NewD 1= INCONSISTENT then played by mutation depends on the quality of the input chro-
enii:f— NewD mosome (functiorevaluate-quality , line 1), taking into
end-for account both the fitness and feasibility values.
enzeturn D « Singleton, High Fitness (Lines 2-8, Fig. 18he purpose

of the mutation operator in this case is to perform a fine
tuning toward the optimal solution. A hew chromosome
is obtained by means of lacal searcharound the input

chromosome, which will be replaced by the new one if

1) Crossover:New chromosomes generated by means of and only if it is a better fit chromosome (lines 5-8). The
the crossover operator replace those not selected to survive. |ocal search is performed in two steps.

Parent chromosomes are chosen usingdhk-selection

function, as the algorithm in Fig. 10 shows. One parent is
selected biased toward fithess (probably a high fit, but not
feasible solution), and the other parent is selected biased toward
feasibility (probably a feasible solution, but low fit).

Different crossovers operators were tried on a set of
benchmarks; a uniform AC-crossover search algorithm, as
implemented in Fig. 16, showed the best results on average.
Given two AC subspaces, the AC-crossover operator generates
a new AC subspace, which is a mixture of the two parents.
In the first place,k (a random value between 1 and— 1)
randomly chosen variableg,;—v,x) are assigned the corre-
sponding domain from the first parent,f; in ACSS1 (vpp),
line 5). Next, arc consistency is enforced, and finally, remaining
variablesv,x411—vp[») are assigned, enforcing arc consistency,
the corresponding domain from the second parent;(in
ACSS2(vpp), line 9). If the arc-consistency algorithm detects
inconsistency, the domain of the variable is left unchanged.

Fig. 17 illustrates an example of crossover for the valued
8-queens problem. Boamb represents the new chromosome
generated from the crossover of chromosomes represerféd in ¢ Singleton, Low Fitness (Lines 9-1Q)ow, the intended
andP2. P2 is a singleton chromosome, wheré¥sis not. The purpose of the mutation operator is to replace the low-fit
domain of the objective variable (sum of the possible occupied chromosome by a new one that will allow the exploration

Fig. 14. AC random search.

1) A new AC subspace is generated from the input
chromosome by means of th&C-enlarge
function (line 3). The intended purposeAC-en-
large is to generate a nonsingleton AC subspace
around a singleton input chromosome. Fig. 19
shows the AC-enlarge algorithm. Variables
are processed one by one in a randomly chosen
order. Each variable takes its value from the input
chromosome, and then, arc consistency is enforced.
This process continues until a singleton AC sub-
space is obtained. The result is the last nonsingleton
AC subspace generated.

2) Next, a local random search (line 4) is performed
within the new nonsingleton AC subspace in order
to obtain a new singleton chromosome. This is
achieved with theAC-random-search func-
tion, previously presented. In this case, the input
search space is not the whole search space, but the
AC subspace obtained in step 1).

362 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

B4 M v6in {7} B4 M V3in {8} B4 M v7in {8} B4 ™1 v8in {1}
INCONSISTENCY INCONSISTENCY INCONSISTENCY INCONSISTENCY

Fig. 15. Example of the generation of an initial chromosome for the valued 8-queens problem. White squares denote allowed values, while grag ones deno
forbidden values. Light gray squares come from the previous board, while dark gray ones represent values removed in the current arc-congist@ecy.enfo
Circles correspond to singleton variables. Black circles are assignments, while gray ones denote that the value is the result of the curristerasc-cons
enforcement.

function AC-crossover(ACSS,, ACSS;, V, C, Dy,) : AC-Subspace

begin
1 pl1..n] = random-permutation-between(l, n)
2 k := random_int_between(1, n-1)
3 ACSS := Dy
4 for i =1 to k do
5 ACSS = ACSS M wyy in ACSSi(vyp)
6 end-for
7 ACSS := Arc-Consistency(V,C, ACSS)
8 for i = k+1 to n do
9 NewACSS := Arc-Consistency(V,C, ACSS M vy in ACSSy(vpp))
10 if NewACSS != INCONSISTENT then
11 ACSS := NewACSS
12 end-if
13 end-for
14 return ACSS

end

Fig. 16. AC crossoverdC'SS; andAC'S S, are the parent chromosom@®,,.; denotes the initial search space.

of new areas of the search space. Therefore, a new chiithess. A singleton (resp., nonsingleton) chromosome will be
mosome is generated using tA€-enlarge function, classified asighly fit if its fithess value is above the average
taking the old chromosome as input. fithess of singleton (resp., nonsingleton) chromosomes in the
» Nonsingleton, High Fitness (Lines 11-1Zhe input chro- current population.
mosome is a promising one, but it is not singleton, so thereFig. 20 shows an example of mutation, for the valued
is no guarantee that a solution lies in it. The mutatioB-queens problem, in the case of a singleton chromosome
operator tries to increase its feasibility by means of theith high fitness, that is, the random local search. Bord
AC-random-search function. represents the input chromosome, which has a fithess value
» Nonsingleton, Low Fitness (Lines 13-14)new chromo- of 147. In the first step, th&C-enlarge algorithm is used
some is generated with the same method used for the initial generate a nonsingleton chromosome around the input
population in order to allow the exploration of new areagne. The order of processing variables, randomly chosen,
of the search space. is wiy,wvs,vs, g, Ve, U7, V2, vg. Variable v; is assigned the
The function evaluate-quality checks whether the corresponding value from the input chromosome (represented
chromosome is singleton, and decides if it isl@iv or high in boardB), and arc consistency is enforced, obtaining board

RUIZ-ANDINO et al.: HYBRID APPROACH FOR CONSTRAINED OPTIMIZATION PROBLEMS 363

Bi B5

1 23 4 5 6 7 8 1 2 3 6 7 8 12 3 12 3 5 6 7 8
Vi
V2 ®
V3
Vi
Vs
V()L—-
V7

Dini T V19in PI(V1) B2 M Vv3inP2(V3) B2 V7inP2(V7) B4 11 V8inP2AV8)

V2in P1(V2)
V5 in PI(V3) INCONSISTENCY

Fig. 17. Example of crossover of two chromosomes for the valued 8-queens problem. White squares denote allowed values. Black squares rejdegsent forbi
values because of the assignment of the domains from parent P1. Gray squares represent values removed because of arc-consistency enfescemespdbidcl
to singleton variables. Black circles are assignments, while gray ones denote that the value is the result of the current arc-consistency.enforcemen

function AC-mutation(ACSS, V, C): AC-Subspace
begin

1 switch evaluate-quality (ACSS) of

2 case singleton, high fitness: /% local tuning */

3 ACSSentarges 1= AC-enlarge(V, C, ACSS, D)

4 NewACSS := AC-random-search(V, C, ACSS.narged)
5 if NewACSS better-than ACSS then

6 return NewACSS

7 else return ACSS

8 end-if

9 case singleton, low fitness: /¥ enlarge it */

10 return AC-enlarge(V, C, ACSS)

11 case non-singleton, high fitness: /* try to make it singleton */
12 return AC-random-search(V, C, ACSS)

13 case non-singleton, low fitmess: /*replace it */

14 return AC-random-search(V, C, D;,)

15 end-switch

end

Fig. 18. AC mutation.

function AC-enlarge (V, C, ACSS, D;;) : AC-Subspace

begin
ACSSuuz i= Dmi
pll..n] := random-permutation-between(l, n)
repeat

NewACSS := ACSS,uz
ACSS,uy = Arc-Consistency (V, C, NewACSS M vy in ACIS ())
until singleton(ACSS,,.)
return NewACSS
end

Fig. 19. AC-enlarge enlargesa solution (singleton AC subspace) returning a nonsingleton AC subspace.

B1. Analogouslyws; is assigned valu¢4} (boardB2), andvs thelast nonsingleton chromosome, thatis, b&&drhe second

is assigned 8} (boardB3). Arc-consistency enforcement afteistep of mutation consists of aAC-random-search that
assigning valug 1} to variablevgs leads to a singleton chromo-takes as input the result of the first step. A new random order of
some (board4); therefore, the final result &C-enlarge is processing variables is generated; v;, vs, v4, v1, V2, Us, Us.

364 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

B
23456 738

AC-enlarge:
Bl

V6

Dini M VIinB(V1) Bl 1 V5inB(VS) B2 1 V3inB(V3) B3 1 V6inB(V6)
Singleton
AC-random-search:

B3 M V8in {6} B3 I V7in (5}
INCONSISTENCY

Fig. 20. Example of mutation for the valued 8-queens problem. White squares denote allowed values, while gray ones denote forbidden valwesesRiorids ¢
to singleton variables. Black circles are assignments, while gray ones denote that the value is the result of the current arc-consistency.enforcemen

Variable vg is assigned valug6}, randomly chosen from » Hybrid algorithms [38], [39], which combine both ap-
the domain ofvs in board B3 ({2,5,6}), which leads to proaches.

inconsistency, so boarB3 is kept. Similarly, variablev; is We have adopted a global parallelization approach because of
assigned valud5}, obtaining the final mutated chromosomethe following reasons.

represented in boai86, which has a fitness value of 181. « Properties, behavior, and theoretical fundamentals of the
sequential algorithm are preserved.
IV. PARALLEL EXECUTION MODEL Crossover is coarse grained, as it implies searching in a

discrete search space performing arc consistency.

This section presents a parallel execution model of the hy- « The higher communication rate of a global parallelization
bridization introduced in the preViOUS section for a distributed versus other approaches does not Significanﬂy pena“ze
memory multiprocessor, There are three main approaches to speedup since modern distributed memory multiproces-
parallelize an evolution program [29], [30]. sors provide fast, low-latency asynchronous read/write ac-

* Global parallelization [31]-[34]: Selection and mating cess to remote processors’ memory, avoiding rendezvous
consider all of the individuals in the population, but the overhead.
application of genetic operators and/or the evaluation of A global parallelization of the presented constrained op-
individuals is performed in parallel. timization evolution program is expected to achieve high

» Subpopulation model [35]-[37]. The population is dividedpeedups since arc consistency leads to coarse-grained ge-
into multiple subpopulations or demes that evolve isaetic operators. Global parallelization implies a centralized
lated, exchanging individuals occasionally. population. Shared-memory architectures support a straight

RUIZ-ANDINO et al.: HYBRID APPROACH FOR CONSTRAINED OPTIMIZATION PROBLEMS 365

PROCESSOR k
]
] Chromosome
PROCESSOR i
(] :
PROCESSOR j - - Population
7 |] E

OK

oxl []
[]

. Operation PS

- - _Operation |

S~ A

Localisation Table
O
=

MASTER
ati 1
Shared Operation Table Y L]

Local Operation Table

Chromosome

Operation

Fig. 21. Data distribution model. Solid arrows represent fetching a remote chromosome. Dotted arrows represent mutual exclusion access tptratshiare
table.

implementation of this approach, whereas distributed-memory lation (steady-state approach). Therefore, a chromosome
architectures may suffer from communication overhead. We may be present at many processors.

propose a global parallelization model for a distributed-memory Fig. 22 shows the algorithm executed in each processor. Ini-
architecture based on a virtual centralized population, phytially, a subset of the population is generated (line 1). Every
ically distributed among the processors in order to redutiene a new chromosome is generated, its evaluation (fitness
communications. Target architecture is any modern diand feasible values) are asynchronously written to the master’s
tributed-memory multiprocessor that allows fast asynchronoongemory. Lines 2—-14 enclose the main loop; each iteration pro-
read/write access to remote processors’ memory. This featdiges a new generation. Synchronization is needed at the begin-
places them in a middle point between traditional shared- anihg of each generation (line 3) in order to perform the global

distributed-memory architectures. mating. The master establishes the genetic operations in order
The data distribution model, shown in Fig. 21, can be surte generate the next population (line 5), filling the operation
marized as follows table, which is broadcast to every processor (line 7). The loop in

« The population is distributed among the processors in thees 8—12 performs genetic operations (crossover or mutation)
system. Each processor owns a subset of the populatigtil there are no more left. A processor may perform any of the
and a localocalization tableindicating a processor wherepending operations (line 10), so it may need to fetch chromo-
nonlocal chromosomes can be found. somes from a remote processors’ memory (line 9). The resulting

« One processor of the system is distinguishednaster offspring is kept in local memory, but the evaluation values are
This processor behaves as any other, but it is also aynchronously written to master's memory (line 11).

charge of the sequential part of the algorithm, and keepsScheduling of pending operations is performed in a dynamic
the shareaperation table self-guided way, following a set of rules to minimize the number

» The masterproduces theperation table which reflects of chromosomes to be fetched from remote processors. Function
chromosomes selected to survive, to be mutated, andFetch-Operation (line 8) consults the local copy of the op-
take part in crossover (global mating). The operation tab&ation table and the localization table, choosing an operation to
is broadcast at the beginning of every generation, so eg@#rform. In order to minimize the need to fetch remote chromo-
processor has a local copy of it. somes, the local operation table is scanned selecting operations
Genetic operations are performed in parallel. Coordini the following order:
tion is achieved by means of atomic test and swap on the1) crossover of two local chromosomes
master processor’s operation table. A processor may need) mutation of a local chromosome
to fetch (asynchronously) a chromosome from a remote 3) crossover of a local chromosome with a remote one
processor's memory in order to perform the selected ge- 4) mutation or crossover of remote chromosomes.
netic operation. Once an operation is selected, the corresponding entry of the
At the beginning of each generation, each processor owngtared operation table is tested and updated in mutual exclu-
subset of the population formed by sion. If the selected operation has already been performed by
» chromosomes generated by itself in the previous geneeaother processor, the local operation table is updated, and an-
tion other operation is chosen. Otherwise, the processor writes its
» chromosomes from the previous population fetched froomique processor number in the shared operation table. Once
a remote processor, but not replaced in the current pomyery operation has been performed, local copies of the opera-

366 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

Procedure Parallel-AC-Evolution

begin

1 Generate a subset of the initial population

2 while not termination() do

3 Synchronization

4 if I-am-the-Master then

5 Generate-Matings-and-Mutations(Operation-Table)

6 end-if

7 Broadcasting/Reception of Operation-Table

8 while Fetch-Operation(Operation-Table, Localization-Table) do
9 Fetch parents, if necessary, updating Localization-Table
10 Perform AC-Crossover (or AC-Mutation)
11 Write fitness-feasible to Master
12 end-while
13 Update(Localization-Table)
14 end-while

end

Fig. 22. Parallel constrained evolution program.

xv)Pi1|

W

MASTER PROCESSOR
SHARED
OPERATION TABLE
-~ £
s £ 5 &
E ﬂ'r»': E & e
1 e
LOCAL 5 | 7 |XV)PL CocaT
OPERATION TABLE OPERATION TABLE
5 214 1 |XV)pP2 i
-« g N :
2 & £ & 3 18 |xwpl e g z
@ (XV)P1

I
EN

i XV

3B (XV)PI

(1) |xvyp2

8 XV

e @ @ Parent 1
-

PROCESSOR 1 PROCESSOR 2

Fig. 23. Fetch operation example. Circled numbers denote local chromosomes. Abbreviation (genetic operation to perform) in brackets demates. initi
Solid arrows denote successful test and write operations. Dotted arrows denote unsuccessful test and write operations on the shared aperation table

tion table reflect which processor has generated the new chro- I— ~ OneGenaation N

mosomes, allowing the proper update of the localization table ‘ Tp
((jline d13)hfor the next generation, discarding local copies of out- Broadaas Synehvonisaion ~_
ated chromosomes. ‘
Fig. 23 illustrates an example of operation fetching. Processor : | eee MEAE P1
1 (P1) selects, in the first place, the crossover operation (XV) ,_Tf__ :
that will replace chromosome number 3 (field index) because v : : _Nd) py
both parents (chromosomes 3 and 8) are in its local merRary. K
successfully tests and writes its processor number in the share: £ Tip_ Txvs
operation tableP2 behaves similarly with respect to operation Tfo Twe
2. OnceP1 has finished the crossover operation, it proceeds
to select operation 1, as it owns one of the involved parenfdd: 24. Time diagram for a generatiofi, = sequential fraction (global
L . . . selection for mating)7T%,, = broadcast of operation tabl&,.,, = sequential
writing its number in the shared operation tat8.also tries to genetic operatiorl, ., — parallel genetic operatio;, — fetch an operation
fetch operation 1, but it finds that the operation has been alredtiyn masterT,, = fetch remote parentd,,.. = write evaluation values to
selected by processor 1, B8 updates its local operation tab|e,master,Tid = waiting for synchronizatiori]}, = parallel execution of genetic
and proceeds to select a new operation. operators.
Fig. 24 shows the time diagram for a generation. There is a
sequential time fraction due to the generat{@) and broad- crossover in paralle{Z},,) is the sequential timéZs,,), in-
casting(T;,,) Of the operation table. The time to perform areased by the time to select an operat@h,), the time to

RUIZ-ANDINO et al.: HYBRID APPROACH FOR CONSTRAINED OPTIMIZATION PROBLEMS 367

fetch the parent&Z’y,) (only if necessary), and the time to write TABLE I

the evaluation values in master’s mem(ﬂyu) The policy to VALUES OF THEBEST SOLUTION FOUND VERSUSDIFFERENT ELAPSED CPU
e TIMES FOR THEVALUED n-QUEENSPROBLEM; FIRST COLUMN INDICATES THE

select the next genetic operator to apply favors choosing OpPeEdt or tHE BoaRD; SECOND COLUMN CORRESPONDS TO THECPU ELAPSED
tions among local chromosomes; therefore, it is expected to fileve IN SECONDS THIRD COLUMN SHOWS THERESULTS OBTAINED WITH THE

quen“y avoid the overhead duefe, . The dynamic self—guided BRANCH-AND-BOUND ALGORITHM; LAST TWO COLUMNS, LABELED WITH E.P.
P AND DEV., RESP, SHOW THE AVERAGE AND STANDARD DEVIATION OF THE

scheduling of the algorithm balances work load, minimizing idle RESULTS OBTAINED WITH OUR APPROACH FORTEN RUNS

time 7T;,4, introduced by the necessary synchronization between

generations. Size | Time | B&B | EP. | Dev. ||
Linear speedups will be obtained if the communication 20 315] 359 133

40| 355 | 379 | 16.2

overhead—4,, Lye, Thop, and1’s,—is much smaller than the 16 R R
genetic operation granularity7...), and when the number 30T 398 392 11:6
of genetic operations per generation is much greater than the 00 412 | 398 | 12.3
number of processors. In this situatidfi, andZ, are much 300 | 6031 7431 278
smaller tharil,. 600 609 | 8021 20.0

32 900 | 612 828 | 17.1
1200 | 613 | 839 12.9
1500 | 623 | 847 | 14.7

V. EXPERIMENTAL RESULTS

This section presents the empirical results obtained with our 700 | 867 | 970 | 439
system PCSOS (parallel constrained stochastic optimization 5 %‘1138 zgg }?ii igi
system) [40], a constraint programming environment that 5500 T 9 LS T3
implgments the presented work. Section _V—A presentg results 3500 | 912 [1198 513
obtained for the valued-queens problem in order to discuss 200 1 1075 [1215 | 549
the sequential behavior of the system. This first part of the 1600 | 1102 | 1367 | 40.0
experiments were carried out on a Pentium 200 MHz under 64 | 2400 | 1140 [1449 | 43.0
Linux. 3200 | 1157 | 1499 | 42.4

Section V-B reports the evaluation of the parallel version 4000 | 1157 | 1539 | 333 |

of PCSOS using a complex constrained optimization problem
arising in hardware design, trehannel-routing problemEx- _
periments have been carried out on a CRAY T3E, a distribut8d The Channel-Routing Problem

memory multiprocessor. Processing elements are connected bgCcsOs parallel performance has been evaluated using a set
a bidirectional 3-D torus network achieving communicatiogf typical constrained optimization problems that is suitable to
rates of 480 Mbytes/s. Parallel programming capabilities a@ modeled with constraints over finite domains. In this subsec-

extended through the Cray Shared Memory Library, which &jon, we report the performance of the system for a VLSI design
lows fast asynchronous read/write access to remote processgfghlem, thechannel-routing problem

memory. 1) Benchmark DescriptionThe channel-routing problem
[41] is a particular kind of interconnection routing problem,
A. The Valued:.-Queens Problem which is one of the major tasks in the physical design of

In this subsection, we compare the sequential performance/8fy large-scale integration (VLSI) circuits. The routing area
the presented approach versus a depth-first branch and bolgntestricted to a rectangular channel. A channel consists of
(B&B) algorithm, the usual optimization method used by corfWo parallel horizontal rows with numbered pins. Pins that
straint programming languages [17]. We report the results deglong to the same net are connected together subject to a set
tained for four different sizes of the board: 16, 32, 48, and 6@f routing constraints. The channel-routing problem is to find
In each board, the value assigned to each ofitien locations routing paths for a given set of nets in a given channel such that
is a randomly generated integer between 0 and 31. Recall tRgtSegments overlap each other, and the routing area and the
the objective function is defined as the sum of the values of tfal length of routing paths are minimized. There are different
board locations occupied by queens. approaches to the problem that impose different restrictions on

Table Il shows, for each board size, the value of the best sofflé channel and routing paths. In this paper, we consider the
tion found for five different elapsed times. Ten runs were carriéipgleg-free multilayer channel-routing problem [42], which
out for each board size, using different random seeds. We comPoses the following three restrictions.
pare the average of the ten runs versus the results of the B&B e+ The routing area in a channel is divided into several pairs
algorithm, also implemented as part of the PCSOS system. For of layers, one called a horizontal layer, and the other a
n = 16, the B&B algorithm finds the best solution in 88.6 s, vertical layer. There is a fixed number of tracks in each
and proves its optimality in 98.6 s. However, for larger boards, horizontal layer.
an exhaustive search technique such as B&B becomes an infeas The routing path for every net consists of only one hor-
sible approach to solve this problem, whereas our approach is izontal segment which is parallel to the two rows of the
able to find good solutions within areasonable time. Italso must channel, and several vertical segments which are perpen-
be noticed that the relatively low values of the standard devia- dicular to the two rows. Horizontal segments are placed
tion indicate that our method is highly robust. only in horizontal layers, and vertical segments are placed

368 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

650
|
625
600
£
D 575
[
—
(@]
£
3 550
s
525 ,
(a) PS = 600, NG = 125, XVR = 0.5
(b) PS = 600, NG = 625, XVR = 0.1
500 - ---- (c) PS =600, NG =63, XVR =1.0 |
——- (d) PS =120, NG = 625, XVR = 0.5
—-— (e) PS =3000, NG = 25, XVR = 0.5
475 - ‘ : w
0 10000 20000 30000

Number of Crossovers

Fig. 25. Performance of PCSOS with one processor for different parameter sdtthgs.population sizeNG = number of generation& VR = ratio of
population replaced with offsprings.

only in vertical layers. The ends of segments in a routing * Vertical constraints to avoid overlapping vertical

path are connected through via holes. segments. Modeling vertical constraints requires a condi-
« No routing path can stretch over more than one pair of tional precedence relation of tracks: for each terminal

layers. Thus, for each net, we only need to determine the let net;,, be the net where top terminabelongs to, and

horizontal layer and the track for the horizontal segment. letnet,,; be the net where bottom terminidbelongs to. If

The positions for the vertical segments are determined di- both nets are placed in the same layer, the track assigned

rectly after the horizontal segment is fixed. to net,, must be greater than the track assignede®,..

The channel-routing problem has been studied extensivelyThe benchmark suite given in [43] is extensively used in the
in the VLSI design community. LaPaugh [41] proved that thg| S| design community. A representative component of the
problem is NP complete. Many algorithms were initially prosuite isDeutch’s difficult problemThe problem is to route a
posed for the problem [43], [44], most of them graph baseget of 72 nets on a channel where there are 174 terminals on
More recently, neural network [45], simulated annealing [46ach row. There are 117 vertical constraints and 846 horizontal
genetic algorithms [47], and constraint logic programming [42Jonstraints. The objective function to be minimized is the total
have been proposed. length of the routing path, that is, the sum of the lengths of each

The above formulation can be stated as a constrained op§uting path, for a given number of tracks per layer.
mization problem over finite domains [42]. Each netis to be as-2) performance of Sequential Executiofihe channel-
signed a pair layer/track where the horizontal segment is to Rfuting problem has been tested for 2 layers/11 tracks, 3 layers/7
placed. LetL be the number of layers, and [Etbe the number tracks, and 4 layers/5 tracks. For each number of layers/tracks,
of tracks in each layer. Each net is associated a domain variafple different settings of the parameters (population size,
v whose initial domain ranges from 0¢& x 7’) — 1, indicating number of generations, and ratio of population replaced with
the global position of the track where the horizontal segmentd#prings) were tried. In all settings, thewutationrate was
tobe placed. The Iayeris div ", where div stand for integer di- set to O.l,UIfit to 0.5, Weq 10 0, andfe&weigh(t) increases
vision, and the track number within the layepjsnod 7', where |inearly from 0.4 to 0.8. All five settings yield the same number

qu stand; for the remainder op.eration. . ~of crossovers. For each setting, the program was run ten times
Given this problem representation, the set of domain variabiggh a different initial random seed on the CRAY T3E, making
V must satisfy the following two sets of constraints. use of just one processor. Fig. 25 shows the improvement of the

 Horizontal constraintsto avoid overlapping of horizontal solution quality (length of the routing path) versus the number
segments. These constraints are straightforward to moduficrossovers for the 4 layer/5 track version.
for each pair of nets; andn;, if the rightmost terminal Setting (e) shows the worst behavior. It seems that the large
of n; is equal or greater than the leftmost terminahgf population of this setting leads to replications and to a slow evo-
netsn; andn; cannot be assigned the same global trackution. Setting (b) is also slow to improve the quality of the so-
that is,v; # v;. lutions due to the low percentage of crossover. (c) is the set-

RUIZ-ANDINO et al.: HYBRID APPROACH FOR CONSTRAINED OPTIMIZATION PROBLEMS 369

1 — — T L
[e
e s e e T } T — i -
PSS s T e T e
e ! b e e et 1
e e e e e e 2 e AR N I = : = = =
il T e 1| e i | e i I
=T 1.1 —t (¢ 1 it . === | - — [T —F 2w
Fig. 26. Best routing found for the 4 layer/5 track instance.
26 , \
-~
.
o
L
21 f e 1
//,//// . /'/
P e
oid R
Pk 7
16 - T 1
s A T
3 s ET
3 T
Q i /
» i
1 - AL .
e
e
i
e (a) PS= 600, NG=125, XVR=0.5
6| i - (b) PS= 600, NG=625, XVR=0.1 |
i ---- (c) PS= 600, NG= 63, XVR=1.0
i — — - (d) PS= 120, NG=625, XVR=0.5
e —-— (e) PS=3000, NG= 25, XVR=0.5
&
1 1 i Il 1
1 6 11 16 21 26

Number of Processors

Fig. 27. Speedup obtained for different parameter settif§s= population sizeNG = number of generation& VR = ratio of population replaced with
offsprings.

ting showing the best performance. The population size is largeth a higher population size and the ratio of population re-
enough to have a wide variety of schematas, and every indlaced.
vidual in the population is replaced every generation. Fig. 26 A particular issue of the model affecting the speedup —the
shows the best solutions found 4 layers/5 tracks. ratio of chromosomesfetched from aremote processor—hasalso
3) Performance of Parallel ExecutionWe have investigated been studied. Fig. 28 illustrates the efficiency of the policy for
the impact of the number of processors used by PCSOS on siedecting genetic operations, displaying the percentage of chro-
time to reach solutions and on their quality, that is, the systamosomesthathadtobefetchedfromaremote processorversusthe
speedup. The speedup of a parallel system for a given progranmber of processors. Solid lines correspond to the self-guided
is defined as the ratio of the parallel execution time and tlseheduling using the minimization rules described in Section IV.
sequential time. Dotted lines correspond to selecting the first pending genetic
The speedup obtained with PCSOS is almost linear in alperation. Minimization rules divide by two the percentage of
cases. Fig. 27 shows the speedup obtained for five different garomosomes to be fetched from a remote processor.
rameter settings, all of them leading to the same number of geWe have also investigated the relation between the quality of
netic operations. Each reported result is the average of ten the solution found and the time required to find it for different
ecutions with a different random seed. Since the speedup alimbers of processors. Fig. 29 shows the quality of the solu-
tained is linear, we can conclude that the times due to comntion found versus the number of processors for a fixed amount
nication overheadi(s, , 1, and?,.), described in Fig. 24, are of time. Measurements have been taken with parameter setting
negligible in comparison with the time to perform a crossovéa) of Fig. 27. For a fixed elapsed time, the solution quality in-
T,..s. A lower number of crossovers per generation (small popreases with the number of processors, although with the char-
ulation and/or low crossover ratio) implies a higher sequentiatteristic oscillation of stochastic computations. Alternatively,
fraction and a higher idle time, thus reducing speedup. As eke time to obtain a certain solution quality decreases with the
pected, the settings scaling better, (a), (c), and (e) are those wittmber of processors.

370 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

100% T

800/0 L IR -
"
[0]
£
[e]
o .
o =
E 60% - i
< :
[&3
hel
(0]
£z
S
Q
> 40% -
@
©
£
©
o

20% | ¢ —— With Minimisation rules 4

; - w/o minimisation rules
0% / : : : ; ‘
1 6 11 16 21 26

Number of Processors

Fig. 28. Percentage of chromosomes fetched from a remote processor, with and without the minimization policy.

650
TN T T _
. _kr¥\\\7—’ \\
AN N
625 \ R \ il
\ ERERNE
\\ \\ N N
\ N \
\ .
\ \\ \
= 600 r . \ B
= |
c \ ' \
(5] \
- \ N N
g) \\ ~ \
o 575 - B
— 100 s. \ *
e 70 8. \\ ‘\]
550 ----40s. \ " ° \?
- %0 \/\ |
; e
525 L 1 | | 1
1 6 11 16 21 26

Number of Processors

Fig. 29. Quality of solution versus number of processors for different fixed elapsed times.

VI. CONCLUSION lution program is a constraint graph generated by a program
written in a constraint programming language; thus, the method
We have presented a method for solving constrained ops-problem independent, as long as the problem is suited to be
mization problems over finite domains based on the integnaodeled in a constraint programming language over finite do-
tion of constraint-solving techniques and evolution programsiains. Chromosomes are arc-consistent subspaces of the search
Constraint programming languages allow a declarative problespace of the problem, and genetic operators generate new arc-
statement, while evolution programs are a useful optimizatieonsistent subspaces, based on an arc-consistency algorithm.

method for large discrete search spaces. The input to the efoe consistency guarantees that singleton arc-consistent sub-

RUIZ-ANDINO et al.: HYBRID APPROACH FOR CONSTRAINED OPTIMIZATION PROBLEMS

spaces are solutions to the constrained problem. A dual evats]
uation of chromosomes is performed: besides the usual fithess
value, aeasibilityvalue, computed from the size of the AC sub- [16]
space, indicates how far a chromosome is from being a solution.
Selection mechanisms exploit the advantages of this dual evelk’]
uation. [

The hybridization model is appropriate for a global paral-
lelization scheme due to the coarse grain of genetic operationg?!
We have designed a global parallelization model based on a
virtual centralized population, physically distributed among[20]
the processors in order to reduce communications. A target
architecture is any distributed memory multiprocessor, such as51]
the CRAY T3E, on which our system PCSOS has been devel-
oped. A complex constrained optimization problem over finite
integer domains, coming from the field of hardware design, ha{azz]
been used to test the efficiency of the system. Linear speedups
have been obtained when increasing the number of processol&!
showing that communication overhead is negligible versus th&4]
execution time of genetic operators.

(25]

ACKNOWLEDGMENT [26]

Useful comments from anonymous referees are greatly ac-
knowledged. The authors also thank the Editor, D. B. Fogel, fol?”]
the careful reading and comments that improved the presentgsg
tion of this paper.

[29]
REFERENCES
[30]

[1] Z. Michalewicz, Genetic Algorithmst Data Structures= Evolution
Programs 3rd ed. Berlin, Germany: Springer, 1996.

[2] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Ma- [31]
chine Learning Reading, MA: Addison-Wesley, 1989.

[3] T.Back, U.H. Hammel, and H.-P. Schvefel, “Evolutionary computation:
Comments on the history and current statBEE Trans. Evol. Comput.
vol. 1, pp. 3-17, Apr. 1997.

[4] A.E. Eiben, P. E. Raué, and Z. Ruttk&onstrained Problems Boca
Raton, FL: CRC Press, 1995, pp. 307—-365.

[5] E. Marchiori, “Combining constraint processing and genetic algorithms[33]

for constraint satisfaction problems,”Rroc. 7th Int. Conf. Genetic Al-

gorithms CA, 1997, pp. 330-337.

M. C. Riff-Rojas, “Using knowledge of the constraint network to design

an evolutionary algorithm that solves CSP,”Rmoc. 4th IEEE Conf.

Evol. Comput.New York, NY, 1997, pp. 279-284.

[7] J.Bowen and G. Dozier, “Solving constraint satisfaction problems using
a genetic/systematic search hybrid that realizes when to quiBfan.
6th Int. Conf. Genetic Algorithm€A, 1995, pp. 122-129.

[8] A. E. Eiben and Z. Ruttkay, “Self-adaptivity for constraint satisfac-
tion: Learning penalty functions,” irProc. 3rd IEEE Conf. Evol.
Comput. New York: IEEE Press, 1996, pp. 258-261.

[9] J. Paredis, “Co-evolutionary computatiomftif. Life, vol. 2, no. 4, pp.

355-375, 1996.

G. Dozier, J. Bowen, and A. Homaifar, “Solving constraint satisfac-

tion problems using hybrid evolutionary searchEEE Trans. Evol.

Comput, vol. 2, pp. 23—-33, Apr. 1998. [38]

J. Joines and C. Houck, “On the use of non-stationary penalty func-

tions to solve non-linear constrained optimisation problems with gas,”

in Proc. 1st IEEE Conf. Evol. Comput. New York: IEEE , 1994, pp.

579-584.

A. Homaifar, S. H. Lai, and X. Qi, “Constrained optimisation by genetic

algorithms,”Simulation vol. 62, no. 4, pp. 242-254, 1994.

D. Minton, M. D. Johnston, A. B. Philips, and P. Laird, “Minimising [40]

conflicts: A heuristic repair method for constraint satisfaction and sched-

uling problems,"Artif. Intell., vol. 58, no. 1-3, pp. 161-205, 1992. [41]

Z. Michalewicz and G. Nazhiyath, “Genocop lll. A co-evolutionary

algorithm for numerical optimisation problems with non-linear con- [42]

straints,” inProc. 2nd IEEE Conf. Evol. Comput. New York: IEEE ,

1995, pp. 647-651.

(32]

(6]
(34]

(35]

(36]

(37]
(10]

[11]
(39]
[12]

(13]

[14]

371

J. Beasley and P. Chu, “A genetic algorithm for the set covering
problem,”Euro. J. Oper. Resvol. 94, no. 2, pp. 393-404, 1996.

V. Schnecke and O. Vornberger, “Hybrid genetic algorithms for con-
straines placement problem$ZEE Trans. Evol. Computvol. 1, no. 4,

pp. 266-277, 1997.

K. Marriot and J. S. Stuckeyrogramming with Constraints: An Intro-
duction Cambridge, MA: M.I.T. Press, 1998.

18] E. Tsang,Foundations of Constraint SatisfactionNew York: Aca-

demic, 1993.

M. Wallace, “Constraints in planing, scheduling and placement prob-
lems,” inProc. 2nd Int. Workshop Principles and Practice of Constraint
Programming vol. 874, Lecture Notes in Comput. Sci.. Berlin, 1994.

M. Dincbas, P. Van Henteryck, H. Simmons, and A. Aggoun, “The con-
straint programming language chip,”roc. 2nd Int. Conf. 5th Gener-
ation Comput. Syst1988, pp. 249-264.

M. Carlsson, G. Ottosson, and B. Carlson, “An open-ended finite do-
main constraint solver,” iffrogramming Languages: Implementations,
Logics, and Programmingvol. 1292, Lecture Notes in Comput. Sci..
Berlin, 1997, pp. 191-206.

J. F. Puget, “A C++ implementation of CLP,” iaroc. Singapore Int.
Conf. Intell. Syst.1994.

P. Van Hentenryck,The OPL Optimization Programming Lan-
guage Cambridge, MA: M.I.T. Press, 1998.

E. Lawler and D. W. Wood, “Branch-and-bound methods: A survey,”
Oper. Res.vol. 1, no. 14, pp. 339-356, 1966.

llog Inc., Ed. llog Solver++. Reference Manual Mountanview, CA:
1901 Landings Drive, 1994.

J. Paredis, “Genetic state-search for constrained optimisation problems,”
in Proc. 13th Int. Joint Conf. Artif. Intell. San Mateo, CA: Morgan
Kaufmann, 1993.

R. Mohr and T. C. Henderson, “Arc and path consistency revisited,”
Artif. Intell., vol. 28, no. 2, pp. 225-233, 1986.

P. Van Hentenryck, Y. Deville, and C. M. Teng, “A generic arc-consis-
tency algorithm and its specialisationgftif. Intell., vol. 57, no. 2-3,

pp. 291-321, 1992.

J. J. Grefenstette, “Parallel adaptive algorithms for function optimisa-
tion,” Vanderbilt Univ., Tech. Rep. CS-81-19, Dep. Comput. Sci., 1981.
E. Cantu-Paz, “A survey of parallel genetic algorithm@dlculateurs
Paralleles, Reseaux et Systems Repavtis. 10, no. 2, pp. 141-171,
1997.

T. C. Fogarty and R. Huang, “Implementing the genetic algorithm on
transputer based parallel processing systemsPrgt. 1st Conf. Par-
allel Problem Solving from Nature Berlin, Germany: Springer-Verlag,
1991, vol. 496, Lecture Notes in Comput. Sci..

D. Abramson, G. Mills, and S. Perkins, “Parallelisation of a genetic algo-
rithm for the computation of efficient train schedules,’Hroc. Parallel
Comput. Transput. Confl993, pp. 139-149.

R. Hauser and R. Manner, “Implementation of standard genetic algo-
rithm on mimd machines,” ifProc. 3rd Conf. Parallel Problem Solving
from Nature Berlin: Springer-Verlag, 1994, vol. 866, Lecture Notes in
Comput. Sci., pp. 504-513.

E. Canti-Paz and D. E. Goldberg, “Modeling speedups of idealized
bounding cases of parallel genetic algorithms,Piroc. 7th Int. Conf.
Genetic Algorithms San Mateo, CA: Morgan Kaufmann, 1997.

P. B. Grosso, “Computer simulations of genetic adaptation: Parallel
subcomponent interaction in a multilocus model,” doctoral dissertation,
Univ. Michigan, 1995.

C. B. Pettey, M. R. Leuze, and J. J. Grefenstette, “A parallel genetic
algorithm,” inProc. 2nd Int. Conf. Genetic Algorithms Hillsdale, NJ:
Lawrence Erlbaum, 1987, pp. 155-161.

T. C. Belding, “The distributed genetic algorithm revisited,Proc. 6th

Int. Conf. Genetic Algorithms San Mateo, CA: Morgan Kaufmann,
1995, pp. 114-121.

S. C. Lin, E. D. Goodman, and W. F. Punch, “Investigating parallel ge-
netic algorithms on job shop scheduling problems,Pmoc. 6th Annu.
Conf. Evol. Programming Berlin, 1997, vol. 1213, Lecture Notes in
Comput. Sci., pp. 383-393.

R. Bianchini and C. M. Brown, “Parallel genetic algorithms on dis-
tributed-memory architectures,” ifransputer Research and Applica-
tions 10S Press, 1993, vol. 6, pp. 67-82.

A. Ruiz-Andino, “CSOS user's manual,” Dept. Comput. Sci., Univer-
sidad Complutense de Madrid, Spain, Tech. Rep. 73.98, 1998.

A. S. LaPaugh, “Algorithms for Integrated Circuits Layouts: An Analyt-
ical Approach,” doctoral dissertation, M.I.T. Lab. Comput. Sci., 1980.
N. F. Zhou, “Channel routing with constraint logic programming and
delay,” inProc. 9th Int. Conf. Ind. Appl. Artif. Intell. New York, NY:
Gordon and Breach, 1996, pp. 217-231.

372 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 4, NOVEMBER 2000

[43] T.Yoshimura and E. S. Kuh, “Efficient algorithms for channel routing,’
presented at the IEEE Trans. Computer-Aided Design, 1982.

[44] S. C. Fang, W. S. Feng, and S. L. Lee, “A new efficient approach f
multilayer channel routing problem,” iRroc. 29th ACM-IEEE Design
Automation Conf.1992, pp. 579-584.

[45] Y. Takefuji, Neural Network Parallel Computing Norwell, MA:
Kluwer Academic, 1992.

[46] R. J. Brouwer and P. Banerjee, “Simulated annealing algorithm fi
channel routing on a hypercube multiprocessor,’Piroc. IEEE Int.
Conf. Comput Desigrl988, pp. 4-7.

[47] X. Liu, A. Sakamoto, and T. Shimamoto, “Genetic channel routing,” in
IEICE Trans. Fundamentald994, pp. 492-501.

Fernando Saenzeceived the B.S. degree in physics
in 1988, and the Ph.D. degree in physics in 1995, both
from the University Complutense of Madrid.

Since 1991, he has been working in the Computer
Science Department at Faculty of Physics. He is cur-
rently an Associate Professor attached to the Depart-
ment of Computer Architecture and Automatic Con-
trol. He was an FPI (Research Training) fellow at the
University Complutense of Madrid, and at the Institut
fur Informatik at Aachen, Germany. He has worked
in both logic programming and functional-logic pro-
gramming parallelism. His current research interests include parallel computer
architectures, and parallelism in constraint and optimization programming lan-
guages.

))) Dr. S4enz is a member of VHDL International and GUVE (VHDL Spanish
Alvaro Ruiz-Andino received the B.S. degree (jgqr Group).

in computer science in 1992 from the University
Complutense of Madrid.

He is currently a Researcher and Associate Pro-
fessor in the Computer Science Department, Univer-
sity Complutense of Madrid. His main research in-
terests are logic and constraint programming, evolu-

tionary programming, and parallel computer archi-
tectures.

Lourdes Araujo received the B.S. degree in physics
and the Ph.D. degree in computer science in 1987 ar
1994, respectively, both from the Complutense Uni-
versity of Madrid.

After spending three years working on the desigr
and fabrication of communication networks, she
joined the Complutense University in 1990, wher
she is currently an Associate Professor of Computg

as parallel computer architectures and evolutionary programming.

Science. Her doctoral research focused on a paralle
implementation of Prolog. Her research interestsll aspects of parallel execution of constraint and optimization programming
include logic and constraint programming, as wellanguages.

Dr. Ruz is a member of the IEEE Computer Society.

José Ruzreceived the B.S. degree in physics from
the Complutense University of Madrid in 1974, and
the Ph.D. degree in computer science in 1980 from
the same University.

He is currently a Professor in the Department
of Computer Architecture and Automatic Control
at the Complutense University of Madrid, Spain.
In the past, he has worked on concurrent database
machines and parallel execution of logic and func-
tional programming languages. His current research
interests include parallel computer architectures, and

