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Constrained Optimization Problems over Finite

Domains
Alvaro Ruiz-Andino, Lourdes Araujo, Fernando Sáenz, and José Ruz

Abstract—A novel approach for the integration of evolution
programs and constraint-solving techniques over finite domains
is presented. This integration provides a problem-independent
optimization strategy for large-scale constrained optimization
problems over finite domains. In this approach, genetic operators
are based on anarc-consistencyalgorithm, and chromosomes are
arc-consistent portions of the search space of the problem. The
paper describes the main issues arising in this integration: chro-
mosome representation and evaluation, selection and replacement
strategies, and the design of genetic operators. We also present a
parallel execution model for a distributed memory architecture of
the previous integration. We have adopted a global parallelization
approach that preserves the properties, behavior, and fundamen-
tals of the sequential algorithm. Linear speedup is achieved since
genetic operators are coarse grained as they perform a search in
a discrete space carrying out arc consistency. The implementation
has been tested on a CRAY T3E multiprocessor using a complex
constrained optimization problem.

Index Terms—Arc consistency, constrained combinatorial opti-
mization problems, evolution programs.

I. INTRODUCTION

E VOLUTION programs [1] arise from genetic algorithms
[2] (also see [3]), but they consider a richer set of data

structures for chromosome representation, together with an ex-
panded set of genetic operators. However, handling constraints
in evolution programs introduces an additional complexity in
the design of the genetic operators. In constrained problems, a
minimal change to a feasible solution may be very likely to gen-
erate an infeasible one, but infeasible solutions cannot simply be
dropped from the search space because doing so would increase
the difficulty of generating good solutions. Roughly speaking,
constraint-handling methods in evolutionary computation can
be divided into two categories: those aimed at solving constraint
satisfaction problems, and those aimed at solving constrained
optimization problems.

In recent years, there have been several evolutionary ap-
proaches to the constraint satisfaction problem, especially
for the MAXSAT (maximum satisfiability) problem. These
approaches can be divided into three groups:
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• techniques based on exploiting heuristic information of
the constraint network [4]–[6].

• techniques that use a fitness function which is adapted
during search [7]–[9].

• hybrid techniques [10].
The work presented in this paper belongs to the second

category, that is, it is focused on solving optimization prob-
lems. Several methods have been proposed for this class of
constrained problems. These methods can be classified into the
following groups:

• specialized operators that transform feasible individuals
into new feasible individuals [1]

• penalty functions that reduce the fitness of infeasible so-
lutions [11], [12]

• repairing infeasible individuals [13], [14]
• problem-specific representation and genetic operators

[15], [16].
However, all of these approaches require problem-specific

programming. The approach presented in this paper is problem
independent, as long as the problem is suited to be modeled in
a constraint programming language over finite domains.

Constraint programming over finite domains [CP(FD)] has
been one of the most important developments in programming
languages in recent years [17], [18]. Constraint satisfaction
is the core of many complex optimization problems arising
in artificial intelligence [19], including temporal reasoning,
resource allocation, scheduling, and hardware design, to name
a few. Constraint programming languages [20]–[23] provide
support for specifying relationships, orconstraints, among
programmer-defined entities. These languages are becoming
the method of choice for modeling many types of optimization
problems, in particular, those involving heterogeneous con-
straints and combinatorial search. These languages can be used
to model constraint satisfaction problems over finite domains
[CSP(FD)], in which the goal is to find values for a set of
variables that satisfy a given set of constraints.

The core of a constraint programming languages are con-
straint-solving methods, such asarc consistency, an efficient
and general technique that eliminates inconsistent values from
the domains of the variables, reducing the size of the search
space both before and while searching. Most constraint pro-
gramming languages include some kind of enumeration tech-
nique, as well as abranch-and-bound(B&B) [24], [17] proce-
dure for optimization problems in order to perform the search.
However, for real-sized applications, the search space is too
large to be exhaustively enumerated, even using B&B. Thus,
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hybridization with stochastic techniques such as evolution pro-
grams is a promising approach.

According to the previous considerations, evolution programs
and constraint programming languages complement each other
to solve large-scale constrained optimization problems over fi-
nite domains efficiently. The input to the evolution program is a
constraint graph generated by a program written in a constraint
programming language. Evolution programs are an adequate
optimization technique for large search spaces, but they do not
offer a problem-independent way to handle constraints. How-
ever, constraint-solving techniques are adequate for any discrete
combinatorial problem.

This paper presents a novel approach that integrates con-
straint programming languages and evolution programs. In this
approach, genetic operators are based on constraint-solving
techniques, which provide a problem-independent optimization
strategy to efficiently tackle constrained optimization problems
over finite domains with a large search space. The paper
describes the main issues arising in this integration: represen-
tation and evaluation, selection and replacement strategies,
and the design of genetic operators. This approach has been
implemented from scratch, but it can also be implemented
taking advantage of existing constraint programming languages
such as CHIP [20] or ILOG [25].

The integration of constraint-solving techniques over finite
domains and genetic algorithms was first proposed by Paredis
in [26], where a genetic algorithm was enhanced with forward
checking to create chromosomes with unknown valued genes.
However, our method makes use of a general constraint solver
based on arc consistency, and differs substantially in the repre-
sentation and evaluation of chromosomes.

The rest of the paper is organized as follows. Section II re-
vises the main concepts of constraint programming over finite
domains. Section III presents the main points of the integration
of constraint solving and evolution programs. Section IV briefly
reviews the main approaches to parallelize an evolution pro-
gram, and describes our parallel execution model. Section V dis-
cusses the empirical results obtained for a complex constrained
optimization problem, and finally, Section VI presents the con-
clusions.

II. CONSTRAINT SOLVING OVER FINITE DOMAINS

This section reviews the basic definitions, concepts, and tech-
niques used to solve constraint satisfaction problems over finite
domains. They are the basis for the chromosome representation
and the design of the genetic operators in the developed scheme
of integration.

Definition 1—Finite Domain:A finite domain is a finite
set of values . A finite integer domainis a finite set
of integers.

Definition 2—Constraint Satisfaction Problem Over Finite
Domains [CSP(FD)]: A constraint satisfaction problem over
finite domains is stated as a tuple , where the following
hold.

• is a set of variables. They are called
domain variablesas they are constrained to take a value
from a finite domain.

• is a set of constraints among the vari-
ables in , restricting the values that variables can simul-
taneously take.

• is a mapping that assigns an initial finite
domain to each variable in. defines thesearch space
of the problem, as the set of points (tuples)

, where denotes the Cartesian product.

Definition 3—Constraint:A constraint is de-
fined by a subset of variables , and a set of allowed tuples
of values , subset of the Cartesian product of the domains of
the involved variables . That is, , where

denotes the Cartesian product.
An assignment of values to the variables

in satisfiesa constraint if and only if ,
where denotes the projection of over the subset of vari-
ables . That is, defines the points of the search space that
satisfy the constraint. However, it is quite usual to define a con-
straint by means of a functional relation instead of an exten-
sional one. Arithmetic constraints are a typical example of this
situation.

The goal in a constraint satisfaction problem is to find an
assignment of a value from each to each variable
which satisfies every constraint .

As an example of CSP(FD), let us consider an arithmetic
problem involving two variables, that is, , related
by three arithmetic constraints:

, and where the initial domain for both vari-
ables is the finite interval of integer numbers from 1 to 5, that
is, , and . The assignment

is one of the eight solutions to this constraint
satisfaction problem.

A. Arc Consistency

The basis for finite-domain constraint solvers is an arc-con-
sistency algorithm [27], [28] that eliminates unsupported (in-
consistent) values from the domains of the variables.

Definition 4—Supported Value:Given a CSP , and
a constraint , a value , is
supportedwith respect to the constraintif and only if, for all

, there exists a value such that the
tuple .

For example, consider the set of variables , the con-
straint , and the domains and

. Value 1 in the domain of is supported
by value 5 in the domain of since . Similarly, value
2 is supported by values 4 and 5. Consequently, values 4 and 5 in
the domain of are supported, whereas 1–3 are not supported
values.

Definition 5—Arc Consistency:Given a CSP , a
constraint , is arc con-
sistentwith respect to a search spaceif and only if, for all

, for all is supported. A CSP
is arc consistent if and only if all are arc consistent with
respect to .

Convention 1— : Given two search spaces and ,
we will write if and only if :

. Similarly, will denote that , and



RUIZ-ANDINO et al.: HYBRID APPROACH FOR CONSTRAINED OPTIMIZATION PROBLEMS 355

that there exists at least one variable such that
.

Definition 6—Largest Arc-Consistent Search Sub-
space: Given a CSP is the largest
arc-consistent search space for if and only if

is arc consistent, and there is no other such
that is arc consistent and . The largest
arc-consistent search space exists, and it is unique [28].

An arc-consistency algorithmtakes as input argument a con-
straint satisfaction problem , and returns either
the largest arc-consistent search subspace forif it does not
contain any empty domain orINCONSISTENT if it does. A
simplified version of the arc-consistency algorithm is shown in
Fig. 1. It uses a queue to keep track of constraints to be visited.
Unsupported values from the domains of the variables are re-
moved until a fixed point is reached or until inconsistency is de-
tected (a domain results empty). Whenever the domain of a vari-
able is modified as the result of revisiting a constraint, the con-
straints where the variable appears are queued. The algorithm
terminates when the queue is empty or when inconsistency is
detected. A specialized version of this algorithm for a number
of the most important classes of constraints runs in in
time, where is the number of constraints andis the size of
the largest domain [28].

For example, given the CSP(FD)
, the output of the

arc-consistency algorithm will be
(unsupported values have been removed from the do-

mains of the variables). However, for the same set of variables
and constraints, but with the search space ,
the algorithm will detect inconsistency.

Constraint satisfaction problems usually describe hard search
problems, therefore some kind of search with backtracking is
necessary to solve them. Most constraints solvers perform a
search that enforces arc consistency at each node of the search
tree. The arc-consistency algorithm is invoked each time a value
is tried for a variable, removing unsupported values from the
domains of the other variables, thus reducing the search space.
If some domain is left empty (inconsistency is detected), that
branch cannot lead to a solution, and backtracking is performed.

Definition 7—Singleton Domain:A finite domain is a sin-
gleton domain if and only if it consists of just one value, that
is, . A domain with more than one value will be called
a nonsingleton domain.

Definition 8—Singleton Variable:Given a search space, a
domain variable is said to be singleton if and only if is a
singleton domain. Variables whose domains consists of multiple
values are called nonsingleton variables.

Definition 9—Singleton Search Space:Given a search space
, it will be called a singleton search space if and only if all do-

main variables are singleton, that is, it only contains one point.
A search space with more than one point will be called nonsin-
gleton.

Note that arc consistency is not complete, that is, a CSP
can be arc consistent with respect to a search space, but
there may be no solution to in . For example, the CSP(FD)

is arc consistent (every constraint is arc consistent by its own),

Fig. 1. Arc-consistency algorithm.

but none of the four points in is a solution. How-
ever, if is arc consistent with respect toand is singleton,
then is a solution to . Moreover, if is singleton and is
not arc consistent with respect to, then it is not a solution to

. Therefore, solution and arc-consistent singleton search space
are equivalent terms.

B. Arc-Consistent Search Subspaces

In this subsection, we define a key concept,arc-consistent
subspace, the basis for representation in our approach.

Definition 10—Arc-Consistent Subspace:Given a CSP
, a search space is an arc-consistent subspace (AC

subspace) with respect to if and only if and the CSP
is arc consistent.

Convention 2— in : Given a search space
and a finite domain in

denotes the search space
.

The usual way to generate an arc-consistent subspacewith
respect to a CSP is to invoke the arc-consistency
algorithm, taking as input argument the CSPplus an addi-
tional constraint over one of the variables in, that is, the CSP

in .
Fig. 2 depicts a graphical representation of different arc-con-

sistent subspaces for a generic initial search space. Arc-con-
sistent subspace (black dot) is a singleton search space,
that is, a single point, and therefore it lies in the solution space.

is not singleton, but it only contains points that are so-
lutions to the problem. contains some points that are
solutions to the problem, and some others that are not. Note that
it is also possible to have an AC subspace that does not contain
any point solution to the problem, but a singleton AC subspace
outside the solution space cannot exist. Fig. 3 illustrates the AC
subspace concept in the context of an arithmetic CSP.

C. Constrained Optimization Problems over Finite Domains

In many occasions, we are not looking for just a feasible so-
lution to a constraint problem, but rather, the best feasible solu-
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Fig. 2. Graphical representation of different types of arc-consistent subspaces
for a generic constraint satisfaction problem.

tion according to anobjective function. This kind of problem
for which solutions are not equally preferred are calledcon-
straint optimization problemsover finite domains. Many com-
plex search problems such as resource allocation, scheduling,
and hardware design can be stated as constrained optimization
problems over finite domains.

Definition 11—Constraint Optimization Problem Over Finite
Domains [COP(FD)]: A constraint optimization problem over
finite domains is stated as a pair , where
is a constraint satisfaction problem, and
is the objective function to optimize (minimize or maximize).

An example of CSP is the-queensproblem, which requires
us to place queens in a chessboard in such a way that no
queen attacks each other, i.e., they are not in the same column,
row, or diagonal. This problem can be modeled with a set of
variables and a search space

, where each . Each variable represents one
row of the chessboard. The assignment indicates that a
queen is positioned in the fifth column of the third row. The set
of constraints is

• (no two queens in the same
column)

• (no two queens in the
same diagonal).

The constraint of no two queens in the same row is implicit in
the representation.

As an example of COP(FD), consider thevalued -queens
problem [26] an extension of the-queens problem. Now, there
is a weight associated with each board location , defined
by the matrix . Now, the goal is
to find a solution to the -queens problem that maximizes the
sum of the weights of the positions where the queens are placed,
that is, the objective function is

Fig. 4 shows an instance of the problem for eight queens, as well
as its optimal solution.

As an example of the formulation of a constrained optimiza-
tion problem in a constraint programming language, Fig. 5
shows the code for the valued-queens problem in the con-

straint programming language OPL [23]. Keywordint defines
constant integers, while keywordvar int declares domain
variables over finite integer domains. The default optimization
strategy is based on a depth-first branch and bound algorithm.

III. CONSTRAINED EVOLUTION PROGRAMS

This section discusses in detail the hybridization of arc-con-
sistency and evolution programs in order to solve constraint
optimization problems over finite domains. These two mech-
anisms complement each other: constraint-solving techniques
open a flexible and efficient way to handle constraints in evolu-
tion programs, while evolution programs allow us to deal with
large-scale search spaces. This hybridization implies coming up
with a solution for chromosome representation, chromosome
evaluation, and the design of genetic operators.

A. Representation

Classical approaches to handle constraints in evolution
programs use one or more problem-specific tricks as penalty
functions, repair algorithms, or linear recombination. We
will make use of generic constraint-solving techniques over
finite domains in order to design a novel approach to handle
constraints. In our approach, a chromosome is not represented
as an array of values, but as an array of finite domains, that
is, not just a single point, but a subset of the points of the
search space. Moreover, all chromosomes in the population
will be arc-consistent search spaces (AC subspace) to the
problem, generated by means of genetic operators based on the
Arc-consistency function, which returns AC subspaces
where inconsistent values have been removed from the domains
of the variables. Therefore, a chromosome will be a subspace
of the initial search space containing many or no solutions,
and in particular, it may be a singleton search space, and thus,
a solution to the constraint satisfaction problem. Evaluation,
selection, and replacement strategies ensure convergence to sin-
gleton chromosomes. Given this chromosome representation,
genetic operators are deterministic search procedures based on
arc-consistency techniques that take as input argument an AC
subspace, and generate a new AC subspace.

B. Evaluation

Since a chromosome is an AC subspace, chromosome evalu-
ation is more elaborate than the calculation of a fitness function
for a single point of the search space. In order to take advantage
of the chromosome representation, we make a dual evaluation:
for each chromosome, we compute afitnessvalue and afeasi-
bility value.

Fitness plays the usual role, so its calculation is based on the
objective function. The need for the feasibility value comes from
the fact that an AC subspace may contain just a single point (and
in this case, it is a solution to the problem), or it may contain
many points (the whole search space in the worst case). Feasi-
bility indicates how far away a chromosome is from being a sin-
gleton, measuring the relative size of the AC subspace. Chromo-
somes closer to being singleton have a higher feasibility value.
Selection mechanisms will exploit the advantages of this dual
evaluation. Similar dual-evaluation approaches have been pro-
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Fig. 3. Examples of AC subspaces for the CSPhfX; Y g; fX + Y � 6;X 6= Y; jX � Y j 6= 1g; f1 � � � 5g � f1 � � � 5gi. AC subspaceis singleton (thus a
solution). AC subspaceonly contains solution points. AC subspacecontains four points, but only one of them is a solution. AC subspacecontains four points,
none of them being solution, although it is also an arc-consistent subspace.

Fig. 4. Instance of the valued 8-queens problem. Each square of the board
shows its weightw(i; j). Remarked squares form the optimal solutionV =
f3; 6; 8; 1; 4; 7; 5; 2g, which yields a valuef(V) = 181.

Fig. 5. Valuedn-queens in OPL.

posed [15], although with a quite different view of the feasibility
value.

Fig. 6 shows the expected evolution of the population as gen-
erations transpire. The initial population is expected to have low
average values for fitness and feasibility, whereas the final pop-
ulation will have higher values, and in particular, there will be
singleton chromosomes, that is, solutions to the problem.

1) Fitness: In a COP(FD), the objective function
is defined for those points of the search space that

satisfies the constraints. In our approach, a chromosome is not a
point of the search space, but an arc-consistent set of points that
may include points that do not satisfy the constraints. Constraint
programming itself offers the way to evaluate the fitness func-
tion of an AC subspace. In our context, a COP(FD)
is defined using a constraint programming language; thus, the
objective function is defined as a new domain variable
along with constraints relating and . The arc-consistency
algorithm prunes the domain of as it prunes any other do-
main variable, so arc consistency returns the lower and upper
bound of the objective function for a given AC subspace. We
will refer to as the objective variable, and will de-
note its domain in a given search space.

For instance, let us return to the valued-queens problem.
The objective function to maximize is the sum of the weights of
the positions occupied by the queens. The objective variable is
defined as

that is, an arithmetic constraint involving the variableswhich
represent the queens positions. In general, is not sin-
gleton; therefore, would be a finite domain instead of
an integer, and so is the resulting sum.

Fig. 7 shows the approach for computing fitness. A chromo-
some (an AC subspace, denoted by) has associated a domain

, the domain of the variable in the search space
. Fitness is computed from the value of in the AC

subspace being evaluated , normalized with respect to the
size of , the domain of in the initial search space.
First, a weighted average (fit) is computed from the minimum
and maximum values of ( , and , resp.)
The weight is a problem-dependent parameter. Its most
usual value is 0.5. Finally,fit is normalized with respect to the
minimum and maximum values of ( , and

, resp.), in order to obtain a final real value that ranges
from 0 (worst) to 1 (best).
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Fig. 6. Expected evolution of the population in the fitness/feasible dual-evaluation plane.

Fig. 7. Fitness calculation for an AC subspaceD (for a maximization
problem).

2) Feasibility: The feasibility measures the relative size of
the AC subspace with respect to the initial search space, indi-
cating how far a chromosome is from being a singleton. Fig. 8
shows the calculation of feasibility for a chromosome. First,
we define the function which returns the nor-
malized size of the domain of a variablein a search space
with respect to its size in the initial search space . Next,
feasibility is computed as a weighted average betweenfea
andfea , where weight is a problem-dependent parameter,
fea is the value returned by the function for the objective
variable , andfea is the average value of .
Feasibility values range from 0 (when ) to 1 (when
is singleton).

In order to clarify the evaluation of chromosomes, consider
the valued 8-queens example problem. The top chessboard in
Fig. 9 represents a chromosome. Filled squares are the pos-
sible rows for each variable. , the set of columns where
a queen at the second row may be placed, is; thus, is
a singleton in . So are , and . However, ,
and are not singleton. For example, , so the
queen at the first row may be placed at columns 1 or 3. The
bottom chessboard in Fig. 9 represents a chromosome (AC sub-
space) , which is singleton and also a feasible solution to the
problem. Note that .

Table I illustrates values of fitness and feasibility for the chro-
mosomes represented in Fig. 9, as well as intermediates values

Fig. 8. Feasibility calculation for an AC subspaceD.D denotes the initial
search space.

taking part in the calculation (for y and ).

C. Integration Algorithm

The main algorithm arc-consistent evolution program follows
the structure of a steady-state genetic algorithm. Fig. 10 shows
the pseudocode. Functions inboldface invoke the arc-consis-
tency algorithm. Words initalics are parameters to be set.

The initialization step is a loop that generates a cer-
tain number (populationsize) of chromosomes by means of
theAC-random-search procedure. Theevaluation step
computes the fitness and feasibility values for each AC subspace
(chromosome) in the population. In theselection step, some
chromosomes are marked as survivors, so they will not be re-
placed by the new AC subspaces generated by crossover. The
best chromosomes are more likely to be selected, as therank-
selection procedure performs a biased stochastic selection.
An elitist policy is used, so the best chromosome always sur-
vives. Thealteration step is divided into the application of
two genetic operators,AC-crossover andAC-mutation ,
both AC subspace generators guided by the arc-consistency al-
gorithm. New chromosomes generated by crossover take the
place in the population of those chromosomes not chosen to sur-
vive. Mutation is applied to those chromosomes selected to sur-
vive with a probabilitymutationrate. New AC subspace gener-
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Fig. 9. Example of chromosomes for the valued 8-queens problem.

TABLE I
EVALUATION OF CHROMOSOMES IN FIG.

9

ated by means of the mutation operators replaces the chromo-
some used to generate it.

D. Selection and Replacement Strategies

The dual evaluation of chromosomes allows a more elabo-
rate and sensible policy to perform the selective pressure. There
are two points in a steady-state genetic algorithm where chro-
mosomes have to be selected: chromosomes that survive to the
next generation, and chromosomes that take part in crossover.
In both cases, we use a rank-based selection (Fig. 11) with a
quadratic bias, but with a different sorting criterion.

In order to select chromosomes to survive, a value
is computed for each chromosomefor each generation.

is a linear combination of the fitness and the feasi-
bility: surv �tness fea weight feasibility .

As the number of generations increases, the weight of fitness
fea weight increases, in order to help convergence to-

ward singleton chromosomes (solutions). Fig. 12 illustrates this
policy by means of level lines of equal probability in a represen-
tation of the population in the fitness/feasibility plane. It shows
examples of the level lines of equal probability to be chosen to
survive for the first and last generations. Chromosomes with
higher fitness are preferred in the first generations, while in
the last generations, chromosomes with higher feasibility are
preferred, helping convergence toward feasible solutions.

In order to select chromosomes to take part in crossover, the
sorting criterion to select one of the parents is the fitness value,
whereas the other parent is selected using the feasibility value
as the sorting criterion. This heuristic leads to the crossover of
a promising parent in terms of fitness, with a promising parent
in terms of being closer to be a solution, expecting to produce
fit and feasible chromosomes. Fig. 13 illustrates this policy by
means of level lines of equal probability in a representation
of the population in the fitness/feasibility plane. Level lines of
probability for choosing the “fit” chromosome are horizontal,
while level lines of probability for choosing the “feasible” chro-
mosome are vertical.

E. Initial Population Generation

Each chromosome of the initial population is generated by
means of theAC-random-search function. This heuristic
and stochastic procedure generates a new AC subspace which
is a randomly generated subspace of the AC subspace taken
as input argument. In order to generate the initial members
of the population,AC-random-search is called with the
whole search space as an input argument. Fig. 14 shows the
AC-random-search algorithm.

A common way to implement an AC subspace generator is a
variable-value choice heuristic. Variable ordering is randomly
established (permutationp[1 n] ). The domain to be se-
quentially assigned to each variable is a singleton value ran-
domly chosen from the variable’s current domain. If the assign-
ment leads to inconsistency, the AC subspace is left unchanged
(thus, backtracking never occurs), and the algorithm proceeds
with the next variable.

Continuing with the valued 8-queens problem, Fig. 15 shows
an example of the execution of theAC-random-search
algorithm with the initial search space as input

. Variables are processed in the
following randomly chosen order: .
Each variable is assigned a randomly chosen value from its
domain. The first four assignments (black circles) prune the
search space (black squares). Each of the last four assignments
lead to inconsistency; therefore, the AC subspace is not up-
dated, which leaves the board in the last arc-consistent state
(boardB4). For example, boardB5 shows that, starting from
boardB4 and assigning to the value 7 (randomly chosen
among , the domain of in B4) the arc-consistency
algorithm detects inconsistency, as and become sin-
gleton (gray circles), which leaves no option for. Similar
situations occur when processing variables , and .
The final AC subspace obtained is displayed in boardB4:

.
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Fig. 10. AC evolution program.

Fig. 11. Rank-based selection with a quadratic bias.

F. Genetic Operators

Genetic operators generate the new chromosomes that will be
added to the next population, taking as input chromosomes from
the current population. In our approach, genetic operators gen-
erate AC subspace, whose arc consistency is guaranteed by the
Arc-Consistency algorithm. Genetic operators implement
stochastic AC subspace builders, taking a previous AC subspace
as input information to guide the search for a new AC sub-
space. Genetic operators are clustered in two classes: mutation
and crossover. Mutation creates a new AC subspace by means
of a small change in a single chromosome, whereas crossover
searches for a new AC subspace combining information from
two chromosomes. The design of genetic operators is a crucial

Fig. 12. Level lines of equal probability for the selection of chromosomes to
survive.

point in all evolution algorithms because they must guarantee
that new individuals inherit their ancestors’ properties, and they
also must allow the exploration of new areas of the search space.
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Fig. 13. Level lines of equal probability for selection of chromosomes to take
part in crossover.

Fig. 14. AC random search.

1) Crossover: New chromosomes generated by means of
the crossover operator replace those not selected to survive.
Parent chromosomes are chosen using therank-selection
function, as the algorithm in Fig. 10 shows. One parent is
selected biased toward fitness (probably a high fit, but not
feasible solution), and the other parent is selected biased toward
feasibility (probably a feasible solution, but low fit).

Different crossovers operators were tried on a set of
benchmarks; a uniform AC-crossover search algorithm, as
implemented in Fig. 16, showed the best results on average.
Given two AC subspaces, the AC-crossover operator generates
a new AC subspace, which is a mixture of the two parents.
In the first place, (a random value between 1 and )
randomly chosen variables – are assigned the corre-
sponding domain from the first parent ( in ,
line 5). Next, arc consistency is enforced, and finally, remaining
variables – are assigned, enforcing arc consistency,
the corresponding domain from the second parent ( in

, line 9). If the arc-consistency algorithm detects
inconsistency, the domain of the variable is left unchanged.

Fig. 17 illustrates an example of crossover for the valued
8-queens problem. BoardB5 represents the new chromosome
generated from the crossover of chromosomes represented inP1
andP2. P2 is a singleton chromosome, whereasP1 is not. The
domain of the objective variable (sum of the possible occupied

squares) is and for P1 andP2, resp. Vari-
ables are processed in the following order, randomly chosen:

. A random number of variables are
taken directly from parentP1, let . Therefore, domain

is assigned to variable , value 2 is assigned to , and
domain is assigned to . Then, arc consistency is
enforced, obtaining boardB1. The rest of the variables are se-
quentially processed in the established order, ,
by assigning to each variable the corresponding domain from
parentP2 and enforcing arc consistency. That is, starting from
B1, we try B1 in , obtaining boardB2 after arc-con-
sistency enforcing. Next, B2 in is tried, which leads
to inconsistency (no value left for ), and therefore boardB2
is kept. Then, we try B2 in , obtainingB4, and next
B4 in obtainingB5, which is a singleton chromosome.
Therefore,B5 is the resulting offspring, as any further assign-
ment will leave the board unchanged or lead to inconsistency.
B5 yields a value of 168 for the objective function.

2) Mutation: The traditional mutation operator generates a
new chromosome by means of a small change in an old one, al-
lowing the exploration of new areas of the search space, and es-
caping from local optima. The mutation operator in our system
has been designed not just to allow exploration, but also to per-
form local search, a weak point in traditional genetic algorithms.
Fig. 18 shows the algorithm of the mutation operator. The role
played by mutation depends on the quality of the input chro-
mosome (functionevaluate-quality , line 1), taking into
account both the fitness and feasibility values.

• Singleton, High Fitness (Lines 2–8, Fig. 18):The purpose
of the mutation operator in this case is to perform a fine
tuning toward the optimal solution. A new chromosome
is obtained by means of alocal searcharound the input
chromosome, which will be replaced by the new one if
and only if it is a better fit chromosome (lines 5–8). The
local search is performed in two steps.

1) A new AC subspace is generated from the input
chromosome by means of theAC-enlarge
function (line 3). The intended purpose ofAC-en-
large is to generate a nonsingleton AC subspace
around a singleton input chromosome. Fig. 19
shows the AC-enlarge algorithm. Variables
are processed one by one in a randomly chosen
order. Each variable takes its value from the input
chromosome, and then, arc consistency is enforced.
This process continues until a singleton AC sub-
space is obtained. The result is the last nonsingleton
AC subspace generated.

2) Next, a local random search (line 4) is performed
within the new nonsingleton AC subspace in order
to obtain a new singleton chromosome. This is
achieved with theAC-random-search func-
tion, previously presented. In this case, the input
search space is not the whole search space, but the
AC subspace obtained in step 1).

• Singleton, Low Fitness (Lines 9-10):Now, the intended
purpose of the mutation operator is to replace the low-fit
chromosome by a new one that will allow the exploration
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Fig. 15. Example of the generation of an initial chromosome for the valued 8-queens problem. White squares denote allowed values, while gray ones denote
forbidden values. Light gray squares come from the previous board, while dark gray ones represent values removed in the current arc-consistency enforcement.
Circles correspond to singleton variables. Black circles are assignments, while gray ones denote that the value is the result of the current arc-consistency
enforcement.

Fig. 16. AC crossover.ACSS andACSS are the parent chromosomes.D denotes the initial search space.

of new areas of the search space. Therefore, a new chro-
mosome is generated using theAC-enlarge function,
taking the old chromosome as input.

• Nonsingleton, High Fitness (Lines 11-12):The input chro-
mosome is a promising one, but it is not singleton, so there
is no guarantee that a solution lies in it. The mutation
operator tries to increase its feasibility by means of the
AC-random-search function.

• Nonsingleton, Low Fitness (Lines 13-14):A new chromo-
some is generated with the same method used for the initial
population in order to allow the exploration of new areas
of the search space.

The function evaluate-quality checks whether the
chromosome is singleton, and decides if it is oflow or high

fitness. A singleton (resp., nonsingleton) chromosome will be
classified ashighly fit if its fitness value is above the average
fitness of singleton (resp., nonsingleton) chromosomes in the
current population.

Fig. 20 shows an example of mutation, for the valued
8-queens problem, in the case of a singleton chromosome
with high fitness, that is, the random local search. BoardB
represents the input chromosome, which has a fitness value
of 147. In the first step, theAC-enlarge algorithm is used
to generate a nonsingleton chromosome around the input
one. The order of processing variables, randomly chosen,
is . Variable is assigned the
corresponding value from the input chromosome (represented
in boardB), and arc consistency is enforced, obtaining board
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Fig. 17. Example of crossover of two chromosomes for the valued 8-queens problem. White squares denote allowed values. Black squares represent forbidden
values because of the assignment of the domains from parent P1. Gray squares represent values removed because of arc-consistency enforcement. Circles correspond
to singleton variables. Black circles are assignments, while gray ones denote that the value is the result of the current arc-consistency enforcement.

Fig. 18. AC mutation.

Fig. 19. AC-enlarge enlargesa solution (singleton AC subspace) returning a nonsingleton AC subspace.

B1. Analogously, is assigned value (boardB2), and
is assigned (boardB3). Arc-consistency enforcement after
assigning value to variable leads to a singleton chromo-
some (boardB4); therefore, the final result ofAC-enlarge is

the last nonsingleton chromosome, that is, boardB3. The second
step of mutation consists of anAC-random-search that
takes as input the result of the first step. A new random order of
processing variables is generated: .
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Fig. 20. Example of mutation for the valued 8-queens problem. White squares denote allowed values, while gray ones denote forbidden values. Circles correspond
to singleton variables. Black circles are assignments, while gray ones denote that the value is the result of the current arc-consistency enforcement.

Variable is assigned value , randomly chosen from
the domain of in board B3 , which leads to
inconsistency, so boardB3 is kept. Similarly, variable is
assigned value , obtaining the final mutated chromosome,
represented in boardB6, which has a fitness value of 181.

IV. PARALLEL EXECUTION MODEL

This section presents a parallel execution model of the hy-
bridization introduced in the previous section for a distributed
memory multiprocessor, There are three main approaches to
parallelize an evolution program [29], [30].

• Global parallelization [31]–[34]: Selection and mating
consider all of the individuals in the population, but the
application of genetic operators and/or the evaluation of
individuals is performed in parallel.

• Subpopulation model [35]–[37]. The population is divided
into multiple subpopulations or demes that evolve iso-
lated, exchanging individuals occasionally.

• Hybrid algorithms [38], [39], which combine both ap-
proaches.

We have adopted a global parallelization approach because of
the following reasons.

• Properties, behavior, and theoretical fundamentals of the
sequential algorithm are preserved.

• Crossover is coarse grained, as it implies searching in a
discrete search space performing arc consistency.

• The higher communication rate of a global parallelization
versus other approaches does not significantly penalize
speedup since modern distributed memory multiproces-
sors provide fast, low-latency asynchronous read/write ac-
cess to remote processors’ memory, avoiding rendezvous
overhead.

A global parallelization of the presented constrained op-
timization evolution program is expected to achieve high
speedups since arc consistency leads to coarse-grained ge-
netic operators. Global parallelization implies a centralized
population. Shared-memory architectures support a straight
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Fig. 21. Data distribution model. Solid arrows represent fetching a remote chromosome. Dotted arrows represent mutual exclusion access to the shared operation
table.

implementation of this approach, whereas distributed-memory
architectures may suffer from communication overhead. We
propose a global parallelization model for a distributed-memory
architecture based on a virtual centralized population, phys-
ically distributed among the processors in order to reduce
communications. Target architecture is any modern dis-
tributed-memory multiprocessor that allows fast asynchronous
read/write access to remote processors’ memory. This feature
places them in a middle point between traditional shared- and
distributed-memory architectures.

The data distribution model, shown in Fig. 21, can be sum-
marized as follows

• The population is distributed among the processors in the
system. Each processor owns a subset of the population
and a locallocalization table, indicating a processor where
nonlocal chromosomes can be found.

• One processor of the system is distinguished asmaster.
This processor behaves as any other, but it is also in
charge of the sequential part of the algorithm, and keeps
the sharedoperation table.

• The masterproduces theoperation table, which reflects
chromosomes selected to survive, to be mutated, and to
take part in crossover (global mating). The operation table
is broadcast at the beginning of every generation, so each
processor has a local copy of it.

• Genetic operations are performed in parallel. Coordina-
tion is achieved by means of atomic test and swap on the
master processor’s operation table. A processor may need
to fetch (asynchronously) a chromosome from a remote
processor’s memory in order to perform the selected ge-
netic operation.

At the beginning of each generation, each processor owns a
subset of the population formed by

• chromosomes generated by itself in the previous genera-
tion

• chromosomes from the previous population fetched from
a remote processor, but not replaced in the current popu-

lation (steady-state approach). Therefore, a chromosome
may be present at many processors.

Fig. 22 shows the algorithm executed in each processor. Ini-
tially, a subset of the population is generated (line 1). Every
time a new chromosome is generated, its evaluation (fitness
and feasible values) are asynchronously written to the master’s
memory. Lines 2–14 enclose the main loop; each iteration pro-
duces a new generation. Synchronization is needed at the begin-
ning of each generation (line 3) in order to perform the global
mating. The master establishes the genetic operations in order
to generate the next population (line 5), filling the operation
table, which is broadcast to every processor (line 7). The loop in
lines 8–12 performs genetic operations (crossover or mutation)
until there are no more left. A processor may perform any of the
pending operations (line 10), so it may need to fetch chromo-
somes from a remote processors’ memory (line 9). The resulting
offspring is kept in local memory, but the evaluation values are
asynchronously written to master’s memory (line 11).

Scheduling of pending operations is performed in a dynamic
self-guided way, following a set of rules to minimize the number
of chromosomes to be fetched from remote processors. Function
Fetch-Operation (line 8) consults the local copy of the op-
eration table and the localization table, choosing an operation to
perform. In order to minimize the need to fetch remote chromo-
somes, the local operation table is scanned selecting operations
in the following order:

1) crossover of two local chromosomes
2) mutation of a local chromosome
3) crossover of a local chromosome with a remote one
4) mutation or crossover of remote chromosomes.
Once an operation is selected, the corresponding entry of the

shared operation table is tested and updated in mutual exclu-
sion. If the selected operation has already been performed by
another processor, the local operation table is updated, and an-
other operation is chosen. Otherwise, the processor writes its
unique processor number in the shared operation table. Once
every operation has been performed, local copies of the opera-
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Fig. 22. Parallel constrained evolution program.

Fig. 23. Fetch operation example. Circled numbers denote local chromosomes. Abbreviation (genetic operation to perform) in brackets denotes initial value.
Solid arrows denote successful test and write operations. Dotted arrows denote unsuccessful test and write operations on the shared operation table.

tion table reflect which processor has generated the new chro-
mosomes, allowing the proper update of the localization table
(line 13) for the next generation, discarding local copies of out-
dated chromosomes.

Fig. 23 illustrates an example of operation fetching. Processor
1 (P1) selects, in the first place, the crossover operation (XV)
that will replace chromosome number 3 (field index) because
both parents (chromosomes 3 and 8) are in its local memory.P1
successfully tests and writes its processor number in the shared
operation table.P2 behaves similarly with respect to operation
2. OnceP1 has finished the crossover operation, it proceeds
to select operation 1, as it owns one of the involved parents,
writing its number in the shared operation table.P2 also tries to
fetch operation 1, but it finds that the operation has been already
selected by processor 1, soP2 updates its local operation table,
and proceeds to select a new operation.

Fig. 24 shows the time diagram for a generation. There is a
sequential time fraction due to the generation and broad-
casting of the operation table. The time to perform a

Fig. 24. Time diagram for a generation.T = sequential fraction (global
selection for mating),T = broadcast of operation table,T = sequential
genetic operation,T = parallel genetic operation,T = fetch an operation
from master,T = fetch remote parents,T = write evaluation values to
master,T = waiting for synchronization,T = parallel execution of genetic
operators.

crossover in parallel is the sequential time , in-
creased by the time to select an operation , the time to
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fetch the parents (only if necessary), and the time to write
the evaluation values in master’s memory . The policy to
select the next genetic operator to apply favors choosing opera-
tions among local chromosomes; therefore, it is expected to fre-
quently avoid the overhead due to . The dynamic self-guided
scheduling of the algorithm balances work load, minimizing idle
time , introduced by the necessary synchronization between
generations.

Linear speedups will be obtained if the communication
overhead— , and —is much smaller than the
genetic operation granularity , and when the number
of genetic operations per generation is much greater than the
number of processors. In this situation, and are much
smaller than .

V. EXPERIMENTAL RESULTS

This section presents the empirical results obtained with our
system PCSOS (parallel constrained stochastic optimization
system) [40], a constraint programming environment that
implements the presented work. Section V-A presents results
obtained for the valued-queens problem in order to discuss
the sequential behavior of the system. This first part of the
experiments were carried out on a Pentium 200 MHz under
Linux.

Section V-B reports the evaluation of the parallel version
of PCSOS using a complex constrained optimization problem
arising in hardware design, thechannel-routing problem. Ex-
periments have been carried out on a CRAY T3E, a distributed
memory multiprocessor. Processing elements are connected by
a bidirectional 3-D torus network achieving communication
rates of 480 Mbytes/s. Parallel programming capabilities are
extended through the Cray Shared Memory Library, which al-
lows fast asynchronous read/write access to remote processors’
memory.

A. The Valued -Queens Problem

In this subsection, we compare the sequential performance of
the presented approach versus a depth-first branch and bound
(B&B) algorithm, the usual optimization method used by con-
straint programming languages [17]. We report the results ob-
tained for four different sizes of the board: 16, 32, 48, and 64.
In each board, the value assigned to each of the locations
is a randomly generated integer between 0 and 31. Recall that
the objective function is defined as the sum of the values of the
board locations occupied by queens.

Table II shows, for each board size, the value of the best solu-
tion found for five different elapsed times. Ten runs were carried
out for each board size, using different random seeds. We com-
pare the average of the ten runs versus the results of the B&B
algorithm, also implemented as part of the PCSOS system. For

, the B&B algorithm finds the best solution in 88.6 s,
and proves its optimality in 98.6 s. However, for larger boards,
an exhaustive search technique such as B&B becomes an infea-
sible approach to solve this problem, whereas our approach is
able to find good solutions within a reasonable time. It also must
be noticed that the relatively low values of the standard devia-
tion indicate that our method is highly robust.

TABLE II
VALUES OF THEBEST SOLUTION FOUND VERSUSDIFFERENTELAPSED CPU

TIMES FOR THEVALUED n-QUEENSPROBLEM; FIRST COLUMN INDICATES THE

SIZE OF THEBOARD; SECONDCOLUMN CORRESPONDS TO THECPU ELAPSED

TIME IN SECONDS; THIRD COLUMN SHOWS THERESULTSOBTAINED WITH THE

BRANCH-AND-BOUND ALGORITHM; LAST TWO COLUMNS, LABELED WITH E.P.
AND DEV., RESP., SHOW THE AVERAGE AND STANDARD DEVIATION OF THE

RESULTSOBTAINED WITH OUR APPROACH FORTEN RUNS

B. The Channel-Routing Problem

PCSOS parallel performance has been evaluated using a set
of typical constrained optimization problems that is suitable to
be modeled with constraints over finite domains. In this subsec-
tion, we report the performance of the system for a VLSI design
problem, thechannel-routing problem.

1) Benchmark Description:The channel-routing problem
[41] is a particular kind of interconnection routing problem,
which is one of the major tasks in the physical design of
very large-scale integration (VLSI) circuits. The routing area
is restricted to a rectangular channel. A channel consists of
two parallel horizontal rows with numbered pins. Pins that
belong to the same net are connected together subject to a set
of routing constraints. The channel-routing problem is to find
routing paths for a given set of nets in a given channel such that
no segments overlap each other, and the routing area and the
total length of routing paths are minimized. There are different
approaches to the problem that impose different restrictions on
the channel and routing paths. In this paper, we consider the
dogleg-free multilayer channel-routing problem [42], which
imposes the following three restrictions.

• The routing area in a channel is divided into several pairs
of layers, one called a horizontal layer, and the other a
vertical layer. There is a fixed number of tracks in each
horizontal layer.

• The routing path for every net consists of only one hor-
izontal segment which is parallel to the two rows of the
channel, and several vertical segments which are perpen-
dicular to the two rows. Horizontal segments are placed
only in horizontal layers, and vertical segments are placed
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Fig. 25. Performance of PCSOS with one processor for different parameter settings.PS = population size,NG = number of generations,XVR = ratio of
population replaced with offsprings.

only in vertical layers. The ends of segments in a routing
path are connected through via holes.

• No routing path can stretch over more than one pair of
layers. Thus, for each net, we only need to determine the
horizontal layer and the track for the horizontal segment.
The positions for the vertical segments are determined di-
rectly after the horizontal segment is fixed.

The channel-routing problem has been studied extensively
in the VLSI design community. LaPaugh [41] proved that the
problem is NP complete. Many algorithms were initially pro-
posed for the problem [43], [44], most of them graph based.
More recently, neural network [45], simulated annealing [46],
genetic algorithms [47], and constraint logic programming [42]
have been proposed.

The above formulation can be stated as a constrained opti-
mization problem over finite domains [42]. Each net is to be as-
signed a pair layer/track where the horizontal segment is to be
placed. Let be the number of layers, and letbe the number
of tracks in each layer. Each net is associated a domain variable

whose initial domain ranges from 0 to , indicating
the global position of the track where the horizontal segment is
to be placed. The layer is , where div stand for integer di-
vision, and the track number within the layer is , where
mod stands for the remainder operation.

Given this problem representation, the set of domain variables
must satisfy the following two sets of constraints.

• Horizontal constraints, to avoid overlapping of horizontal
segments. These constraints are straightforward to model:
for each pair of nets and , if the rightmost terminal
of is equal or greater than the leftmost terminal of,
nets and cannot be assigned the same global track,
that is, .

• Vertical constraints, to avoid overlapping vertical
segments. Modeling vertical constraints requires a condi-
tional precedence relation of tracks: for each terminal,
let be the net where top terminalbelongs to, and
let be the net where bottom terminalbelongs to. If
both nets are placed in the same layer, the track assigned
to net must be greater than the track assigned tonet .

The benchmark suite given in [43] is extensively used in the
VLSI design community. A representative component of the
suite isDeutch’s difficult problem. The problem is to route a
set of 72 nets on a channel where there are 174 terminals on
each row. There are 117 vertical constraints and 846 horizontal
constraints. The objective function to be minimized is the total
length of the routing path, that is, the sum of the lengths of each
routing path, for a given number of tracks per layer.

2) Performance of Sequential Execution:The channel-
routing problem has been tested for 2 layers/11 tracks, 3 layers/7
tracks, and 4 layers/5 tracks. For each number of layers/tracks,
five different settings of the parameters (population size,
number of generations, and ratio of population replaced with
offprings) were tried. In all settings, themutationrate was
set to 0.1, to 0.5, to 0, andfea weight increases
linearly from 0.4 to 0.8. All five settings yield the same number
of crossovers. For each setting, the program was run ten times
with a different initial random seed on the CRAY T3E, making
use of just one processor. Fig. 25 shows the improvement of the
solution quality (length of the routing path) versus the number
of crossovers for the 4 layer/5 track version.

Setting (e) shows the worst behavior. It seems that the large
population of this setting leads to replications and to a slow evo-
lution. Setting (b) is also slow to improve the quality of the so-
lutions due to the low percentage of crossover. (c) is the set-
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Fig. 26. Best routing found for the 4 layer/5 track instance.

Fig. 27. Speedup obtained for different parameter settings.PS = population size,NG = number of generations,XVR = ratio of population replaced with
offsprings.

ting showing the best performance. The population size is large
enough to have a wide variety of schematas, and every indi-
vidual in the population is replaced every generation. Fig. 26
shows the best solutions found 4 layers/5 tracks.

3) Performance of Parallel Execution:We have investigated
the impact of the number of processors used by PCSOS on the
time to reach solutions and on their quality, that is, the system
speedup. The speedup of a parallel system for a given program
is defined as the ratio of the parallel execution time and the
sequential time.

The speedup obtained with PCSOS is almost linear in all
cases. Fig. 27 shows the speedup obtained for five different pa-
rameter settings, all of them leading to the same number of ge-
netic operations. Each reported result is the average of ten ex-
ecutions with a different random seed. Since the speedup ob-
tained is linear, we can conclude that the times due to commu-
nication overhead ( , and ), described in Fig. 24, are
negligible in comparison with the time to perform a crossover

. A lower number of crossovers per generation (small pop-
ulation and/or low crossover ratio) implies a higher sequential
fraction and a higher idle time, thus reducing speedup. As ex-
pected, the settings scaling better, (a), (c), and (e) are those with

both a higher population size and the ratio of population re-
placed.

A particular issue of the model affecting the speedup —the
ratioofchromosomesfetchedfromaremoteprocessor—hasalso
been studied. Fig. 28 illustrates the efficiency of the policy for
selecting genetic operations, displaying the percentage of chro-
mosomesthathadtobefetchedfromaremoteprocessorversusthe
number of processors. Solid lines correspond to the self-guided
scheduling using the minimization rules described in Section IV.
Dotted lines correspond to selecting the first pending genetic
operation. Minimization rules divide by two the percentage of
chromosomes to be fetched from a remote processor.

We have also investigated the relation between the quality of
the solution found and the time required to find it for different
numbers of processors. Fig. 29 shows the quality of the solu-
tion found versus the number of processors for a fixed amount
of time. Measurements have been taken with parameter setting
(a) of Fig. 27. For a fixed elapsed time, the solution quality in-
creases with the number of processors, although with the char-
acteristic oscillation of stochastic computations. Alternatively,
the time to obtain a certain solution quality decreases with the
number of processors.
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Fig. 28. Percentage of chromosomes fetched from a remote processor, with and without the minimization policy.

Fig. 29. Quality of solution versus number of processors for different fixed elapsed times.

VI. CONCLUSION

We have presented a method for solving constrained opti-
mization problems over finite domains based on the integra-
tion of constraint-solving techniques and evolution programs.
Constraint programming languages allow a declarative problem
statement, while evolution programs are a useful optimization
method for large discrete search spaces. The input to the evo-

lution program is a constraint graph generated by a program
written in a constraint programming language; thus, the method
is problem independent, as long as the problem is suited to be
modeled in a constraint programming language over finite do-
mains. Chromosomes are arc-consistent subspaces of the search
space of the problem, and genetic operators generate new arc-
consistent subspaces, based on an arc-consistency algorithm.
Arc consistency guarantees that singleton arc-consistent sub-
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spaces are solutions to the constrained problem. A dual eval-
uation of chromosomes is performed: besides the usual fitness
value, afeasibilityvalue, computed from the size of the AC sub-
space, indicates how far a chromosome is from being a solution.
Selection mechanisms exploit the advantages of this dual eval-
uation.

The hybridization model is appropriate for a global paral-
lelization scheme due to the coarse grain of genetic operations.
We have designed a global parallelization model based on a
virtual centralized population, physically distributed among
the processors in order to reduce communications. A target
architecture is any distributed memory multiprocessor, such as
the CRAY T3E, on which our system PCSOS has been devel-
oped. A complex constrained optimization problem over finite
integer domains, coming from the field of hardware design, has
been used to test the efficiency of the system. Linear speedups
have been obtained when increasing the number of processors,
showing that communication overhead is negligible versus the
execution time of genetic operators.
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