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Abstract. Many problems from artificial intelligence can be described
as constraint satisfaction problems over finite domains (CSP(FD)), that
is, a solution is an assignment of a value from a finite domain to each
problem variable such that a set of constraints is satisfied. Arc-consisten-
cy algorithms remove inconsistent values from the set of values that can
be assigned to a variable (its domain), thus reducing the search space. We
have developed two parallelisation models of arc-consistency to be run
on MIMD multiprocessors. Two different policies, static and dynamic,
to schedule the execution of constraints have been tested. In the static
scheduling policy, the set of constraints is divided into N partitions,
which are executed in parallel on N processors. We discuss an important
factor affecting performance, the criterion to establish the partition in or-
der to balance the run-time workload. In the dynamic scheduling policy,
any processor can execute any constraint, improving the workload bal-
ance. However, a coordination mechanism is required to ensure a sound
order in the execution of constraints. Both parallelisation models have
been implemented on a CRAY T3E multiprocessor with up to thirty four
processors. Empirical results on speedup and behaviour of both models
are reported and discussed.

1 Introduction

Constraint Programming over finite domains (CP(FD)) [5,7] has been used for
specifying and solving complex constraint satisfaction and optimisation prob-
lems, as resource allocation, scheduling and hardware design [6,17]. Finite do-
main Constraint Satisfaction Problems (CSP) usually describe NP-complete
search problems, but it has been shown that by working locally on constraints
and their related variables it is possible to dynamically prune the search space in
an efficient way. Techniques following this approach, called arc-consistency algo-
rithms, eliminate inconsistent values from the solution space. They can be used
to reduce the size of the search space both before and while searching. Waltz
[18] proposed the first arc-consistency algorithm, and several improved versions
are described in the literature: AC-3 [10], AC-4 [11], AC-5 [15], and AC-6 [1].
AC-3, AC-4 and AC-6 deal with extensional constraints, that is, constraints
are expressed as the set of tuples that satisfies it, whereas AC-5 can be specialised
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for functional, anti-functional and monotonic constraints. This specialisation
provides an efficient decision procedure for the basic constraints of constraint
programming languages.

We have developed and tested two parallelisation models of arc-consistency
for MIMD distributed shared memory multiprocessors. These models arise from
two policies of scheduling the constraints to be processed, static and dynamic. In
the static model, the set of constraints is partitioned into N partitions, which are
processed in parallel on N processors. We discuss the two main issues affecting
the performance of this model: the criterion to distribute constraints among pro-
cessors, and the frequency of updating shared variables. In the dynamic model
any processor can process any constraint, improving the workload balance. How-
ever, a coordination mechanism is required to ensure a sound processing order
of constraints.

Several parallel processing methods for solving CSPs have been proposed. In
[20], a parallel constraint solving technique for a special class of CSP, acyclic
constraint networks, is developed. It also presents some results on parallel com-
plexity, generalising results in [8]. In [9], it is concluded that parallel complexity
of constraint networks is critically dependent on subtle properties of the network
which do not influence its sequential complexity. They propose massively parallel
processing of arc-consistency with also very simple processing elements.

In [2,12] Nguyen, Deville and Baudot proposed distributed versions for AC-3,
AC-4, and AC-6 for binary CSPs, based on a static scheduling. Our work con-
siders both static and dynamic scheduling policies, and it is focused on the AC-5
specialisation for functional, anti-functional and monotonic n-ary constraints.
More precisely, it is a parallelisation of the indezical scheme [4,3,16]. We have
integrated the parallel execution of arc-consistency within a labelling process
that searches for solutions to the constraint satisfaction problem, embedded in a
constraint logic programming language. Labelling is performed sequentially, that
is, parallel arc-consistency phases are interleaved with variable-value assignment
phases, synchronous and identically performed by every processing element, in
contrast with other distributed constraint satisfaction techniques as [19].

The rest of the paper is organised as follows. Next section describes basic
concepts of constraint programming over finite domains of integers. Section 3
discusses the parallelism presented by the arc-consistency algorithm and intro-
duces two models to exploit it. Section 4 describes the static scheduling execution
model, whereas Section 5 is devoted to the dynamic one. Section 6 reports and
discusses the experimental results. Finally, conclusions are drawn in section 7.

2 Constraint Programming

A constraint satisfaction problem over finite domains may be stated as follows.
Given a tuple (V,D,C), where

— V= {vi, --,vn}, is a set of domain variables,
— D = {di,---,dn}, is the set of an initial finite domain (finite set of values)

for each variable,
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— C ={c1,---,¢m}, is a set of constraints among the variables in V. A con-
straint ¢ = (V,, R.) is defined by a subset of variables V, C V, and a subset of
allowed tuples of values R € @);c(;j/v,ev.) &i» Where @ denotes Cartesian
product.

The goal is to find an assignment for each variable v; € V of a value from
each d; € D which satisfies every constraint ¢; € C.

A constraint ¢ = (V,R.) € C, V. = {vy,---,vx}, is arc-consistent with
respect to domains {dj,---,d} iff for all v; € V,, for all a € d;, there exists
a tuple (b1, -+,bi—1,8,biy1,-+-,bk) € R, where b; € dj. A CSP is called arc-
consistent iff all ¢; € C are arc-consistent with respect to D.

The starting point of this work is a sequential constraint solver which im-
plements consistency using the indezical scheme [4,3,16]. In this scheme, a con-
straint is translated into a set of reactive functional expressions, called indezicals,
which maintain consistency. An indexical has the form “v in E(V)”, where v € V,
V C V, and E(V) is a monotonic functional expression which returns a finite set
of values. Given an indexical I = v in E(V'), we call V its set of arguments, and
we say that, for all v; € V, I depends on v;, and I writes the domain variable v.
A constraint ¢ = (V,, R,.) relating the set of domain variables V, = {vy,-- -, vk},
is translated into a set of k indexicals {I; = v; in E;(V, — {v;})}. Each indexical
I; writes variable v; and depends on the remaining k — 1 variables. Functional
expressions F;(V, — {v;}) are properly defined for arc-consistency to be achieved
(removal of inconsistent values) with respect to constraint c. Most common high
level constraints, such as arithmetic, symbolic and relational ones can be easily
translated to indexicals.

The set of finite domains that keeps the current domain of each variable in V
is called the store. The initial value of the store is defined by D. The execution
of an indexical v in E(V), is triggered by changes in the domains of its set of
arguments V in a data driven way. When an indexical is executed, the domain
of v in the store is updated with d, N Eval(E(V')), where d,, denotes the current
value of the domain of v in the store, and Eval(E(V)) denotes the evaluation of
E(V) with the current domains of the set of variables V' in the store.

Figures 1 and 2 show the sequential arc-consistency algorithm. Its input
argument is the CSP (V,D,C) whose arc-consistency is to be achieved. The
set of constraints C is expressed as a set of indexicals. The algorithm returns
either a store where the domain for each variable has been pruned achieving arc-
consistency, or FAILURE if inconsistency is detected (the domain of a variable
was pruned to an empty domain).

A sequential arc-consistency algorithm executes indexicals until either the
fixed point is reached, or inconsistency is detected. The fixed point is reached iff
the store is arc-consistent. A propagation queue is used to schedule the execution
of indexicals (PropagationQueue, figure 1). As the result of the execution of an
indexical (Arc_Consistent()), the domain of a variable may be pruned, and
in such a case the variable is queued (Update()). Initially, all indexicals are
executed, initialising the PropagationQueue (line 1). The main loop (lines 2
to 9) iterates until either the propagation queue is empty, or inconsistency is
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function Arc-Consistent-CSP ((VarSet, DomSet, ConstrSet)): Store
begin
Queue_Init(PropagationQueue, --- );
while NOT Empty(PropagationQueue) do
Queue_Pop (PropagationQueue, v;);
for each indexical I; which depends on v; do
if NOT Arc_Consistent(];,Store,PropagationQueue) then
return FAILURE;
end-if;
end-for;
end-while;
return Store;
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end;

Fig. 1. Arc consistency algorithm.

detected. In each iteration, a variable is dequeued and those indexicals that
depend on it are executed.

function Arc_Consistent( ‘v; in E(Q)?,
Var Store, Var PropQueue ) : Boolean
begin
NewDomain := Eval(E(), Store);
return (Update(NewDomain,v;,Store,PropQueue) <> EMPTY);

end;

function Update( NewDomain, v;, Var Store,
Var PropQueue): RESULT
begin
NewDomain := NewDomain N Storel[wv:];
if Empty(NewDomain) then return EMPTY; end-if;
if (NewDomain C Store{v;]) then
Store[v;] := NewDomain;
Queue_Push(v;, PropQueue);
return PRUNED;
end-if;
return NOT_PRUNED;
end;

Fig. 2. Store and propagation queue updating.

Termination, correctness, complexity, and properties of the algorithm have
been studied extensively in the literature [15,14,3]. Correctness is independent
of the order of reexecution of indexicals, which constitutes the basis for the
correctness of the parallel version of the algorithm.
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3 Parallel Arc-Consistency

The arc-consistency algorithm presents inherent parallelism. Each indexical be-
haves as a concurrent process which updates the store, triggered by changes in
the store. There is an inherent sequentiality, as well, since an indexical must be
executed only as the consequence of a previous execution of another indexical.
This sequentiality defines a partial order among (re)execution of indexicals. An
indexical is ready if any of its arguments has changed after its last execution.
At any time during the execution of the arc-consistency algorithm there will
be a set of ready indexicals, called the ready set. In a sequential version of a
consistency algorithm the ready set is stored in a propagation queue (updated
whenever a variable is modified), ensuring a sound execution order of indexi-
cals, that is, that an indexical is executed after the pruned variable has been
updated. Parallel consistency algorithms simultaneously execute the indexicals
in the ready set, providing mechanisms to maintain a sound order.

We have investigated the feasibility of both static and dynamic scheduling
policies for execution of indexicals.

In the static scheduling model, the set of indexicals is divided into N parti-
tions, which are executed in parallel on IV processors. A static scheduling ensures
a sound execution order of indexicals, since the parallel algorithm is basically
the sequential one, but applied to a subset of the indexicals. The only coordina-
tion mechanism needed by this model comes from the detection of termination,
which can be carried out by one of the processors, called the distinguished one.
The mapping of indexicals to processors is generated previously to the execution
of arc-consistency. An important factor for the efficiency of this model is the
criterion for the distribution of indexicals among processors, therefore different
criteria have been investigated.

A dynamic scheduling policy requires a coordination mechanism to guarantee
a sound execution order. Section 5 discusses the dynamic scheduling model where
a sound execution order is achieved by means of synchronisation points.

Parallelisation of the consistency algorithm requires every processor to have
access to a common store. Since the considered parallelisation models are focused
on distributed shared memory architecture, each processor has a (partial) local
copy of the store. Changes in the variables’ domains must be communicated to
concerned processors in order to maintain coherency among local copies of the
store.

4 Static Scheduling of Indexicals

The set of indexicals C is partitioned into n disjoint subsets, C = Cy1 U --- U C,.
This partitioning induces a distribution of the set of domain variables V in n
not necessarily disjoint subsets V1,---,V, (V =V U---UV,). For all indexicals
I; € C;, the variable written by I;, and those variables on which I; depends on,
constitute V; (VI; € C;,I; = v in E(V;),V; = {v} UVj.) Figure 3 sketches the
partitioning process of the CSP.
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Partitions (V;, D;, C;) are mapped one-to-one to processing elements P;. Each
processing element P; performs sequential arc-consistency, executing those in-
dexicals in Cj, and consequently updating local copies of variables in V;. Since
the distribution of the set of variables V is non-disjoint, some variables will be lo-
cated at several processing elements. Therefore, each processing element P; must
broadcast the pruning of the domain of variable v to every processing element
P; which had been assigned any of those indexicals which depend on v. Upon
receiving the notification, processing elements P; intersect their local copies of
the domain with the incoming domain, probably triggering further propagation.
Communication among processors is also needed in order to detect termination
of the algorithm, either because of reaching the global fixed point, or because of
inconsistency detection.
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Fig. 3. Partitioning the CSP. Sub-CSP (V;, D;,C;) is assigned to processing
element (PE) P;. An edge between two PE’s is labelled with the set of variables
located at both PE’s (V; N V;). Communication is needed to maintain the same
domain for some of the variables in V; N'Vj.

4.1 Parallel Algorithm

Figures 4 and 5 show the parallel execution algorithm. As in the sequential
one, initially every indexical assigned to the processor is executed, initialising
the local propagation queue (line 3). The main loop (lines 4 to 23) is executed
until either global fixed point (GlobalFixedPoint) or inconsistency (Failure)
is detected. The latter can be caused either by:

— an empty domain results from the execution of a local indexical
(Local_Arc_Consistent()).

— an empty domain results from the intersection of the local domain of a
variable with the domain received from another processor
(Remote_Arc_Consistent()).

— inconsistency is detected at (and broadcasted from) another processor
(RemoteFailure).
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Each processor maintains a private propagation queue (LocalPropQueue).
The inner loop (lines 6 to 14) performs local propagation until either the queue is
empty or inconsistency is detected, like the main loop of the sequential algorithm.
Once a local fixed point is reached, the processor notifies it to the distinguished
processor of this status (Notify Local Fixed Point()), and it waits (lines 17
to 21) until either:

— global fixed point is detected (Check_Global Fixed Point()).
— some other processor communicates inconsistency (RemoteFailure).

— the processor receives a message which updates its local propagation queue.
In this case, the processor notifies it (Notify Active()) to the distinguished
one and continues executing indexicals.

function Parallel-Consistency(
(VarSubSet, DomSubSet, ConstrSubSet) ) : Store
begin
1 Parallel_State_Reset();
2 Synchronisation;
3 Queue_Init(LocalPropQueue, :-- );
4 while NOT Failure AND NOT GlobalFixedPoint do
5 Notify Active();
6 wvhile NOT Failure AND NOT Empty(LocalPropQueue)) do
7 Queue_Pop (LocalPropQueue, v;);
8 for each indexical I; which depends on v; do
9 Failure := RemoteFailure OR
10 NOT Local.Arc_Consistent(I;,Store,LocalPropQueue) OR
11 NOT Remote.Arc_Consistent(Store,LocalPropQueue);
12 if Failure then break; end-if;
13 end-for;
14 end-while;
15 if NOT Failure then
16 Notify.Local_ Fixed Point(.--);
17 repeat
18 Failure := RemoteFailure OR
19 NOT Consistency_Msg(Store,LocalPropQueue);
20 GlobalFixedPoint := Check_Global_ Fixed Point();
21 until Failure OR GlobalFixedPoint OR Message.Received();
22 end-if;
23 end-while;
24 if Failure then
25 Synchronisation(); return FAILURE;
26 end-if
27 return Store;
end-function;

Fig. 4. Static Parallel Consistency Algorithm.
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When the local execution of an indexical (Local_Arc_Consistent(), figure
5) results in the modification of the domain of a variable v (Update (), figure 5),
the processor broadcasts a message (Broadcast_Update(), line 7) to the set of
processors that have been assigned any of those indexicals which depends on vari-
able v. Upon receiving the message (Remote_Arc_Consistent(), figure 5), these
processors either detect inconsistency or properly update their local propagation
queue and their local copy of variable v. Whenever a processor detects inconsis-
tency, it broadcasts the failure to the rest of processors (Broadcast Failure()).

function Local_Arc_Consistent( ‘v; in EQ?’,
Var Store, Var PropQueue ): Boolean
begin
1 NewDomain := Eval(E(), Store);
2 switch (Update (NewDomain, v;, Store, PropQueue))
3 case EMPTY :
4 Broadcast_Failure(RemoteFailure);
5 return FALSE;
6 case PRUNED:
7 Broadcast_Update(v;, Storel[v;]);
8 end-switch;
9 return TRUE;
end-function;
function Remote_Arc_Consistent( Var Store,
Var PropQueue ) : Boolean
begin
1 while NOT Empty(MsgQueue) do
2 Pop_Message (MsgQueue, v;, NewDomain);
3 if (Update(NewDomain,v;,Store, PropQueue) = EMPTY) then
4 Broadcast_Failure (RemoteFailure);
5 return FALSE;
6 end-if;
7 end-while;
8 return TRUE;
end-function;

Fig. 5. Parallel consistency functions.

The algorithm terminates when every processor reaches a local fixed point
and there are no pending messages. The distinguished processor is the only one
responsible for the detection of termination. However, it performs local prop-
agation as any other processor. In order to be able to detect the global fixed
point, processors must notify to the distinguished one whenever they reach a lo-
cal fixed point ~along with the number of messages they have sent and received—
(Notify.Local Fixed Point()), and whenever they leave it due to an incom-
ing message (Notify Active()). The distinguished processor keeps record of
which processors are at a local fixed point, and the number of messages sent
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and received by all processors. When termination is detected, the distinguished
processor notifies it to the rest of processors (GlobalFixedPoint).

Since this parallel algorithm is part of a labelling procedure where variable-
value assignment is performed synchronously, a synchronisation point among all
processing elements is needed at the beginning of the algorithm, just after the
initialisation of the communication status variables (Parallel_State Reset(),
line 2, figure 4). Another synchronisation (line 25) is needed if the algorithm
finishes with failure; otherwise, the global fixed point detection implies a syn-
chronisation among processors. Synchronisation points guarantee that every pro-
cessing element waits until the last processing element has finished the current
arc-consistency cycle before it starts working on the next one.

4.2 Partition of the CSP

The way the set of indexicals is partitioned has shown to be an essential factor
for the efficiency of the parallel algorithm. A CSP (V,D,C) can be represented
as a hyper-graph where the set of nodes is the set of domain variables V and the
set of hyper-edges is the set of indexicals defined by C. Therefore, partitioning
the CSP among processors means partitioning the set of hyper-edges in disjoints
subsets, inducing a not necessarily disjoint partitioning of the set of nodes. We
have tested two different graph partition criteria:

— Strength of connection among partitions.
— Static estimation of run-time ready set distribution.

Strength of connection among partitions The graph topology can be con-
sidered in order to partition the graph in strongly connected subgraphs, or highly
disconnected subgraphs.

In the former case, communications are minimised, but the ready set will be
badly balanced, in general. A strongly connected partitioning induces an almost
disjoint partitioning of the set of variables V, thus avoiding communications.
However, it is very likely that most of those indexicals which depend on a variable
v are assigned to the same processing element P. Whenever variable v is pruned,
the ready set is enlarged with those indexicals which depend on v, but almost all
of them will be sequentially executed by P, thus loosing the potential parallelism
exploitation.

In the latter case, the ready set is better balanced, but it is likely that almost
every variable will be located at almost every processing element, increasing
communications.

Experimental results show the benefit of a better balanced ready set ver-
sus a communications reduction. Moreover, partitioning the CSP in strongly
connected subgraphs is a hard problem, whereas a highly disconnected CSP
partitioning is easily achieved with a shuffle distribution of indexicals.
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Static estimation of run-time ready set distribution A partition of the
set of indexicals that balances the run-time ready set is expected to improve the
performance, providing that communications do not increase. Since this model is
based on a static partitioning of the CSP among processors, balancing run-time
ready set requires some kind of compile-time static estimation.

The idea is to partition the set of indexicals in such a way that updating any
variable causes a similar number of indexicals to be executed by each processor
[13]. We have defined an objective function to be minimised, which considers the
peak workload for each processor and variable. Experimental measures of run-
time workload have confirmed the accuracy of our static estimation. Since we
are dealing with n-ary constraints, finding the optimal solution is a NP problem.
Therefore, we recourse to an algorithm which assigns indexicals one by one, in
a decreasing arity order, greedily choosing the processor which minimises the
objective function. Solutions found with this greedy algorithm have shown to be
quite close to the optimal one when the CSP is constituted by a large number of
low-arity constraints. Taking into account that this is just an estimation of the
actual run-time ready set distribution, the greedy approach is fully justified.

5 Dynamic Scheduling of Indexicals

A dynamic scheduling policy dispatches the ready set of indexicals every ezecu-
tion cycle, in order to balance workload. However, these models require mecha-
nisms to ensure that the indexicals depending on a variable are executed after
the change in the domain of the variable have been updated in the store of the
processor executing the indexical. The alternatives to achieve a sound execu-
tion order are either to introduce synchronisation points during the execution
(distributed control) or to include a master processor (centralised control) to
perform the dispatching of indexicals. The latter model leads to tasks of small
granularity, inappropriate for a distributed memory architecture. Therefore, we
concentrate on the distributed control alternative.

The dynamic parallelisation model is based on dividing the execution in
synchronised ezecution cycles. An execution cycle consists of generating of the
ready set, distributed selection and execution of the ready set, and a synchroni-
sation point. In order to distribute the queued indexicals, every processor must
generate identical propagation queues of indexicals. In this way, each processor
independently selects and executes, according to a fixed rule, a different subset of
indexicals of those present in the propagation queue. Synchronisation points be-
tween execution cycles are introduced in order to generate identical propagation
queues. Besides, the store must be replicated in every processor.

The consistency algorithm for this model initially queues every indexical.
Then, execution cycles are performed until either there are no indexicals to
execute or inconsistency is detected. An execution cycle comprises the following
actions:

— Each indexical in the queue is executed by a particular processor, until the
queue is empty. The coordination criterion ensures that every queued index-
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ical is selected by only one processor, and that the workload is well balanced
in each execution cycle.

— Modified variables are recorded and broadcasted, but indexicals are not
queued in the current propagation queue.

— Changes in domains of variables received from remote processors are updated
and queued.

— Once the propagation queue is empty, and after a synchronisation, which en-
sures that all processors have the same value of the domains of the variables,
a new propagation queue is generated, queuing all indexicals depending on
modified variables.

Two criteria to select indexicals from the queue have been investigated in
order to tune the model:

— Assigning the same number of indexicals to each processor. This criterion
can lead to unbalanced workload since each indexical involves a different
amount of work.

— Dynamic distribution, in which each processor selects, in mutual exclusion,
the next pending indexical.

First criterion has yielded better results, showing that workload balance is good
enough, while second criterion increases communication overhead.

6 Experimental Results

The presented parallel algorithms have been written in C, and developed and
tested on a CRAY T3E multiprocessor with thirty four 400-MHz DEC Alpha
processors, 128 Mb of memory per processor, under UNICOS (UNIX) operating
system. Notification of failure, global and local fixed point detection, activity
status, and number of messages sent and received, have been implemented using
the remote memory write feature of the CRAY T3E multiprocessor. Queues of
messages are used for receiving domain updates. Messages are broadcasted to
queues also using the fast remote memory write feature.

Reported results correspond to the time required to reach the first or all so-
lutions, depending on the benchmark, performing a first fail sequential labelling.
Therefore, reported speedup is lower than speedup achieved in a single call to
the arc-consistency algorithm, since the search for a solution usually comprises
a large number of calls to the arc-consistency algorithm, executed in parallel,
interleaved with the selection and assignment of a value to a variable, executed
sequentially.

6.1 Benchmarks

We have tested the parallelisation models on a set of benchmarks:
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1. Arithmetic is a synthetic benchmark. It is formed by sixteen blocks of arith-
metic relations, {Bj, -, B1s}. Each block contains fifteen equations and
inequations among six variables. Blocks B;, B;1; are connected by an ad-
ditional equation between a pair of variables, one from B; and the other
one from B;;;. Coeflicients were randomly generated. The goal is to find an
integer solution vector.

2. Suudoku is a crypto-arithmetic Japanese problem. Given a grid of 25x25
squares, where 317 of them are filled with a number between 1 and 25,
fill the rest of squares such that each row and column is a permutation of
numbers 1 to 25. Furthermore, each of the twenty-five 5x5 squares starting
in columns (rows) 1, 6, 11, 16, 21 must also be a permutation of numbers 1
to 25.

3. N-Queens problem consists in placing N queens in an NxN chess board
in such a way that no queen attacks each other. The instance presented
corresponds to N = 111, size which leads to a significant execution time.

4. Parametrizable Binary Constraint Satisfaction Problem (PBCSP). Synthetic
PBCSPs allow studying the performance of arc-consistency algorithms as
some significant problem parameters vary. Instances of this problem are ran-
domly generated given four parameters: number of variables, the size of the
initial domains, density, and tightness. All constraints are binary, that is,
they involve only two variables. A constraint is defined as the set of pairs of
values that satisfies it. Density and tightness are defined as follows:

ne - )
v—1 Tightness = 1 752

where nv is the number of variables, nc is the number of constraints involving
one variable (it is the same for all variables), np is the number of pairs that
satisfies the constraint, and ds is the size of the initial domains. Figure 6
reports results obtained for an instance of this problem where nv = 100,
ds = 20, Density = 0.75, and Tightness = 0.85.

Density =

Table 1. Benchmarks characteristics.

Arithmetic| Suudoku|N-Queens|{ PBCSP
Search for first sol.| first sol.l first sol.| all sol.
No. of Variables 126 308 111 100
No. of Constraints 254| 13,942 6,105 3,713
No. of Indexicals 1,468{ 27,884| 12,210 7,426
No. of Calls to Consistency 15,969 72,196 8,660 65
Seq. Exec. Time (s.) 15.05 132.98 12.62| 5.25
No. of ind. executed 1,953,660}9,764,960| 246,262|318,552
Avg. time per call (ms.) 0.9 1.8 1.5 80.8

Table 1 summarises relevant data about the four benchmarks. The three first
benchmarks are executed searching for the first solution, whereas the fourth one
keeps searching until all solutions (40) are found. The table shows the number of
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variables, number of constrains and number of indexicals for all benchmarks, as
well as the number of calls to the arc-consistency algorithm. It also reports the
sequential execution time, and the total number of indexicals executed in the
sequential version. Finally, the table reports the average execution time per call
to the arc-consistency algorithm, which indicates the granularity of the process
to be parallelised.

6.2 Speedup

Arithmetic Suudoku

35 — T T T T -r 25 ~r T —

—— Static Scheduiing (Ready Set balance / inmediate broadcast)

—— Static Scheduling (Ready Set balance / inmediate broadcast) 0.5 | Static Scheduling (Ready Set balance / Fixed Point Broadcast)
0.5 |~ Static Scheduling (Ready Set balance / Fixed Point Broadcast) ] -~ Dynamic Scheduling
~-— Dynamic Scheduling
-~~~ Static Scheduling (Strongly connected / Inmediate Broadcast)
0.0 - 1 L L 1 il 0.0 L 1 1 1, 1 L
1 [} 1 16 21 26 31 1 [} 11 18 21 26 31
Number of processors Number of processors
Queens PBCSP

™ r—— —T T ~r T 20 v Y T T T Y
—— Static Scheduling (Ready Set balance / Inmediate broadcast)
-------- Static Scheduling (Ready Set balance/Fixed Point Broadcaat)
—-— Dynamic Scheduling

Speepup
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---------- Static Scheduling (Ready Set balancs / Fixed Point Broadcast)
— -~ Dynamic Scheduling
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1 6 1 16 21 26 31 1 ] 1" 16 21 26 31
Number of processors Number of processors

Fig. 6. Speedup curves for selected benchmarks.

Charts in figure 6 show, for each benchmark, the speedup vs. the number
of processors. For the static scheduling policy the ready set balance estimation
was used, comparing broadcast frequency: immediate (solid line) vs. fixed point
(dotted line). Chart for the Arithmetic benchmark also shows the speedup ob-
tained with a strongly connected graph partitioning (dashed line). This criterion
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has not been considered for the other benchmark, since it clearly provides worse
results than ready set balance, and because it is too computationally expensive
to apply. The speedup obtained with the dynamic scheduling policy (dot-dashed
line) is worse than the best one of the static policy, mainly because the overhead
due to the synchronisation points introduced in the dynamic model is too large
versus the granularity of indexicals in the considered problems. However, this
model could be more efficient using large granularity indexicals or propagators,
as those arising from global constraints.

It can also be observed that whereas the PBCSP problem presents a nearly
linear speedup for the best static scheduling policy, the speedup for the rest
of benchmarks stops increasing from a certain number of processors. The main
factor for this different behaviour is that in the PBCSP benchmark calls to the
arc-consistency algorithm have a larger execution time, and indexicals executions
have larger granularity (see Table 1). Besides, PBCSP has a constraint graph
with a more uniform topology, leading to a better workload balance. In order
to study this factor we have measured the workload distribution among the
processing elements.

Arithmetic PBCSP
56+05 T T 1.0e+05 T - T T
—— Static Scheduling {Avg, Min, Max)
---------- - Dynamic Scheduling (Avg, Min, Max)
w05 T —— Static Scheduling (Avg, Min, Max)
7.50+04 |- i Dynamic Scheduling (Avg, Min, Mex)
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[} 1" 16 21 26 31 6 1 16 21 26 31
Number of processors Number of processors

Fig. 7. Average, minimum and maximum number of executions of indexicals per
processor.

Figure 7 shows the average, the minimum, and the maximum number of in-
dexicals executed per processor, for the dynamic scheduling policy and the static
scheduling policy with immediate broadcast. The difference between minimum
and maximum indicates workload balance quality. It can be observed that, in the
Arithmetic problem, the larger number of processors, the worse workload bal-
ance is. This fact limits the performance, since the execution time corresponds
to the slower processor, because of serialisation between consecutive call to arc-
consistency. The dynamic scheduling policy exhibits a better workload balance.
Nevertheless, the speedup for this model is limited by the need of synchronisa-
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tion points. For the PBCSP benchmark, the minimum and maximum curves do
not differ in the static neither in the dynamic policy, indicating a high quality
workload balance. Nevertheless, it can be expected that PBCSP benchmark will
also reach a saturation point for a larger number of processors.

6.3 Scaleup

It is important to know how the performance of the parallel system depends
on the characteristics of the problem. The PBCSP benchmark, as a generic
parametrizable constraint satisfaction problem, offers the opportunity to study
what characteristics are desirable in a problem in order to achieve a high per-
formance when executed in parallel.

Table 2. Benchmarks characteristics of figure 8(a), scaleup vs. number of vari-
ables.

No. of variables 25 50 100 200
No. of Constraints 228 910 3,713} 14,932
No. of Indexicals 456 1,820f 7,426 29,864
No. of Calls to Consistency 63 61 65 66
Seq. Exec. Time (s.) 0.29] 1.19 5.25 22.46
No. of ind. exec. 18,192)71,218/318,552{1,311,061
Avg. time per call (ms.) 46| 19.5| 80.8 340.3

Table 3. Benchmarks characteristics of figure 8(b), scaleup vs. density.

Density 0.25| 0.50; 0.75{ 1.00
No. of Constraints 1,216] 2,464 3,713; 4,950
No. of Indexicals 2,432| 4,928 7,426| 9,900
No. of Calls to Consistency 64 64 65 62
Seq. Exec. Time (s.) 1.78| 3.40] 5.25 6.59
No. of ind. exec. 105,542205,400|318,552|400,430
Avg. time per call (ms.) 278/ 53.1] 80.8] 106.3

The size of a PBCSP mainly depends on the number of variables and the
density of the constraint graph. Figure 8(a) shows the speedup versus the num-
ber of processors, for four different numbers of variables, fixing density to 0.75,
tightness to 0.85, and domain size to 20. Figure 8(b) shows the speedup versus
the number of processors, for different densities, fixing the number of variables
to 100, tightness to 0.85, and domain size to 20. Tables 2 and 3 summarises
relevant data about the problem instances used to plot the curves. All instances
were run searching for all solutions (40). Both charts indicate that the larger the
problem is, the higher speedup is obtained. This fact indicates the suitability of
the system for large problems, provided a uniform constraint graph, which is a
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much desirable property in order to solve the real scale combinatorial problems
which constraint programming aims to tackle.

(a) Number of Variables

25 T v T r T 25

(b) Density

I —— 25 variables e J L N4
20 ~ 20 N
- 50 variables PRd - Density = 0.25 s
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Number of processors Number of processors

Fig. 8. Scaleup with the number of variables and the density of the problem.

7 Conclusions

We have developed and evaluated parallelisation models of an arc-consistency
algorithm for constraint satisfaction problems over finite domains. These models
have been implemented on a CRAY T3E, a distributed shared memory MIMD
multiprocessor, and empirical data is reported for several benchmarks.

Two different techniques for scheduling the execution of constraints, dynamic
and static, have been tested. The dynamic model has shown poor speedups,
particularly when compared with those obtained with the static model, therefore
we have focused our work on the static scheduling policy.

A number of topics affecting performance have been investigated in order to
tune the static scheduling model. The way constraints are distributed among pro-
cessors, and the frequency of updating shared variables, are determining factors
for the performance of the model. The study of the distribution of constraints
among processors has shown that a strongly connected partitioning (high num-
ber of shared variables) is worse than a partition based on an estimation of the
run-time workload balance. Tests on broadcast frequency revealed the conve-
nience of an immediate broadcast.

The speedup obtained is nearly linear for PBCSP benchmark, whereas for the
rest of them it stops increasing from a problem dependent number of processors.
This difference is mainly due to the more uniform constraint graph and larger
granularity of the PBCSP benchmark, which leads to a better workload balance.
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Anyway, the PBCSP benchmark would also reach a saturation point for a larger
number of processors.

In order to study how the performance of the parallel system depends on the
characteristics of the constraint satisfaction problem to solve, the parametrizable
synthetic benchmark has been tested for different sets of parameters. Results
show that the system is better suited for large scale problems with a dense
constraint graph.
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