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Abstract. In this paper we describe a modular, constrained based model for a gas transmis-
sion network, developed to answer questions concerning the supply, demand and transpor-
tation in the context of an optimization approach. The model approximates the non-linear
relationship for pipes and compressor stations. The goal of the model is not the on-line
control of the network but a precise enough estimation of its transport capacity to be used
in a wider logistic model. The precision can be adjusted depending on the requirements.
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1. INTRODUCTION

Gas transmission pipeline networks are non-linear,
very complex, great scale distributed systems. They
can have thousands of pipes, production, storing and
distribution centers, compressor stations and many
other physical devices as valves and regulators.
Transmission networks work at very high pressures
and, as the gas flow through the pipes, energy is lost,
so compressor stations are needed to give the gas the
necessary energy to move it through long distances.
A compressor station may have a number of com-
pressor units with different characteristics but all of
them with a highly non-linear behavior; moreover,
every unit may independently be switched on or off
to the network. The gas flow has one way stretches
and others where the direction may reverse depend-
ing of the network conditions. Furthermore, the
number of compressors, sinks and sources may vary
with time, yielding a hybrid system.

The main concern when operating and planning a gas
pipeline system is minimizing cost while maximizing
throughput. In the literature on this topic, it is always
considered a number of sources, sinks and compres-
sor stations joined by pipes. Most papers on the sub-
ject try to minimize the energy consumption of the
compressor stations working in a stationary mode.

In the pioneering paper [1] some rules of thumb are
given on how to operate the gas transmission net-
work with low energy consumption. Since then, there
have not been many contributions due to the com-
plexity of the topic. The gas flow control is done in a
non-automatic way. Based on experience and simula-
tion results, the network operators modify the flow
and pressure in the network, turn on/off individual
compressor units and fix their set points to satisfy
customer demand with minimal operating cost [5].

The paper [6] may be considered the first serious
attempt in developing an optimization algorithm for
fuel cost minimization in steady state gas transmis-
sion networks. They use dynamic programming to
solve problems with only one “leg” and compressor
stations in series.

Though there has been other attempts, no consider-
able advance was achieved in the way this problem is
dealt with till the work [3]. They use a dynamic
simulator and a successive quadratic programming
optimizer to compute the optimal compressor operat-
ing policies so that their energy consumption is
minimized, while keeping the system in a “safe re-
gion”. They consider constant gas flow and pressure
at sources and compressor stations with identical
compressor units with ideal efficiency. They ap-
proximate the nonconvex non-linear envelope that
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defines the operation of every compressor unit by a
linear, convex envelope.

A more complex and realistic model is considered in
[7]. They also consider the problem of minimizing
the fuel cost of the compressor stations under steady
state conditions. However, they consider the possible
reversibility of gas flow in some network stretches
and the number of units operating within each com-
pressor station. They give two model relaxations, one
in the compressor envelope and another in the fuel
cost function, and derive a lower bounding scheme.

The non-linear and complex relationships between
flows and pressures of pipes and compressors make
difficult their modeling for planning and scheduling
purposes. In this paper we describe a modular, con-
strained based model for a Spanish gas transmission
network, developed to answer questions concerning
the supply, demand and transportation in the context
of an optimization approach. The model approxi-
mates the non-linear relationship for pipes and com-
pressor stations, and we can adjust its precision in
terms of the requirements.

The goal of the model is not the on-line control of the
network but a precise enough estimation of its trans-
port capacity to be used in a wider logistic model. In
this setting, we identify a medium-term logistic
model (intended for a time period of a month) which
abstracts the physical details of the network and
allows us to take high level decisions as how much
gas buy from what importer in order to sign the best
contract in advance considering the data obtained
from our model.

In addition, we identify a short-term logistic model
(intended for diary operations) that we use to check
whether the high level decisions are compatible with
the physical details of the network. This entails to
check whether the diary operations can be carried out
throughout the month, day by day, with the limits
imposed by the medium-term logistic model.

The paper is organized as follows. Section 2 dis-
cusses the problem domain. Section 3 presents the
pipe model we have developed and Section 4 the
compressor unit and stations models. Finally the
conclusions are given in Section 5.

2. PROBLEM DOMAIN

Gas transportation networks consist of pipes, com-
pressor stations and many other devices, such as
valves and regulators. The network transports gas
coming from gasifier plants and natural sources.
Gasifier plants collect Liquefied Natural Gas (LNG)
from different wells using a fleet of ships. The gas is
delivered to customers with a pressure within a speci-
fied interval. Fig. 1 gives a schematic view of the
network considered in this paper.
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Fig. 1. Schema of a branch of the natural gas
network considered in this paper

2.1 Pipes

A pipe is the most important component of the net-
work. They have lengths that range from a few tens
of kilometers to more than 100 km, with diameters
ranging from 300 to 12,000 mm. Although unidirec-
tional flow is usually assumed when modeling the
flow of gas through a pipe, in the context of a sched-
uling scheme it is necessary to model the bidirection-
ality. The steady state pipe flow equation takes the
following form:
p; =op; - pQ* 4))
where p; and p, are pressure at the end nodes of the
pipe, Q is mass flow rate through the pipe and ¢,
are quantities depending on the pipe physical attrib-
utes: gas compressibility factor, gas specific gravity,
average temperature (assumed constant), frictional
factor, length, inside diameter of pipe and the inclina-
tion angle of the pipeline segment [4]. Every source
and delivery node has a pressure range [Pmin, Pmar)
where must be contained any valid pressure for this
node.

2.2 Compressor stations

These elements give the flow the required energy to
reach the delivery nodes with the required pressure
and the demanded quantity. A compressor station
consists of several compressor units in parallel. Each
unit could be turned on or off, and its behavior is
nonlinear. For the same reason that pipes, some com-
pressors must be modeled as bidirectional elements.

The power consumption, assuming that the compres-
sors work adiabatically, when compressing a gas
from the suction pressure ps, to the discharge pres-
sure p, at a volumetric flow rate g is:
HP=C qH )
where C,; depends on the gas pumped and H is the
adiabatic head, that is given by

=5 (i’i) -1 3)
x|l P
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where C; depends on the gas pumped and on the
suction temperature, that we consider constant, and X
depends on the gas pumped. Moreover, the volumet-
ric flow rate and the suction pressure are related with
the mass flow rate through the equation:

=12 @
Q Z
and where Z; is given approximately by
p
=1-— 5
Z 390 )

Fig. 2 shows a plot relating H and g for a typical
compressor unit.
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Fig. 2. Envelope for a typical compressor unit

2.3 Constraint model of the system

The planning and scheduling system for gas supply
uses an optimization model (mixed-integer/ con-
straint programming) and consists of a set of inter-
connected modules. Each module implements the
behavior of a physical device of the gas transmission
network. The behavior is modeled as a global con-
straint over hydraulic variables of the device. In a
constraint model the relationships between variables
must be provided for each possible direction. That s,
if py and p, are the gas pressures at both ends of a
pipe and the mass flow rate Q, the constraint model
for the pipe C(p1, p», Q) ensures that the 3 values (p;,
ps, Q) are always compatible with the hydraulic
behavior of the pipe. We are mainly interested in
flow capacity of the pipes and compressors in order
to define the specific activities to be performed over
a time scale of days.

3. PIPES

This section deals with implementing gas pipe behav-
ior from the model stated above. A gas pipe is de-
fined by pressures at both ends and the gas flow. In
general, pressure decays with flow direction, but it
can also augment because of a decrement in potential
energy. Our model is posed as a piecewise linear
function that relates pressures at both ends ( p, and

19

p,) with the gas flow (Q, ), and that approximates
the nonlinear function:

PPy, Q) =a(Q,) p, +b(Q,)+c(Q,) ©)

where a(Q,), b(Q,), and ¢(Q,) coefficients are
defined in terms of Q . Coefficients of a possible

pipe is defined as shown in Table 1, which gathers
coefficients for each piece.

Table 1. Coefficients for a possible pipe
Ql a(Qt ) b(Q' ) C(Qp )
[-400,-300]| 0.9889| 0.0189 | -0.0039
[-300,-200]| 0.9947| 0.0144| -0.0028
[-200,0] | 0.9997| 0.0391 -0.0011
~ [o.200] | 1.0003-0.0391] -0.0011
[200,300] | 1.0053|-0.0145] -0.0028
[300,400] | 1.0112]-0.0191] -0.0039

3.1 Constraint Modeling of Pipes

The pipe constraint model is connected to the trans-
mission network (nodes, compressor stations and
gasifiers) by means of real variables representing the
three magnitudes defining a pipe (pressures and
flow). The domain of the flow variable is real
whereas pressure variables domains are positive real.
The function p,(p,,Q,) can be expressed as:

ay° Ps +bo+co‘Q:-‘.f Q« € bv,(o)vQ,,(O)]
o, p,+b+c,Q.if Q. €l .0,0]
PP Q) =1,

4y prtb, e, 0. Q€0 (1-1.0,(n-1)
where:
a(@)=a,0 €0, 1.0,
b(©Q,)=b.0,¢€0,.0,0)
«@)=c.0 €0, 1.0,

This function can be expressed by the following
constant (discontinuous) piecewise function, which
defines planes for each flow piece:

n=\

PP Q) = . (a(Q) py +b(Q)+c(2)-2)-5@)
i=Q

Lif Qelo, .0,

0,eo0.c.

where 5,(0,) = {
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and @, b, and ¢ coefficients come from Table 1 (an

example Wlm n=6)

This function involves nonlinear terms which are
products of a constant, a positive real or real variable,
and a binary variable. They are modeled with an
approach similar to [2] but enhanced by taking ad-
vantage of the positive domain. Further enhance-
ments include adding the following domain con-
straints:

o p, e [Minpi(t), Maxpi(1)]
*  p, e [Minpf (), Maxpf (1))
o Qe [MinVarxfi(t), MaxVarxfi(t)]

where:

e Minpi(t), Minpf(t): Minimum pressure at end 1
(resp. 2) of the pipe, which is determined by
physical parameters of the network and is ob-
tained from Table 1. -

o Maxpi(t), Maxpf(t): Maximum pressure at end 1
(resp. 2) of the pipe, which is determined by
physical parameters of the network and is ob-
tained from Table 1.

o MinVarxfi(t), MaxVarxfi(t): Minimum (maxi-
mum, resp.) flow through pipe in piece ¢, which

is determined by physical parameters of the net-
work and is obtained from Table 1.

3.2 Input Parameters
Discretization of the function relating Q,, p, and p,
is defined by a set of tuples:

Q= {< t.0,.0,.a,b,c >},

which states that, for a piece ¢ and a normal condi-
tion flow Q e lQ,‘ .0, j, then:

p(py.Q)=a p+b+c-Q, @®
Each tuple in Q belongs to the table schema:

< g:texz,%_: float,Q, : float,a: float,b: float,c: float >
where underscored parameters forms the primary

key, float denotes a real field, and rext denotes a
textual field. A candidate key is <r,Q, >. The fol-

lowing are further integrity constraints.

a) Domain constraint: 0, <Q,

b) Functional dependencies: '
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* 10, —a,b,c

* 1,0 -0,
¢) Uniqueness:
¢ VYuveR:

u=<1,0, (i).Q, (1).a(),b(i).c(i) >,
v=<1,0, ()Q, ()a(i).b(i).c(j) >,

UEzV=
lo, (.0, ®lnle, ()0, (H]=2

3.3 Validation

Results from the implementation above have been
validated by examining the relation p = f(p,,0,).

We have generated test vectors covering the plane
p, —Q, to get p, values. The set {< p,,Q, >} repre-

sents a dense point grid in this plane. The selection of
this set is based on a plane covering by regular inter-
vals of p, and Q,. For each element in this set a run
is executed so that actual results can be matched with
run results. We have used Matlab to perform the
validation. Fig. 3 shows the validation test resuits,
and Fig. 4 shows a cut in the plane p, =30 to illus-
trate the nonlinear behavior of the relation.

400 10
Fig. 3. Validation test
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Fig. 4. Plane cut p, =30
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4. COMPRESSOR STATIONS

The compressor station model relates pressures at
both ends with the mass flow rate (Q,). A compres-

sor station can be disabled (equal pressures at both
ends) or enabled (several compressor units can be
enabled). In addition, it can work in two possible
directions; an inversion in the direction means the
inversion of the roles of pressures at both ends. The
least pressure of both ends is known as suction pres-
sure (p,) whereas the upper pressure is known as

discharge pressure ( p,). A compressor raises suction

pressure to discharge pressure through the use of
compressor units. Discharge pressure is a function of
gas flow in normal conditions and suction pressure:

pd =f(Ql’px)

This function has been translated to the discontinuous
domain so that we have defined maximum and
minimum values for the discharge pressure
(Pymac s /) and p, . (i, j), resp.) for each surface

defined by the [2,(),Q,(i+1) and

(p, (i), p,(j+1), where Q (i) and p (i) are the
values partitioning the axis Q, and p_, resp. There-

intervals

fore, the new expression for p, is:

pdmm(Ql'p:)Spzl(Ql’px)Spdmax(Ql’p:)’ (9)

where:

Pamn(@r P) = Paninis 0,0, € [0, (. Q,(i + D), p, € [p,(). P, (i + 1))
Pirac( s D) = Panas e .0, € [0,(0), 0,1+ D), p, € [p,(j), p.(j +1)

Figures 5 and 6 show minimum and maximum dis-
charge pressure (vertical axis) related with suction
pressure (axis pointing to the left) and gas flow (axis
pointing to the rignt).
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Fig. 5. Minimum discharge pressure
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Qat

Fig. 6. Maximum discharge pressure

The specification of the modeled compressor station
is as follows, which involves the use of n compressor
units enabled.

»  Compressor station disabled: p = p,,VvQ,

o Compressor station enabled, for each turbocom-
pressor:

pdmin(Ql/n’p:)S Pd(Q,’ P,)S P,,,,.,u(Q, /n' P,) (lo)

This means that when the compressor station is
enabled, the gas flow is divided into the enabled
turbocompressors. The relation p,(Q,, p,) refers to

the total gas flow, whereas p, . (Q,, p,) and
Puimac (@, p,) are normalized to one compressor.

4.1 Constraint Modeling of Compressor Stations

As in the pipe model, the compressor station model is
connected to the transmission network by means of
real variables representing pressures and flow with
the same domains.

When the compressor station is disabled, there is no
constraint on gas flow, which is modeled with a bi-
nary variable stating whether the compressor station
is enabled or disabled. Nonlinear terms caused by the
binary variable are treated as in [2] with enhance-
ments considering the domains. The same binary
variable controls the connection of constraints on
pressures at both ends.

In order to express the relation between flow, suction
pressure, and discharge pressure with respect to the
number of compressor units enabled, we use a vari-
able gf which represent gas flow through each com-

pressor unit. So:

naum _ units=\

gi=qf + Y i-uniti) qf

i=

Where unit(i) is a binary variable which represents
enabling {+1 turbocompressors, num_units is the
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total number of compressors, and gi is the total flow
through the compressor station.

The specification of the modeled compressor station
assumes an absolute value for the flow and we use
the variable gt =’qf|, which adds another source of

nonlinearity.

In addition, since this specification assumes a unique
flow direction, the constraint model has also to em-
body the switching of pressure roles. A new binary
variable positive is used to denote the gas flow sign
(direction). A positive flow says that pressure in end
i, pi, s the suction pressure, and the pressure in end

f pf »is the discharge pressure. So:
positive = | = pi = ps, pf = pd
positive =0 = pi = pd, pf=ps

where the variables ps and pd have been added to
represent suction and discharge pressures, so that we
have represented the behavior of a station compressor
with one turbocompressor enabled as

pd = f(qt, ps) -

In order to implement the relation among Q,, p, and
p,» We express equation 10 as:

prI(Qr' pa) S Zzpflnmx(i’ ]) 6(" j)
joi
AR I WIN 1))
J i
where §(i, j) are binary variables which take value 1

Q,€(Q,G(),0,G+1) and
p,€p, (i), p,(j+1)). These last expressions relate

when

i and j values with those of Q, and p_, or alterna-
tively:

Q,€(Q,),QG+1), ind

53, j)=1

p.\' € [p:(])' p1(1+1))

In order to enhance performance we include domain
and redundant constraints:

a) Domain constraints:

* gi€ [— MaxVarxfci..MaxVarxfci]
o gt €[0.Maxqt]

* gf € [— Maxqt..Maxqt]

* p, € [psmin.. psmax]

* p,€[0.MaxPressure]
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Where:

e  MaxPressure: Maximum pressure at each end,
which is determined by physical parameters of
the network.

e  MaxVarxfci: Maximum flow through a compres-
sor station, which is determined by its physical
parameters.

e  Maxqt: Maximum flow at each turbocompressor
as absolute value, which is determined by its
physical parameters.

qti, qff

Maxqt = max({ ) . . })
< psi, psf, qti, qtf, pdmin, pdmax > Q

where Q is the relation presented in the next
section.

e psmin, psmax: Minimum (resp. Maximum) suc-
tion pression for each turbocompressor, which is
determined by its physical parameters. Opera-
tionally, they are obtained as:

psmin = min({ps‘ : . . . })
< psi, psf,qti, qtf , pdmin, pdmax > Q

psf:

pmax= ma.x({< psi, psf,qti, qtf , pdmin, pdmax >€ Q})

b) Redundant constraints:

e  Gas flow limitation:

Q,€(Q,).QG+1),p,elp,(i)p,(J+D))=
Qmin(NSQ, 0, ()

e Alternatives limitation:

Q, 2 Qe () P, €[, () p,(J+1) =80, j) =0,
Yi>k:qt(j) =max(Q . (k)

QI SQum‘n(i)'p: € [pl(.l)'pl(-’+ l))=° 6(" ]) =0’
Vi<k: qt(j) = min(Q,..(k))

where Q . (j) and Q, (;) are the minimum and
maximum values of each interval for p_, thatis:

lein(j) S Qr S Qmmx(j)'p: € [P,(})‘P,(]"'l))

Increasing indexes (i and j) correspond to increas-

ing flows and pressures, which is a relevant relation
for input parameters.

4.2 Input Parameters
Discretization of the function relating 0, p, and p y
is defined by a set of tuples:
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0= 0,,0G+ 1.2, PU+ 1. Pana (i ). Pares i ) >

which states that, for a normal condition flow
0 e(Q,)Q(i+1) and a suction  pressure

p,elp,(N)p,(J+1) then:

pdmm(i‘ j) < p.{(Qr‘p:) < pdma.x(i’ j)

Each tuple above belongs to the following table
schema:
<Q, : float,Q, : float, 1% float+,p, : float+,

Damin - flOGH+, Dy - float+ >
where underscored parameters forms the primary
key. A candidate key is <Q,p, >- The following

are further integrity constraints.

a) Domain constraints:
* 0,50,
° p.\’l S p.rf

hd p dmin S p dmax
b) Functional dependencies:

* 1,0 -0 .abc

* Qpy =0, Py

4.3 Validation
Results validation comes from two complementary
ways. First, assuming that the function

p, = f(Q,,p,) is correctly implemented, the selec-

tion of representative cases for verifying the connec-
tion of turbocompressors to the compressor station.
Second, the verification of correctness of
p, = f(Q,.p,), as in Section 3.3.

4.3.1 Verifying Turbocompressor Connection
We have generated test vectors for verifying:

e Compressor station enabling implies pressures
related by p, = f(Q,.p,) -

e Compressor station disabling implies pressures
equated.

e Flow direction correctly relates suction and dis-
charge pressures.

o Total flow through the compressor is the sum of
the flows through each enabled turbocompressor.
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4.3.2 Verifying-FurbeeompressorCommreetion

Results from the implementation above have been
validated by verifying the equation 1. We have gen-
erated test vectors covering the plane Q, - p under

two assumptions: maximization and minimization of
the cost function p,, so that we can get the maxi-

mum and minimum values for p,(valid range).
These test vectors are sketched in Table 2.

Table 2. Test Vectors Description

Test Vector Derivations Situation :

(<0, P, > | {Pimae = f(Q,, p,)}| Compressor station
with a turbocompres-

max( Pq) sor enabled. Maxi-
mum discharge pres-
sure.

{<Q,.p, >} { Pamin = f(Q,, p,)}| Compressor station

R with a turbocompres-

min( Py ) sor enabled. Minimum

discharge pressure.

The set {<Q,, p, >} represents a dense point grid in
the plane Q, — p,. The selection of this set is based
on a plane covering by regular intervals of Q, and
p,- For each element in this set with cardinality

30,000, a run is executed so that actual results can be
matched with run results. We have used Matlab to
perform the validation. Figures 7 and 8 show the
validation test results.

-~ .

Fig.

Fig. 8. Validation tests for p,
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5. CONCLUSIONS

We have developed a modular constraint based
model for a gas transmission network. This .mOQel
can be used in planning and scheduling optimization
systems. The model approximates the whole com-
plexity of the nonlinear relationship for pipes and
compressor stations. The model can be easily ad-
justed to get the required precision to be used in the
planning system.
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