A Deductive Database with

Datalog and SQL
Query LLanguages

Fernando Saenz Pérez, Rafael Caballero and
Yolanda Garcia-Ruiz

Grupo de Programacion Declarativa (GPD)
Universidad Complutense de Madrid (Spain)

12/5/2011 APLAS 2011

12/5/2011

Contents

1. Introduction

2. Query Languages

5. Integrity Constraints

4. Duplicates

5. Outer Joins

6. Agoregates

7. Debuggers and Tracers

8. SQL Test Case Generator

9. Conclusions

APLAS 2011 2~

1. Introduction

B Some concepts:
® Database (DB)
® Database Management System (DBMS)

m Data model
m (Abstract) data structures
m Operations

m Constraints

12/5/2011 APLAS 2011

Introduction

® De-facto standard technologies in databases:

m “Relational” model

= SQL

®m But, a current trend towards deductive databases:

= Datalog 2.0 Conference
The resurgence of Datalog in academia and industry

= Ontologies
m Semantic Web
®m Social networks

= Policy languages

12/5/2011 APLAS 2011

Introduction. Systems

m (Classic academic deductive systems:
s LDL++ (UCLA)
m CORAL (Univ. of Wisconsin)
m NAIL! (Stanford University)

® Ongoing developments

m Recent commercial deductive systems:
m DLV (Italy, University of Calabria)
m [ogicBlox (USA)
m Intellidimension (USA)
m Semmle (UK)

m Recent academic deductive systems:
m 4QL (Warsaw University)
m bddbddb (Stanford University)
m ConceptBase (Passau, Aachen, Tilburg Universities, since 1987)
=

XSB (Stony Brook University, Universidade Nova de Lisboa, XSB, Inc.,
Katholieke Universiteit Leuven, and Uppsala Universitet)

m DES (Complutense University)

12/5/2011 APLAS 2011

Datalog Educational System (DES)

B Yet another system, Why?

®m We needed an interactive system targeted at teaching
Datalog in classrooms

B So, what a whole set of features we were asking for
such a system?
m A system oriented at teaching
= User-friendly:

m [nstallation

m Usability
= Multiplatform (Windows, Linux, Mac, ...)
m Interactive
® Query languages
_

12/5/2011 APLAS 2011

DES Concrete Features (1/4)

B F'ree, Open-source, Multiplatform, Portable
B Query languages:

W (Extended) Datalog

B (Recursive) SQL following ANSI/ISO standard

B Stratified Negation

B Integrity constraints

B Duplicates

B Null value support a /a2 SQL

B Outer joins for both SQL and Datalog

B Agoregates

12/5/2011 APLAS 2011 7~

DES Concrete Features (2/4)

B Declarative debuggers and tracers
B Test case generator for SQL views
B [Full-fledged arithmetic

B Database updates

B Temporary Datalog views

B Type system

B Batch processing

B Textual API

12/5/2011 APLAS 2011

DES Concrete Features (3/4)

B Program analysis:

W Safe rules (classical safety for range restriction)

B Negation
B Head variables

W Safe metapredicates
B Agoregates

B Duplicate elimination

B Source-to-soutce program transtormations:
W Safety (command /safe on)
W Agoregates (solving)

B Performance (/simplification on)
__

12/5/2011 APLAS 2011

DES Concrete Features (4/4)

B But, quite relevant features are:

M [nteractiveness

B Database updates
B A wide set of commands (>70)

W Hasy to install and use
des.sourceforge.net

W Robust (up to bugs)

12/5/2011 APLAS 2011

10~

DES allows

m Teach (Declarative) Query Languages:
From SQL to Datalog

m But also for rapid prototyping:

= Novel features:
m SQL hypothetical queries
m Outer joins in Datalog
m Datalog and SQL declarative (algorithmic) debuggers and

tracers

m Test case generation for SQL views

m ... and Experiment with Datalog for research
® Theses, Papers, ... See DES Facts at its web page

12/5/2011 APLAS 2011 11~

2. Query Languages. Datalog

m A database query language stemming from Prolog

Prolog ‘ Datalog
Predicate Relation
Goal Query

m Goals are solved one answer at a time (backtracking)

= Queries are solved by computing its meaning once

B Deductive database:
m FExtensional database: Facts

m Intensional database: Rules.

12/5/2011 APLAS 2011

Datalog

m Datalog differs from Prolog:
m Datalog does not allow function symbols in arguments
m Facts are ground (safety)

m Datalog is truly declarative:
m Clause order 1s irrelevant
m Order of literals in a body is irrelevant

m No extra-logical constructors as the feared cut

12/5/2011 APLAS 2011

13~

Datalog Syntax

®m Program: Set of rules.

Rule:
m head :- body.

® ground head.

Head: Positive atom.

Body: Conjunctions (,) and disjunctions (;) of literals
Literal: Atom, Built-in (>, <, ...).

Query:

m Literal with variables or constants in arguments

= Body (Conjunctive querties, ...)

12/5/2011 APLAS 2011

14~

Query Languages. SQL

m Follows ISO Standard

m DQL:
m SELECT Expressions FROM Relations WHERE Condition
m WITH RECURSIVE LocalViewDefs Statement

= ASSUME LocalViewDefs IN Statement (ongoing work)

m DMIL.:
E INSERT ..
m UPDATE ..
m DELETE ..

m DDI.:
m CREATE [OR REPLACE] TABLE ..
m CREATE [OR REPLACE] VIEW ..
m DROP ..

12/5/2011 APLAS 2011 15~

Datalog and SQL in DES e
Datalog SQL
Deductive engine (DE): Deductive Enging
m Tabling implementation Cache | |
Datalog programs are solved by DE v g e
. . . In-memor
Compilation of SQL. views and Prolog (L, ccess
T erver,
queries to Datalog programs DiE Oracle, DB2,...)

SQL queries are also solved by DE

Interoperability i1s allowed: SQL and Datalog do share
the deductive database!

® Datalog queries <> SQL queries
m Datalog typed relations <> SQL tables and views

12/5/2011 APLAS 2011 16~

Datalog
Example

m Facts:

father (tom, amy) .
father (jack, fred) .
father (tony,carolITI).
father (fred, carolIII) .

mother (gracel, amy) .
mother (amy, fred) .

mother (caroll,carolIIl) .
mother (carollIl,carolIII).

m Rules:
parent (X,Y) :— father (X,Y).
parent (X,Y) :— mother (X,Y) .

tom grace
\\//
jack amy tony caroll
N AN
fred carolll
N s
carollll

m Query:
parent (X, Y)

® Minimal model for parent:
{

(tom,amy), (grace,amy), (jack,fred),
(amy, fred) ,

12/5/2011

APLAS 2011 17~

Recursion

father (tom, amy) .
father (jack, fred) .
father (tony,carolITI) .
father (fred, carolIII) .

mother (gracel, amy) .
mother (amy, fred) .

mother (caroll,carolIIl) .
mother (carolll,carolIII).

parent (X,Y) :-—
parent (X,Y) :-

ancestor (X,Y) :-
parent (X, Y) .

ancestor (X,Y) :-
parent (X, Z),
ancestor (z,Y) .

tom grace
N
jack amy tony caroll
N N
fred carolll
N e
carolIll

DES implements a fixpoint semantics for recursive
Datalog, finding the least fixpoint as answer

father (X,Y) .
mother (X, Y) .

ancestor (tom, X)

ancestor (tom, amy) ,
ancestor (tom,carolIII),
ancestor (tom, fred)

12/5/2011

APLAS 2011

18~

SQL Recursion as of Current DBMS's

CREATE VIEW parent (parent,child) AS
SELECT * FROM father
UNION
SELECT * FROM mother;

CREATE OR REPLACE VIEW ancestor (ancestor,descendant) AS
WITH RECURSIVE rec ancestor (ancestor,descendant) AS

SELECT * FROM parent

UNION

SELECT parent,descendant

FROM parent, rec ancestor

WHERE parent.child=rec ancestor.ancestor

SELECT * FROM rec ancestor;

DES-SQL> SELECT * FROM ancestor WHERE ancestor='tom';

12/5/2011 APLAS 2011

SQL Simplified Syntax in DES
m Simply:

CREATE OR REPLACE VIEW ancestor (ancestor, descendant) AS
SELECT * FROM parent
UNION
SELECT parent, descendant
FROM parent, ancestor
WHERE parent.child=ancestor.ancestor;

m Instead of resorting to WITH:

CREATE OR REPLACE VIEW ancestor (ancestor,descendant) AS
WITH RECURSIVE rec ancestor (ancestor,descendant) AS

SELECT * FROM parent

UNION

SELECT parent, descendant

FROM parent, rec ancestor

WHERE parent.child=rec ancestor.ancestor

SELECT * FROM rec ancestor;

12/5/2011 APLAS 2011

SQL Hypothetical Quetries

CREATE TABLE flight(origin string, destination string, time
real)

INSERT INTO flight VALUES('lon', 'ny',9.0);
INSERT INTO flight VALUES('mad',6 'par',1.5);
INSERT INTO flight VALUES('par', 'ny',10.0)

CREATE VIEW travel (origin,destination,time) AS
WITH connected(origin,destination, time) AS
SELECT * FROM flight
UNION
SELECT flight.origin, connected.destination,
flight.time+connected.time
FROM flight, connected
WHERE flight.destination = connected.origin
SELECT * FROM connected;

12/5/2011 APLAS 2011 21~

12/5/2011

SQL Hypothetical Quetries

DES-Datalog> SELECT * FROM travel
{
answer (lon,ny,9.0),
answer (mad,ny,11.5),
answer (mad, par,1.5),
answer (par,ny,10.0)

}
Info: 4 tuples computed.

DES-Datalog> ASSUME SELECT 'mad', '"lon',2.0
IN flight (origin,destination, time)
SELECT * FROM travel;

answer (lon,ny, 9.0
answer (mad, lon, 2.

~

~

(
(
answer (mad,ny, 11.
answer (mad,ny, 11.
answer (mad, par, 1.
answer (par,ny, 10.

O O O O O —
~— ~ ~— ~— ~— N
~ ~

Info: 6 tuples computed.

22~

3. Integrity Constraints

® Integrity constraints (IC):
m Strong constraints as known in databases

= Do not mix up with constraints as in CLP(D) !

® Usual IC:
= Type (domain)
m Primary key
= Foreign key
® Existency constraints

m Check constraints

® Not so-usual IC:
= Candidate key
® Functional dependencies

m User-defined integrity constraints

12/5/2011 APLAS 2011

23~

Types vs. Domains

B Imposing type constraints:
= SQL table creation

m Interactive type assertions (ever at the command prompt)

m SQL:

CREATE TABLE s (sno INT, name VARCHAR(10)):;

® Datalog:

:—type(s(sno:1int, name:varchar (10))).

DES-Datalog> /dbschema

Info: Table(s):

* s (sno:number (integer) ,name:string (varchar (10)))
Info: No views.

Info: No integrity constraints.

24~

User-defined Integrity Constraints

m SQL:
= CHECK constraints (not supported by DES,; yet)
m Trigoers

CREATE TABLE t (c INT CHECK (c BETWEEN O AND 10));

m Datalog:

DES-Datalog> :-type(t, [c:int])

DES-Datalog> :-t (X), (X<0;X>10)

DES-Datalog> /assert t (11)

Error: Integrity constraint violation.
ic(X) (= t(X), (X < 0 ; X > 10).
Offending values 1n database: [1c(11)]

12/5/2011 APLAS 2011

25~

User-defined Integrity Constraints

DES-Datalog> /consult paths
Info: Consulting paths...

a,b). ‘!’
OBNO
:— path(X,2), edge(z,Y).

path(X,Y) :- edge(X,Y). o
end of file.
Info: 6 rules consulted.
DES-Datalog> :-path (X, X)
Error: Integrity constraint violation.
ic(X) :-
path (X, X) .
Offending values in database: [ic(b),ic(a)]
Info: Constraint has not been asserted.

12/5/2011 APLAS 2011

26~

4. Duplicates

m SQL is not set-oriented, rather it allows
duplicates in base relations and query outcomes

m So, for supporting SQL as Datalog programs
we need:
® Multisets

® Duplicate elimination

12/5/2011 APLAS 2011 27~

Duplicates as of DES

m Duplicates are disabled by default
DES-Datalog> /duplicates on
DES-Datalog> /assert t (1)
DES-Datalog> /assert t (1)
DES-Datalog> t (X)

Info: 2 tuples computed.

m Rules can also be source of duplicates, as in:
DES-Datalog> /assert s (X) :—-t (X)
DES-Datalog> s (X)

Info: 2 tuples computed.
12/5/2011 APLAS 2011

28 ~

Duplicates as of DES

® Duplicates ever 1n recursive rules (LDL does not allow this)

DES-Datalog> /assert t (X):—-t (X)
DES-Datalog> t (X)

Info: 4 tuples computed.

® No SQL implementation support this

12/5/2011 APLAS 2011

29~

Duplicates as of DES

® Discarding duplicates with metapredicates:
| distinct/l
B distinct/2

DES-Datalog> distinct (t (X))
Info: Processing:
answer (X) :-
distinct (t (X)) .

answer (1)

}
Info: 1 tuple computed.

m SQL

DES-Datalog> select distinct * from t

12/5/2011 APLAS 2011

30~

Safety and Duplicates

m Set variables in duplicate metapredicates are not bound

distinct ([X],t(X,Y))

m Unsafe goal:
distinct ([X],t(X,Y)), s(Y)

DES-Datalog> distinct ([X],t(X,Y)), s(Y)

Error: Incorrect use of shared set variables 1n
metapredicate:

[Y]
DES-Datalog> /safe on
DES-Datalog> distinct ([X],t(X,Y)), s(Y)
Info: Processing: ,4;4£§

answer (X,Y,C) :— s(Y), distinct ([X],t(X,Y)).

12/5/2011 APLAS 2011 31~

5. Outer Joins

B Null values:
M Cte.: null

M Functions: is null (Var)

1s not null (Var)

B Outer join built-ins:
W Jeft (D<) 13j(Left Rel,
W Right (<[): rJj(Left Rel,
W Full (TX)): £ (Left Rel,

12/5/2011 APLAS 2011

Right Rel, ON Condition)
Right Rel, ON Condition)

Right Rel, ON Condition)

32~

Outer Join Examples

B SQL:

SELECT * FROM a LEFT JOIN b ON x=y;
B Datalog:

1j (a(X), b(Y), X=Y)

B SQL:

SELECT * FROM a LEFT JOIN b WHERE x=y;
B Datalog:

1j(a(X), b(X), true)

B SQL:

SELECT * FROM a LEFT JOIN (b RIGHT JOIN c¢ ON y=u)
X=VYy

B Datalog:

Ij (a(X), rj (b(Y), c(U,V), Y=U), X=Y)

ON

12/5/2011 APLAS 2011

33~

6. Aggregates

m DES oftfers two possibilities:

m A 'group by metapredicate with
expressions including ageregate functions

m Agoregate predicates with grouping criteria
at the rule head

12/5/2011 APLAS 2011 34~

Aggoregates

B Agoregate functions:

12/5/2011

B count

B count (V)
mmin (V)

)

B max (V
B sum (V)
(

mavg (Var)

B times (Var)

APLAS 2011

COUNT (*)
COUNT (C)
MIN (C)
MAX (C)
SUM (C)
AVG (C)

No SOL counterpart

35~

Aggoregates

m Metapredicate group by/3

group by (
Relation, % FROM / WHERE

[Var 1,.,Var nl, % Grouping columns
Condition) % HAVING / Projection

12/5/2011 APLAS 2011

36~

Aggoregates
Example

m Number of employees for each department:

DES-Datalog> group by (employee(N,D,S),
[D1,
R=count) .
Info: Processing:
answer (D,R) :-

group by (employee (N,D,S), [D],R=count).

answer (accounting, 3),
answer (null, 2),
answer (resources, 1),
answer (sales, 5)

}

Info: 4 tuples computed.

12/5/2011 APLAS 2011

employee
il sl il
anderson | accounting 1200
andrews accounting 1200
arlingon | accounting 1000
nolan null null
norton null null
randall resources 800
sanders sales null
silver sales 1000
smith sales 1000
Steel sales 1020
Sullivan | sales null

37~

Aggoregates
Example (contd.)

employee
m Active employees of departments with
more than e active employee: Bl el e
anderson | accounting 1200
DES-Datalog> group by (employee(N,D,S), andrews | accounting 1200
[D1,))
‘ (S) >]_) arlingon | accounting 1000
coun -
Info: Processing: ior It AR Tl
answer (D) o= norton null null
group—by (e[rgf])loyee (N’ D’ S) ! randall resources 800
’
(A — COunt(S) : A > 1))) sanders sales null
{ silver sales 1000
answer (accounting), :
smith sales 1000
answer (sales)
} Steel sales 1020
Info: 2 tuples computed. Sullivan | sales null

12/5/2011 APLAS 2011 38~

Aggoregates

m Agoregate metapredicates:

count (Relation, Result)

count (Relation, CountedVar, Result)
min (Relation, Result)

max (Rel, Result)

sum (Rel, SummedVar, Result)

avg (Rel, AvgdVar,Result)

times (Rel,MultdVar, Var)

DES-Datalog> count (employee(, ,),C)

Info: Processing:

12/5/2011

answer (C) :- count (employee(, ,),[1,C).

APLAS 2011

39~

Aggregate Predicates and Group By

® Number of employees for each department.
m Recall predicate group by and functions:

DES-Datalog> group by (employee (N,D,S), [D], C=count)
= With ageregate predicates:

DES-Datalog> c¢(D,C) :- count (employee(N,D,S),S,C)
{
(accounting, 3),
(null, 0),
(resources, 1),
(

C
C
C
c(sales, 3)

12/5/2011 APLAS 2011 40~

Aggregates and Recursion

% SQL Program

CREATE OR REPLACE VIEW
shortest paths (Origin,Destination,Length) AS
WITH RECURSIVE
path (Origin, Destination, Length) AS
(SELECT edge.*,1 FROM edge)
UNION
(SELECT
path.Origin,edge.Destination,path.Length+1l
FROM path, edge
WHERE path.Destination=edge.Origin and
path.Length <
(SELECT COUNT (*) FROM Edge))
SELECT Origin,Destination,MIN (Length)
FROM path
GROUP BY Origin,Destination;

% SQL Query
SELECT * FROM shortest paths;

12/5/2011 APLAS 2011

Safety and Aggregates

B Set variables in agoregate metapredicates are not bound
group by (t (X,Y), [X],C=count)

m Unsafe goal:
group by (t (X,Y), [X],C=count), s(Y)

DES-Datalog> group by (t(X,Y), [X],C=count), s(Y)

Error: Incorrect use of shared set variables in
metapredicate:

[Y]
DES-Datalog> /safe on
DES-Datalog> group by (t(X,Y), [X],C=count), s(Y)
Info: Processing:
answer (X,Y,C) :- s(Y), group by(t(X,Y), [X],C = count).

12/5/2011 APLAS 2011 42 ~

Aggregates and DISTINCT

® For discarding duplicates (functions and metapredicates):

® sum distinct
® count distinct — SELECT DISTINCT COUNT (*)
m count distinct (V) — SELECT COUNT (DISTINCT C)
® avg distinct

B times distinct

No need for min distinct and max distinct

12/5/2011 APLAS 2011 43~

7. Deguggers and Tracets.
Datalog Declarative Debugger

m Motivation:

m Abstract the solving-oriented debugging procedure

m Roots:

® [Shaphiro83], Algorithmic Program Debugging

B Semantics-oriented

12/5/2011 APLAS 2011 44 ~

Declarative Debugger

between(X,2):- br(X),br(Y),br(2),X<Y,Y<Z .

7 Pairs of non-consecutive elements in the sequence
next(X,Y) - br(X), br(Y), X<Y, not(between(X,Y)).
next(nil,X) - br(X), not(has preceding(X)).

T Consecutive elements in a seguence (starting at nil)

has _preceding(X) :- br(X), br(Y), X = Y.

"~ Elements having preceding valuis iil the sequence
even(nil). _ N _
even(X) :- odd(2), next(z,X). <+ Elementsinan even position+nil

odd(Y) :- even(Z), next(Z,Y). «— Elementsinan odd position

br _i1s even - even(X), not(nhext(X,Y)).
Succeeds if the cardinality is even

br(a) - Base relation (sequence of elements)
br(b).

12/5/2011 APLAS 2011

Declarative Debugging:
Semantic Graph

br_is_even={}

next(nil, Y) = {next(nil,b)}
even(X) = {even(nil)}

br(ni) ={}

odd(X) = {odd(b)}

I Non-valid

\
D (V) = {br(a), br(b)} N
. Unknown

has_preceding(a)= {has_preceding(a)}

br(a)= {br(a)} has_preceding(b)= {}

12/5/2011 APLAS 2011 46 ~

br(b) = {br(b)}

Declarative Debugging:
A Practical Session

DES> /debug datalog br_i1s even

Debugger started ...

Is br(b) = {br(b)} valid(v)/non-valid(n) [v]? v

Is has preceding(b) = {} valid(v)/non-valid(n) [v]? n
Is br(X) = {br(b),br(a)} valid(v)/non-valid(n) [v]? v
I Error 1n relation: has preceding/1

I Witness query: has preceding(b) = { }

12/5/2011 APLAS 2011 47~

SQL Debugger

m Motivation as of Datalog Debugger

m Adds traversing strategies

® Divide & Query

/debug sgl Guest order (dqg)
m Also, trusted tables

/debug_sql Guest trust tables (no)

m And trusted specifications:
/debug sgl Guest trust file(pets trust)

12/5/2011 APLAS 2011

48 ~

Owner(id integer primary key,
name varchar(50));

Pet(code integer primary key,
name varchar(50), specie
varchar(20));

PetOwner(id integer, code
integer, primary key (id,code),
foreign key (id) references
Owner(id), foreign key (code)
references Pet(code))

AnimalOwner
LessThan6 (AnimalOwner)

CatsAndDogsOwner
(AnimalOwner)

NoCommonName

(CatsAndDogsOwner)

Guest (NoCommonName,
LessThano)

DES-SQL> select * from Guest
answer(Guest.id, Guest.name) ->
{
answer(1l,'Mark Costas'),
answer(2,'Helen Kaye'),
answer(3,"Robin Scott")

}

Info: 3 tuples computed.

DES-SQL> /debug_sql Guest
Info: Outcome of view 'LessThan6":
{
'LessThan6'(1),
'LessThan6'(2),
'LessThan6'(3),
'"LessThan6'(4)
f
Input: Is this view valid? (y/n/a) [y]: y

Info: Outcome of view
'"NoCommonName":

'"NoCommonName'(1),
'NoCommonName'(2),
'"NoCommonName'(3)

h

Input: Is this view valid? (y/n/a) [y]: n

Info: Outcome of view

'CatsAndDogsOwnet":
{

'CatsAndDogsOwner'(1,'Wilma'),
'CatsAndDogsOwner'(2,'Lucky’),
'CatsAndDogsOwner'(3,"Rocky")

h
Input: Is this view valid? (y/n/a) [y]: n

SQL Debugger

Info: Outcome of view 'AnimalOwnet":

d
AnimalOwnet(1,'Kitty',cat),
AnimalOwnez(1,'Wilma',dog),
AnimalOwner(2,'Lucky’,dog),
AnimalOwner(2,"Wilma',cat),
AnimalOwner(3,'Oreo’,cat),
AnimalOwner(3,'Rocky',dog),
AnimalOwner(4,'Cecile',turtle),
AnimalOwner(4,'Chelsea’,dog)

J

Input: Is this view valid? (y/n/a) [y]: v

Info: Buggy view found:
CatsAndDogsOwner/2.

12/5/2011

APLAS 2011

49~

Datalog Tracer

a :— not(b).
b :- c¢,d.

c :— b.

C

—>
«—

DES-Datalog> /c negation Info : Remaining predicates:
DES-Datalog> /trace datalog a [c/0,d/0]
Info: Tracing predicate 'a'. Input: Continue? (y/n) [y]:
{ Info: Tracing predicate 'c'.
a {
} C
Info: 1 tuple in the answer table. }
Info Remaining predicates: InfOZ 1 tuple in the answer table.
[b/0,c/0,d/0] Info Remaining predicates: [d/0]
Input: Continue? (y/n) [y]: Input: Continue? (y/n) [y]:
Info: Tracing predicate 'b'. Info: Tracing predicate 'd'.
{ {
not (b) }
} Info: No more predicates to trace.
Info: 1 tuple in the answer table.
12/5/2011 APLAS 2011 50~

SQL Tracer

DES-SQL> /trace_sql ancestor

Info: Tracing view 'ancestor’.

{
ancestor(amy,carollll), ...
ancestor(tony,carollll)

§

Info: 16 tuples in the answer table.

Info : Remaining views:
[patent/2,father/2,mother/2]

Input: Continue? (y/n) [y]:
Info: Tracing view 'parent’.
{
parent(amy,fred), ...
parent(tony,carolll)
h
Info: 8 tuples in the answer table.
Info : Remaining views: [father/2 mother/2]
Input: Continue? (y/n) [y]:
Info: Tracing view 'father’.
{
father(fred,carollll), ...
father(tony,carolll)
h

Info: 4 tuples in the answer table.

Info : Remaining views: [mother/2]

Input: Continue? (y/n) [y]:

Info: Tracing view 'mother’.

d
mother(amy,fred), ...
mother(grace,amy)

§

Info: 4 tuples in the answer table.

Info: No more views to trace.

DES-SQL> /trace datalog father(X,Y)

Info: Tracing predicate 'father’.

d
father(fred,carollll), ...
father(tony,carolll)

§

Info: 4 tuples in the answer table.

Info: No more predicates to trace.

LAS 2011

51~

8. SQL Test Case Generator

m Provides tuples that can be matched to the /ntended
interpretation ot a view
m Test cases
m Positive (PTC)
m Negative (NTC)
B Querylng a view Ww.r.t.
m PTC: One tuple, at least

= NTC: One tuple, at least, which does not match the
WHERE condition

m Predicate coverage:
= PNTC: Contains both PTC and NTC tuples

12/5/2011 APLAS 2011 52~

SQL Test Case Generator

m PNTC

DES-SQL> create table t(a int primary key)

DES-SQL> create view v(a) as select a from t where a=5
DES-SQL> /test case v

Info: Test case over integers:

[E(5),E(=3)]

m No PNTC

create view v(a) as select a from t
where a=1 and not exists (select a from t where a<>1);

® Support for:

= Integer and string types
= Agoregates, UNION
= Options:
m Adding/replacing results to a table
m Kind of generated test case (PTC, NTC, PNTC)

m Test case size
12/5/2011 APLAS 2011 53 ~

9. Conclusions

® Successful implementation guided by need

m Widely used, both for teaching and research
® More than 35,000 downloads
Up to more than 1,500 downloads/month

® Includes novel features
= Hypothetical SQL
® Declarative debuggers
® Outer joins
® But key factors are also:
® Datalog and SQL integration
m Interactive, user-friendly, multiplatform system

® Just download it and play!
12/5/2011 APLAS 2011

54~

Limitations (Future Work)

Data are constants, no terms (functions) are allowed
Datalog database updates

Beyond 2.5VL

SQL coverage still incomplete

Precise syntax error reports

Constraints (a /a CLP)

Performance

... only to name a few!

12/5/2011 APLAS 2011

55~

et e e —

Efficient Integrity Checking for Databases with Recursive

Views

Davide Martinenghi and Henning Christiansen

In Advances in Databases and Informatloristems 9th
1

East European Conference, ADBIS 2005, "Fallt
September 12-15, 2005 : Proceedings

Autor Johann Eder, Hele-Mai Haav, Ahto
Penjam

ISBN 3540285857, 9783540285854

PhD

Computer Science and Engineering Department
University of Nebraska - Lincoln, USA

PhD
University of Texas at San Antonio, USA

alja, Jaan

Industry:

XILOG Technologies GmbH, Zirich
Caselab : Applied Operations Research
Ideacube

Links to DES:

ACM SIGMOD Online Publicly Available Database
Software from Nonprofit Organizations

The ALP Newsletter. vol. 21 n. 1

Datalog Wikipedia German

Datalog Wikipedia English

Wapedia

SWI-Prolog. Related Web Resources

SICStus Prolog. Third Party Software. Other Research
Svstems

SOFTPEDIA. Datalog Educational System 1.7.0
Famouswhy

DBpedia

BDD-Based Deductive DataBase (bddbddb)

Other implementations of Datalog/Prolog

Reach Information
Ask a Word
Acronvm finder

nym Geek

[FAVEm APLAS 2011

ARV ROy M ARGy AL Y LAY

CS240A: Databases and Knowledge Bases

The University of Arizona
CsC372

F =y ﬁ e State University of New York
a L ersity at Buffalo

CSE 636: Data Integration

The University of British Columbia
CS304: Introduction to Relational Databases
Datalog Tutorial

Mastet's of Information Technology in
Arkansas Tech University,
Russellville

The University of Texas at Austin
CS2

Australia:

INFO2820: Database Systems 1 (Advanced) (2010 -
Semester 1)

Engineering and Information Technologies

The University of Sydney

Tab “Resources”

INFO2120/2820: Database Systems 1 (2009 - Semester 1)

School of Information Technologies

The University of Sydney

Tutorial 3

Allan Hancock College >> INFO >> 2120 Fall, 2009
Description: School of Information Technologies
INFO2120/2820: Database Systems I 1.Sem./2009
Tutorial 3: SOL and Relational Algebra 23.03.2009

Africa:
Facultv of Sciences and Technologies of
Mohammedia (FSTM) - Morocco

56~

