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Abstract

One of the main bottleneck in Genetics Algo-
rithms is the fitness evaluation for each indi-
vidual. In this work, we propose a new fitness
evaluation method, which solve the bottleneck
calculating a fitness on the fly.

Introduction

Finding a solution in the search space is a
complex task when the number of variables
and cardinalities of domains are large. Several
heuristic techniques have been used, as sim-
ulated annealing [1], evolution programs [2],
tabu search [3], Grasp (Greedy Randomized
Adaptive Search Procedure) [4], and neural
networks [5].

The main disadvantage of these techniques
is the lack of completeness. Optimum is not
guaranteed to be found. However, it is not
always needed to find the best solution, but
a good solution when, either computing time
is a critical factor, or cost functions are not
precise enough for justifying a complete search.
In these cases, stochastic approaches are fully
justified.

Genetic algorithms [6] are stochastic al-
gorithms implementing a search procedure
which model a biological phenomena: genetic
inheritance, and Darwinian survival. A genetic
algorithm maintains a population of individuals

coding potential solutions. These individuals
are mated and mutated through the application
of genetic operators.

Performance of genetic algorithms can be ef-
fectively increased through the parallel evalu-
ation of genetic operators. In this work, we
enhance the performance of genetic algorithms,
performing parallel evaluation of genetic opera-
tors through pipelining. For this goal, we firstly
propose a novel pipelined genetic architecture
to implement genetic algorithms which behaves
different from a usual sequential algorithm [7].
Then, we implement the architecture and com-
pare its efficiency against the sequential one, fo-
cusing on the total generations needed to obtain
solutions.

Genetic Algorithms Background

Many of interesting problems have not rea-
sonably fast algorithms to solve them. Most
belongs to the class of NP-hard combinatorial
optimisation problems, which are NP-complete
decision problems requiring an algorithm of
exponential complexity with the problem size.

Guided random search techniques are based
on enumeration techniques but use additional
information to guide the search. Moreover, the
search has an stochastic component in order
to explore randomly (and partially) the search
space, which allows both to explore local op-
tima and escape from them (unlike hill-climbing
techniques). Evolutionary algorithms are ex-
amples of such techniques. Genetic algorithms
(GAs) are instances of evolution algorithms
[2], which manage raw data implemented as
bit strings, instead of managing complex data
structures as evolution algorithms do.

Modelling the problem means two issues:
the first one is the coding of solutions, that
is, coding chromosomes in a way each one
may represent a solution. The second one is
to design a cost function, which measures the
fitness of the individual, that is, how good the
solution is under a given criterium.

The fitness function is the link between the
GA and the problem to solve. A fitness function
takes a chromosome as input and returns a
measure of its goodness. This function provides
the information needed to select individuals for



mating.

GAs focus on local optimisation, but evolu-
tion allows them to jump to different points of
the search space, which makes the optimisation
more global. According to evolution, best in-
dividuals are likely to survive and generate off-
spring, therefore transmitting their best features
to new generations. In this procedure there are
two basic operators, known as genetic operators,
involved in GA operation:

e (Crossover, i.e., mating pairs of individuals.

o Mutation of each individual.

In addition to genetic operators, the fitness
function, previously mentioned, must also be
supplied. This function is used in the selection
stage, which selects best individuals to survive.

With these operations, a generic GA Fig.(1)
consists of the following:

1. Initialise a population. A set of coded bi-
nary strings is created.

2. Evaluate each chromosome in the popula-
tion. The fitness function is applied to each
chromosome.

3. Create new chromosomes by means of
crossover and mutation. The first operator
takes into account the fitness values (com-
puted in the previous step) of each chro-
mosome in order to select the best ones to
mate together.

4. Evaluate the new chromosomes, select the
best ones and overwrite the worst ones.
This stage is known as selection.

5. Repeat from step 2 if more generations are
required, else take the best chromosome
and return it as the solution.

Above-mentioned operations have different
ways to be implemented, considering different
criteria and different parameters. In the follow-
ing list they are briefly discussed:

e Selection. This is a weighted random se-
lection of two or more individuals whose
genetic material will be propagated to the
next generation. The weight induces the
probability for best chromosomes to be se-
lected. Therefore, there is an unpredictable

| Initialisation |

—>| Fitness evaluation |

| Crossover and mutation |

Figure 1:

rithm.

Structure of a Generic Genetic Algo-

component in the next operator from se-
lection, which is determined by the weight
parameter.

e (rossover. From selected chromosomes,
their genetic material is combined for gen-
erating the new ones. Typically, two chro-
mosomes are mated, but more are allowed
depending on the implementation. There
are several ways to perform crossover. For
instance, a bit of the string is selected for
splitting the two chromosomes and after,
the corresponding parts are swapped. An-
other alternative consists of doing so in a
bit per bit approach.

e Mutation. After generating offspring, there
is a random selection of new chromosomes
for changing particular genes. This is
guided by a parameter, which induces the
probability of mutation. This operation
is quite important in the evolution pro-
cess, because it allows GAs to explore other
points in the search space, escaping from lo-
cal optima. Obviously, it must be adjusted
in order to avoid a pure random search.

e Fitness. Each chromosome is characterised
by its fitness, which is problem dependent.
There are no GA parameters related to it.

GAs have been proven useful to tackle com-
plex optimisation problems, even easily when
coding is natural from the problem posed.
Nonetheless, as any other stochastic procedure,
there is no way of knowing whether optimum
has been computed. Moreover, there is no clear
stopping criterion for termination. However,
when other approaches cannot be applied be-
cause of either restrictions (e.g., computation
time in real time applications) or they are ex-
pensive (e.g., no-need of best solutions, but for
reasonable ones), GAs are fully justified.



Pipelined Genetic Architecture

In this Section, we present the design of a
pipelined genetic architecture. For other related
parallel models [8],[9], it has been shown and
analysed the high speedup of hardware imple-
mentations when compared with software im-
plementations [9]. In this work, we propose a
new approach which allows a better use of the
pipeline.

Identifying Dependencies

Figure.(2) shows the basic Holland genetic
algorithm (HGA), which embodies the fitness,
selection, crossover, and mutation operations.
In this algorithm as well as forthcoming ones,
a pseudo-code has been used. The main loop
iterates until a predefined number of iterations
had been reached or a feasible solution had
been found under the programmer’s criteria.
The population is the array X, with elements
Xi representing each chromosome in the popu-
lation. Each element is a record with two fields:
fitness (devoted to hold chromosome’s fitness),
and the binary string representing genes in
the chromosome (not shown in the Figure).
The function select selects two chromosomes
from X. The function crossover gives two new
chromosomes (Y5 and Y%, elements of an array
Y) as their children. The function mutation
mutates these two new chromosomes. The
function new_generation assembles the new
population X from new chromosomes in Y.

1. procedure HGA();

2 . begin

3. t:=0;

4. for i:=1 to popul ation_size do

5. Xi := random chronosong;

6. repeat

7. for i:=1 to popul ation_size do
8. Xi.fitness := fitness_eval uation(X);
9. X := mean_fitness_eval uation(X);
10 . for all_pairs do

11. select (Y], Yk, X);

12. crossover(Yj, YK);

13. nutation(Yj, Yk);

14 . new_generation(XY);

15 . t:=t+1;

16 . until max_iteration(t) or feasible_solution;

17 . end;

Figure 2: Sequential Basic Holland Genetic Algo-
rithm.

Figure.(3) shows a slight modification of the
basic Holland genetic algorithm following [10],

which makes explicit how new individuals are
generated. Here, each chromosome has in ad-
dition a field select which indicates how many
times it is selected for crossover. The way the
selection is implemented is by using an array Y
which holds as many copies of a chromosome Xi
as its field select indicates. These copies are gen-
erated by the function replicate. Next, crossover
and mutation are applied to pairs of chromo-
somes. Finally, creation of the new generation
becomes as simple as X:=Y.

1.procedure HGA();

2 . begin

3. t:=0;

4 for i:=1 to popul ation_size do

5. Xi := random chr onosone;

6. repeat

7. for i:=1 to popul ation_size do

8 Xi.fitness := fitness_evaluation(Xi);
9. X := nean_fitness_eval uation(X);

10. for i:=1 to popul ation_size do

11. Xi.select :=round(Xi/X);

12. if Xi.select>0 then replicate(Xi, X .select,Y);
13. for i:=1 to popul ation_size/2 do

14. crossover (Yi, Yipopul ation_size/2) ;

15. mutati on( Yi, Yipopul ati on_si zer2) +

16 . X =Y,

17. t:=t+1;

18. until max_iteration(t) or feasible_solution;
19 . end;

Figure 3: Sequential Genetic Algorithm imple-
mented following [10].

We depict in Figure.(4) the dependency
graph for the main loop in Figure.(3), which is
useful for identifying functional dependencies
and express independent tasks. At this gran-
ularity level, there are no independent tasks,
but it can be thought of a pipeline from a
concurrent point of view. Tasks as pairing off,
crossover, and mutation may work concurrently
as the first one supplies pairs of chromosomes
to the next task, mate, and this one, in turn,
supplies offspring to the mutation task. This
is the usual pipeline that can be found in the
literature [8] [10], and it has been observed its
good speedup [9].

Apart from resources considerations, we can
split tasks in Figure.(4) into several subtasks
since several genetic operations are known inde-
pendent and can be applied to different chromo-
somes. Figure.(5) shows this split which yields
to several parallel pipelines, in which n stands
for population size. Firstly, fitness is computed
independently for each chromosome. Next, the
mean fitness is computed from all the chromo-
some’s fitness in the population. The replica-
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Figure 4: Dependency graph for the main loop in
HGA.

tion phase comes next. Pairing off, crossover,
and mutation conforms the main pipeline, which
has been also replicated for the population; that
is, there are n/2 pipelines working in parallel.
However, there are also two main bottlenecks
which disables a continuous data flow, namely,
the computation of the mean fitness, and the
replication.
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Figure 5: Deeper granularity dependency graph for
the main loop in SGA.
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In the next Section, we deal with the goal of
eliminating these two bottlenecks.

Overcoming Dependencies Problems

Selection operation has been observed to be the
main bottleneck in the pipelined architecture,
which implies sequential loops slowing down
the dataflow. Since selection relies on mean
fitness computation (which depends on all the
chromosomes in the population), we propose
to compute it on the fly, that is, computing an
incremental mean.

In order to overcome the wait for chromosome
fitness availability, the mean can be computed
incrementally (on the fly) by feeding new fitness
values to mean fitness computation. Therefore,
there is always an available value for f, which
is updated whenever a new selection have to be
performed. In such a way, the pipeline must not
wait for mean fitness computation. The incre-
mental mean is defined inductively as follows:

fo=

f
fj Jl (1)

= (7]‘71 =D+ fi;)

where f is the mean fitness computed ini-
tially, f;, is the chromosome fitness (from f;
to fn, i; € 1,...,n) actually feeded, and j, the
number of chromosome fitness feeded.

This approach has two drawbacks:

e The number of fitness values previously
feeded must be kept. This implies to have
enough room available for storing , and,
more important, it must have an upper
bound.

e Since generations are not synchronous any-
more, there is no clear notion of generation
fitness. That is, should all f;; be equally
weighted as Equation.1 implies?

In this work, we compute the mean on the fly,
avoiding the storing of j, and we use an empir-
ically obtained weight for each f;;, so that the
pipeline has a continuos data flow, only limited
by the performance of each pipeline stage. The
architecture which supports this idea is depicted
in Figure.(6).
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Figure 6: Architecture of the pipelined GA.

This approach has an additional advantage:
there is no need of sorting chromosomes, as



another implementations need [10] in order to
select best chromosomes to be passed to the
crossover module. This task is accomplished in
our model by comparing the chromosome fitness
to the current mean, so that selection acts as a
filter for worst chromosomes.

Implementation of the Pipeline

The modified GA for embodying the pipeline
consists of the following: firstly, the initial mean
fitness is computed as the standard GA does;
then, the pipeline itself comes, which consists
of selection, crossover, and mutation operation,
which are covered in forthcoming sections.

Selection

From a given population, all chromosomes are
quasi-randomly selected (i.e., paired off) for
crossover, mutation, or rejection. We have
adopted the following criterion: If both chro-
mosomes are good enough, they are selected for
crossover. If both chromosomes are not good
enough, they are selected for mutation. If only
one of them is good, then it is replicated once
and the two clones are selected for mutation.

Goodness of chromosomes (g(X;, j)) is deter-
mined by an empirically obtained parameter,
the selection threshold (st), which indicates the
lower bound for the ratio of chromosome fitness,
and the mean fitness. This parameter must in-
crease as better solutions are found. The in-
creasing is guided by another parameter, the in-
crease of selection threshold (Ast), which is also
obtained empirically. The goodness is defined
by:

true ifL > j
g(xi,j)={ P S
alse, zf? < st(y)

The goodness is dependent not only on fit-
ness, but also on “time” (here denoted by j)!,
since hopefully, as time passes by, better solu-
tions are found and, therefore, one must be more
strict in selecting chromosomes. Therefore, st is
tuned correspondingly with (Ast). This tuning
is defined as:

'n fact, j denotes here a cpo (complete partial order)
between generations of particular pairs of chromosomes.
The sequence j = 1,2, 3, ... identifies the order in which
chromosomes are selected, i.e., X; , Xy, Xis,...585 €
1,...,n.

st(j — 1),

ifwmf(j) <wmf(j—1)
st(j — 1) + Ast,

ifwmf(j) > wmnf(j - 1)

st(j) =

wmf(j) stands for the weighted mean fitness
at time (See below).

Weighted Mean Fitness

We discard the incremental mean approach,
and, instead, we compute a weighted mean with
the value of chromosome fitness. The criterion
applied for computing the weighted mean fitness
is the following: If chromosome fitness is greater
than the current weighted mean, then it must in-
fluence notably, and, conversely, if it is not, then
it must slightly influence the current weighted
mean. This slight influence is necessary in or-
der to avoid to have chromosomes never selected
because the current weighted mean fitness is too
high. Both influence degrees are determined by
empirically obtained parameters (n; and s;, re-
spectively). The computation of the weighted
mean fitness at time j(wmf(j)) is defined as:

“ng Fwmf(j—1) - (1 —mny),
iffi > wmf(j—1)

csi+wmf(j—1)-(1—s;),
iffi <wmf(j—1)

Crossover

This operation is carried out from a classical
point of view. A parameter determines the
probability of crossover. If two chromosomes
have to be breed, then a gene is randomly se-
lected for splitting each chromosome and ex-
change the resulting partitions.

Mutation

Mutation may occur when the chromosome
must be mutated (decided in the selection
stage), or when it is randomly determined in
terms of a mutation parameter. Mutation con-
sists of the logical not of a randomly selected
gene in the chromosome.



Performance Analysis of the

Pipelined Genetic Architecture

This Section is devoted to the performance
analysis of the proposed pipelined genetic
architecture (hereinafter PGA) in terms of
its adequacy in finding solutions. Since our
proposal is different from the basic Holland’s
genetic algorithms we therefore compare both
relating quality of solutions and number of
generations needed to reach them. Moreover,
we study the bottlenecks present in both
algorithms for improving performance.

We consider the classical Holland’s genetic al-
gorithm (hereinafter HGA) characterised by se-
quential behavior.

Comparing PGA against HGA

We have considered three benchmarks (Hill
Climbing, Prisoner’s Dilemma, and Task
Problem), with three sets of seeds, and three
population sizes, which results in twenty seven
different runs for each genetic algorithm in-
stance (HGA and PGA). All the runs have
two hundred generations long, and the string
length for the chromosome is sixteen bits. The
selection threshold, is 1.0, and the increase for
this factor is 0.001. Crossover probability is
60%, and mutation probability is 2%.

Hill Climbing is an optimisation problem with
one local maximum and another global in its
search space. Progression to the optimum, once
in the correct environment, is fast. Prisoner’s
Dilemma has one global maximum and several
local maxima. Progression to the optimum is
therefore slower. Convergence in Task problem
is slower than previous problems since optimum
is near other possible solutions.

For the sake of conciseness, we have shown in
the following graphs the mean value of the three
runs corresponding to the three different sets of
seeds.

Figure.(7) to Figure.(9) show the results for
the benchmark Hill Climbing, with a population
size of 16, 32, and 64 chromosomes, respectively.
Figure.(10) to Figure.(12) correspond to the
benchmark Prisoner’s Dilemma, and, finally,
Figure.(13) to Figure.(15) correspond to the
benchmark Task Problem.
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Figure 7: Mean fitness values for Hill Climbing with
16 chromosomes.
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Figure 8: Mean fitness values for Hill Climbing with
32 chromosomes.
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Figure 9: Mean fitness values for Hill Climbing with
64 chromosomes.
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We can observe from graphs above that PGA
behaves clearly better than HGA. Convergence
speed increases notably when the population
size is augmented from 16 to 32 chromosomes. It

also increases (in less degree) when we augment
it from 32 to 64.

Conclusion

In this work, we have developed a general novel
pipelined architecture which is adequate, in
particular, for solving the stochastic proce-
dures needed in constraint propagation. This
architecture has been shown to deal important
speed-ups in early simulation experiments.

Results have been acquainted from C and
VHDL analysis implementations. The former
give us qualitative data in terms of number
of generations needed for achieving a solution,
whereas the latter, in addition, can be used as
a platform to investigate the implementation
of critical regions of the parallel system in
programmable logic devices, such as FPGAs.
Moreover, by embodying the needed (and
approximated) delays we can carry out a high-
level simulation regarding speed-up in terms of
simulation time. This could be an analysis step
in comparing implementations of the parallel
system in a multiprocessor architecture and
workstation networks.
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