
DES: A Deductive Database System

Fernando Sáenz-Pérez
Dept. Ingeniería del Software e Inteligencia Artificial

Universidad Complutense de Madrid, Spain

fernan@sip.ucm.es

Abstract

This work describes a novel implementation of
a deductive database system which fills some
gaps other systems do not. In fact, this system
was born to this end and since its inception,
many new features have been added (null val-
ues, outer joins, aggregates, ...). In particu-
lar, it embodies both Datalog and SQL query
languages, where the same database can be
queried. It enjoys an actual interactive envi-
ronment for any platform (Windows, Linux,
Macintosh, ...) and it has been plugged to
a Java GUI IDE for easing user interaction
(syntax highlighting, projects, ...). The sys-
tem is distributed under GPL license, hosted
by sourceforge, and heavily used all around the
world.

1 Introduction

The intersection of relational databases, logic,
and artificial intelligence was the melting pot
of deductive databases. A deductive database
system includes procedures for inferring infor-
mation from the so-called intensional database
(deductive rules) in addition to the so-called
extensional database (deductive rules without
body, i.e., facts following the logic program-
ming nomenclature). Deductive database lan-
guages are related to the Prolog language, and
Datalog has become the de-facto standard de-
ductive database query language. Datalog al-
lows to write queries as normal logic programs
(without function symbols), and they are en-
sured to be terminating upon some conditions
(e.g., avoiding infinite relations as arithmetical

predicates).
This language has been extensively stud-

ied and is gaining a renowned interest thanks
to their application to ontologies [10], seman-
tic web [6], social networks [16], policy lan-
guages [2], and even for optimization [11].
In addition, companies as LogicBlox, Exeura,
Semmle, and Lixto embody Datalog-based de-
ductive database technologies in the solutions
they develop. The high-level expressivity of
Datalog and its extensions has therefore been
acknowledged as a powerful feature to deal
with knowledge-based information.

Compared to the widely-used relational
database language SQL, Datalog adds two
main advantages. First, its clean semantics al-
lows to better reason about problem specifica-
tions. Its more compact formulations, notably
when using recursive predicates, allow bet-
ter understanding and program maintenance.
Second, it provides more expressivity because
the linear recursion limitation in SQL is not
imposed. In fact, multiple recursive calls can
be found in a deductive rule body.

Several deductive systems have emerged
along time, mostly born from academic efforts.
See, for instance DLV [14], XSB [19], bddb-
ddb [13], LDL++ [1], ConceptBase [12], and
.QL [15]. Translating these outcomes to ex-
periment with and to widen the dissemination
of state-of-the-art features of such deductive
systems is hard since no one meets the follow-
ing desired properties: multi-platform, inter-
activeness, multi-language support, freeness,
and open-sourcing, among others.

In this paper, we list the main features of
DES (Datalog Educational System) [18], high-

lighting some of the ones that make this tool
different from any (existing, available) other.

Organization of this paper is as follows. Sec-
tion 2 summarizes the main features of the cur-
rent version of the system. Section 3 describes
the Datalog and SQL query languages as they
can be used from DES. Section 4 explains our
proposal to the management of null values and
outer join operators in Datalog, which in turn
are used in the compilation of SQL statements
to Datalog programs. Also, a novel approach
to aggregates is described in Section 4, includ-
ing both aggregate functions and predicates.
Finally, Section 6 draws some conclusions.

2 Main Features

This section lists a brief summary of the main
features DES enjoys:

Full Recursion Datalog rules can be recur-
sive, mutually recursive, include negation in
bodies, and contain as many recursive calls as
needed, as opposed to recursive SQL.

Stratified Negation DES ensures that
negative information can be gathered from a
program with negated goals provided that a
restricted form of negation is used: stratified
negation [23]. This broadly means that nega-
tion is not involved in a recursive computation
path, although it can use recursive rules. The
system can correctly compute a query Q in the
context of a program that is restricted to the
dependency graph (which shows the compu-
tation dependencies among predicates) built
for Q so that a stratification can be found.
The user can ask the system for displaying the
predicate dependency graph as well as for the
stratification via commands.

Built-ins There are available some usual
comparison operators (=, \=, >, . . .). All these
operators demand ground (variable-free) ar-
guments (i.e., no constraints are allowed up
to now) but equality, which performs unifi-
cation. In addition, arithmetic expressions
are allowed via the infix operator is, which

relates a variable with an arithmetic expres-
sion. The result of evaluating this expression
is assigned/compared to the variable. The
predicate not/1 implements stratified nega-
tion. Other built-ins are explained in Sections
4 and 5.

Full-Fledged Arithmetics In contrast to
other deductive systems (as, notably, DLV),
arithmetical expressions can be as complex as
needed, using almost the complete set of func-
tions and operators in state-of-the-art Prolog
systems, following the standard ISO Prolog.

Safety and Computability Built-in pred-
icates are appealing, but they come at a cost:
The domain of their arguments is infinite, in
contrast to the finite domain of each argu-
ment of any user-defined predicate. Since it is
neither reasonable nor possible to (extension-
ally) give an infinite answer, when a subgoal
involving a built-in is going to be computed,
its arguments need to be range restricted, i.e.,
the arguments have to take values provided
by other subgoals. DES provides a preproces-
sor for source-to-source translations that al-
lows deciding whether a rule is safe (an exten-
sion of conditions in [23, 25] for safe rules) and,
if so, to translate it by reordering its goals in
order to make it computable.

Temporary Views Temporary views allow
to write compound queries on the fly (as, e.g.,
conjunctions and disjuntions). A temporary
view is a rule which is added to the database,
and its head is submitted as a query and exe-
cuted. Afterwards, the rule is removed. For in-
stance, given the relations a/1 and b/1 defined
by facts, the view d(X) :- a(X), not(b(X))
computes the set difference between the in-
stance relations (sets) a and b. Note that the
view is evaluated in the context of the pro-
gram; so, if there are more rules already de-
fined with the same name and arity of the
rule’s head, the evaluation of the view will re-
turn its answer set considering the program
already loaded. For instance, the view a(X)
:- b(X) computes the union of a and b.

178 X Jornadas sobre Programación y Lenguajes

Automatic Temporary Views Auto-
matic temporary views, autoviews for short,
are temporary views which do not need
a head. When submitting a conjunctive
query, a new temporary relation, named
answer, is built with as many arguments as
relevant variables occur in the conjunctive
query. answer is a reserved word and cannot
be used for defining other relations. The
conjunctive query a(X), b(Y) is an example
of an autoview, which computes the Cartesian
product of a and b.

Two Query Languages. One Deductive
Database Both Datalog and SQL languages
are provided and query the same database.
Moreover, Datalog programs can seamlessly
refer to objects created in the SQL side, as
tables and views1. Whereas the so-called ex-
tensional (deductive) database (EDB) is com-
posed of Datalog facts and tuples in tables, the
so-called intensional database (IDB) is com-
posed of Datalog rules and relational views.
The system includes a parser and preproces-
sor for Datalog, and a parser and a compiler
from SQL to Datalog. SQL queries are pro-
cessed with the deductive engine.

Datalog Declarative Debugger In [4],
an approach to debug Datalog programs an-
chored to the semantic level instead of the
computation level is proposed. This approach
has been implemented in DES as a novel way
of applying declarative debugging, also called
algorithmic debugging, to Datalog programs.
It is possible to debug queries and diagnose
missing answers (an expected tuple is not com-
puted) as well as wrong answers (a given com-
puted tuple should not be computed). The
system uses a question-answering procedure
which the user starts when he detects an unex-
pected answer for some query. Then, if possi-
ble, it points to the program fragment respon-
sible of the incorrectness.

1Note that SQL views cannot refer to Datalog rela-
tions because SQL tables and views have attached re-
lational metadata regarding column names and types,
whereas Datalog rules do not.

Test Case Generator DES implements a
novel test case generator for SQL views fol-
lowing [5]. Test case generation provides tu-
ples for the involved input tables that can be
matched to the intended interpretation of a
view and therefore be used to catch posible de-
sign errors in the view. Both positive (PTC)
and negative (NTC) test cases are generated.
Executing a view for a PTC should return, at
least, one tuple. This tuple can be used by the
user to catch errors in the view, if any. This
way, if the user detects that this tuple should
not be part of the answer, it is definitely a wit-
ness of the error in the design of the view. On
the contrary, the execution of the view for a
negative test case should return at least one
tuple which should not be in the result set of
the query. Again, if no such a tuple can be
found, this tuple is a witness of the error in
the design.

Commands The system console accepts
several commands which are isolated from the
database signature, i.e., name clash is avoided
even when a relation takes the same name than
a command. This is possible because submit-
ting a command implies to precede it with the
symbol “/”. Commands are catalogued as: 1)
Rule database commands, for inserting, delet-
ing and listing both programs and single rules.
2) Operating system commands, for dealing
with the operating system file system and ex-
ternal commands. 3) Extension table com-
mands, for information about the memoiza-
tion result. 4) Log commands, for logging sys-
tem output to files. 5) Informative commands,
for showing the predicate dependency graph,
stratification, system status, help and others.
6) Miscellanea commands, as for quitting the
session and invoking Prolog.

Batch Processing The command process
filename allows to process the file filename
as a batch of user inputs. In addition, if the
file des.ini is located at the installation di-
rectory, its contents are interpreted as input
prompts and executed before giving control to
the user. Therefore, automation is possible as,
for instance, to set the DES application as a

Programación Lógica y Bases de Datos 179

component of more complex systems of as a
delegate for tasks sent from other systems. In
this case, inter-process communication is via
files. Batch files can contain remarks because
prompt input lines starting with the symbol %
are interpreted as such, which imply no com-
putations. In addition, the command /log al-
lows to write the system output to a file, which
can be used by another application.

System Status The way the system be-
haves can be modified by setting system flags.
Several configurations are allowed: 1) Simpli-
fication mode, where automatic simplification
for rules is allowed in order to enhance per-
formance. 2) Program transformations, for
trying to find safe formulations (cf. “Safety
and Computability” above). 3) Development
mode, for detailed listings that show compiled
rules and internal representations. 4) Data-
log and SQL pretty-print listings. 5) Verbose
output, which lists informative reports about
the execution. 6) Selection of algorithms to
compute negation. 7) Elapsed time displays,
whether basic or detailed.

Termination Evaluation of queries is en-
sured to be terminating as long as no infinite
predicates/operators are considered (data are
constants so that terms with unlimited depth
are not allowed). Currently, only the infix op-
erator is represents an infinite relation and
can deliver unlimited pairs. For instance, let’s
consider the rules p(0). and p(X) :- p(Y),
Y is X+1. Then, the query p(X) is not ter-
minating since its meaning is infinite ({p(0),
p(1), ...}). However, terminating programs
involving this operator are also possible by ex-
plicitly limiting its domain (cf. Section 3).

Implementation The system has been im-
plemented following ISO Prolog, its binaries
uses an efficient Prolog engine (SICStus Pro-
log) and moreover implements memoization
techniques [21, 9] for upgraded efficiency. The
computation is guided by the query, instead of
following a bottom-up approach. However, fo-
cus was not set on performance, but on rapid

prototyping of useful features, so that this sys-
tem cannot be seen as a practical deductive
database for large amounts of data since it is
developed from an in-memory database point
of view. In addition, neither indexing is pro-
vided nor concurrent accesses are allowed.

Free and Open-Source DES is free, open-
source and distributed under GPL license.

Impact Many universities and researchers
have used it (des.sourceforge.net/des_
facts) and its downloading statistics (des.
sourceforge.net/statistics) reveals it as a
live project (a new release is expected every
two or three months). Statistical numbers
show a notable increasing number of down-
loads, amounting to more than 1,500 down-
loads a month (vs. 300 for XSB) during last
months, more than 27,000 downloads since
2004, and more than 32,000 entries in Google.
Figure 1 shows the number of downloads a
month since its first release (scale in thousands
displayed on the left axis and numbers as blue
bars) and bandwidth (scale in GB displayed
on the right axis and numbers as yellow sur-
face). Also, as a matter of impact, if the word
“Datalog” is queried in any web search engine,
DES occurs at the very first positions.

Interactive Shell DES has been developed
to be used via an interactive command shell
(see “Portable System” below what applica-
tions are provided). Other systems, as DLV,
do not provide an interactive shell, which we
find quite useful for learning and quickly ex-
periment with the system.

IDEs Nonetheless, more appealing environ-
ments are available. On the one hand, DES
has been plugged to the multi-platform, Java-
based IDE ACIDE [17]. It features syn-
tax colouring, project management, interac-
tive console with edition and history, config-
urable buttons for DES commands, shortcuts,
and much more (see Figure 2). On the other
hand, an Emacs environment has been dis-
tributed by Markus Triska as a contribution
to this project. It includes DES in one buffer

180 X Jornadas sobre Programación y Lenguajes

Figure 1: Statistics since 2004

and allows to edit and run Datalog programs
with keyboard shortcuts.

Multi-platform Since DES is ported to
several Prolog systems (including Ciao Prolog
[3], GNU Prolog [8], SICStus Prolog [20] and
SWI-Prolog [24]), it can be used from any of
these environments running on any platform
they support (e.g., Windows, Linux glibc 2.x,
Mac OS X 10.x, Solaris 10, AIX 5.1L, . . .).

Portable System Portable applications do
not need installation and can be run from any
directory they are stored. This amounts to
a straightforward startup procedure: Simply
copy a folder to the desired target and run the
application. DES has been compiled to two
portable applications for Windows and Linux
OS command shells. In addition, a portable
windows application is also provided for the
former OS (featuring menus with configura-
tions mainly targeted to the underlying Prolog
engine and OS).

3 Datalog and SQL

This section deals with the supported query
languages in DES. Nonetheless, Prolog goals
can also be submitted to the deductive
database both query languages do share.

3.1 Datalog

• A DES program consists of a set of rules.

• A rule has the form head :- body, or
simply head, ending with a dot.

• A head is a positive atom including no
built-in predicate symbols.

• A body contains a conjunctions (denoted
by “,”) and disjunctions (denoted by “;”)
of literals (with usual associativity and
priority for these operators).

• A literal is either an atom, or a negated
atom or a built-in.

• A query is a literal and its arguments can
be variables or constants (some built-ins

Programación Lógica y Bases de Datos 181

Figure 2: ACIDE Integrated Development Environment configured for DES

are exceptions, as will be shown in Section
4, and include other atoms as arguments).
In addition, recall that temporary views
can also be submitted as queries, as intro-
duced in Section 2.

Compound terms are not allowed but as arith-
metic expressions, which can occur in certain
built-ins (for writing arithmetic expressions
and conditions).

Datalog programs are typically consulted
via the system command /consult filename,
and queries are typed at the DES system
prompt. The answer to a query is the set
of facts matching the query which are de-
duced in the context of the program, from
both the extensional and intensional database.
A query with variables for all its arguments
gives the whole set of facts (meaning) defin-
ing the queried relation. If a query contains

a constant in an argument position, it means
that the query processing will select the facts
from the meaning of the relation such that the
argument position matches the constant (i.e.,
analogous to a select relational operation with
an equality condition).

3.2 SQL

DES covers a wide set of the SQL language
following the ISO standard, including recur-
sive queries. There is provision for the DDL
(data definition language), DML (data manip-
ulation language) and DQL (data query lan-
guage) parts of the language. Database up-
dates are allowed in DML via INSERT, DELETE,
and UPDATE statements. Also, integrity con-
straints as primary key and foreign key can
be specified in DDL CREATE TABLE statements
and also monitored by the system. A type sys-

182 X Jornadas sobre Programación y Lenguajes

tem has been implemented to check and infer
types of views and queries. DQL part includes
SELECT and WITH statements.

As well, SQL statements can be submitted
at the system prompt. However, in contrast to
Datalog programs, they can not be consulted
but batch processed via the system command
/process filename.

SQL DQL statements are translated into
and executed as Datalog programs, and re-
lational metadata for DDL statements are
kept and can be consulted with the com-
mand /dbschema object, where the optional
object can be either a table or a view. Sub-
mitting a DQL query amounts to parse it,
compile to a Datalog program which includes
the relation answer/N with as many argu-
ments as expected from the statement, assert
this program and submit the Datalog query
answer(X), where X are N fresh variables.
After its execution, this program is removed.
On the contrary, if a DDL statement defining a
view is submitted, its translated program and
metadata do persist.

3.3 Datalog vs. SQL

Datalog subsumes SQL since the former im-
plements first order logic, whereas the lat-
ter implements an extended relational alge-
bra. In addition, Datalog is more read-
able and concise (cf. also Subsection
5.2). Let’s consider the following prob-
lem: Given a graph defined by the relation
edge(Origin,Destination,Length), find the
minimum path between all possible pairs. A
possible recursive SQL formulation follows:

% View:
CREATE OR REPLACE VIEW
shortest_paths(Origin,Destination,Length)
AS WITH RECURSIVE
path(Origin,Destination,Length) AS
(SELECT edge.*,1 FROM edge)
UNION
(SELECT path.Origin,edge.Destination,

path.Length+1
FROM path,edge
WHERE path.Destination=edge.Origin
AND path.Length < (SELECT COUNT(*)

FROM Edge))
SELECT Origin,Destination,MIN(Length)
FROM path
GROUP BY Origin,Destination;
% Query:
SELECT * FROM shortest_paths;

The same problem can be formulated in
Datalog as:

% Program:
path(X,Y,1) :-

edge(X,Y).
path(X,Y,L) :-

path(X,Z,L0),
edge(Z,Y),
count(edge(A,B),Max),
L0<Max,
L is L0+1.

% Query:
shortest_paths(X,Y,L) :-

min(path(X,Y,Z),Z,L).

4 Outer Joins

Unknownness has been handled in relational
databases long time ago because its ubiqui-
tous presence in real-world applications. De-
spite its claimed dangers due to unclean se-
mantics (see, for instance, the discussion in
[7]), null values to represent unknowns have
been widely used. Including nulls in a Datalog
system implies to also provide built-ins to han-
dle them, as the outer join operations. DES
includes the common outer join operations in
relational databases, providing the very same
semantics for operators ranging over nulls.

4.1 Null Values

The null value is included in each pro-
gram signature for denoting unknowns, in a
similar way it is an inherent part of cur-
rent relational database systems. Compar-
ing null values in Datalog opens a new sce-
nario: Two null values are not (known to be)
equal, and are (not known to be) distinct.
So, neither null = null nor null \= null
hold. However, a semantic flaw emerges in

Programación Lógica y Bases de Datos 183

not(null = null), which succeeds!2 The
very same situation occurs in SQL: The con-
ditions A<>B and not(A=B), where A and B are
columns, do not yield the same logical out-
come when considering nulls. So, the user has
to be conscious of this behavior. Therefore, in-
stead of using comparison operators over vari-
ables that may take null values, two built-in
predicates are provided:

• is_null/1: Test whether its single argu-
ment is a null value.

• is_not_null/1: Test whether its single
argument is not a null value.

4.2 Outer Join Built-ins

Three outer join operations are provided, fol-
lowing relational database query languages
(SQL, extended relational algebra): left, right
and full outer joins. An outer join computes
the cross-product of two relations that satisfy
a third relation, extended with some special
tuples including nulls as explained next. In an
outer join, tuples in one of the first two rela-
tions which have no counterpart in the other
relation (w.r.t. the third relation) are included
in the result (the values corresponding to the
relation with no corresponding tuple are then
set to null). If this is true for relation A
in the cross-product A × B then it is a left
outer join; if it is true for B then it is a right
outer join; if it is true for both then it is a full
outer join. In DES, the left (resp. right, and
full) outer join corresponds to the construction
lj(A,B,C) (resp. rj(A,B,C), and fj(A,B,C)),
with A, B, and C relations.

A join condition has not to be missed with
a where condition. Let’s consider the query
lj(a(X),b(Y),X=Y), which is not equivalent
to lj(a(X),b(X),true)3. Assuming that x
and y are columns of tables a and b, resp.,
these queries could be respectively written in
SQL as follows:

SELECT * FROM a LEFT JOIN b ON x=y;
SELECT * FROM a LEFT JOIN b WHERE x=y;

2The negation of the equality should behave as dis-
equality.

3Notice that the variable X is shared for relations
a and b.

Outer join relations can be nested as well,
as in

lj(a(X),rj(b(Y),c(U,V),Y=U),X=Y)

Which is equivalent to the following SQL
statement:

SELECT * FROM a LEFT JOIN
(b RIGHT JOIN c ON y=u) ON x=y;

Note that compound conditions must be en-
closed between parentheses, as in:

lj(a(X),c(U,V),(X>U;X>V))

5 Aggregates

Aggregates refer to functions and predicates
that compute values with respect to a collec-
tion of values instead of a single value. We
provide five usual aggregates: sum (cumula-
tive sum), count (element count), avg (aver-
age), min (minimum element), and max (max-
imum element). In addition, the less usual
times (cumulative product) is also provided.
They behave close to most SQL implementa-
tions, i.e., ignoring nulls.

5.1 Aggregate Functions

An aggregate function can occur in expres-
sions and returns a value, as in R=1+sum(X),
where sum is expected to compute the cumu-
lative sum of possible values for X, and X has to
be bound in the context of a group_by predi-
cate (cf. next section), wherein the expression
also occurs.

5.2 Predicate group_by

This predicate encloses a query for which
a given list of variables builds answer sets
(groups) for all possible values of these
variables. If we consider the relation
employee(Name, Department, Salary), the
number of employees for each depart-
ment can be counted with the query
group_by(employee(N,D,S),[D],R=count).
If employees are not yet assigned to a de-
partment (i.e., a null value in Department),
then this query behaves as a SQL user

184 X Jornadas sobre Programación y Lenguajes

would expect: excluding those employees
from the count outcome. If we rather
want to count active employees (those
with assigned salaries), we can use the query
group_by(employee(N,D,S),[D],R=count(S)).

Conditions including aggregates on groups
(cf. HAVING conditions in SQL) can be stated
as well. For instance, for counting the active
employees of departments with more than one
employee, one can query:

group_by(employee(N,D,S),[D],count(S)>1)

Conditions including no aggregates on
tuples (cf. WHERE conditions in SQL) of the
input relation (cf. SQL FROM clause) can also
be used. For instance, the following query
computes the number of employees by de-
partment whose salary is greater than 1,000:
group_by((employee(N,D,S), S>1000),
[D], R=count(S)). Note that the following
query is not equivalent to the last one, since
variables in the input relation are not expected
to be bound after a grouping computation,
and it raises a run-time exception upon ex-
ecution: group_by(employee(N,D,S), [D],
R=count(S)), S>1000.

The predicate group_by admits a more com-
pact representation than its SQL counterpart.
Let’s consider the following Datalog view:

q(X,C) :-
group_by(p(X,Y),[X],(C=count;C=sum(Y)))

which is equivalent to:

CREATE VIEW q(X,C) AS
(SELECT X,COUNT(Y) AS C
FROM p GROUP BY X)

UNION
(SELECT X,SUM(Y) AS C
FROM p GROUP BY X);

5.3 Aggregate Predicates

An aggregate predicate returns its result in its
last argument position, as in sum(p(X),X,R),
which binds R to the cumulative sum of val-
ues for X, provided by the input relation
p. These aggregate predicates simply al-
low another way of expressing aggregates, in
addition to the way explained just above.

For instance, the following query is allowed:
count(employee(N,D,S),S,T).

A group_by operation is simply speci-
fied by including the grouping variable(s)
in the head of a clause, as in the follow-
ing view, which computes the number of
active employees by department: c(D,C)
:- count(employee(N,D,S),S,C). Having
conditions are also allowed, including them
as another goal of the first argument of the
aggregate predicate as, for instance, in the
following view, which computes the number
of employees that earn more than the average:
count((employee(N,D,S),avg(employee(N1,
D1,S1),S1,A),S>A),C). Note that this query
uses different variables in the same argument
positions for the two occurrences of the rela-
tion employee. Compare this to the following
query, which computes the number of em-
ployees so that each one of them earns more
than the average salary of his corresponding
department. Here, the same variable name D
has been used to refer to the department for
which the counting and average are computed:
count((employee(N,D,S),avg(employee(N1,
D,S1),S1,A),S>A),C).

6 Conclusions

This paper has listed the main features of the
deductive database educational system DES
and described some of the most relevant ones
that distinguish it as a unique system. Follow-
ing such features, intended users who can ben-
efit from this system include students, teach-
ers, practitioners and researchers, since it can
be used to, first, learn and teach both SQL and
Datalog languages in a single, database-shared
environment. Second, to experiment with its
features since it is free, open-source and fur-
thermore is completely implemented with Pro-
log, a high-abstraction-level programming lan-
guage. On the one hand, this allows to change
its behaviour and add new features much more
easily than either using a lower-abstraction-
level language or using several languages. On
the other hand, it allows to test own proposals
in the logic domain (as, for instance, language
and database extensions, ontologies, and se-

Programación Lógica y Bases de Datos 185

mantic web applications). And, third, to be
used as a deductive component of other sys-
tems as, for instance, ontology semantic re-
sources needing knowledge-based reasoning.

We think that the key features making DES
a success are: easy-to-use/install interactive
system, robust, multi-platform and a design
which has been guided by demand in teach-
ing. However, since this system is an ongoing
project, many more improvements can (and
most likely will) be included, as connections
to existing relational DBMSs, enhanced per-
formance, precise syntax errors reports, mul-
tiline input, multisets, and so on.

Acknowledgements

This work has been supported by projects
TIN2008-06622-C03-01, S-0505/TIC/0407,
S2009TIC-1465, and UCM-BSCH-GR58/08-
910502. Also thanks to Jan Wielemaker for
providing SWI-Prolog [24], Markus Triska
for its SWI-Prolog FD library [22], Daniel
Diaz for GNU-Prolog [8], and the CLIP
group for Ciao Prolog [3]. Finally, to Rafael
Caballero and Yolanda García-Ruiz for their
contributions in making possible both the
Datalog declarative debugger and test case
generator.

References

[1] Faiz Arni, KayLiang Ong, Shalom Tsur,
Haixun Wang, and Carlo Zaniolo. The De-
ductive Database System LDL++. The-
ory and Practice of Logic Programming,
3(1):61–94, 2003.

[2] Moritz Becker, Cedric Fournet, and An-
drew Gordon. Design and Semantics of a
Decentralized Authorization Language. In
CSF ’07: Proceedings of the 20th IEEE
Computer Security Foundations Sympo-
sium, pages 3–15, Washington, DC, USA,
2007. IEEE Computer Society.

[3] F. Bueno, D. Cabeza, M. Carro,
M. Hermenegildo, P. López-García,
and G. Puebla. The Ciao Prolog system.
Reference manual. Technical Report

CLIP3/97.1, School of Computer Sci-
ence, Technical University of Madrid
(UPM), August 1997. Available from
http://www.clip.dia.fi.upm.es/.

[4] R. Caballero, Y. García-Ruiz, and
F. Sáenz-Pérez. A Theoretical Framework
for the Declarative Debugging of Datalog
Programs. In International Workshop on
Semantics in Data and Knowledge Bases
SDKB 2008, volume 4925 of Lecture Notes
in Computer Science, pages 143–159.
Springer, 2008.

[5] R. Caballero, Y. García-Ruiz, and
F. Sáenz-Pérez. Applying Constraint
Logic Programming to SQL Test Case
Generation. In Proc. International
Symposium on Functional and Logic
Programming (FLOPS’10), volume 6009
of Lecture Notes in Computer Science,
2010.

[6] Andrea Calì, Georg Gottlob, and Thomas
Lukasiewicz. Datalog±: a unified approach
to ontologies and integrity constraints. In
ICDT ’09: Proceedings of the 12th Inter-
national Conference on Database Theory,
pages 14–30, New York, NY, USA, 2009.
ACM.

[7] C J Date. SQL and relational theory: how
to write accurate SQL code. O’Reilly, Se-
bastopol, CA, 2009.

[8] Daniel Diaz. GNU Prolog 1.3.1. A Native
Prolog Compiler with Constraint Solving
over Finite Domains, 2009. Available from
http://www.gprolog.org/.

[9] Suzanne W. Dietrich. Extension tables:
Memo relations in logic programming. In
SLP, pages 264–272, 1987.

[10] Richard Fikes, Patrick J. Hayes, and Ian
Horrocks. OWL-QL - a language for de-
ductive query answering on the Semantic
Web. J. Web Sem., 2(1):19–29, 2004.

[11] Sergio Greco, Irina Trubitsyna, and Es-
ter Zumpano. NP Datalog: A Logic Lan-
guage for NP Search and Optimization

186 X Jornadas sobre Programación y Lenguajes

Queries. Database Engineering and Appli-
cations Symposium, International, 0:344–
353, 2005.

[12] Matthias Jarke, Manfred A. Jeusfeld, and
Christoph Quix (Eds.). ConceptBase V7.1
User Manual. Technical report, RWTH
Aachen, April 2008.

[13] Monica S. Lam, John Whaley, V. Ben-
jamin Livshits, Michael C. Martin, Dzin-
tars Avots, Michael Carbin, and Christo-
pher Unkel. Context-sensitive program
analysis as database queries. In Chen Li,
editor, Proceedings of the Twenty-fourth
ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems
(PODS), pages 1–12. ACM, 2005.

[14] Nicola Leone, Gerald Pfeifer, Wolfgang
Faber, Thomas Eiter, Georg Gottlob, Si-
mona Perri, and Francesco Scarcello. The
DLV system for knowledge representation
and reasoning. ACM Transactions on
Computational Logic, 7(3):499–562, 2006.

[15] G. Ramalingam and Eelco Visser, edi-
tors. Proceedings of the 2007 ACM SIG-
PLAN Workshop on Partial Evaluation
and Semantics-based Program Manipula-
tion, 2007, Nice, France, January 15-16,
2007. ACM, 2007.

[16] Royi Ronen and Oded Shmueli. Evalu-
ating very large Datalog queries on social
networks. In EDBT ’09: Proceedings of the
12th International Conference on Extend-
ing Database Technology, pages 577–587,
New York, NY, USA, 2009. ACM.

[17] Fernando Sáenz-Pérez. ACIDE: An In-
tegrated Development Environment Con-
figurable for LaTeX. The PracTeX Jour-
nal, 2007(3), August 2007. Available at
http://acide.sourceforge.net.

[18] Fernando Sáenz-Pérez. Datalog Educa-
tional System V1.8.1, March 2010. http:
//des.sourceforge.net/.

[19] Konstantinos Sagonas, Terrance Swift,
and David S. Warren. XSB as an efficient
deductive database engine. In SIGMOD
’94: Proceedings of the 1994 ACM SIG-
MOD International Conference on Man-
agement of Data, pages 442–453, New
York, NY, USA, 1994. ACM.

[20] SICStus Prolog, 2010. http://www.sics.
se/isl/sicstus.

[21] H. Tamaki and T. Sato. OLDT resolu-
tion with tabulation. In Third Interna-
tional Conference on Logic Programming,
pages 84–98, 1986.

[22] Markus Triska. Generalising constraint
solving over finite domains. In Interna-
tional Conference on Logic Programming
(ICLP), pages 820–821, 2008.

[23] Jeffrey D. Ullman. Database and
Knowledge-Base Systems, Vols. I (Classi-
cal Database Systems) and II (The New
Technologies). Computer Science Press,
1995.

[24] JanWielemaker. An overview of the SWI-
Prolog programming environment. In Fred
Mesnard and Alexander Serebenik, edi-
tors, Proceedings of the 13th International
Workshop on Logic Programming Environ-
ments, pages 1–16, 2003.

[25] Carlo Zaniolo, Stefano Ceri, Christos
Faloutsos, Richard T. Snodgrass, V. S.
Subrahmanian, and Roberto Zicari. Ad-
vanced Database Systems. Morgan Kauf-
mann, 1997.

Programación Lógica y Bases de Datos 187

ACTAS DE LAS X JORNADAS SOBRE
PROGRAMACIÓN Y LENGUAJES, PROLE2010

(SISTEDES)

EDITORES

Víctor M. Gulías
Josep Silva

Alicia Villanueva

Actas de las X Jornadas sobre Programación y Lenguajes, PROLE2010
(SISTEDES)

Editores: Víctor M. Gulías, Josep Silva, Alicia Villanueva

ISBN: 978-84-92812-55-4

IBERGARCETA PUBLICACIONES, S.L., Madrid, 2010

Edición: 1ª
Impresión: 1ª
Nº de páginas: 290
Formato: 17 x 24
Materia CDU: 004 Ciencia y tecnología de los ordenadores. Informática

Reservados los derechos para todos los países de lengua española. De conformidad con lo dispuesto en el artículo 270 y
siguientes del código penal vigente, podrán ser castigados con penas de multa y privaci6n de libertad quienes
reprodujeren o plagiaren, en todo o en parte, una obra literaria, artística o científica fijada en cualquier tipo de soporte sin
la preceptiva autorización. Ninguna parte de esta publicación, incluido el diseño de la cubierta, puede ser reproducida,
almacenada o trasmitida de ninguna forma, ni por ningún medio, sea éste electrónico, químico, mecánico, e1ectro-
óptico, grabación, fotocopia o cualquier otro, sin la previa autorización escrita por parte de la editorial.

Diríjase a CEDRO (Centro Español de Derechos Reprográficos), www.cedro.org, si necesita fotocopiar o escanear algún
fragmento de esta obra.

COPYRIGHT © 2010 IBERGARCETA PUBLICACIONES, S.L.
info@garceta.es

Actas del II Workshop de Reconocimiento de Formas y Análisis de Imágenes (AERFAI)
Derechos reservados ©2010 respecto a la primera edición en español, por LOS AUTORES
Derechos reservados ©2010 respecto a la primera edición en español, por IBERGARCETA PUBLICACIONES, S.L.

1ª Edición, 1ª Impresión

ISBN: 978-84-92812-55-4

Depósito legal: M-

Maquetación: Los Editores

Coordinación del proyecto: @LIBROTEX

Portada: Estudio Dixi
Impresión y encuadernación:
OI: 18/2010
PRINT HOUSE, S.A.

IMPRESO EN ESPAÑA -PRINTED IN SPAIN

Nota sobre enlaces a páginas web ajenas: Este libro puede incluir referencias a sitios web gestionados por terceros y
ajenos a IBERGARCETA PUBLICACIONES, S.L., que se incluyen sólo con finalidad informativa. IBERGARCETA
PUBLICACIONES, S.L., no asume ningún tipo de responsabilidad por los daños y perjuicios derivados del uso de los
datos personales que pueda hacer un tercero encargado del mantenimiento de las páginas web ajenas a IBERGARCETA
PUBLICACIONES, S.L., y del funcionamiento, accesibilidad y mantenimiento de los sitios web no gestionados por
IBERGARCETA PUBLICACIONES, S.L., directamente. Las referencias se proporcionan en el estado en que se
encuentran en el momento de publicación sin garantías expresas o implícitas, sobre la información que se proporcione en
ellas.

Comité de Programa de PROLE’2010

Presidente Comité: Victor M. Gulías (U. de A Coruña)

Jesús Almendros (U. de Almería)
María Alpuente (U. Politécnica de Valencia)
Puri Arenas (U. Complutense de Madrid)
Miquel Bertran (U. Ramon Llull)
Santiago Escobar (U. Politécnica de Valencia)
Antonio J. Fernández Leiva (U. de Málaga)
Lars-Ake Fredlund (U. Politécnica de Madrid)
María del Mar Gallardo (U. de Málaga)
Paqui Lucio (U. del País Vasco)
Narciso Martí (U. Complutense de Madrid)
Ginés Moreno (U. de Castilla-La Mancha)
Marisa Navarro (U. del País Vasco)
Manuel Núñez (U. Complutense de Madrid)
Fernando Orejas (U. Politécnica de Catalunya)
Yolanda Ortega Mallén (U. Complutense de Madrid)
Francisco Ortín (U. de Oviedo)
Germán Puebla (U. Politécnica de Madrid)
Enric Rodríguez-Carbonell (U. Politécnica de Catalunya)
Julio Rubio (U. de La Rioja)
Jaime Sánchez (U. Complutense de Madrid)
Germán Vidal(U. Politécnica de Valencia)

Comité de Programa de TPF’2010

Presidente Comité: Josep Silva (U. Politécnica de Valencia)

Rafael Caballero (U. Complutense de Madrid)
Laura Castro (U. de A Coruña)
Francisco Gutierrez (U. de Málaga)
José Iborra (U. Politécnica de Valencia)
Salvador Lucas (U. Politécnica de Valencia)
Pablo Nogueira (U. Politécnica de Madrid)
Ricardo Peña (U. Complutense de Madrid)
Mateu Villaret (U. de Girona)

Comité Organizador Local

Coordinadora: Alicia Villanueva (U. Politécnica de Valencia)

Antonio Bella (U. Politécnica de Valencia)
Marco Antonio Feliú (U. Politécnica de Valencia)
Raúl Gutiérrez (U. Politécnica de Valencia)
Daniel Romero (U. Politécnica de Valencia)
Sonia Santiago (U. Politécnica de Valencia)
Salvador Tamarit (U. Politécnica de Valencia)

Comité Permanente

Jesús Almendros (U. de Almería)
María Alpuente (U. Politécnica de Valencia)
Víctor M. Gulías (U. de A Coruña)
Manuel Hermenegildo (U. Politécnica de Madrid)
Juan José Moreno-Navarro (U. Politécnica de Madrid)
Ginés Moreno (U. de Castilla-La Mancha)
Fernando Orejas (U. Politécnica de Cataluña)
Ricardo Peña (U. Complutense de Madrid)
Ernesto Pimentel (U. de Málaga)

Revisores Adicionales

Javier Álvez, Michele Baggi, Antonio Becerra-Terón, Rafael Caballero, David
Castro, Sonia Estevez Martín, Henrique Ferreiro, Jose Gaintzarain, Yolanda
García Ruiz, Miguel Gómez-Zamalloa, Montserrat Hermo, Luigi Liquori,
Alejandro Luna, Miguel Palomino, Jaime Penabad, Adrián Riesco, Juan
Rodríguez-Hortalá, Daniel Romero, Francisco P. Romero Chicharro, Fernando
Sáenz-Pérez, Salvador Tamarit

Prólogo

Las jornadas sobre PROgramación y LEnguajes (PROLE) se vienen consolidando como
un marco propicio de reunión, debate y divulgación para los grupos españoles que investigan
en temas relacionados con la programación y los lenguajes de programación.

PROLE’2010 tiene lugar en Valencia durante los días 8 y 10 de Septiembre de 2010, como
parte del III Congreso Español de Informática (CEDI’2010), y representa la décima edición
de estas jornadas, continuando la tradición de las ediciones anteriores celebradas en Almagro
(2001), El Escorial (2002), Alicante (2003), Málaga (2004), Granada (2005), Sitges (2006),
Zaragoza (2007), Gijón (2008) y San Sebastián (2009). La presente edición va precedida
el día 7 de Septiembre por un taller vinculado a PROLE, el II Taller de Programación
Funcional (TPF’2010), que cuenta con su propio Comité de Programa.

En la tradición de los últimos años, PROLE se celebra junto a las Jornadas de Ingeniería
del Software y Bases de Datos, auspiciadas por la Sociedad de Ingeniería del Software y
Tecnologías de Desarrollo de Software (SISTEDES). Queremos agradecer tanto a los orga-
nizadores de CEDI’2010 como a SISTEDES el soporte, infraestructura y apoyo prestados.

Estas actas recopilan tanto los trabajos aceptados para su presentación en PROLE’2010
como TPF’2010. El volumen recopila un total de 30 trabajos que fueron rigurosamente
revisados cada uno de ellos por, al menos, 3 miembros de los comités de programa de
PROLE/TPF y/o revisores adicionales, a los cuales agradecemos su excelente colaboración
y sugerencias para la mejora de los trabajos. Para PROLE’2010 se han selecccionado 26
trabajos que cubren aspectos teóricos y prácticos relativos a la especificación, diseño, im-
plementación, análisis, verificación, validación y aplicación de programas y lenguajes de
programación. Por su parte, TPF’2010 ha seleccionado 4 trabajos directamente relaciona-
dos con el paradigma de programación funcional.

Además de las restantes actividades vinculadas a CEDI’2010, el programa de PROLE’2010
cuenta con una conferencia invitada que, bajo el título Property-based testing with Quickcheck,
será impartida por John Hughes, profesor en Chalmers University y CEO de la compañía
sueca Quviq. El programa de TPF’2010 cuenta este año con tres seminarios sobre progra-
mación funcional impartidos por Carlos Abalde, Gilles Barthe y Pablo Nogueira. A todos
ellos queremos agradecer el haber aceptado nuestra invitación.

Por último, queremos agradecer al comité permanente de PROLE la confianza depositada
en nosotros para conducir la presente edición de PROLE y TPF, y muy especialmente a
nuestros predecesores Ginés Moreno, Ricardo Peña y Paqui Lucio, cuya ayuda y experiencia
ha facilitado esta labor.

Septiembre 2010

Víctor M. Gulías
Josep Silva

Alicia Villanueva

Contenido

X JORNADAS SOBRE PROGRAMACIÓN Y LENGUAJES,
PROLE2010

1. Conferencia Invitada

Property-based testing with QuickCheck.. 3

John Hughes

2 Taller Programacion Funcional

Una implementación del λ-cálculo en Prolog... 7

Juan Antonio Guerrero, Ginés Moreno, Carlos Vázquez

Fibonacci Heaps in Haskell... 15

Ricardo Peña

Implementing Type Classes using Type-Indexed Functions.. 23

Enrique Martin-Martin

Sistema de Control para un Dispositivo de Entretenimiento Doméstico en Erlang......... 31

Samuel Rivas, Victor M. Gulias

3 Verificación y Validación

Generating certified code from formal proofs: a case study in Homological Algebra.. 39

Jesus Aransay-Azofra, Clemens Ballarin, Julio Rubio

Testing Data Consistency of Data-Intensive Applications using QuickCheck................. 41

Laura M. Castro, Thomas Arts

A Verification of a Process Supervisor with McErlang.. 55

David Castro, Clara Benac Earle, Lars-Åke Fredlund, Victor M. Gulias, Samuel Rivas

An approach to verify hybrid systems with SPIN... 67

Maria-del-Mar Gallardo, Laura Panizo

4 Semántica y Análisis

Call-by-need, call-by-name and natural semantics... 83

Lidia Sánchez Gil, Mercedes Hidalgo-Herrero, Yolanda Ortega-Mallén

Forward analysis for Petri nets with name creation.. 93

Fernando Rosa-Velardo, David de Frutos-Escrig

A semantics to generate a Petri net from a CSP specification.. 95

Marisa Llorens, Javier Oliver, Josep Silva, Salvador Tamarit

Verification of Dynamic Data Tree with mu-Calculus extended with Separation........... 109

Maria-del-Mar Gallardo, David Sanan

5 Análisis de Programas

A Space Consumption Analysis By Abstract Interpretation... 113

Manuel Montenegro, Ricardo Peña, Clara Segura

Towards Compositional CLP-based Test Data Generation for Imperative Languages.... 115

Elvira Albert, Miguel Gómez-Zamalloa, José Miguel Rojas Siles, Germán Puebla

Parametric Inference of Memory Requirements for Garbage Collected Languages........ 127

Elvira Albert, Samir Genaim, Miguel Gómez-Zamalloa

Balancing Execution Trees... 129

David Insa Cabrera, Josep Silva, Adrián Riesco

6 Programacion Lógica, Fuzzy, Lógico-Funcional y con Restricciones

Efficient Thresholded Tabulation for Fuzzy Query Answering....................................... 145

Pascual Julián-Iranzo, Jesús Medina-Moreno, Ginés Moreno, Manuel Ojeda-Aciego

A declarative debugger of missing answers for functional, logic programming.............. 147

Fernando Pérez Morente, Rafael del Vado Vírseda

A Declarative Semantics for CLP with Qualification and Proximity............................... 149

Mario Rodríguez-Artalejo, Carlos A. Romero-Díaz

Multi-Adjoint Lattices for Manipulating Truth-Degrees into the FLOPER System........ 151

Pedro-Jose Morcillo, Ginés Moreno, Jaime Penabad, Carlos Vázquez

7 Programación Lógica y Bases de Datos

Efficient BES-based Bottom-Up Evaluation of Datalog Programs.................................. 165

Marco A. Feliú, Christophe Joubert, Fernando Tarín

DES: A Deductive Database System.. 177

VIII X Jornadas sobre Programación y Lenguajes

Fernando Sáenz-Pérez

A Prototype Constraint Deductive Database System based on HH¬(C).......................... 189

Gabriel Aranda-López, Susana Nieva, Fernando Sáenz-Pérez, Jaime Sánchez-Hernández

8 Especificación y Transformación de Modelos y Servicios
Incremental Service Composition based on Partial Matching of Visual Contracts.......... 199

M. Naem, R. Heckel, Fernando Orejas, F. Hermann

Scalable Discovery of Behavioural Services through Software Adaptation..................... 201

José Antonio Martín, Ernesto Pimentel

A Model Transformation Approach based on Prolog and Ontologies.............................. 211

Jesús Manuel Almendros-Jiménez, Luis Iribarne

A Formal specification of the Kademlia distributed hash table.. 223

Isabel Pita

9 XML y Web Semántica
Proving satisfiability of constraint specifications on XML documents............................ 237

Marisa Navarro, Fernando Orejas

A Prolog-based Query Language for OWL.. 249

Jesús Manuel Almendros-Jiménez

Visualización de Información Extraída Automáticamente de Multiples Páginas Web.... 263

Héctor Valero, Carlos Castillo, Josep Silva

Contenido IX

