
Tabling with Support for Relational Features in a
Deductive Database

Fernando Sáenz-Pérez1∗

Grupo de programación declarativa (GPD),

Dept. Ingenierı́a del Software e Inteligencia Artificial,

Universidad Complutense de Madrid, Spain1

Abstract: Tabling has been acknowledged as a useful technique in the logic pro-

gramming arena for enhancing both performance and declarative properties of pro-

grams. As well, deductive database implementations benefit from this technique for

implementing query solving engines. In this paper, we show how unusual opera-

tions in deductive systems can be integrated with tabling. Such operations come

from relational database systems in the form of null-related (outer) joins, duplicate

support and duplicate elimination. The proposal has been implemented as a proof

of concept rather than an efficient system in the Datalog Educational System (DES)

using Prolog as a development language and its dynamic database.

Keywords: Tabling, Outer Joins, Duplicates, Relational databases, Deductive databases,

DES

1 Introduction

Tabling is a useful implementation technique embodied in several current logic programming

systems, such as B-Prolog [ZS03], Ciao [GCH+08], Mercury [SS06], XSB [SW10], and Yap

Prolog [RSC05], to name just a few. This technique walks by two orthogonal axes: performance

and declarative properties of programs. Tabling enhances the former because repeated computa-

tions are avoided since previous results are stored and reused. The latter axis is improved because

order of goals and clauses are not relevant for termination purposes. In fact, tabled computations

in the context of finite predicates and bounded term depths are terminating, a property which is

not ensured in top-down SLD computations.

Deductive database implementations with Datalog as query language have benefited from

tabling [RU93, SSW94a, SP11] as an appropriate technique providing performance and a frame-

work to implement query meaning. Terminating queries is a common requirement for database

users. Also, the set oriented answer approach of a tabled system is preferred to the SLD one

answer at a time.

However, “relational” database systems embed features which are not usually present alto-

gether in deductive systems. These include duplicates, which were introduced to account for

bags of data (multisets) instead of sets. Also, the need for representing absent or unknown in-

formation delivered the introduction of null values and outer join operators ranging over such

∗ This author has been partially supported by the Spanish projects STAMP (TIN2008-06622-C03-01), Prometidos-

CM (S2009TIC-1465) and GPD (UCM-BSCH-GR35/10-A-910502)

M.M. Gallardo, M. Villaret, L. Iribarne (Eds.): PROLE’2012, pp. 87-101, ISBN:978-84-15487-27-2.
Jornadas SISTEDES’2012, Almería 17-19 sept. 2012, Universidad de Almería.

values. Finally, aggregate functions allow to compute summarized data in terms of (multi)sets

and considering null occurrences. So, these systems are not relational anymore as they depart

from the original model [Cod70], where these features are not considered. In addition, the intro-

duction by major vendors of some of these features in databases are claimed as error sources and

unnecessary [Dat09], but it is a fact that they are widely used by database practitioners. However,

this is rather a debate out of the scope of this paper.

Thus, the aim of this paper is to show how such features can be supported altogether in a

tabled deductive system with Datalog as a query language. To this end, we base our presen-

tation on the grounds of DES (Datalog Educational System) [SP11], a system implemented in

Prolog which runs on different platforms (both Prolog and OS’s), which allows to easily test new

engine implementations. This work extends [SP11] by describing how tabling is implemented

and introducing (tabled) duplicates. Supported Prolog platforms along time include Ciao, GNU

Prolog, SICStus Prolog and SWI-Prolog. Because it was thought to be as platform independent

as possible, tabling in particular was implemented as no supported platform provided it (Ciao

recently added this feature). Also, proprietary systems as SICStus Prolog do not provide open

sources to modify parts of the system, as it would be the case for implementing tabling.

The very first motivation for including such features in this system came for the need to support

SQL as a query language in a deductive database. In DES, both Datalog and SQL are supported,

and SQL statements are compiled to Datalog programs and eventually solved by the deductive

inference engine. So, embodying nulls, outer joins and duplicates became a need. However,

as the system was intended for educational purposes since its inception, it is not targeted at

performance and also lacks features such as concurrency, security and others that a practical

database system must enjoy.

Next section introduces DES whereas Section 3 describes its basic implementation of tabling

stemmed from [Die87]. Section 4 explains the tabled support for nulls and outer join operations,

and Section 5 do the same for duplicates. Finally, Section 6 draws some conclusions and points

out some future work.

2 Datalog Educational System

The Datalog Educational System (DES) [SP11] is a free, open-source, multiplatform, portable,

in-memory, Prolog-based implementation of a deductive database system. DES 3.0 [SP12] is

the next shortcoming release, which enjoys Datalog and SQL query languages, full recursive

evaluation with tabling, types, integrity constraints, stratified negation [Ull88], persistency, full-

fledged arithmetic, ODBC connections and novel approaches to Datalog and SQL declarative

debugging [CGS08, CGS11], test case generation for SQL views [CGS10], null value support,

outer join and aggregate predicates and functions [SP11].

DES implements Datalog with stratified negation as described in [Ull88] with safety checks

[Ull88, ZCF+97] and source-to-source program transformations for rule simplification, safety

and compilation. Evaluation of queries is ensured to be terminating as long as no infinite predi-

cates/operators are considered and since only atomic domains are supported (currently, only the

infix operator “is” represents an infinite relation).

A reasonable set (for education purposes) of SQL following ISO standard SQL:1999 is sup-

88 Fernando Saenz-Perez

ported (further revisions of the standard cope with issues such as XML, triggers, and cursors,

which are outside of the scope of DES). SQL row-returning statements are compiled to and ex-

ecuted as Datalog programs (basics can be found in [Ull88]), and relational metadata for DDL

statements are kept. Submitting such a query amounts to 1) parse it, 2) compile to a Datalog

program including the relation answer/n with as many arguments as expected from the SQL

statement, 3) assert this program, and 4) submit the Datalog query answer(X1, . . . ,Xn), where

Xi : i ∈ {1, . . . ,n} are n fresh variables. After its execution, this Datalog program is removed.

On the contrary, if a data definition statement for a view is submitted, its translated program

and metadata do persist. This allows Datalog programs to seamlessly use views created at the

SQL side (also tables since predicates are used to implement them). The other way round is also

possible if types are declared for predicates.

There are available some usual built-in comparison operators (=, \=, >, . . .). When being

solved, all these operators demand ground (variable-free) arguments (i.e., no constraints are al-

lowed up to now) but equality, which performs unification. In addition, arithmetic expressions

are allowed via the infix operator is, which relates a variable/number with an arithmetic expres-

sion. The result of evaluating this expression is assigned/compared to the variable. The predicate

not/1 implements stratified negation. Other built-ins include outer joins and aggregates.

3 Tabling-based Query Solving

The computational model of DES follows a top-down-driven bottom-up fixpoint computation

with tabling, which follows the ideas found in [SD91, Die87, TS86]. In its current form, it can be

seen as an extension of the work in [Die87] in the sense that, in addition, it deals with a modified

algorithm for negation, undefined (although incomplete) information, nulls and aggregates. Also,

instead of translating each tabled predicate for including fixpoint and memoization management

as in [Die87], Datalog rules are stored as dynamic predicates and other predicates explicitly deal

with fixpoint computation as shown next.

3.1 Tabling

DES uses an extension table which stores answers to goals previously computed, as well as their

calls. For the ease of the introduction, we assume an answer table (ET implemented with pred-

icate et/1) and a call table (CT, implemented with predicate called/1) to extensionally store

answers and calls, respectively. Also, annotations for completed computations and its handling,

which prevents some unnecessary computations, are omitted. Answers may be positive or neg-

ative, that is, if a call to a positive goal G succeeds, then, the fact G is added as an answer to

the answer table; if a negated goal not(G) succeeds, then the fact not(G) is added. Negative

facts are deduced when a negative goal is proven by means of negation as failure (closed world

assumption (CWA) [Ull88]). Both positive and negative facts cannot occur in a stratifiable pro-

gram [Ull88]. Calls are also added to the call table whenever they are solved. This allows to

detect whether a call has been previously solved and the computed results in the extension table

(if any) can be reused. So, repeated answers are not kept in the answer table.

First occurrence during computation of a tabled goal is known as a generator whilst further

Tabling with Support for Relational Features in a Deductive Database 89

occurrences of subsumed goals are known as consumers. A generator is responsible of building

all the different answers which will be used by its consumers eventually.

The algorithm implementing this idea (following ET algorithm in [Die87]) is depicted next:

% Already called. Call table with an entry for the current call
memo(G) :-
build(G,Q), % Build in Q the same call with fresh variables
called(Q), % Look for a unifiable call in CT for the current call
subsumes(Q,G), % Test whether CT call subsumes the current call
!, %
et_lookup(G). % If so, use the results in answer table (ET)

% New call. Call table without an entry for the current call
memo(G) :-
assertz(called(G)), % Assert the current call to CT
((et_lookup(G)) % First call returns all previous answers in ET
;
(solve_goal(G), % Solve the current call using applicable rules
build(G,Q), % Build in Q the same call with fresh variables
no_subsumed_by_et(Q), % Test whether there is no entry in ET for Q
et_assert(G), % If so, assert the current result in ET
et_changed)). % Flag the change

First, test whether there is a previous call that subsumes the current call. For this, build
constructs a term which is a copy up to variable renaming (i.e., implemented with copy term;

more on this later when dealing with nulls). Predicate subsumes/2 on the left of Figure 1

implements term subsumption, where a general term subsumes a specific term st if grounding of

st variables (as, e.g., via numbervars) makes them unifiable. There are two possibilities: 1)

There is such a previous call subsuming the current one: then, use the result in the answer table,

if any. To this end, predicate et lookup/1 is implemented as a simple call to the predicate

et/1 (et lookup(G) :- et(G).) It is possible that there is no such a result (for instance,

when computing the goal p in the program p :- p) and no more tuples can be deduced. 2)

Otherwise, process the new call. So, first store the new call in CT and then, return all previous

answers in ET (from a previous fixpoint iteration). Second, solve the goal with the program

rules (recursively applying this algorithm). Once the goal has been solved (if succeeded), store

the computed answer if there is no any previous answer subsuming the current one (note that,

via recursion, we can deliver new answers for the same call). Subsumption is now checked with

predicate no subsumed by et/1, shown on the right of Figure 1. The whole process is known

as a memoization process and will also be referred to as the memo function.

3.2 Fixpoint Computation

The memo function is insufficient in itself for computing all possible answers to a goal since

incomplete information is used from the goals in its defining rules (as these goals can be mutually

subsumes(General,Specific) :- no_subsumed_by_et(Q,G) :-
\+ \+ (make_ground(Specific), \+ ((et_lookup(Q),

General=Specific). subsumes(Q,G))).

Figure 1: Predicates subsumes and no subsumed by et

90 Fernando Saenz-Perez

recursive). Therefore, it is needed to ensure that all the possible information is deduced by

finding a fixpoint of this function, which is implemented as shown next (following ET ∗ [Die87]):

solve_star(Q,St) :-
repeat,
(remove_calls, % Clear CT
et_not_changed, % Flag ET as not changed
solve(Q,St), % Solve the call to Q using memoization at stratum St
fail % Request all alternatives
;
no_change, % If no more alternatives, start a new iteration
!, fail). % Otherwise, fail and exit

First, the call table is emptied to try to obtain new answers for a given call, preserving the

previous computed answers. Then, the memo function is applied (via predicate solve/2), pos-

sibly providing new answers. If the answer table remains the same as before after this last memo

function application, we are done. Otherwise, the memo function is reapplied as many times as

needed until no changes are found in the answer table. Upon exiting, the answer table contains

the meaning of the query (plus perhaps other meanings for the relations used in the computation

of the given query).

Predicate solve is defined as a straight call to the memo function but for built-ins (that are

left apart from the memoization process as would otherwise be a resource waste) and conjunctive

goals (which recursively calls itself).

3.3 Dependency Graph and Stratification

Each time a database changes, a predicate dependency graph (PDG) is built [ZCF+97]. This

graph shows the dependencies between predicates in the program. Each node in this graph is

a program predicate symbol and there are as many nodes as such symbols. Arcs come from

each predicate in a rule body (antecedent) to its rule predicate. Arcs are labeled as either neg-

ative, if the antecedent node occurs negated, or positive otherwise. This dependency graph is

used to looking for a stratification for the program [ZCF+97]. A stratification collects predi-

cates into numbered strata (1 . . .N) so that, given the function strata(p) which assigns a strata

number to predicate p, then for a positive arc p←q, strata(p) ≤ strata(q), and for a negative

arc p
¬←q, strata(p) < strata(q). A cycle in this graph containing a negative arc amounts to a

non-stratifiable program.

A naı̈ve bottom-up computation would solve all of the predicates in stratum 1, then 2, and so

on, until the meaning of the whole program is found. However, the implementation of DES only

resort to compute by stratum when a negative dependency occurs in the predicate dependency

graph, restricted to the query, as shown next:

solve_stratified(Query) :-
sub_pdg(Query,(_Nodes,Arcs)),
(neg_dependencies(Arcs) -> solve_star(Query,1)
;
strata(St), sort_by_strata(St,Arcs,Preds),
build_queries(Preds,Query,Queries), solve_star_list(Queries)).

Here, predicate sub pdg/2 gets the current PDG restricted to the query. Predicate neg dep-

endencies/1 tests whether there are negative dependencies in the subgraph. Predicate stra-

Tabling with Support for Relational Features in a Deductive Database 91

ta/1 gets the current stratification. Predicates in the sub-PDG are sorted w.r.t. this stratifi-

cation with sort by strata/2. Then build queries build a list of queries for sorted

predicates (an atom with fresh variables for each predicate) appended to the input query. The

call to solve star list/1 solves each of these queries in order by successively calling

solve star/2 with each query and its corresponding stratum number.

4 Nulls and Outer Joins

Unknownness has been handled in relational databases long time ago because its ubiquitous

presence in real-world applications. Despite its claimed dangers due to unclean semantics (see,

e.g., the discussion in [Dat09]), null values to represent unknowns have been widely used. Also,

interest in including nulls in logic programming has been stated some time ago [TG94].

Supporting nulls conducts to also provide built-ins to handle them, as outer join operations.

DES includes the common outer join operations in relational databases, providing the very same

semantics for outer join operators ranging over null values, which are described next.

4.1 Null Semantics

A null value represents unknown data. To include such values into relational database systems

(RDBMS’s), a new logical value is added for unknown results, leading to a three-valued logic

(3VL, for true, false and unknown). Any comparison operator (=, <, . . .) relating at least

a null value should return the unknown logic value [Dat09]. Although a 3VL is assumed for

RDBMS’s (Oracle, DB2, SQL Server, MySQL, . . .), the fact is that the implemented logic does

not account for the unknown logic value as it is represented by the null value [Dat09].

However, as we are interested in allowing outer join operations and we rely on a logic engine

with 2VL (two-valued logic), we restrict to this, so that any comparison relating at least a null

value returns false instead of unknown. Truth tables for usual logical operators (not, and
and or) remain thus as for 2VL. Regarding comparison operators, two (distinct) null values

are not (known to be) equal, and are (not known to be) distinct. Thus, neither null = null
(syntactic equality) nor null \= null (syntactic disequality) hold. Further, for the same

null value, the equality should succeed, as in the conjunctive query X=null,X=X. Evaluation

of a given expression including at least one null value always returns the same concrete null

value. Thus, two expressions are considered equal if they are syntactically equal. This covers,

for instance, that the following query succeeds: X=null,X+1=X+1.

4.2 Null Representation

Nulls are internally represented with the term ’$NULL’(Id), where Id is a unique integer

which does not occur in any other null. This representation is similar to that also suggested

in other systems [SWSJ09], but, as a difference, DES considers null as a first class citizen and

its internal representation is hidden from the user. Therefore, asserting or consulting a rule as

p(null) is directly allowed. Since the null value in this rule receives a unique identifier, the

conjunctive query p(X),X=X succeeds, since X stands for the same unknown value (note that

92 Fernando Saenz-Perez

this is in contrast to the flaw in SQL, where SELECT * FROM p WHERE x=x discards tuples

with a null in x).

Any explicit null occurring in either a program or a query is replaced by its internal represen-

tation during parsing. Internal representations are also allowed to be written for implementors

purposes, but irrespective of the user-provided identifier (which can also be a variable), it is

replaced by a unique identifier. Also, when building a new fresh call in predicate build/2

(cf. Section 3.1), not only variables have to be fresh, but also any occurrence of a null value.

Therefore, this predicate also includes a null provider for such occurrences, where concrete null

identifiers are replaced by variable identifiers, as $NULL(V)), where V is a variable. A null

provider argument in a rule means that each tuple generated by that rule (and therefore added

to the extension table) gets a unique null for that argument eventually. However, along fixpoint

iterations, the non-ground null representation is the one to be stored in the extension table. Only

once the fixpoint has been reached, nulls are grounded for the answer to be shown to the user.

This is in contrast to asserting or consulting a rule containing a null argument, as p(null),

where the rule is stored as p($NULL(N)), where N is a concrete number. Users are precluded

from using null generators, which are only available as a result of preprocessing, but it will be

needed along the tabled computations of outer joins.

4.3 Outer Join Built-ins

Three outer join operations are provided, following relational database query languages (SQL,

extended relational algebra): left (lj/3), right (rj/3) and full (fj/3) outer joins. A left outer join

lj(L,R,C) computes the cross-product of two relations L and R that satisfy a third relation C,

extended with some special tuples including nulls as explained next. Tuples in L which have no

counterpart in R w.r.t. C are included in the result, so that the values corresponding to columns

of R are set to null. The right outer join rj(L,R,C) is equivalent to lj(R,L,C), and the

full outer join fj(L,R,C) is equivalent to lj(L,R,C) ∪ rj(L,R,C). In addition, both L
and R can take the form of such constructions in order to allow more neat, nested applications of

outer joins.

In a given cycle of the fixpoint computation for an outer join, a tuple tL might not find a

matching tuple in R, but a further cycle may develop new tuples for R that do. In order to prevent

speculative computations and removing entries from the extension table which are not longer

true due to new entries added along fixpoint iterations, the meaning of involved relations in an

outer join are required to be computed already before computing the meaning of the outer join.

This can be achieved by taking advantage of the stratification idea: relations in outer joins are

collected into strata as if they were negative atoms.

4.4 Outer Join Transformations

This section introduces a source-to-source transformation (in a preprocessing phase) for solving

the left outer join (other outer joins are analogous), rather than resorting to write (Prolog-)specific

code for this. As it is well-known, a single left or right outer join suffices to express others.

A new predicate $pi is introduced as an argument of the built-in, void predicate lj/1, which

does nothing, but is handy to specify a predicate classification in strata. So, the predicate $pi

Tabling with Support for Relational Features in a Deductive Database 93

is to be set in a deeper strata than the predicate of the rule in which it occurs, say of predicate

p, because the negative arc $pi
¬←p is added to the dependency graph. The call lj($pi) is

solved by predicate solve/2 as a built-in, with a straight call to $pi (no entries are added to

the answer table for lj/1). Next, predicate $pi is defined to compute the outer join. All of the

facts in the meaning of $pi come from two sources: the facts in L joined with those of R that

meet O, and the facts in L joined with nulls that do not meet O. Next example shows how these

data are collected for solving the outer join v(X,Y) :- lj(s(X,U),t(V,Y),U>V):

v(X,Y) :- lj(’$p0’(X,U,V,Y)).
’$p0’(A,B,’$NULL’(C),’$NULL’(D)) :- s(A,B), not(’$p1’(A,B,E,F)).
’$p0’(A,B,C,D) :- ’$p1’(A,B,C,D).
’$p1’(A,B,C,D) :- s(A,B), t(C,D), B > C.

Predicate $p0 is source of facts, either provided by the positive case (a straight call to $p1
from the second rule of $p0) or by the negative one (a negated call to $p1 in the first rule of

$p0). This negated call oughts $p1 to be in a lower strata than $p0. Therefore, before com-

puting $p0, the meaning of $p1 is completely available. Predicate $p1 contains the (possible)

hard stuff to be computed since it contains the Cartesian product of two relations, followed by

the condition. Despite its arrangement, which may yield to think of a bad computational behav-

ior (compute all tuples from s, then all from t, and finally filter results), the top-down driven

computation looks for a tuple from s, then a tuple from t, and only adds a new tuple to the

answer table of ’$p1’ if the condition B > C holds. Indeed, this is quite similar to the RDB

implementations of join operations (modulo indexing). The first rule for ’$p0’ builds the null

values for the arguments of the right relation R for which no tuples are found meeting condition

O, i.e., So, it is a null provider, as it contains specifications with the form $NULL(V), where V is

a variable. If there are more than one tuple in L that does not match with R, each one is therefore

joined with a non-ground null tuple. If the null ground representation was instead considered,

then the same null tuples will be appended to the result, breaking the assessment that null values

should all be unique.

Notice that this transformation includes floundering [BD98] in the first rule for ’$p0’: the

call to not(’$p1’(A,B,E,F)), where variables E and F are not range restricted. However,

floundering in this concrete case poses no problem as the call to $p1 is completely computed

before it is used by any other call and no other negated call occurs in the program. Note that the

other call in the program to $p1 is for the positive case where all of its arguments become ground.

In particular, the negated call will use those results and the corresponding negative entries will

be added to the answer table. Such negated entries are not be reused by any other (negated) calls

in the program because they belong to system-generated predicates. Safety checking takes such

floundering into account, avoiding error messages. Other works treat the floundering problem in

a more general use of negation (see, e.g., constructive negation [LAC99] and also tabled query

evaluation [Dam96]), where non-ground negated calls are possibly involved in recursive calls,

which we do not consider in our setting.

Other deductive systems, such as DLV [LPF+06], might benefit from including outer joins

as well. In this case, floundering programs are not allowed, but for true negation (CWA is not

assumed; instead, negative data are explicitly declared). Fortunately, as pointed out in [Ull88],

programs as above can be transformed into non-floundering programs, where all calls to negated

94 Fernando Saenz-Perez

goals are ensured to be ground. Next program shows this transformation, where non-relevant

variables are dropped and unfolding is applied:

v(X,Y) :- ’$p0’(X,U,V,Y).
’$p0’(A,B,’$NULL’(C),’$NULL’(D)) :- s(A,B), not(’$p1’(B)).
’$p0’(A,B,C,D) :- s(A,B), t(C,D), B > C.
’$p1’(B) :- s(A,B), t(C,D), B > C.

However, comparing this version to the example, even when the number of relations does not

increase, extra computation has to be done in the second clause of $p0. So, although it seems

possible to compute outer joins in DLV with this technique, nulls should be natively supported;

otherwise it couldn’t be applied because there is no provision to get unique identifiers for null

values in this system (DLV does not feature a general-purpose programming language, but a

deductive language).

XSB [SSW94b] is another system which supports non-ground semantics allowing floundering

programs with the use of the special negation sk not/1, which automatically produces a similar

translation as explained before [SWSJ09]. To write outer joins in this system, in particular it is

needed to generate unique identifier integer numbers for the null values and declare as tabled the

predicates involved in the computation of the outer join. The following program implements the

outer join example in XSB:

:- table(’$p0’/4), table(’$p1’/4), table(s/2), table(t/2).
main(Vs) :- findall(v(X,Y),v(X,Y),Vs).
v(X,Y) :- ’$p0’(X,U,V,Y).
’$p0’(A,B,’$NULL’(C),’$NULL’(D)) :-

get_id(C), get_id(D), s(A,B), sk_not(’$p1’(A,B,E,F)).
’$p0’(A,B,C,D) :- ’$p1’(A,B,C,D).
’$p1’(A,B,C,D) :- s(A,B), t(C,D), B > C.
:- dynamic id/1.
id(0).
get_id(X) :- id(X), retractall(id(X)), Y is X+1, assertz(id(Y)).

Here, the main entry point (predicate main/1) returns a list of deduced facts via the metapred-

icate findall, which collects all answers to the goal v(X,Y). Predicate get id returns a

new integer each time it is called, therefore allowing to uniquely identify nulls.

5 Duplicates

Allowing tables to contain duplicate rows and queries returning also duplicates is a common

feature in current RDBMS’s. However, the introduction of duplicates is claimed to suffer some

other issues: Duplicates in a table are repeated rows in a relation and, from a logical viewpoint,

have no sense because repeated rows mean the same1. Another issue with duplicates is that

equivalent-intended statements can deliver a different number of duplicate rows [Dat09]. As

well, they preclude query optimizations and make optimizers much more complicated than if

were if no duplicates were allowed. Nonetheless, duplicates are useful in a number of situations,

for instance, when considering aggregates.

Noticeably, whilst in relational databases they are assumed, they are not usual in deductive

databases (mainly because of the claimed issues), where they are removed by default. However,

1 Citing Codd: “If something is true, saying it twice doesn’t make it any more true.”

Tabling with Support for Relational Features in a Deductive Database 95

there are deductive systems supporting duplicates as LDL++, but duplicates are removed from

recursive rules. As a main difference, DES also allows recursive rules to be generators of dupli-

cates in a similar way as in SQL recursive statements. Since duplicates are not removed from

derived relations, each rule is understood as a possible, distinct duplicate generator. When dupli-

cates are disabled, they are discarded along computation, i.e., subsumed answers are not added

to the answer table. Next subsection shows how this behavior is supported in a tabled system.

5.1 Duplicates and Tabling

An alternative for supporting duplicates in extensional predicates it to distinguish each rule in

the program, so that two repeated rules are not considered to be equivalent w.r.t. subsumption.

To this end, we can add a unique rule identifier to each rule in the program, as in the program

1:p(a), 2:p(a), 3:p(b). Then, an entry in the answer table will contain tuples of the

form (Atom, RuleId), where Atom is the answer and RuleId the rule identifier that generated

that answer. In this example, the entries obtained for the call p(X) are: {(p(a),1), (p(a),2),

(p(b),3)}. So, the first and second answers do not subsume each other and the usual behavior

for answer subsumption can be kept. From a user viewpoint, rule identification is of no use (as in

relational databases), so that they are hidden from the user when displaying answers and listing

rules.

As an example of a recursive predicate, let’s consider the rules {p(a), p(a), p(X):-p(X)}
(two facts and a recursive rule, respectively). Its intended meaning is the multiset containing the

tuple p(a) four times, where two tuples correspond to the extensional rules for p and the other

two to the single intensional rule for p. This intensional rule generates one tuple for each exten-

sional rule. By adding the rule p(X) :- p(X) once more, the meaning of p would contain

p(a) ten times, i.e., it contains: two tuples from the two facts, and four tuples for each recursive

rule. The first recursive rule is source of four tuples because of the two facts and the two tuples

from the second recursive rule (analogously for the second recursive rule). In fact, this mimics

SLD resolution by collecting all possible answers coming from different sources, therefore prun-

ing infinite computation paths, i.e., all possible computation paths are considered, stopping when

a (recursive) node already used in the computation is reached. Figure 2 shows the tabling tree

for the query p(X) and the annotated program 1.p(a), 2.p(a), 3.p(X) :- p(X), and

4.p(X) :- p(X). Infinite computations are elided in this case because the rule with identifier

3 is neither reused for solving its body nor the body of rule 4 as this rule is a descendant of 3
(analogously for rule 4).

The idea above about uniquely identifying each rule can be applied to recursive predicates as

well. One possible solution is to keep track of the computation path by annotating the rules which

have been used to deduce a given atom. So, each entry in the extension table can be identified

by a chain of such rule identifiers. Each deduced atom is associated with a pair (Id, IdChain),

where Id is the identifier of the rule which is the generator of the atom, and IdChain is the list of

as many pairs as goals in rule Id. So, all rule identifiers in the computation path up to the tabling

tree leaf are stored. Referring to Figure 2, the following are the entries stored in the answer table

after computation, from left to right: (p(a), (1,[])), (p(a), (2,[])), (p(a), (3,[(1,[])])), . . . ,

(p(a), (4,[(3,[(2,[])])])).

To implement this, two additional parameters to predicate memo/2 are added: D for selecting

96 Fernando Saenz-Perez

p(X)

1.p(a) 2.p(a) 3.p(X):-p(X) 4.p(X):-p(X)

1.p(a) 2.p(a) 4.p(X):-p(X) 1.p(a) 2.p(a) 3.p(X):-p(X)

1.p(a) 2.p(a) 1.p(a) 2.p(a)

Figure 2: Tabling tree for the query p(X)

whether or not duplicate answers for a relation are requested (all, distinct, resp.) or elimi-

nate duplicates for a given set of arguments (distinct(Vs,Ps)), and Id as the identifier pair

as described above. Its new prototype is memo(+G,+St,+D,-Id). These two parameters are

passed to et lookup (which is further explained in Subsection 5.3) in the first clause of this

predicate and also to no subsumed by et(Q,D,(G,Id)), which is modified as follows:

% no_subsumed_by_et(+Query,+Distinct,+(Goal,IdGoal))
no_subsumed_by_et(Q,all,(_G,_IdG)) :- % No entry matching Q
\+ et_lookup(Q,all,_IdQ), !.

no_subsumed_by_et(Q,all,(G,IdG)) :- % Existing entries matching Q
nr_id(IdG), % Check that IdG is not cyclic
\+ (et_lookup(Q,all,IdQ), my_subsumes((Q,IdQ),(G,IdG))).

no_subsumed_by_et(Q,_D,(G,_IdG)) :- % For distinct answers
\+ (et_lookup(Q,all,_IdQ), my_subsumes(Q,G)).

5.2 Duplicates and Nulls

When duplicates are disabled, a null value is considered as a single constant in answers, so that

repeated entries are removed. For example, if an answer contains two occurrences of p(null),

only one is shown. This follows the SQL criterium when applying the clause DISTINCT in

a SELECT statement. If duplicates are enabled, each null is considered as a different constant

identified by its internal numeric representation. Thus, in this example, the user would obtain

two tuples. However, tabling computes both tuples in both cases. By enabling development

listings, which in particular shows null internal representations, in the former case both tuples

are listed.

5.3 Duplicate Elimination

When duplicates are enabled, duplicate elimination is provided with the built-in distinct/1,

which applies to a positive atom. In this case, duplicate elimination policy for an atom A consists

of discarding all duplicates for A and all of its descendants in the tabling tree. To implement

this policy, function memo is added with a parameter indicating whether duplicates are discarded

Tabling with Support for Relational Features in a Deductive Database 97

(distinct) or not (all). When a distinct(G) call is to be solved with predicate solve, a

call to this function is called with this parameter, which is passed to subsequent descendant calls

to the memo function in the same subtree. Because there can be other calls to A not involved in

a duplicate elimination path, all its answers are computed by the generator, and consumers in-

volved in duplicate elimination are responsible of using non-repeated entries. So, each consumer

uses the modified predicate et lookup, as shown next, including a new second parameter se-

lecting whether or not all duplicate answers are requested:

% et_lookup(+Goal,+Distinct,-Id)
et_lookup(G,all,IdG) :- et(G,IdG).
et_lookup(G,distinct,IdG) :-
findall((G,IdG),et(G,IdG),GIdGs), setof(G,IdGˆmember((G,IdG),GIdGs),Gs),
member(G,Gs), once(member((G,IdG),GIdGs)).

This predicate is called from predicate memo/4 in two scenarios: First, for consumers that get

all entries in the answer table for a subsumed call (first clause of memo) or from a previous fix-

point iteration (first call in second clause of memo), both with second argument of et lookup
with distinct. In this first case and when distinct answers are required, second clause of

et lookup is applied. Second case is for generators (second call in second clause of memo),

where all answers are required and this predicate is called with second argument with all.

For providing distinct entries in ET, first all entries matching the input goal are collected with

findall, along with their identifiers. Next, setof filters duplicated goals. Each possible

answer G is selected with member via backtracking. One class representant is finally selected

with the only one solution call to member in last line. Its identifier of this representant is the

one returned.

5.4 Duplicates and Projection

Aforementioned handling of duplicate elimination is not enough to deal with correlated SQL

queries. Compiling such a SQL query to Datalog may involve a distinct operator for a projection

(a subset) of the arguments in a relation as, for instance:

CREATE TABLE t(a int, b int); CREATE TABLE s(a int, b int);
CREATE VIEW v(a) AS SELECT a FROM t WHERE a IN
(SELECT DISTINCT a FROM s WHERE t.b<s.b);

A possible Datalog program for this view follows:

v(A) :- t(A,B), distinct(v_1(A,B)).
v_1(A,B) :- s(A,C), B < C.

But this is not a correct equivalent formulation because distinct/1 applies to different

tuples from v_1 instead of different values for a, and b must be passed to v_1 to filter results.

So, a new built-in distinct(Arguments,Relation) is needed, which computes different

results for the list of relation arguments for the relation. The first Datalog rule would be rewritten

as v(A) :- t(A,B), distinct([A],v 1(A,B)).
Solving this new built-in is via the call memo(G,St,R,distinct(Vs,Ps),Id), where

G is to be computed for returning only distinct tuples of variables Vs, which correspond to

98 Fernando Saenz-Perez

argument positions Ps. These positions are kept to account projection positions as any variable

in Vs might become ground before solving this call. no_subsumed_by_et/3 is modified

accordingly by adding the next clause, which deals with duplicate elimination when duplicates

are enabled.

no_subsumed_by_et(Q,distinct(_Vs,Ps),(G,_IdG)) :-
\+ (functor(Q,F,A), functor(FQ,F,A),

get_ith_arg_list(Ps,Q,QAs), get_ith_arg_list(Ps,FQ,QAs),
et(FQ,_Id),get_ith_arg_list(Ps,G,GAs),my_subsumes(QAs,GAs)).

As well, predicate et_lookup/3 is added with the following clause:

et_lookup(G,distinct(Vs,_SG),IdG) :-
findall((G,IdG),et(G,IdG),GIdGs), term_variables(G,GVs),
set_diff(GVs,Vs,EVs),
build_ex_quantifier(EVs,my_member((G,IdG),GIdGs),QG),
setof(Vs,IdGˆQG,Vss), my_member(Vs,Vss), once(my_member((G,IdG),GIdGs)).

Although similar to the second clause of this predicate in previous section, this clause adds

handling of unprojected variables by building existential quantifiers over them, so that setof/3

returns distinct tuples for projected variables.

5.5 Duplicates in Aggregates

Aggregates are supported in DES in several flavors [SP11], both as functions and predicates, but

for the sake of this paper, we restrict the presentation to a simplified aggregate predicates. An ag-

gregate predicate returns its result in its last argument position, as in sum(p(X),X,R), which

binds R to the cumulative sum of values for X, provided by relation p. Duplicate elimination

versions are also available, such as sum distinct/3.

Solving rules involving aggregates via successive fixpoint iterations might lead to incorrect

entries to be added to the extension table because in a given iteration it is not ensured that all

the meaning of the aggregated relation is computed. A straightforward approach to solve them

is analogous to negation: new negative arcs are added to the dependency graph in order to place

such relation in a stratum lower than the predicate of the rule in which it occurs. So, the rule

s(R) :- sum(p(X),X,R) implies an arc s
¬←p, which in turn also implies the constraint

strata(p)< strata(s) for the stratification.

Then, when solving an aggregate in a given fixpoint iteration, all the tuples of its aggregated

relation are known, so that duplicate elimination is simply performed by applying setof instead

of bagof to groups from entries in the answer table. A simplified version implementing this is

shown next:

compute_distinct_aggregate_pred(Aggr) :-
Aggr =.. [F,R,V,O], R =.. [_P|Args], get_arg_position(V,Args,I),
nf_setof(N, CRˆIdsˆ(et(CR,Ids),\+ \+ (CR=R),

arg(I,CR,N),N\=’$NULL’(_Id)), Ns),
compute_aggregate(F,Ns,O).

Here, nf setof is the non-failing version of setof (it returns an empty list instead of

failure), and collects all values for the argument to which the aggregate is applied (X in the

example above). As in relational databases, null arguments are omitted from this set.

Tabling with Support for Relational Features in a Deductive Database 99

6 Conclusions

This paper has shown how to include null, outer joins and duplicates altogether into a tabled

deductive database system. Since this system compiles SQL statements to Datalog programs, it

was a need to embody such features coming from relational database systems into the concrete

deductive inference engine DES. Because this system is not geared towards performance, this

implementation should be seen as a proof of concept. Some hints have been provided for the

porting to other deductive systems and future work may include to use other external efficient

engines such as XSB.

Bibliography

[BD98] G. Brewka, J. Dix. Knowledge Representation with Logic Programming. In Dix et al.

(eds.), Proceedings of LPKR’97. LNAI 1471, pp. 1–51. Springer-Verlag, 1998.

[CGS08] R. Caballero, Y. Garcı́a-Ruiz, F. Sáenz-Pérez. A Theoretical Framework for the

Declarative Debugging of Datalog Programs. In International Workshop on Seman-
tics in Data and Knowledge Bases. LNCS 4925, pp. 143–159. Springer, 2008.

[CGS10] R. Caballero, Y. Garcı́a-Ruiz, F. Sáenz-Pérez. Applying Constraint Logic Program-

ming to SQL Test Case Generation. In Proc. International Symposium on Functional
and Logic Programming (FLOPS’10). LNCS 6009. 2010.

[CGS11] R. Caballero, Y. Garcı́a-Ruiz, F. Sáenz-Pérez. Algorithmic Debugging of SQL Views.

In Ershov Informatics Conference (PSI’11). LNCS. Springer, 2011. In Press.

[Cod70] E. Codd. A Relational Model for Large Shared Databanks. Communications of the
ACM 13(6):377–390, June 1970.

[Dam96] C. Damásio. Paraconsistent Extended Logic Programming with Constraints,. PhD

thesis, Dept. de Informâtica, Universidade Nova de Lisboa, 1996.

[Dat09] C. J. Date. SQL and relational theory: how to write accurate SQL code. O’Reilly,

Sebastopol, CA, 2009.

[Die87] S. W. Dietrich. Extension Tables: Memo Relations in Logic Programming. In IEEE
Symp. on Logic Programming. Pp. 264–272. 1987.

[GCH+08] P. C. de Guzmán, M. Carro, M. V. Hermenegildo, C. Silva, R. Rocha. An improved

continuation call-based implementation of tabling. PADL’08, pp. 197–213. Springer-

Verlag, Berlin, Heidelberg, 2008.

[LAC99] J. Y. Liu, L. Adams, W. Chen. Constructive negation under the well-founded seman-

tics. JLP 38(3):295–330, 1999.

[LPF+06] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello. The DLV

system for knowledge representation and reasoning. ACM Tran. on Computational
Logic 7(3):499–562, 2006.

100 Fernando Saenz-Perez

[RSC05] R. Rocha, F. M. A. Silva, V. S. Costa. Dynamic Mixed-Strategy Evaluation of Tabled

Logic Programs. In Gabbrielli and Gupta (eds.), ICLP. LNCS 3668, pp. 250–264.

Springer, 2005.

[RU93] R. Ramakrishnan, J. Ullman. A survey of research on Deductive Databases. JLP
23(2):125–149, 1993.

[SP11] F. Sáenz-Pérez. DES: A Deductive Database System. Electronic Notes on Theoretical
Computer Science 271:63–78, March 2011.

[SP12] F. Sáenz-Pérez. Datalog Educational System. May 2012. http://des.sourceforge.net/.

[SD91] C. Shih, S. Dietrich. Extension Table Evaluation of Datalog Programs with Negation.

In Proc. of the IEEE International Phoenix Conference on Computers and Commu-
nications. Volume AZ, pp. 792–798. Scottsdale, March 1991.

[SS06] Z. Somogyi, K. Sagonas. Tabling in mercury: Design and implementation. In In
Proceedings of Practical Aspects of Declarative Programming (PADL’06). Pp. 150–

167. Springer-Verlag, 2006.

[SSW94a] K. Sagonas, T. Swift, D. S. Warren. XSB as an Efficient Deductive Database Engine.

In In Proceedings of the ACM SIGMOD International Conference on the Manage-
ment of Data. Pp. 442–453. ACM Press, 1994.

[SSW94b] K. Sagonas, T. Swift, D. S. Warren. XSB as an efficient deductive database engine.

In SIGMOD’94: Proceedings of the 1994 ACM SIGMOD International Conference
on Management of Data. Pp. 442–453. ACM, New York, NY, USA, 1994.

[SW10] T. Swift, D. S. Warren. XSB: Extending Prolog with Tabled Logic Programming.

CoRR abs/1012.5123, 2010. Submitted to TPLP.

[SWSJ09] T. Swift, D. Warren, K. Sagonas, J. Freire et al. The XSB Sys-

tem Version 3.2. Volume 2: Libraries, Interfaces and Packages. 2009.

http://xsb.sourceforge.net/.

[TG94] B. Traylor, M. Gelfond. Representing Null Values in Logic Programming. In

LFCS’94. Pp. 341–352. 1994.

[TS86] H. Tamaki, T. Sato. OLDT Resolution with Tabulation. In Third International Con-
ference on Logic Programming. Pp. 84–98. 1986.

[Ull88] J. D. Ullman. Database and Knowledge-Base Systems, Vols. I (Classical Database
Systems) and II (The New Technologies). Computer Science Press, 1988.

[ZCF+97] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian, R. Zicari.

Advanced Database Systems. Morgan Kaufmann, 1997.

[ZS03] N.-F. Zhou, T. Sato. Efficient fixpoint computation in linear tabling. PPDP’03,

pp. 275–283. ACM, New York, NY, USA, 2003.

Tabling with Support for Relational Features in a Deductive Database 101

Almería, 17 al 19 de Septiembre

ACTAS

Editores: María del Mar Gallardo | Mateu Villaret | Luis Iribarne

M.M. Gallardo, M. Villaret, L. Iribarne (Eds.): Actas de las "XII Jornadas sobre Programación y Len-
guajes (PROLE’2012), Jornadas SISTEDES’2012, Almería 17-19 sept. 2012, Universidad de Almería.

PROLE 2012

XII Jornadas sobre Programación y
Lenguajes (PROLE)

Almería, 17 al 19 de Septiembre de 2012

Editores:
María del Mar Gallardo
Mateu Villaret
Luis Iribarne

Actas de las “XII Jornadas sobre Programación y Lenguajes (PROLE)”
Almería, 17 al 19 de Septiembre de 2012
Editores: María del Mar Gallardo, Mateu Villaret, Luis Iribarne
http://sistedes2012.ual.es
http://www.sistedes.es

ISBN: 978-84-15487-27-2
Depósito Legal: AL 673-2012
© Grupo de Informática Aplicada (TIC-211)
Universidad de Almería (España)
http://www.ual.es/tic211

Prólogo

El presente documento contiene los trabajos aceptados por los Comités de Programa para su
presentación en las XII Jornadas de Programación y Lenguajes (PROLE’12) y el IV Taller de
Programación funcional (TPF’12). Este año, y como es tradicional, PROLE y TPF se
celebran en el marco de las Jornadas Sistedes 2012, en las que de forma paralela tienen lugar
también las XVII Jornadas de Ingeniería del Software y Bases de Datos (JISBD’12) y las
VIII Jornadas de Ciencia e Ingeniería de Servicios (JCIS’12), todas ellas bajo el auspicio de
la Asociación de Ingeniería del Software y Tecnologías de Desarrollo de Software
(SISTEDES, http://www.sistedes.es).

A lo largo de estos 12 años, desde su primera edición en Almagro, pasando por El Escori-
al, Málaga, Gijón o Granada, PROLE ha consolidado su papel como punto de encuentro y
discusión de los investigadores españoles que estudian distintos aspectos (teóricos, aplicados
o de implementación) relacionados con la programación.

En esta ocasión, considerando el momento de crisis profunda por la que está pasando
España, es quizás más importante mantener jornadas como PROLE y TPF. Por eso nos
gustaría dar las gracias, en primer lugar, a los autores de los artículos enviados. Los trabajos
que se presentan este año muestran las distintas líneas de investigación que actualmente se
están desarrollando en nuestras Universidades e Institutos de Investigación. Podemos
encontrar artículos que tratan aspectos fundamentales de los lenguajes (considerando
distintos paradigmas), con un fuerte contenido formal, y artículos más aplicados en los que se
da más relevancia a los aspectos de implementación. Podemos encontrar trabajos maduros,
que han sido presentados o publicados en reuniones de carácter internacional, artículos
completos inéditos, y trabajos en progreso, que están aún en una estado más preliminar. En
cualquier caso, los trabajos presentados son, en general, de gran calidad técnica lo que me
permite afirmar que, a pesar de las dificultades, la investigación en Programación en España
goza de una salud excelente.

El programa se completa con la Conferencia titulada “Strategy-Driven Graph Transfor-
mations in PORGY” impartida por la Dra. Maribel Fernández del King’s College London, a
quien agradecemos su participación.

Por su parte, TPF’12 ha seleccionado tres trabajos directamente relacionados con el
paradigma de programación funcional. El programa de TPF’12 cuenta este año además con
dos charlas invitadas sobre la aplicación de la programación funcional en la industria,
impartidas por Diana Corbacho y José Iborra, de un seminario sobre cálculo lambda y
reducciones, a cargo de Pablo Nogueira, y de un tutorial de paralelismo en Haskell a cargo de
Ricardo Peña. A todos ellos queremos agradecerles su buena predisposición e iniciativa.

Asimismo, nos gustaría dar las gracias a los Comités de Programa por su trabajo en la
revisión y selección de los artículos, y a los revisores externos que han colaborado
desinteresadamente.

Por último, no queremos dejar escapar la ocasión para recordar de manera especial al
profesor Víctor Gulías, estrechamente vinculado a estas jornadas, y que ha fallecido
recientemente a una temprana edad. Te echaremos de menos.

Para terminar, es justo mencionar la magnífica ciudad que nos acoge, Almería, y el grupo

de investigación que ha organizado todo el evento. Nos gustaría agradecer al profesor Luis
Iribarne, y al comité de organización en su conjunto, su paciencia y su trabajo durante este
último año que, estamos seguros, culminará con el éxito de las Jornadas Sistedes 2012.

Septiembre 2012, Almería
María del Mar Gallardo
Mateu Villaret
Presidentes de los Comités de Programa de PROLE’12 y TPF’12.

Prologo de la Organización

Las jornadas SISTEDES 2012 son un evento científico-técnico nacional de ingeniería y
tecnologías del software que se celebra este año en la Universidad de Almería durante los
días 17, 18 y 19 de Septiembre de 2012, organizado por el Grupo de Investigación de
Informática Aplicada (TIC-211). Las Jornadas SISTEDES 2012 están compuestas por las
XVII Jornadas de Ingeniería del Software y de Bases de Datos (JISBD’2012), las XII
Jornadas sobre Programación y Lenguajes (PROLE’2012), y la VIII Jornadas de Ciencia e
Ingeniería de Servicios (JCIS’2012). Durante tres días, la Universidad de Almería alberga
una de las reuniones científico-técnicas de informática más importantes de España, donde se
exponen los trabajos de investigación más relevantes del panorama nacional en ingeniería y
tecnología del software. Estos trabajos están auspiciados por importantes proyectos de
investigación de Ciencia y Tecnología financiados por el Gobierno de España y Gobiernos
Regionales, y por proyectos internacionales y proyectos I+D+i privados. Estos encuentros
propician el intercambio de ideas entre investigadores procedentes de la universidad y de la
empresa, permitiendo la difusión de las investigaciones más recientes en ingeniería y
tecnología del software. Como en ediciones anteriores, estas jornadas están auspiciadas por la
Asociación de Ingeniería del Software y Tecnologías de Desarrollo de Software
(SISTEDES).

Agradecemos a nuestras entidades colaboradoras, Ministerio de Economía y
Competitividad (MINECO), Junta de Andalucía, Diputación Provincial de Almería,
Ayuntamiento de Almería, Vicerrectorado de Investigación, Vicerrectorado de Tecnologías
de la Información (VTIC), Enseñanza Virtual (EVA), Escuela Superior de Ingeniería
(ESI/EPS), Almerimatik, ICESA, Parque Científico-Tecnológico de Almería (PITA), IEEE
España, Colegio de Ingenieros Informática de Andalucía, Fundación Mediterránea, y a la
Universidad de Almería por el soporte facilitado. Asimismo a D. Félix Faura, Director de la
Agencia Nacional de Evaluación y Prospectiva (ANEP) de la Secretaría de Estado de I+D+i,
Ministerio de Economía y Competitividad, a D. Juan José Moreno, Catedrático de la Univer-
sidad Politécnica de Madrid, presidente de la Sociedad de Ingeniería y Tecnologías del Soft-
ware (SISTEDES), a D. Francisco Ruiz, Catedrático de la Universidad de Castilla-La Man-
cha, y a D. Miguel Toro, Catedrático de la Universidad de Sevilla, por su participación en la
mesa redonda "La investigación científica informática en España y el año Turing”; a Arman-
do Fox de la Universidad de Berkley (EEUU) y a Maribel Fernández del King’s College
London (Reino Unido), como conferenciantes principales de las jornadas, y a los presidentes
de las tres jornadas por facilitar la confección de un programa de Actividades Turing. Espe-
cial agradecimiento a los voluntarios de las jornadas SISTEDES 2012, estudiantes del Grado
de Ingeniería Informática y del Postgrado de Doctorado de Informática de la Universidad de
Almería, y a todo el equipo del Comité de Organización que han hecho posible con su trabajo
la celebración de una nueva edición de las jornadas JISBD'2012, PROLE'2012 y JCIS'2012
(jornadas SISTEDES 2012) en la Universidad de Almería.

Luis Iribarne
Presidente del Comité de Organización
@sistedes2012{JISBD;PROLE;JCIS}

Comité Científico del PROLE’2012

Presidente del Comité:

María del Mar Gallardo, Universidad de Málaga

Miembros:

Jesús Almendros, Universidad de Almería
María Alpuente, Universidad Politécnica de Valencia
Puri Arenas, Universidad Complutense de Madrid
Miquel Bertrán, Universidad Ramón Llull
Rafael Caballero, Universidad Complutense de Madrid
Manuel Carro, Universidad Politécnica de Madrid
Fernando Cuartero, Universidad de Castilla la Mancha
Francisco Durán, Universidad de Málaga
Miguel Gómez-Zamalloa, Universidad Complutense de Madrid
Salvador Lucas, Universidad Politécnica de Valencia
Paqui Lucio, Universidad del País Vasco
Ginés Moreno, Universidad de Castilla la Mancha
Juan José Moreno, Universidad Politécnica de Madrid
Marisa Navarro, Universidad del País Vasco
Javier Oliver, Universidad Politécnica de Valencia
Albert Oliveras, Universidad Politécnica de Cataluña
Fernando Orejas, Universidad Politécnica de Cataluña
Ricardo Peña, Universidad Complutense de Madrid
César Sánchez, Fundación IMDEA Software
Alicia Villanueva, U. Politécnica de Valencia

Comité Científico de TPF’12

Presidente del Comité:

Mateu Villaret, Universidad de Girona

Miembros:

Miquel Bofill, Universidad de Girona
Laura Castro, Universidad de A Coruña
Emilio J. Gallego, Universidad Politécnica de Madrid
Francisco Gutiérrez, Universidad de Málaga
Raúl Gutiérrez, University of Illinois at Urbana-Champaign
Pablo Nogueira, Universidad Politécnica de Madrid
Ricardo Peña, Universidad Complutense de Madrid
Jaime Sánchez, Universidad Complutense de Madrid
Josep Silva, Universidad Politécnica de Valencia
Revisores Externos de PROLE’12 y TPF’12:

Javier Álvez
Javier Espert
Álvaro Fernández
Francisco Frechina
Lars-ke Fredlund
Álvaro García
Montserrat Hermo
Fernando López
Víctor Pablos-Ceruelo
Fernando Pérez
Rafael del Vado
Carlos Vázquez

Comité de Organización

Presidente:

Luis Iribarne (Universidad de Almería)

Miembros:

Alfonso Bosch (Universidad de Almería)
Antonio Corral (Universidad de Almería)
Diego Rodríguez (Universidad de Almería)
Elisa Álvarez, Fundación Mediterránea
Javier Criado (Universidad de Almería)
Jesús Almendros (Universidad de Almería)
Jesús Vallecillos (Universidad de Almería)
Joaquín Alonso (Universidad de Almería)
José Andrés Asensio (Universidad de Almería)
José Antonio Piedra (Universidad de Almería)
José Francisco Sobrino (Universidad de Almería)
Juan Francisco Inglés (Universidad Politécnica de Cartagena)
Nicolás Padilla (Universidad de Almería)
Rosa Ayala (Universidad de Almería)
Saturnino Leguizamón (Universidad Tecnológica Nacional, Argentina)

Índice de Contenidos del PROLE’2012

Charla Invitada

Maribel Fernández. Strategy-Driven Graph Transformations in PORGY 297

Sesión 1: Programación (lógica) funcional/Aplicaciones
Chair: Dr. Ricardo Peña

Lidia Sánchez Gil, Mercedes Hidalgo-Herrero and Yolanda Ortega- Mallén. A formalization
of Launchbury's natural semantics for lazy evaluation in Coq ... 15-29

Ignacio Castiñeiras and Fernando Saenz-Perez. Improving the Performance of FD Constraint
Solving in a CFLP System ... 31-32

David Duque and Laura M. Castro. Tecnología funcional en aplicaciones de televisión
interactiva: acceso a redes sociales con Synthetrick .. 33-47

Sesión 2: Transformación de programas
Chair: Dr. Jesús Almendros

Jose F. Morales, Rémy Haemmerlé, Manuel Carro and Manuel Hermenegildo. Lightweight
Compilation of (C)LP to JavaScript .. 51-52

David Insa, Josep Silva and César Tomás. Mejora del rendimiento de la depuración
declarativa mediante compresión y expansión de bucles .. 53-67

Alejandro Acosta, Francisco Almeida and Vicente Blanco. Paralldroid: a source to source
translator for development of native Android applications ... 69-83

Sesión 3: Bases de Datos
Chair: Dr. Ginés Moreno

Fernando Saenz-Perez. Tabling with Support for Relational Features in a Deductive Data-
base ... 87-101

Rafael Caballero, Jose Luzon-Martin and Antonio Tenorio. Test-Case Generation for SQL
Nested Queries with Existential Conditions .. 103-117

Jesús M. Almendros-Jiménez, Alejandro Luna Tedesqui and Ginés Moreno. Debugging
Fuzzy-XPath Queries .. 119-133

Sesión 4: Programación lógica/restricciones
Chair: Dr. Fernando Orejas

Pablo Chico De Guzmán, Manuel Carro, Manuel Hermenegildo and Peter Stuckey. A Gen-
eral Implementation Framework for Tabled CLP ... 137-138

Marco Comini, Laura Titolo and Alicia Villanueva. Abstract diagnosis for timed concurrent
constraint programs .. 139-140

Miquel Bofill Arasa, Joan Espasa Arxer, Miquel Palahí Sitges and Mateu Villaret. An exten-
sion to Simply for solving Weighted Constraint Satisfaction Problems with Pseudo-Boolean
Constraints .. 141-155

Sesion 5: Fundamentos
Chair: Dra. Paqui Lucio

Edelmira Pasarella, Fernando Orejas, Elvira Pino and Marisa Navarro. Semantics of struc-
tured normal logic programs .. 159-160

Simone Santini. Regular queries in event systems with bounded uncertainty 161-175

Pedro J. Morcillo, Gines Moreno, Jaime Penabad and Carlos Vázquez. String-based Multi-
adjoint Lattices for Tracing Fuzzy Logic Computations ... 177-191

Sesion 6: Ingeniería del Software
Chair: Dra. Marisa Navarro

Dragan Ivanovic, Manuel Carro and Manuel Hermenegildo. Constraint-Based Runtime Pre-
diction of SLA Violations in Service Orchestrations ... 195-196

Jesus M. Almendros-Jimenez and Luis Iribarne. PTL: A Prolog based Model Transformation
Language ... 197-211

Enrique Chavarriaga, Fernando Díez and Alfonso Díez. Intérprete PsiXML para gramáticas
de mini-Lenguajes XML en aplicaciones Web .. 213-227

Sesion 7: Lógica Temporal/Model checking
Chair: Dra. Alicia Villanueva

Jose Gaintzarain, Montserrat Hermo, Paqui Lucio, Marisa Navarro and Fernando Orejas. In-
variant-Free Clausal Temporal Resolution... 231-232

Damián Adalid, Alberto Salmerón, María del Mar Gallardo and Pedro Merino. Testing Tem-
poral Logic on Infinite Java Traces .. 233-234

Laura Panizo and María del Mar Gallardo. Analyzing Hybrid Systems with JPF 235-249

