Implementing Tabled Hypothetical Datalog

Fernando Sédenz-Pérez
Dept. Ingenieria del Software e Inteligencia Artificial
Universidad Complutense de Madrid
Madrid, Spain
fernan@sip.ucm.es

Abstract—Hypothetical Datalog is based on an intuitionistic
semantics rather than a classical logic semantics, and allows
embedded implications in rule bodies. While the usual implica-
tion (i.e., the neck of a Horn clause) stands for inferencing facts,
an embedded implication plays the role of assuming its premise
for deriving its consequence. Although this topic has received
considerable attention along time and nowadays is gaining
renewed interest, there has not been a tabled implementation
of hypothetical Datalog. We present here such a proposal
including the formal background and its application to a goal-
oriented tabled setting with negation, where non-monotonicity
due to negation and implication is handled via stratification
and contexts. In addition, we implement it in the deductive
system DES, also providing support to duplicates and integrity
constraints in the hypothetical framework.

Keywords-Hypothetical Datalog; Tabling; Deductive Databa-
ses; DES;

I. INTRODUCTION

Hypothetical queries, also known as ”what-if” queries, are
a common need in applications as OLAP [1], business intel-
ligence [2], and e-commerce [3]. Whilst such systems and
applications inherit from and build upon relational database
approaches restricting the use of negation and recursion, ear-
lier works on intuitionistic logic programming integrate such
queries in the inference system. In particular, hypothetical
Datalog [4] has been a proposal thoroughly studied from
semantic and complexity point-of-views, allowing recursion,
embedded implications and negation.

Our work follows the interpretation of [4] for which two
kind of implications can be identified: The usual implication
which is found as the neck of a logic clause, and the
(hypothetical) implication which can be found in the body
of a logic clause. Indeed, they receive different syntactic
devices to be expressed: <, and <, respectively, and are
therefore differently interpreted. Whereas in the formula
L < R, the atom R is “executed” for proving L, in the
formula L < R, the atom R is “assumed” to be true for
proving L.

Since negation is also allowed to occur in clause bodies,
stratification [5] is imposed as a syntactic restriction to
programs including negation in order to avoid multiple
models, a natural expectation from database users. Also,

This work has been partially supported by the Spanish projects TIN2008-
06622-C03-01, UCM-BSCH-GR58/08-910502, and S2009TIC-1465.

combining hypothetical goals and negation can also deal
with paradoxes [4], as the introduction of an assumed fact
may produce contradictions. We face this non-monotonic
behaviour by using contexts as described along the paper.

Tabling provides overcomes to well-known problems
of logic programming implementations and enhances effi-
ciency. Systems implementing tabling memorize the deduced
instances (answers) to goals (calls) in an answer table and
call table, respectively, in order to reuse them and save
further computations. Tabling has been applied to several
logic programming systems (e.g., [6]) to deductive databases
(e.g., [7]), and transaction logic [8]. However, though there
have been some works regarding implementations [9], as
far as we know there has not been an implementation of
hypothetical Datalog based on tabling.

We introduce a formal framework partly based on [4]
but with important differences. Here, we allow rules with
embedded implications, with the intention to allow the user
to assume both facts and rules to be hypothetically added
to the current database. As an original motivation was to be
able to assume fragments of a database, a first difference lies
in that we allow to assume a set of rules and facts, instead of
only a rule or fact, for proving a goal. Therefore, variables
in assumed rules are encapsulated (i.e., they are not shared
out of each assumed rule). And as a natural requirement,
safety [5] is required for assumed facts and rules, ensuring
finiteness of answers.

As an additional novel feature, we provide support for
duplicates in the hypothetical setting. This enables to cope
with problem formulations including multiple copies of
facts, which in addition can be summarized with aggre-
gates (as counting them). Duplicate sources can be both
extensional and intensional and have not been considered
for hypothetical Datalog up to now. Also, strong integrity
constraints are supported in the hypothetical setting but, in
contrast to works as [10], we do not allow to assume a
fact or rule violating any integrity constraint, as usual in the
relational setting.

We have implemented our approach to hypothetical Data-
log in the deductive system DES [11], which can be down-
loaded from des.sourceforge.net, where motivating
examples can also be found in the user manual.

II. FORMAL BACKGROUND

This section introduces some formal background to de-
scribe our approach to hypothetical Datalog, as an extension
of function-free Horn logic following [4].

A. Syntax

The syntax of the logic is first order and includes a
universe of constant symbols, a set of variables and a set of
predicate symbols (P). For concrete symbols, we write vari-
ables starting with upper-case letter and the rest of symbols
starting with lower-case. Removing function symbols from
the logic is a condition for finiteness of answers, a natural
requirement of database users. As in Horn-logic, a rule has
the form A < ¢, where A is an atom and ¢ is a conjunction
of goals. A goal, for a hypothetical system, can also take
the form A R; = G, a construction known as an embedded
implication, extending [4] by allowing the premise to be a
conjunction of rules as an assumption. This means that for
solving the conclusion G, rules R;, together with the current
database, will be used to deduce G. The following definition
captures the syntax of our language, where vars(T) is the
set of variables occurring in 7T

Definition 1 (Syntax of Rules):
R=A|A+<GiN...NG,
G=A|-G|RiAN...ANR, =G

where R and R; stand for rules, G and G; for goals, A
for an atom, and |Jvars(R;) Nvars(R) = (0, and the sets
vars(R;) and vars(G) are also disjoint.

Strong constraints are logical formulas of the form
1+« Gi A ... NGy, that is, if the premise can be
inferred, an inconsistent state is found (L is dropped
from now on). They are known in the database arena
as integrity constraints and are used to specify condi-
tions that database instances must hold. For instance,
the constraint <+ employees(Name, Department) A
—departments(Department) represents a referential in-
tegrity constraint: It can not be the case of finding an
employee associated to a non-existing department.

Definition 2 (Syntax of Constraints):
C:= «<GN...NG,,
where C' stands for a constraint, and G; for goals.

Each constraint is given a fresh predicate with as many
arguments as different variables there are in the constraint.

Definition 3 (Database): A database is a set of clauses
possibly including both constraints and rules.

B. Safety

Safety is a condition for query answers to be ground,
avoiding floundering [12]. This issue comes from allowing
negation in goals. So, as an additional syntax requirement
for our language, the rules R; in a premise must be safe [5],

because eventually they will be part of a database used for
inferencing, and therefore soundness must be ensured. Next,
definitions for rule and goal safety are given.

Definition 4 (Rule Safety): Arule R := A < G1A. .. NG,
n > 0 is said to be safe (written as the property safe(R)) if:
e vars(A) Cvars(G), and
« For each negative goal G; of either the form —A’ or
RiA...AR, = —A', vars(A’") C Jvars(G;), where
G are the positive goals (i.e., with no —) in R

Note that this definition applies both to program rules and
rules in the premises of embedded implications.

Definition 5 (Goal Safety): A goal G is safe if the rule
¢ < @ is safe, where c is an arbitrary, fresh predicate name.

So, while atoms in goals might be open, an atomic rule
must be ground. Also, every call to a negated goal must be
ground.

C. Predicate Dependency Graph and Stratification

Introducing negation in literals of body clauses introduces
another issue: The possibility to have more than one minimal
model [5]. Stratification is a syntactic condition on programs
which ensures that only one minimal model can be assigned
to a program. Predicates in the program are classified into
strata so that negation does not occur through recursion. For
building a stratification (i.e., a mapping between predicate
symbols and natural numbers), a device called predicate
dependency graph (PDG) is convenient. A PDG depicts the
positive and negative dependencies between predicates.

Definition 6 (Dependencies): A predicate P positively
(negatively, resp.) depends on @ if P is the predicate symbol
of A in a rule (both a program rule and a rule in a premise)
A+~ Gy AN... NG, and @Q occurs either in some positive
(negative, resp.) atom G; or in G in an embedded implication
GjERl/\.../\RnéG.

Note that the implication <« is the source for dependen-
cies, whereas the embedded implication = is not. However,
all the non-atomic rules in the premise of = are involved
in adding dependencies. This fact is propagated to the
construction of the dependency graph and the stratification
for a program.

Definition 7 (Predicate Dependency Graph): A predicate
dependency graph for a program A (written as pdg(A)) is a
pair < N, A >, where N is the set of predicate symbols in
A and A is the set of arcs P + @ s.t. P positively depends
on @, and R <~ S such that R negatively depends on S.

Definition 8 (Stratification): A stratification of a program
A (written as str(A)) is a mapping P — N such that each
P € P is mapped to ¢ € N so that a predicate () which
positively (negatively, resp.) depends on P is mapped to a
number j > i (j > i, resp.) We also use str(A, P) to denote
the stratum number corresponding to predicate P.

D. Stratified Inference

Following [4] we define a logical inference system for
stratified intuitionistic logic programming, with the follow-
ing main differences: Allowing duplicates, integrity con-
straints, premises with multiple rules, and enforcing en-
capsulation of variables in premises. Stratified inference
requires an inference system for each stratum. Inference
starts from the lower stratum and its derivations are inputs to
the inference for the next stratum above. For a given stratum
i, these derivations £ are inference expressions which are
constructed by the axioms derived in the stratum below and
the rules defining the predicates belonging to stratum . Input
£ is the empty set for the first stratum. In the following, we
consider programs A which are both safe and stratifiable.
Otherwise, inference cannot be applied. We use pred(A) to
denote the predicate symbol of atom A.

Duplicates would require working with bags in order to
denote the multiple occurrences of the same atom. Instead,
we resort to univocally identify each rule in a program and
work with expressions tagged with such identifiers.

Definition 9 (Inference Expression): An inference expres-
sion for a program A is A F ¢, where ¢ can be either an
identified ground atom ¢d : ¢, where ¢d is a rule identifier
and ¢ a ground atom, or L. The inference expression is
positive iff ¢ is positive and negative iff ¢ is negative, and
inconsistent otherwise.

Definition 10 (Inference System): Given a database A and
a set of input inference expressions &, the inference system
associated to the s-th stratum is defined as follows, where
ds(€) is a closure operator that denotes the set of inference
expressions derivable in this system:

Axioms:

e A F id : A is an axiom for each (ground) atomic
formula id : A in A, where str(A,pred(A4)) = s

o Each expression in £ is an axiom.

Inference Rules:

e For any rule A < ¢y A ... A ¢, with identifier id in
A, where str(A,pred(A)) = s and for any ground
substitution 6:

A+ ¢;0 for each i
Atid: Af

o For any goal ¢:

AU{Ry,...,R,}F ¢
AFRIN...NR, = ¢
« For any constraint <— ¢; A ... A ¢, in A:

A F ¢;0 for each i
AF L

Each rule in this inference system is read as: If the
formulas above the line can be inferred, then those below
the line can also be inferred.

Definition 11 (Inconsistent Set of Axioms): A set £ is an
inconsistent set of axioms if the expression A - 1 is in &,
and consistent otherwise.

Like all Gentzen-style inference systems, this system is
monotonic in the set of axioms, idempotent and inflationary.
Let S denote the set of inference expressions for programs.

Lemma 1. The function ds : S — S has the following
properties:

o Monotonicity: If € C F then ds(E) C dy(F).

o Idempotence: ds(€) = ds(ds(E)).

o Inflationaryness: £ C d4(E).]

Negative information is deduced by applying the closed
world assumption (CWA) [5] to inference expressions:

Definition 12 (Closed World Assumption of a Set of Infer-
ence Expressions): The closed world assumption of the set
of inference expressions £ (written as cwa(€)) is the union

of £ and the negative inference expression for A - ¢ such
that AF ¢ ¢ E.

The following definition captures the bottom-up construc-
tion of the semantics, stratum by stratum:

Definition 13 (Unified Stratified Semantics):
° 50 = @
o &5 = cwa(dsy1(E%)) for s > 0.

This procedure eventually terminates as the number of
strata is finite.

Definition 14 (Consistent Database): A database A is
consistent (written as the property cons(A)) if its unified
stratified semantics £51 is a consistent set of axioms.

Solving a goal w.r.t. this semantics can be defined as:

Definition 15 (Meaning of a Goal): The meaning of a goal
¢ w.r.t. a set of axioms & (written as solve(¢, £)) is defined
as solve(¢,€) = {AFid : ¢ € £ such that ¢0 = ¢}

where ¢ is a goal, solve returns a bag, and 6 is a substitution.

Databases are incrementally built, clause-by-clause, start-
ing from an empty database. Given a database (pro-
gram rules and integrity constraints) A, a consistent
database A, is built from Ay = 0 as: Ay =
A; U{e; € A such that safe(c;), there exist str(A; U
{e:}), and cons(A; U{c;})}

III. HYPOTHETICAL TABLING

Last section has introduced an operational semantics
which builds the semantics of the whole database in a purely
bottom-up fashion. However, for a system to be practical, it
is much better to guide goal solving by queries. Here, we
consider a top-down-driven, bottom-up fixpoint computation
with tabling as implemented in DES, which follows the ideas
found in [13]. In this section we assume databases which are
safe and stratifiable.

A. Tabling

Tabled resolution for logic programs evaluates queries
by memorizing calls and answers to goals. A call table ct
stores the goal calls made along resolution as ¢ entries, and
answers in an answer table at as id : v entries, where id
is a clause identifier and) is either a positive or negative
ground atom.

The inference system defined in Section II (cf. Definition
10) includes the inference rule for hypothetical goals. That
inference rule amounts to try to prove a goal in the context
of the current database augmented with the premise of the
implication. As a literal can be of the form R; A...AR,, =
¢, where R; are rules and ¢ a goal, the database A for which
this hypothetical literal is to be proved must be augmented
with {Ry,..., R, }. Deductions delivered in proving ¢ are
only valid in the context of the augmented database, i.e., in
the tabling tree constructed for ¢. So, such deductions must
be tagged in order to be only used in its context.

Filling answer and call tables is due to the memo function
which proceeds by tabled SLDNF resolution as follows.

Definition 16 (Hypothetical Memo Function): Given a
goal ¢, a database A, a context identifier x, a call ta-
ble ct8, and an answer table atg, the memo function
memo(op, A, x, ctd, atd) returns a pair < ct,at > as speci-
fied as follows:
o If ¢0 € ctY then:
- ct=ct)
- at = at§
o Else:
— For each program clause A7 «+ L{ A Lfbj in

A identified by idy;, 7 > 0, nj > 0, such that

¢ = Alb,.

* For Lg either a positive or a negative literal,
if memo(Li6y---0;,_1,A, x,ct]_,Ug, at]_,)
=< ct] at] >, id)z_? L1y ---0; € cwalat)),
then let qtj = atfljlu idX,; + A70g--- 0, else
at! = at;,;

«* For L] a hypothetical ~goal, if
memo(Lf@o s, A U {Rl, cee Rn}, X,
ctj_y U idX p,at]_y) =< ct],at] >,
id’zj_- : L0y ---0; € cwa(at]), where x' is a
context identifier for Lg, then let qtj = atij
UidY, : A0 - - -0y else at! = aty,;

- ct:UctiLj
- at=Uat?

Here, the closed world assumption of an answer table is
defined analogously to the closed world assumption of a set
of inference expressions:

Definition 17 (Closed World Assumption of an Answer Ta-
ble): The closed world assumption of an answer table

at (written as cwa(at)) in the context of a program is the
union of at and €X : = A such that idX : A ¢ at for any
rule identifier ¢d and context y, where € is a fixed, arbitrary
identifier which does not occur in the program.

Filling the answer and call tables is done by strata by
ensuring that the meaning of negated atoms which are
required to prove other goals are already in the answer table.
So, following the stratification for the program for a given
goal ¢, a goal dependency graph is computed, which is the
subgraph of the PDG such that contains all reachable nodes
from ¢. Then, for each node p; in the subgraph such that
there is a negative arc coming out from p;, an open goal
¢; is built with the same arity as p;. Goals ¢; are ordered
by str(A, ¢;), so that lower-strata goals will be computed
before upper-strata goals. The goal dependency graph is
specified as follows:

Definition 18 (Goal Dependency Graph): A goal depen-
dency graph (GDG) for a program A and goal ¢ (written
as gdg(A,¢)) is a pair < N, A >, where pdg(A) =<
Na,Ax >, with N C Na, A C Aa, such that N are
all the reachable nodes from ¢ in pdg(A) by traversing A
arcs.

The stratified meaning of a program restricted to a goal
is got by filling the tables as specified next:

Definition 19 (Stratified Hypothetical Meaning of a Program
restricted to a Goal): Given a program A and a goal ¢y 1

< ct;,at; >= |_| memo™ (i, A, x) < cti—1,ati—1 >
n>0
where gdg(A,¢) =< N, A >, p;, € N,i € {1,...,k},
q < p; € A for some q, ¢; = pi(X1,..., Xority(p))» Xj
fresh variables, arity(p;) is the arity of the predicate p;, and
indexes 4 are ordered such that str(A, ¢;) < str(A, ¢it1).

Here, | |, represents the least upper bound of the
successive applications of the function memo as:

memo*(¢i, A, X) < cti_1,at;_y >=<ct}_;,at}_, >

mem02(¢i7A7x) < ct}fl,atllfl >=< ct?,l,at?,l >

memo® (¢i, A, x) < ctl | atl | >=<ct] | at] | >

Then, for i = k 4+ 1 we get the stratified meaning of the
program restricted to ¢y in the answer table atg4;. So,
the meaning of a tabled goal is defined analogously to the
meaning of a goal:

Definition 20 (Meaning of a Tabled Goal): The meaning
of a tabled goal ¢ w.r.t. an answer table at in the context
X is defined as tsolve(¢, x, at) = {1 such that idX : ¢ €
at, and ¢f = ¢} where tsolve returns a bag, and 6 is a
substitution.

B. An Example

Let’s consider a train database A, where city/1 and link/2
are EDB (extensional database) predicates for representing
city names and pairs of connected cities, resp. travel/2
is an IDB (intensional database) predicate for representing
possible travels between cities as the transitive closure of
link. IDB predicate no_travel/2 represents pairs of cities
such that it is not possible to travel between them. These
IDB predicates are specified as the following database A:
travel(X,Y) <+ link(X,Y)
travel(X,Y) < travel(X, Z) A travel(Z,Y)
no_travel(X,Y) « city(X) A city(Y) A —travel(X,Y)

The PDG for A is < {city, link, travel, no_travel},
{travel <« link, travel < travel, no_travel «+ city,
no_travel < travel} >. A stratification can be {(city, 1),
(link, 1), (travel, 1), (no_travel,2)}. For solving the goal
no_travel(X,Y), and following definitions 19 and 20: ¢; =
travel(X,Y) and ¢o = no_travel(X,Y) are the goals for
building < ct1,at; > and < cte,at; >, and the meaning
of the goal ¢o is tsolve(¢a, X, ats), where x is the initial
context. In this case, pdg(A) coincides with gdg(A, ¢2).
Considering also the rule no_travel(X,Y) <« city(a) A
city(b) Acity(c) Alink(a, b) = no_travel(X,Y), the mean-
ing of the former goal is now all the tuples no_travel(X,Y)
such that X and Y can take values in the assumed cities (a, b
and c) but the tuple no_travel(a, b) because of the assumed
link. For this extended database, both PDG and GDG have
been added with the edge no_travel < no_travel.

IV. IMPLEMENTING HYPOTHETICAL TABLING

This section describes a concrete implementation of the
tabling mechanism as found in the deductive database
system DES (based on [13]). Although it also supports
unsafe rules and recursive rules as duplicate sources, in this
description we restrict to safe rules and non-recursive rules
as duplicate sources.

The answer table at is implemented with the dynamic
predicate et/l (following the nomenclature in [13] for
extension tables) and the call table ¢t with the dynamic
predicate called/l). Entries in et can be either positive
(a) or negative (not (A)), where A is a ground atom. If a
positive goal G is called, it is added to the call table and, if it
succeeds, the (ground) fact G0 is added as an answer to et,
where 6 is a success substitution. A negative entry not (2)
is added to et if a (ground) call to A cannot be proven. An
entry is added to any of these tables if it does not occur
already in the table. For supporting duplicates, each entry in
et is tagged with an identifier of its source [14].

Along tabled resolution, a tabling tree is constructed
analogously to [6]: On the one hand, the first time a goal G
is called and there is no a more general goal subsuming G
in ct, a new entry is added to this table. Then, first, results
already present in at for G (from either a previous query
or a previous fixpoint iteration, see solve_star in [14],

following ET* [13]) are returned upon backtracking. And,
second, program rules are used to derive new results. On
the other hand, if the goal (or a more general goal) has been
already called, then simply return the results in at upon
backtracking. Each time a goal G is called, resolution reuses
answers already in the answer table, if any.

The function memo is implemented by following the ET'
algorithm in [13] with the predicate memo (+G,+D,-1Id),
where its arguments are, respectively, the input goal, dupli-
cate elimination flag, and output goal identifer (see [14] for
details). In contrast to Definition 16, the call and answer
tables are implemented as dynamic predicates instead of
predicate arguments. Also, instead of traversing all the
program rules for each call, each program rule is traversed
by backtracking. Then, there is at most only one answer per
call and goal, with the answer substitution due to either:
1) matching the goal G with an entry in at (performed
by the predicate et_lookup, or 2) solving the goal with
the predicate solve_goal. This last predicate selects a
matching program rule with G via backtracking and solves
each literal in its body as calls to the the predicate solve.
If the argument of solve is an atom, a straight call to
memo is done. If the argument of solve_goal is a negated
goal, the it calls to solve, succeeding if this call fails and
vice versa. For the concrete implementation, solve_goal
also computes built-ins as aggregates, and solve computes
conjunctions and metapredicates.

The context parameter is added to the predicates memo,
called, et_lookup, solve_goal, and solve, and the
dynamic predicates et and ct. For the last two, the context
identifier tags each entry as corresponding to the compu-
tation of a particular database: Either the loaded database
(following Subsection ??) or an augmented database due to
embedded implications. So, et_lookup and called look
for entries corresponding to the context which is being
computed. In addition, the dynamic predicate datalog,
which holds program rules, is also added with this context
identifier. This makes possible to retrieve program rules for
a given context, omitting rules of subsequent contexts.

As solving an implication amounts to add to the current
database the rules in the premise, iterative applications of the
function memo might lead to adding the same hypothetical
rules for the same context. To avoid this, we tag each context
with a dynamic predicate (hyp_program_asserted) so
that the corresponding premise is added only once. Then,
the first call to solving an implication adds the premise to
the current database, tags the context, and solves the goal
(consequent) by stratified solving. A subsequent call does
not add the premise, and stratified solving is only required
if the current call is not subsumed by a previous one (as more
tuples might be delivered from lower strata). If the call is
subsumed by a previous call, then only a call to solve
is needed. An implication is processed by the predicate
solve with a straight call to solve_implication, which

is depicted next:

solve_implication(L => R,CId,Rule,Ids) :-
dlrule_id(Rule,RId),
assert_hyp_program(RId,L,R,_G,CId,NCId),
solve_stratified(R,NCId), !,
solve (R,NCId,Rule, Ids) .

solve_implication(_L => R,CId,Rule,Ids) :-
dlrule_id(Rule,RId),
is_hyp_program_asserted(RId,G,CId,NCId),
(my_subsumes (G, R)

14
(G==R —-> true ;
assertz (
hyp_program_asserted(RId,R,CId,NCId))

’

solve_stratified (R, NCId)
|

)sé)lv:e (R,NCId,Rule, Ids).

Here, Rule is the rule which L => R belongs to, and
Ids the duplicate identifier [14]. The predicate dlrule_id
returns in its second argument the rule identifier for its
first input argument. This rule identifier is prepended to the
current context identifier (the list CId) to build the new con-
text identifier (NCId). The predicate assert_hyp_program
succeeds if the current call is the first one (the new context
has not been tagged already), tagging the new context.
The predicate is_hyp_program_asserted looks by back-
tracking for the unifiable previous calls to the current goal. If
the current call is more general than a previous one, then this
call is added to the context tag. Whereas only the entries in
the call and answer tables for a given context are considered
in solving a goal (cf. et_lookup and called in predicate
memo), all the assumed rules up to the current context are
taken into account.

Asserting a rule of the premise can either succeed or
not, depending on whether it fulfills strong constraints. So,
asserting a new rule follows the same route than asserting
a regular rule, i.e., checking its consistency w.r.t. such con-
straints. Those rules that does not fulfill some constraint are
rejected and the user notified, but computation progresses.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a novel implementation of an intu-
itionistic semantics based on tabling. This includes both
duplicates and strong constraints as new features over ex-
isting proposals, also allowing to assume a set of rules. We
have described the formal framework and its implementation
for the first time, dealing with non-monotonicity due to
negation and implication via stratification and contexts. This
framework can be augmented by including a declarative
semantics, and soundness and completeness results. One of
the motivations behind our proposal is to allow assumptions
in SQL, as already done in DES, which supported SQL
hypothetical queries. Now, it can be extended to define SQL
hypothetical views by translating SQL views to Datalog
predicates. Also, solving an embedded implication as pre-
sented requires to recompute from scratch the given goal

for all the involved strata. However, some computations in
previous contexts already stored in the answer table can be
reused in subsequent contexts. Identifying and reusing such
entries is also subject of further work.

REFERENCES

[1] G. Zhou, H. Chen, and Y. Zhang, “Hypothetical queries on
multidimensional dataset,” in Proc. of BIFE, S. Wang, L. Yu,
F. Wen, S. He, Y. Fang, and K. K. Lai, Eds. IEEE, 2009,
pp- 539-543.

[2] M. Golfarelli and S. Rizzi, “What-if simulation modeling in
business intelligence,” I/DWM, vol. 5, no. 4, pp. 24-43, 2009.

[3] Y. Zhang, H. Chen, H. Sheng, and Z. Wu, “Applying hypo-
thetical queries to e-commerce systems to support reservation
and personal preferences,” in Proc. of IDEAS '07. IEEE,
2007, pp. 46-53.

[4] A.J. Bonner and L. T. McCarty, “Adding negation-as-failure
to intuitionistic logic programming,” in Proc. of the North
American Conference on Logic Programming, E. L. Lusk and
R. A. Overbeek, Eds. The MIT Press, 1990, pp. 681-703.

[5] J. D. Ullman, Database and Knowledge-Base Systems, Vols. [
(Classical Database Systems) and Il (The New Technologies).
Computer Science Press, 1988.

[6] T. Swift and D. S. Warren, “XSB: Extending Prolog with
Tabled Logic Programming,” TPLP, vol. 12, no. 1-2, pp. 157-
187, 2012.

[7] Y. Shen, L. Yuan, and J. You, “SLT-Resolution for the Well-
Founded Semantics,” JAR, vol. 28, pp. 53-97, 2002.

[8] P. Fodor and M. Kifer, “Tabling for transaction logic,” in Proc.
of PPDP. New York, NY, USA: ACM, 2010, pp. 199-208.

[9] L. Vieille, P. Bayer, V. Kiichenhoff, A. Lefebvre, and
R. Manthey, “The EKS-V1 System,” in LPAR, ser. LNCS,
A. Voronkov, Ed., vol. 624. Springer, 1992, pp. 504-506.

[10] H. Christiansen and T. Andreasen, “A Practical Approach to
Hypothetical Database Queries,” in Transactions and Change
in Logic Databases, ser. LNCS, B. Freitag, H. Decker,
M. Kifer, and A. Voronkov, Eds., vol. 1472. Springer, 1998,
pp- 340-355.

[11] F. Sdenz-Pérez, “DES: A Deductive Database System,”
ENTCS, vol. 271, pp. 63-78, March 2011.

[12] H. Decker, “The Range Form of Databases and Queries or:
How to Avoid Floundering,” in 5. Asterreichische Artificial-
Intelligence-Tagung, ser. Informatik-Fachberichte, J. Retti and
K. Leidlmair, Eds. Springer Berlin Heidelberg, 1989, vol.
208, pp. 114-123.

[13] S. W. Dietrich, “Extension tables: Memo relations in logic
programming,” in [EEE Symp. on Logic Programming, 1987,
pp. 264-272.

[14] E Sdenz-Pérez, “Tabling with support for relational features
in a deductive database,” Electronic Communications of the
EASST, vol. 55, pp. 1 — 16, May 2013.

