A Deductive Database with Datalog
and SQL Query Languages

oy 2 9 - p )
Fernando Saenz-Pérez!, Rafael Caballero”, and Yolanda Garcla-Ruiz=*

Girupo de Programacion Declarativa (GPD)

t. Ingenieria del Software e Inteligencia Artificial

?Dept. Sistermnas Informaticos y Computacion,
Universidad Complutense de Madrid, Spain

Abstract. This paper introduces Datalog Educatic \al System (DES),
a deductive database which supports both Datalog and SQL as query
languages. Since its inception, this system is targ sted to educational
purposes rather to develop an efficient, competitive system with respect
to other existing svstems. As distinguishing features, it is free, open-
source, multiplatform, interactive, portable, GUl-enabled, implemented
following ISO-Prolog and supports extensions to pure Datalog in the
form of stratified negation, strong constraints, types, metapredicates,
and duplicates. Also, test case generation for SQL views and declarative
debugging for Datalog programs and SQL views are supported. SQL
statements, following 1SO standard, are compiled to Datalog programs
and solved by its inference engine. Nonetheless, ODBC connections are
also supported, which enables access to external DBMSs and benefit from
their solving performance, persistency and scalability.

Keywords: Deductive Databases, Relational Databases, Datalog, SQL,
DES.

1 Introduction

We have witnessed recently the advent of new interest on deductive databases
and emerging companies promoting deductive technologies. Datalog, as a de-
ductive query language, has been extensively studied and is gaining a renowned
interest thanks to their application to ontologies [5], semantic web [7], ocial
networks [16], policy languages [2], and even for optimization [9]. In addition,
current companies as LogicBlox, Exeura, Semunle, and Lixto embody Datalog-
based deductive database technologies in the solutions they develop.

This paper presents the Datalog Educational System (DES), which born from
the need to teach deductive concepts to postgraduate students. As by that time
there was no open-source, free multiplatform, and interactive system, we decided
to start this project. It was first released in 2004 and since then, many releases
have been published including features as:

* These authors have been partially s upported by the Spanish projects STAMP
{TIN2008-06622-C1 1013, Prometidos-CM {$200901C-1465)  and GPD  (UCM-

3SCH-GR35/10-A-910502).

zb

74, 2011,

H. Yang (Fd.): APLAS 2011, LNOS 7078, pp. [&
- N - 1t

M - K EE 1AL e DUY Y

— Tabling-based deductive engine mplementing strattied ey

~ Datalog and SQL query language sharing the sae database.

~ Nulls and outer join operations.

— Duplicates and duplicate elimination.

_ Text-based interactive system with commands for changing and examinin
its state, logging, batch execution, and many more

_ Source-level tracers and declarative debuggers for both Datalog and SQL.

~ Strong constraints including types, primary and foreign keys, function al de
pendencies, and user-defined constraint

connections to seamlessly access external ¢ atabases.

DES has been developed to be used via an inter ctive command shell. Nonethi
less, more appealing environments are av ailable. On the one hand, DES has be
plugged to the multi-platform. Java-based IDE ACIDE [17]. It features synte
colouring, project management, interactive console with edition and history, co:
figurable buttons for commands, and more. On the other hand, Markus Trisl
contributed with an Emacs environment.
The svstem is inplemented on top of Pr Hlo
the-art Prolog interpreter (currently, last versions of Ciao, GNU Prolog, SW
Prolog and SICStus Prolog) on any OS support by such Prolog interpret
(i.c., almost any HW/5W platform). Portable sles (Le., they do not ne
installation and can be run from any directory they are stored) has been al

and it can be run from a state-

-

provided for Windows, Linux. and Mac O5 X,

Datalog as supported by DES mainly follows Prolog ISO st andard [10], whi
SQL follows SQL:2008 150 standard [11]. DES provides sev, sral metapredica
as well, some of them are included to dd support for SQL operations:

Negation. not(Goal) computes the negation of Goal by means of n
as failure (closed world assumption (CWA) [20]). Goal is located at
strata than the predicate it oceurs [201).
Aggregates. group by (Relation, Grouping. Variables, Condd tion) crea
groups from Relation w.r.t. Grouping.Variables and compute aggreg
data with Condition, which can include expressions with aggregate functi
such as sum(Variable), which returns the running sum of Relation w.
Variable. If no grouping is needed or it is left to be done automaticall
gregate predicates are also available, as sum(Relation, Variable,Resul
— Duplicate elimination. Metaprec jcate distinct(Relation) computes
tinet tuples of Relation when duplicates are enabled (with the comm:

/duplicates on). Also. distinct (Projecting.Variables ,Relation) |
forms the same but finding distinet tuples for its first argument, which
subset of variables of the second.

— Outer join operations. Nulls and null-related operations coming from
database commmunity are allowed. as. e.g.r 1] (L,R, ). which computes
left outer join of relations L and R w.r.t. the join condition ¢ [18].

As a running example, we consider a Hight database. which can be defined
ernatively from either SQL or Datalog:




% SQL:

CREATE TABLE flight(origin STRING,destination STRING,duration INT);
INSERT INTO flight VALUES (*Madrid’,’Paris’,90);

INSERT INTO flight VALUES (’Paris’,’0slo’,100);

INSERT INTO flight VALUES (’Madrid’,’London’,110);

% Datalog:
uua%wmAmHHMWﬁAOﬁwmww”wwwuﬁmvawmdwamﬁ»ow“mnﬁwbmgasﬁmﬁWOb“wbdvv,
mwwmwﬁszwQHva»waﬁwquwov.

mpmeﬁmvvawmwﬁqomwavqpoov.

www@ﬁaﬂvzmnwwm,.,Hoﬁmowbwwpov‘

Each SQL statement above can be interactively introduced at the system prompt
or stored in a file and processed with the command /process FileName. The
Datalog program can be also stored in a file and consulted with the com-
mand /consult FileName. For inserting tuples (or rules, in general) in Dat-
alog, the command /assert Rule is provided. Whilst types are mandatory
in table definition, in Datalog they are optionally declared with the assertion
:~type(Relation, [ColumnTypel), where its second argument is a list of col-
umn names and its types (ColumnName: Type). Once one of the programs above
has been consulted, queries can be submitted from the system prompt, as:

oy

DES> SELECT destination FROM flight WHERE origin=’Madrid’

answer (f1ight.destination) -> { answer (’London’), answer(’Paris’) }
DES> flight(’Madrid’ ,Destination,Duration)

{ ﬁwwmwﬁﬂvxmaﬁw&»vwro$&0§vuwwovv wwwmwdﬁvzmmwwmuwvwmﬁwmvgwov ¥

However, while the first query returns the tuples of flight projected by the
argument destination, the second does not. To get a similar output relation,
temporary Datalog views are provided, which allow defining both the projection
of columns and renaming of relations:

DES> dest(Destination) :- mwwmwﬁfzmaww%vcmmdwwwdwom.cﬁ.mdwowv
{ dest(’London’), dest(’Paris’) }

For the consulted program, a predicate dependency graph (PDG) [20] is built,
which relates each predicate in the program with all the predicates used to
compute its meaning. From this graph, a stratification [20] is computed, if it
exists, so that negation and aggregate predicates are not involved in cycles. For
solving a query, a subgraph restricted to the predicates occurring in the query
is computed, so that only the meaning of relevant predicates are computed,
following a top-down driven approach rather than a bottom-up. Even when a
given PDG is non-stratifiable, it is possible that the subgraph for a given query
could be as long as this subgraph does not involve such offending cycles.

2 System Architecture

Figure 1 barely depicts the system architecture of DES. Datalog programs are
stored in an in-memory Prolog database. Datalog queries are solved by the de-
ductive engine relying on a cache to store results from fixpoint computations.

These are computed by using a tabling technique [6], which finds
namic prograntuning. The data structure holding these results i
table (ET). Displaying the results for a Datalog query amounts to inspe
for entries matching the query after its solving. In turn, SQL views and tables
are stored it two alternative repositor

First alternative for dealing with SQL state- DES
ments is to use the very same Prolog DB. For this,
views are translated into Datalog programs and ta- Datalog 5QL
bles into predicates cousisting only of facts. SQL '
row-returning statements are compiled to and ex-

Deductive &6,%

ecuted as Datalog programs (basics can be found
in [20]). and relational metadata for DDIL state- nw@m
ments are kept. For solving such a query. it is M v 1
compiled to a Datalog program including the re In-memory ;Oomn .
Jation answer/n with as many arguments as ex- Prolog Amﬁw\www\w%m?w
pected from the SQL statement. Then, this program DB Oracle, DBZ,...)

is stored in the Prolog DB. and the Datalog query
answer (X,.....X,). where X, i e {1... .,n} are
n fresh variables, is submitted. Results are cached in ET and displaved eventu-
ally from this table. After its execution, this Datalog program is removed. On
the contrarv. if a data definition statement for a view is submitted, its translated
program and metadata do persist. This allows Datalog programs to seamlessly
use views created at the SQL side (also tables since predicates are used to im-
plement theni). The other way round is also possible if types are declared for
predicates {further work may include an automatic type assertion via type in-
ferencing). In order to maintain consisten the cache is cleared whenever the
database is updated via asserting Datalog rules, creating S QL views or modifying
base tables via INSERT, DELETE or UPDATE SQL statements.

Second alternative is to use the ODBC bridge to access external database
therefore taking advantage from their solving performance, persistency and scal-
ability. Submitting a CREATE VIEW SQL statement amounts to forward it to the
external database through the ODBC connection. This statement is processed
by the external database and operation sucees is returned to DES, which does
not nse the Prolog DB for SQL statements anymore. A SQL row-returning state-
ment is also submitted through the bridge. which returns result tuples that are
cached by DES. Datalog programs and queries ¢ dfer to SQL data becaust
Datalog predicates. How-
ver. in this secoud alternative, the other way round is not po sible vet, as the
external data engine is not aware of the deductive data.

Fig. 1. System Archit

ure

fes)

the bridge provides a view to external data sources as

~ansformations

3  Source-to-Source Program

erting a Datalog rule invol
tree for valid rules. If errors are found, an exception is raised with error location

veral steps. First, parsing builds a syntacti

and source data. Otherwise. a preprocessing st is performed, consisting of:




i
:

Simplify successive applications of not(Geal) to avoid more strata than

strictly needed. As well, applications of this predicate to comparison built-ins

(as =, <, ...) are translated to the complemented versions {(\=, >=, ... resp.)

“inally, a compound goal is also allowed and it is defined as the body of a rule
for a brand new predicate where its arguments are the relevant variables in
Goal. The single argument of not is replaced by a straight call to this predi-
cate (e.g., the goal not ((p(X) ,q(X))) is translated into not (’$p1’ (X)) and
the rule *$p1’ (X) :-p(X),q(X) is added to the program).

— Aggregate predicates can include compound goals as aggregate relations.
These relations are computed before the aggregation itself (sum, average,
ete.) following a similar, stratified approach as for computing negation.
Therefore, compound goals are also translated as for negation.

— Since digjunctive bodies are allowed, a rule containing a disjunction is trans-
formed to as many rules as needed (e.g., p(X):=gq(X);r(X) is translated
into p(X) :-"$p1’ (X and the rule vwvf (X) :~q(X) and *$p1° (XD :-r{X)
are added to the program).

— Program simplification can be enabled with the command /simplify on,
which amounts to remove true goals, unify variables, simplify Boolean con-
ditions, and evaluate arithmetic expressions.

~ Program transformation for safe rules can also be enabled with the command
/safe on, which reorder goals in a rule if this rule is unsafe (Section 4).

— Finally, outer joins are translate {, first, in order to be solved without re-

sorting to metapredicates as described in [18] and, second, so that rela-

tions to be joined are not compound by adding as many predicates as
needed (e.g., 13 (rj (p(X),q(¥),X>Y),r(Z),Z>=X) would be translated into

130 $pt’ (X,Y)),r(Z),2>=X) and rule *$p1’ (X,Y):-rj(pX),q(¥),X>Y)
added to the database).

4 Compile-Time Analys

DES conducts compile-time analysis to detect unsafe rules. Classic safety [20,22]
vefers to built-in predicates that can be source of infinite relations, in con-
trast to user-defined predicates, which are always finite. For instance, the rule
less(X,Y) :-X<Y is unsafe since the built-in < can be source of infinite data (its
meaning must include any pair such that its first argument is less than its s
ond one). Negation requires its argument to have no unsafe variables, i.e., those
which are not bound by a former data provider (as a call to a :mﬁr%&:,:i pred-
icate). Built-in X is Ezpr evaluates the arithmetical expression Ezpr, so that
Ezpr is also demanded to be ground and, thus, all its variables must be safe.
Another source of unsafety, departing from the classical notion, resides in
metapredicates as distinct/2 and aggregates. A set variable is any variable
occurring in a metapredicate such that it is not bound by th tapredicate.
For instance, Y in the goal distinct ([X],t(X,Y)) is a set variable, as well as in
group.by (t Q Yy, E C=count). Because computing a goal follows SLD order,
if a set variable is used after the metapredicate, as in distinct ([X],t(X,Y))

p(Y). then thi , Y is not bound,
and all tuples in t/2 are considered for computing its outcome. Swapping both
subgoals vields ! providers for are only allowed
before their use in such metapredicates. a,

Along program transformation, unsafe rules can be automatically generated,

in the translations of outer joins. However, they are safe because of their
use: unsate arguments of such rules are always given as input in goals. So, mode
information for predicates is handled throughout program compilations to detect
truly unsafe rules, avoiding to raise warnings about system generated rules

The analysis allows deciding whether a rule is safe and, if so, it is transformed
by reordering the goals in order to make it computable. An error is raised when
a rule or query is actually vusafe (e.g.. the rule p(X) :=X<Y is unsafe hecause
of Y), whereas a warning is issued if the rule might be sately computed {e.g.,
less(1,2) can be safely computed since its arguments are ground).

5 Strong Constraints

Consistency constraints over data are known as strong integrity constrain
deductive database area. Examples of such integrity constraints in the relational
field are prinary keys and foreign keys. to name a few. As well, constraints
in deductive systems as DLV [1 w or XSB [19] implementing stable model [8
and well-founded model semantics [21), respectively, are otherwise understood
as model filters. In these cases, since a database can have several models, only
those fultilling coustraints are included in the answer, thercfore discarding unfeq-
sible models from the answer. In DES, instead,
understood in the relational field in order t
consistent data with respect to user requirement
foreign keys, functional dependencies, and user-c

As an exanple of constraint, in addition to the type constraint in Section 1.
let’s consider :~pk(flight, [origin,destination]), which defines the column
pair in the list to be a primary key for flight. Also.

s in the

focus on integrity constraints
provide a means to detect in-
including types, primary and
fined constraing

p

A JCSZZC :

connected(0,D,T) :- £flight{(0,D,T).
connected(0,D,T) :- flight(0,A,T1),connected(A,D,T2),T is T1+T2.

Then, :~group.by(connected(0,D,T), [0,D],8=sum(T)) ,S$>=300 is a user con-

raint limiting the duration from an origin to a destination to be less than 300
inutes. Notice that, as usual in th _zrziﬁ. field HOrn
in SQL, an integrity constraint specifies un ible,

6 Tracing and Debuggin

ive and relational data-
procedures which are far from the query
by following each

In contrast to hmperative progranuning languages, deduc
base query languages feature solvin
languages itself. Whilst one




statement as it 18 executed, along with the program state, this is not teasible in
declarative (high abstrs nzeﬁ languages as Datalog and SQL.

Similarly, SQL represents a true declarative E_zmg e which is even farthest
from its computation procedure than Prolog. Indeed, the execution plan for
a query include transformations considering data statistics to enhance perfor-
mance. These query plans are composed of primitive relational operations {such
as Cartesian product) and specialized operations for which efficient algorithms
have been developed, containing in general references to index usage.

Therefore, instead of following a more imperative approach to tracing, here
we focus on a (naive) declarative approach which only take into account the out-
¥ ome program points. This way, the user can inspect each point and
decide whether its outcome is correct or not. This approach will allow examining
the syntactical graph of a query, which possibly depends on other views or pred-
icates (SQL or Datalog, resp.) In the case of Datalog queries, this graph contains
he nodes and edges in the dependency graph restricted to the query, ignoring
other nodes which do not take part in its computation. In the case of SQL, the
graph shows the dependencie 4

between a view and its data sources (in the FROM
clause). Available commands for tracing Datalog and SQL are /trace datalog
Goal and /trace.sql View, respectively.

Algorithmic debugging is also applied to both Datalog and SQL, following
(3] and [4], respectively. Similar to how tracing traverses the dependency graph,
the debugger in addition prunes paths in the graph by asking the user about
validity of its nodes. Available commands for enabling this kind of debugging
are /debug.datalog Goal and /debug.sql View

7  Conclusions

This paper has presented DES, a deductive system used in many universities
{http://des.sourceforge.net/des_facts) for which its downloading statis-
tics (http://des.sourceforge.net/statistics) reveal it as a live project (a
new release is expected every two or three months). Statistical numbers show
a notable increasing number of downloads, amounting up to more than 1,500
downloads a month, more than 35,000 downloads since 2004.

Features that, as a whole, mrmﬂ:&z. h DES from other existing systems as
DLV [14], XSB [19], bddbddb [13], LDL++ [1], ConceptBase [12], and .QL [15]
include null support and outer join operations, duplicates, strong constraint
full-fledged arithmetic, multi-platform, interactiveness, multi-language support,
freeness, and open-sourcing, among others. In particular, no one supports outer
join operations and full support for duplicates (not only for base relations
LDL -+ but also for any rule).

e

References

1. Ami, F., Ong, K., Tsur, 8., Wang, H., Zaniolo, C.: The
LDL4+ TPLP 3(1). 61-94 (2003)

Deductive Database System

2

L

[N

Becker, 3
Authorization Langnage. In: (SFE wccﬁ ,_:dns?::mi of the 20th TEEE Computer
Security Foundations Symposiunm, pp. & :; H: USA (2007)
Caballero, R., Gare TZSN, <: mm?:x;&_ ramework for the
Declarative Debugging ¢ . Thalheim, B. (eds.)
SDHKB 2008, LNCS, vol. Ete E,r 43 ,_cmx wv_,.:.%ﬁ,, 2 ,:,? N,,:w_,.m {2008)
Caballero, R.. Gs :rlf:\ Y., Saenz-Pérez, .o Algorithmic Debugging of SQL
Views. In: Ershov Informatics n\c:? rence (PST 2011). Springer, ofberg (2011)
1. Datalogt: a unified approach to ontologi

Fournet, €., Gordon, A.: De

E‘:.
=
2
—

v
=
]
s
=
—_
o

Cali. AL, Gottlob, G, Lukasiewic
and .::@ﬁ‘:\,f, constraints, In: ICDT 2009 Proceedings of the 12th International
Conference on Database Theory, Er 14-30. ACM, New York (2000)

Dietrich, S.W.: Extension table lemo relations in logic programming. In: 1E]
Sviup. on Logic Programming. pp. ma 1272 (1987)

R.. Haves, .., Horrocks, 10 OWL-QL - o 75%..5@@ for deductive query
answering on the Semantic Web. J. Web Sem. 2(1), 192
Geelfond, M., Lifschitz, V.. The stable model semantic
ICLP/SLP, pp. 1070-1080. MIT Press (1988)

5., Trubitsyna, L. Zumpano, F.o NP Datalog: A Logic Language for N
Search and Optimization Queries. In: International De Engineering and Ap-
plications Sywposium, pp. ., 353 (2000)

ISO/IEC. ISO/IEC 132111-2: Prolog Standard (2000)
ISO/IEC. fC_:t:cy c: QL,?Z, 3.14) Standard (2008)
Jarke, M., Jeusfeld. . Quix. CL (eds.): ConceptBase V7.1 L
nical :62, RW'I' : fﬁ hen (April 2008)

Lam. M.S.. Whaley, J.. Livshits, V.B.. Martin, M.C.. Avots. 1., Carbin, M.,
Unkel, queries. In: Li, CL (ed)
Proceedings of the Twenty-fourth ACM SIGACT- m MOD-SIGART Sympaosium
on Principles of Database 8y DS), pp. f 2. ACM Cccc

Leone. N.. Pleifer. (i.. Fabor, Eiter, 1., Gottlob. (i.. Perri, 8., Scarcello. F.:
The DLV system for knowledge represeniation and reasoning. /A M : Al On
putational Logic 7(3), 499562 (2006)
Ramalingam, G.. Visser, . (eds.): D { the Workshop on Partial Eval-
uation and Semantics-based Program /3::::;::: ACN (2007)

Ronen. R., Shinueli, O.; Evaluating s large Datalog queric
In: EDBET 2009 Proceedings of the _r:,r International (

:: r,,mw

programim z;M In:

Gireco,
abase

v Manual. Tech-

Jom-

on social networks.
onferenc

a

01

Ci i_z_x@ \_.Q,;_:c?m, pp. BT “ark (2009)
3 An d Development Environment Configurable

m,:. r: _,,3%‘ acleX Journal 3 (2007)

Sdenz-Pés Outer joins in a deductive database system. In: X1 Jornac
—:d%.m,::%%:. v Lenguajes, PROL _ . PP 140 (2011

. . VM.;H as an ethiclent deductive database engine.
1994: Proc. of the 1 ACH Conference on
Janagement of Data, pp. H3. ACT
Ulhnan, 1D Database and Knowle o, vol. 1T {(Classical Database
Systems) and 11 (The New A_?,:E:%.W os). Computer Science Press {1988)

Van Gelder. AL Ross. KUAL, Schlipf. J.5.0 The well-founded semantics
logic programs. J. ACM 38(3), 619 o 3 A { v

Zaniolo. C.. Ceri, S.. Faloutsos. €., Sn s, R Subrahmanian,
R.: Advanced Database Svstems. rﬁ@;: 72:.:‘1 nn {1997)

for




Lecture Notes in Computer Science 7078

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Lecuwen

Editorial Board

David Huichison
Lancaster University, UK
Takeo Kanade
Carnegie Mellon University, Pittsk urgh, PA, USA
Josef Kittler
University of Surrey, Guildford, UK
Jon M. Kleinberg
Cornell University, Ithaca, NY. USA

University of California, Irvine, CA, USA
Friedemann Mattern
ETH Zurich, Switzerland
John C. Mitchell
Stanford University, CA, USA
Moni Naor
Weizmann Institute of Science, Rehovor, Israel
Oscar Nierstras
University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund Universiy, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles. CA, USA
Doug Tygar

University of Culifornia, Berkeley, CA, USA
Gerhard Weikum

Muax Planck Institute for Informatics, Suarbruecken, Germany



Volume Editor

Hongseok Yang
University of Oxford

Department of Computer Scie

Parks Road

Oxford OX1 3QD, UK

E-mail: hongseok.yang @cs.ox.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25317-1 ¢-ISBN 978-3-642-25318-8
DOI 10.1007/978-3-642-25318-8

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011941029
CR Subject Classification (1998): D.3, D.2, F3, D4, D.1,F4.1,C.2

LNCS

sublibrary: SL. 2 - Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011

This work is subject w copyright. All amrz are reserved. whether the whole or part of the material is
concerned. specifically the rights of translation. reprinting, re-use of illustrations, recitation, ?_ssaomw::r..
Eéc&?:s: on microfilms or in any other way, and storage in data banks. Duplication of this c:v:cmzmm
or parts thereof is permitted only under the provisions of the German Copyright Law of nmﬁnivﬁ 9, 1965
in its current verston, and permission for use must always he obtained from Springer. Vialations A:c _Eswm
1o prosecution under the German Copyright Law. -

The use of general descriptive names, registered names. trademarks, etc. in this publication does not imply.
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general u ‘ ,

»

Typesenting: Camera-ready by author. data conversion by §

cientific Publishing Services. Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Busin

s Media (www.springer.com)

Preface

This volume contains the papers presented at APLAS 2011, the 9th Asian Sym-
posium on Programmning Languag and Systems held during December 5-7,
2011 in Keuting, Taiwan. The symposium was s sponsored by the Asian Associ-
ation for Foundation of Software (AAFS), Academia Sinica (Taiwan), and N
tional Taiwan University. We are grateful for the administrative support from
the Tnstitute of Information Science, Academia Sinica (Taiv ran), and the Depart-
ment of Information Management and the Yen Tjing Ling Industrial Research
Institute at National Talwan Universit;

APLAS is a premier forum for the discussion of a wide range of topics re-
lated to progranuuing lauguages and systems . Although it is in Asia,
APLAS has been an international forum that serves the worldwide program-
ming language community. The past APLAS s 5,5%:5% were successfully held
in Shanghai (2010). Seoul (2009), Bangalore (2008), Singapore (2007), Sydney
(2006), Tsukuba (2005), Taipei (2004) and Beijing EQ_ 3) after three informal
workshops. Proceedings of the past symposiums were published in Springer Ver-
lag’s LNCS series as volunies 6461, 590 4, B3hG, 4807, 4279, 3 3302, and 2895
respectively.

Following the initiative from the previous year. APLAS 2011 solicited
missions in two categories. regular research pupers and system and tool pre
tions. There were 64 submissions from 22 countries (62 reg
and 2 system and tool presentations). Each submission was reviewed 5“ at le
2. and on average u.w, Program Committee members with the help of external
reviewers. The Program Committee meeting was conducted electronically over a
period of two weeks in August 2011. The Pro ymmittee decided to accept
292 regular research papers (35%) and 1 system and tool presentation (50%).
Among the 22 accepted papers, there was one whose initial verdict was condi-
tional acceptance. To have 25:, paper accepted, the authors were 1 .5%2@; to
address specific concerns raised by the Program Conmunittee. The revised ver-
sion of the paper was checked by the Progr before it was finally
accepted. T would like to thank all the Program Committec members for thei

sions, volunteering

H-

hard work in reviewing papers. participating in online discu
to shepherd submissions, and sometimes finding and fixing technical errors in
submissions. T also want to thank all the external reviewers for their invaluable
contributions.

T addition to coutributed papers, this volume contains the full paper or th
xtended abstracts of of four distinguished invited speakers: Nikolaj Bjorner ﬁﬁ_;
crosoft Research Redmond), Ranjit Jhala (University of € alifornis
Peter O'Hearn (Queen Mary University of London) and Sriram Rajamani A
crosoft. Research India). 1 would like to thank all of these spe: akers 7: ac 43;: g
onr invitation and contributing papers or abstracts




,.Hrm Gen :Hi Chair, Tyng-Ruey Chuang, helped me so much from the very
beginning while 1 prepared the technical program of APLAS 2011 ;

: . I am truly
grat X

eful for his support and :::r::, 2, aud also for making our symposium in
Kenting possible and enjoyable. T would like to thank Shin- Cheng Mu for lo-
.m arrangements, and Jﬁlﬁ: m Tsay for serving as the Finance Chair. Noam
Rinetzky was an excellent Publicity Chair for APLAS 2011, Erc :Mﬁ several
creative ideas for increasing the awareness of the conference, and Mike Dodds
worked very hard to organize the poster session. greatly a ,_%Snmié fmr. :Ev
,«,z,i forts. EasyChair made the H:::Em of submissions M,,;:.,,& the ?.o%\: 20%;
of the proceedings extremely smooth and efficient. F inally, I would like 3 wwﬁwmyﬂyw
@: members of the AAFS Executive Committee for their advice. In __xzdn:rﬁ.

Kazunori Ueda, the Program Chair of APLAS 2010, gave me invaluable 5& g:L
suggestions, without which I would not have been able to prepare the technical
program and the proceedings of APLAS 2011.

September 2011 Hongseok Yang

Program Committee

r&: Birkedal
Brotherston
- Chen
Wenguang Chen
Wei-Ngau Chin
Javier Esparza
Xinvu Feng

Jerome Feret
Matthew Fluet
Rajiv Gupta
Masahito Hasegawa
Radha Jagadeesan
Naoki Kobayashi
Dantiel Kroning
Rupak Majundar

Andrzej Mure
Paulo Ol
Doron Peled
Sukvoung Ryu

Srirain w:i@:.%::,:%EE:
Armando Solar-1e
Sam Staton
Viktor Valeiaclis

Kapil Vaswani
Martin Vechev
Peng Wu
,Ec:m.z‘éw Yang
Pen-Chung Yew

Organization

IT University of Copenhagen, Denmark

Tuperial College London, UK

National Chengehi University, Taiwan

Tsinghua University, China

National University of Singape

Technische Universitat Miinchen, Germany

University of Science and Technology of China,
China

INRIA. France

Rochester Institute of Technology, USA

Univeristy of California Riverside. USA

Kyoto University. Japan

DePaul University, USA

Tohoku University, Japan

University of Oxford, UK

ix Planck Institute for Software Systems.

Gerpany

University of Leicester, UK

Siugapore

Queen Mary University of London. UK

Bar Han University, Israel

KAIST, Korea

University of Colorado, USA

0T, USA

University of Cambridge, UK

Max Planek Institute for Software Systems.
Germany

Microsoft Research, India
CTH Zurich, Switzerland
IBM T.J. Watson Research Center. USA
University of Oxford. UK
Academia Sinica, Taiwan

Additional Reviewers

Asy Charan K, Sai
Bengtson, Jesper Bocchino, Robert Charlton. Nathaniel
Berdine, Josh Camporesi, Ferdinanda Chen, Yu-Fang
Berger, Martin Chang. Bor-Yuh Evan Chu. Duc Hiep

wla, Kazuvuki Berger, Ulrich




Costea, >2:.@ @
Daniele,
Debois, Sc
Dimoulas,
Fu, Ming
Gaiser, Andre
Gherghina, Cristian
ruha, Arjun
Gupta, Ashutosh
Haack, Christian
Haller, Leopold
Hancock, Peter
Hardekopf, Ben
Hoshino, Naohiko
Jiang, Xinyu
K
Kern, Christian
Khoo, Siau-Cheng
Klin, Bartek

surnata, Shin-Ya

Krishnaswami,
Neelakantan
Landsberg, David
Lee, Jeng-Kuen
Liang, Hongjin
Lin, Changhui
Longley, John
Maietti, Maria Emilia
Mehnert, Hanne
Mogelberg, Rasmus
Mu, Shin-Cheng
Nakata, Keiko
Nanevski, Aleks
Nordlander, Johan
Petter, Michael
Piérard, Adrien
Zm.,iﬂéﬁ.c.ﬁ.. Lawrenc
Rival, Xavier
Romanel, Ales

S

andro

Rossberg, Andreas
Sanchez, Alejandro
Sangiorgi, Davide
Schwinghammer, Jan
Schwoon, Stefan

sghir, Mohamed Nassim
Sharma, Asankhaya
f%@&:r? Pawel
Strassburger, Lutz
Streicher, Thomas
Suenaga, Kohei

Tan, Li
Tautschnig,
Wang, Meng
Wang, Yan
Weng, Shu-Chun
Xu, Na

Xue, Jingling
Yang, Jean

Tichael

Invited Talks

Program Analysis and

Lapie Ul wuliLeuy

Aditya V. Nori and Sriram K. Ruajamant

Software Verification wit

Rangit Jhala

Engineering Theories with Z:

Nikolay Bjorner

Algebra, Logic, Localit;

Peter W. O 'Hearn

Modular Abstractions of Reactive

Invariants ... ..o oo
David Mans

Temy Hate-Based Unbounded Time v

Liquid Types (Abstract).

.

Session 1: Program Analysis

we and Martin Bodin

Machine Learning: A Win-Win Deal . e 1

rification of Affine Hybrid

Automata .
Thao bi: and :3::3
.. 50
ess-Based Localization with R e
Hakjoo Oh and Ku ngkeun f
A Deductive Database with Datalog and SQL Query Languages ... 60

Yun-Yan C!

Extending
Sul 36:2. R

Polymorp

A, Stefan Berghofer.

Constructing List Homomorphisms from Proofs .
and Shin-Cheng Mu

hic Multi-stage Language with Cont rol Bffects ..o

Yuichiro Kokaji and Yukiyoshi Kameyama

Sa Lafae 9 arcio-Ruiz
ando Sdenz-Pérez. Rafael Caballero. and Yolanda G




session $: Compiler

Oc::,i? Backend Generation for Application Specific Instruction Set
N\%s Cao. Yuan Dong, and Shengyuan Wang

A Non-iterative Data-Flow Algorithm for Ce mputing Livenes
Strict SSA Programs .. ... .. R
Benoit Boissinot, Florian QEQ%«% Alain Darte,
Benoit Dupont de Din cchin, and Fabrice Rastello

PAS: wamh:&m Path-Sensitive Pointer Analysis on Full-S Sparse SSA .. ..
‘ulei Sui, Sen Ye, Jingling Xue, and Pen-¢) hung Yew

Session 4: Qch‘:z:.w@:nv\ 1

Solving Recursion-Free Horn Clauses over LI+UIF e
fl
Ashutosh Gupta. Cornelin Popeea, and Andrey R i‘:?\:&;e

Macro Tree Ty ansformations of Linear Size Increase Achieve
Cost-Optimal Parallelisim . . e
Akimasa Morihata

Decentralized Delimited Release S
Jonas Magazin, Aslan Askarov, and Andrei Sabelfeld

Session 5: Concurrency 2

Cost Analysis of Concurrent OO0 Programs . ...... .. . . e
Elvira Albert, Puys Arenas, Samir Genaim,
Miguel Gomez-Zamalloa, and German Puebla

Static Ob oI
Anag 3:::3.: ::\ S\: Huang

ounduess of Data Flow Analyses for Weak Memorv
Jade Alglave, Daniel Kroen ing. John Lugton, Vinee
Michael Toau chnig

, and

Session 6: Semantics

Towards a General Theory of Barbs, Contexts and Labels .. ..
Filippo Bonchi, Fabio Gaddue

and Giacoma Valentina \«Nc:\wiiw_

121

137

188

204

220

238

Computation-by-Interaction with Effects ... L.
Ulrich Schopp

Session 7: Certification and Logic

Model-Checker .00 0
Pommereau

Towards a Certified Petri Net
Lukasz Frone and F

BElementary Lincar Logic Revisited for Polynomial Time and an
Jlement

Exponential Time Hierarchy oo o0 oo oo o o0
Patrick Baitlot

A Proof Pearl with the Fan Theorent and Bar Induction: Walking
¥ M . ™ e oA b e g .
through Infinite Trees with Mixed Induction and Coinduction . ... ...
. $1%3:4 ) , PO
Keiko Nakata, Turmo Uustalu, and Mare Bezem.

A Scemantics for Context-Sensitive Reduction Semantics. . ... ...
Cascy Klein., Jay MeCarthy. Steven Jaconette. and
Robert Bruce Findler

Author Index . .. ... ... ... . ... ... ... ....




