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Abstract
This work is aimed to show a concrete implementation of a de-
ductive database system based on the scheme HH¬(C) (Hereditary
Harrop Formulas with Negation and Constraints) following a fix-
point semantics proposed in a previous work. We have developed a
Prolog implementation for this scheme that is constraint system in-
dependent, therefore allowing to use it as a base for any instance
of the formal scheme. We have developed several specific con-
straint systems: Real numbers, integers, Boolean and user-defined
enumerated types. We have added types to the database so that rela-
tions become typed (as tables in relational databases) and each con-
straint is mapped to its corresponding constraint system. The pred-
icates that compute the fixpoint giving the meaning to a database
are described. In particular, we show the implementation of a forc-
ing relation (for derivation steps) and highlight how the inherent
difficulties have been overcome in a system allowing hypothetical
queries, which make the database dynamically grow.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory–Semantics; F.3.2 [Logic
and Meaning of Programs]: Semantics of Programing Languages;
H.2.3 [Database Management]: Languages–Query languages;
H.2.4 [Database Management]: Systems–Query Processing

General Terms Algorithms, Design, Experimentation, Languages,
Theory.

Keywords Hereditary Harrop Formulas, Deductive Databases,
Stratification, Constraints, Fixpoint Semantics, Prolog.

1. Introduction
Deductive databases (DDBs) and their query languages have re-
ceived a great deal of attention recently in many areas, including
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ontologies [Fikes et al. 2004], the semantic web [Calı̀ et al. 2009],
social networks [Ronen and Shmueli 2009], and policy languages
[Becker et al. 2007]. The high level expressivity of logic-based
query languages has been therefore acknowledged as a useful fea-
ture for handling knowledge-based information systems. In partic-
ular, Datalog (along its extensions), from which many current ref-
erences can be found, is playing the role of a renowned language in
those settings.

Current deductive database systems (such as, e.g., XSB [Sag-
onas et al. 1994] –with inputs from the company XSB, Inc.– bd-
dbddb [Lam et al. 2005], LDL++ [Arni et al. 2003], DES [Sáenz-
Pérez 2009], ConceptBase [Jarke et al. 2008], .QL [Ramalingam
and Visser 2007] –developed by Semmle, Ltd.– and DLV [Leone
et al. 2006]) lack several features we provide in the scheme
HH¬(C) (Hereditary Harrop formulas with Negation and Con-
straints) [Nieva et al. 2008]. These features are helpful for knowl-
edge systems in which more expressive ways of posing queries
are needed. The scheme HH(C) was presented in [Leach et al.
2001] as an extension of traditional LP (Logic Programming). The
one hand, hereditary Harrop formulas extend Horn logic allowing
disjunctions, intuitionistic implications and universal quantifiers,
improving the expressivity; the other hand, it incorporates the ad-
vantages of constraints. Then, HH¬(C) was obtained by adding
negation to the previous scheme in order to conform to the foun-
dations for a DDB, that extends Datalog in the two orthogonal
directions, just mentioned.

In our system, a database is a logic program: a set of facts
(ground atoms) defining the extensional database, and a set of
clauses, defining the intensional database. Clauses can be seen as
the definition of views in relational databases. The evaluation of
a query with respect to a deductive database can be seen as the
computation of a goal from a program (database), and the answer is
a constraint. Since the constraint domain is parametric, it is possible
to consider different instances (such as arithmetical constraints over
real numbers and finite domain constraints).

Let us show the expressivity of our language with the following
example written in an instance that allows both real and finite
domain constraints.

EXAMPLE 1. Consider the following extensional database for a
bank. We follow a syntax similar to Prolog. In addition we write
not for negation, => for implication, ex(X,G) representing ∃X G,



and fa(X,G) representing ∀X G. Some other details of the syntax
are deferred to next sections.

% client(Name, Balance, Salary)
client(smith,2000,1200).
client(brown,1000,1500).
client(mcandrew,5300,3000).

% pastDue(Name, Amount)
pastDue(smith,3000).
pastDue(mcandrew,100).

% mortgageQuote(Name, Quote)
mortgageQuote(brown,400).
mortgageQuote(mcandrew,100).

where we assume that each client has, at most, a mortgage quote.
Moreover, we can define the following views.

% hasMortgage(Name)
hasMortgage(N):- ex(Q,mortgageQuote(N,Q)).

A debtor is a client who has a past due with an amount greater than
his balance.

% debtor(Name)
debtor(N):-

client(N,B,S),
pastDue(N,A),
A>B.

The interest rate that is applicable to a client is specified by the
next relation:

% interestRate(Name, Rate)
interestRate(N,2):-

client(N,B,S),
B<1200.

interestRate(N,5):-
client(N,B,S),
B>=1200.

The next relation specifies that a non-debtor client can be given
a new mortgage in two situations. First, if he has no mortgage, a
mortgage quote smaller than the 40% of his salary can be given.
And, second, if he has a mortgage quote already, then the sum of
this quote and the new one has to be smaller than that percentage.

% newMortgage(Name, Quote)
newMortgage(N,Q) :-

client(N,B,S),
not(debtor(N)),
not(hasMortgage(N,Q1)),
Q<=0.4*S.

newMortgage(N,Q) :-
client(N,B,S),
not(debtor(N)),
mortgageQuote(N,Q2),
Q+Q2<=0.4*S.

% getMortgage(Name)
getMortgage(N):- ex(Q,newMortgage(N,Q)).

If the client satisfies the requirements to be given a new mort-
gage, then it is possible to apply for a personal credit, whose
amount is smaller than 6000. Otherwise, if the client does not
satisfy that requirements, the amount must be between 6000 and
20000.

% personalCredit(Name, Amount)
personalCredit(N,A) :-
(getMortgage(N),
A<6000)

;
(not(getMortgage(N)),
A>=6000,A<20000).

For this database, we can query whether every client is a debtor:

fa(N,debtor(N)).

The answer is false.
Moreover it is possible to ask, for example, the quote and the

salary of clients whose mortgage quote is greater than 100 with the
next query:

ex(B,client(N,B,S),mortgageQuote(N,Q),(Q>=100)).

The answer constraint, that provides such information is the fol-
lowing disjunction:

(Q=400, S=1500, N=brown);
(Q=100, S=3000, N=mcandrew).

For knowing whether there are debtors with a past due amount
greater than 1000, the following query can be formulated:

ex(N,ex(A,(debtor(N),pastDue(N,A),(A>1000)))).

and the answer is true. Note that we are using quantifiers for N
and A, meaning that there are no explicit conditions over them.
Otherwise, the answer will be a constraint over them.

The next query corresponds to the question: if for a client
we assume that has a balance greater than 2000, what would the
interest rate be?

fa(N,ex(S,ex(B,(client(N,B,S) =>
B>2000 => interestRate(N,R))))).

the answer is the constraint R=5. We are using nested implication to
formulate hypothetical queries, in which we can assume both facts
and constraints.

The next query involves negation and represents which clients
can get a mortgage quote of 400 but not a personal credit.

newMortgage(N,400), not(personalCredit(N,A)).

And the answer is the constraint:

(N=mcandrew, A>=6000, A<20000)

This constraint means that it is possible to give a new mortgage to
client McAndrew but it is not possible to give him a personal credit
of an amount between 6000 and 20000. �

In this paper, we present an implementation of the fixpoint se-
mantics presented in [Nieva et al. 2008], which is independent of
the concrete constraint system. Also, we use a type system for iden-
tifying the constraint system to which each constraint in a database
belongs. We propose several constraint systems as instances of
HH¬(C) and their solvers. And we explain how they are imple-
mented.

The semantics of a database is computed as a set of pairs
(A, C), where A is an atom and C a constraint, that can be deduced
from both the extensional and intensional parts of the database. A
can be understood as a n-ary relation instance, where their argu-
ments are constrained by C. These pairs are computed by strata,
classifying predicates by strata with a new form of stratification
driven by both negations and implications occurring in rules. Each
stratum should become saturated before trying to saturate any other
higher stratum. However, as an implication may occur in a goal, the



computation must take into account that the database is augmented
with the hypothesis posed in the implication antecedent. Therefore,
a fixpoint computation has to be started from scratch since new
pairs may be added at lower strata. So-nested subcomputations add
a new complexity level with respect to usual bottom-up computa-
tions in deductive databases without implications.

Another complexity source comes again from implications,
since the variables in D ⇒ G can occur both in D and G. When a
database ∆ is augmented with the local clause D, those variables
must be distinguished from other instances of the same variables
in ∆. To this end, we recourse to Prolog attributed variables to
identify them.

Finally, in order to find a stratification for ensuring finiteness
of computations, a new dependency graph is described using a
mutually recursive definition between the dependencies introduced
by goals and clauses.

The rest of the paper is organized as follows. Section 2 recalls
syntactical notions, the stratification needed for classifying predi-
cates into strata due to both negation and implication, as well as
stratified interpretations and the forcing relation. Section 3 intro-
duces a user-oriented description of the system and the compu-
tation stages of the implementation. Section 4 describes the type
system, constraint systems, their solvers and how they are imple-
mented. Section 5 explains how the fixpoint semantics has been im-
plemented by successive applications of an operator, which in turn
implements the forcing relation of HH¬(C). Section 6 describes a
new form of the dependency graph needed to implement the forc-
ing of the implication. Section 7 shows an actual, running example
of the system in its current form. Section 8 summarizes some con-
clusions and sketches some future work.

2. Preliminaries
Here, we recall the foundations, presented in [Nieva et al. 2008], in
which the implementation is based on.

2.1 Syntax
We consider a set of defined predicate symbols, representing the
names of database relations, to build atoms, denoted by A, and non-
defined (built-in) predicate symbols, including at least the equality
predicate symbol ≈, to build constraints, denoted by C. We will
also assume the existence of a set of constant and operator symbols,
and a set of variables to build terms, denoted by t.

The constraints we consider belong to a generic system C =
〈LC ,`C〉, where LC is the constraint language and `C is a binary
entailment relation. Γ `C C denotes that the constraint C is in-
ferred in the constraint system C from the set of constraints Γ. Some
minimal conditions are imposed on C to be a constraint system (see
[Leach et al. 2001] for details). In particular, C is required to con-
tain> (true) and⊥ (false), and to deal with∧,¬, and the existential
quantifier ∃; the constraint system has the responsibility of check-
ing the satisfiability of answers in the constraint domain.

We say that a constraint C is C-satisfiable if ∅ `C ∃C, where ∃C
stands for the existential closure of C. C and C′ are C-equivalent
if C `C C′ and C′ `C C.

The well-formed formulas in HH¬(C) can be classified into
clauses D (defining database relations) and goals (or queries) G.
They are recursively defined by the following rules:

D ::= A | G⇒ A |D1 ∧D2 | ∀xD
G ::= A |¬A | C | G1 ∧G2 | G1 ∨G2 |D ⇒ G | C ⇒ G

| ∃xG | ∀xG
The programs, denoted by ∆, are sets of clauses and repre-

sent databases. Any ∆ can always be given as an equivalent set,
elab(∆), of implicative clauses with atomic heads in the way we
precise now. The elaboration of a program ∆ is the set elab(∆) =S

D∈∆ elab(D), where elab(D) is defined by:

elab(A) = {> ⇒ A},
elab(D1 ∧D2) = elab(D1) ∪ elab(D2),
elab(G⇒ A) = {G⇒ A},
elab(∀xD) = {∀xD′ |D′ ∈ elab(D)}.

2.2 Stratification
The notion of stratification is used as a syntactical criterion to
determine if a query to a database can be potentially be computed
in a finite number of steps. The idea is that when ¬A is going to
be proved, the stratum of A has been previously saturated (all the
answers for A are available) and ¬A can be correctly computed.
A stratification for a database is based on the construction of a
dependency graph for a set of formulas [Zaniolo et al. 1997].

The nodes of the graph are the defined predicate symbols of
the set. An implication of the form F1 ⇒ F2 produces edges
and/or paths in the graph from the defined predicate symbols inside
F1 to each defined predicate symbol inside F2. An edge will be
negatively labeled when the corresponding atom occurs negated on
the left side of the implication. Notice that in HH¬(C) implications
may occur not only between the head and the body of a clause, but
also inside the goals, and therefore in the body of any clause. Since
constraints do not include defined predicate symbols, they do not
produce dependencies.

Those two kinds of edges are sufficient to guarantee the con-
sistency of the following theory. However, in the implementation,
an additional case of producing a negatively labeled edge will be
considered. This new case will be explained in Section 6, after mo-
tivating it in Section 5.4.

DEFINITION 1. Given a set of formulas Φ, its corresponding de-
pendency graph DGΦ, and two predicates p and q, we say that

• q depends on p if there is a path from p to q in DGΦ.
• q negatively depends on p if there is a path from p to q in DGΦ

with at least one negatively labeled edge.

Let P = {p1, . . . , pn} be the set of defined predicate symbols
of Φ. A stratification of Φ is a mapping s : P → {1, . . . , n}, such
that s(p) ≤ s(q) if q depends on p, and s(p) < s(q) if q negatively
depends on p. Φ is stratifiable if there is a stratification for it.

The stratum of a formula F , denoted by str(F ), is the maximum
s(p), where p is in the set of predicate symbols occurring in F .

Figure 1 shows the dependency graph for the bank database of
the introduction. Negative edges are labelled with ¬.

2.3 Stratified Interpretations and Forcing Relation
Let W be the set of stratifiable databases ∆, with respect to the
same fixed stratification s, At be the set of open atoms, and SLC
be the set of C-satisfiable constraints modulo C-equivalence. In-
terpretations are classified on strata and each interpretation gives
information up to its corresponding stratum.

DEFINITION 2. Let i ≥ 1, an interpretation I over the stratum i is
a function I :W → P(At×SLC), such that for any ∆ ∈ W , and
any j > i, [I(∆)]j = ∅, where

[I(∆)]i = {(A, C) ∈ I(∆) | str(A) = i}.
We denote by Ii the set of interpretations over i.

For every i ≥ 1, an order on Ii can be defined.

DEFINITION 3. Let i ≥ 1 and I1, I2 ∈ Ii, I1 is less or equal
than I2 at stratum i, denoted by I1 vi I2, if for each ∆ ∈ W the
following conditions are satisfied:

• [I1(∆)]j = [I2(∆)]j , for every 1 ≤ j < i.
• [I1(∆)]i ⊆ [I2(∆)]i.
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Figure 1. Dependency Graph for Example 1

For every i ≥ 1, every chain of interpretations of (Ii,vi),
{In}n≥0, such that I0 vi I1 vi I2 vi . . . , has a least upper
bound

F
n≥0 In, which can be defined as:

(
G
n≥0

In)(∆) =
[
n≥0

{In(∆)},

for any ∆ ∈ W .
The following definition formalizes what means that a query G

is true for an interpretation I in the context of a database ∆, if the
constraint C is satisfied.

DEFINITION 4. Let i ≥ 1. The forcing relation �� between pairs
I, ∆ and pairs (G, C) (where I ∈ Ii, str(G) ≤ i, and C is C-
satisfiable) is recursively defined by the rules below.

• I, ∆ �� (C′, C) ⇐⇒ C `C C′.
• I, ∆ �� (A, C) ⇐⇒ (A, C) ∈ I(∆).
• I, ∆ �� (¬A, C) ⇐⇒ for every (A, C′) ∈ I(∆), C `C ¬C′

holds. If there is no pair of the form (A, C′) in I(∆), then
C ≡ >.

• I, ∆ �� (G1∧G2, C)⇐⇒ for each i∈{1, 2}, I, ∆�� (Gi, C).
• I, ∆ �� (G1∨G2, C)⇐⇒ for some i∈{1, 2}, I, ∆�� (Gi, C).
• I, ∆ �� (D ⇒ G, C) ⇐⇒ I, ∆ ∪ {D} �� (G, C).
• I, ∆ �� (C′ ⇒ G, C) ⇐⇒ I, ∆ �� (G, C ∧ C′).
• I, ∆ �� (∃xG, C) ⇐⇒

there is C′ such that I, ∆ �� (G[y/x], C′), where y does not
occur free in ∆, ∃xG, C, and C `C ∃yC′.

• I, ∆�� (∀xG, C) ⇐⇒ I, ∆ �� (G[y/x], C), y does not occur
free in ∆, ∀xG, C.

When I, ∆ �� (G, C), it is said that (G, C) is forced by I, ∆.

2.4 Fixpoint Semantics
The notion of truth at each stratum is given by means of the
fixpoint of a continuous operator (for every stratum) transforming
interpretations.

DEFINITION 5. Let i ≥ 1 represent a stratum. The operator Ti :
Ii −→ Ii transforms interpretations over i as follows. Let I ∈ Ii,
∆ ∈ W , and (A, C) ∈ At×SLC , then (A, C) ∈ Ti(I)(∆) when:

• (A, C) ∈ [I(∆)]j for some j < i or
• s(A) = i and there is a variant ∀x(G ⇒ A′) of a clause in

elab(∆), such that the variables x do not occur free in A, and
I, ∆ �� (∃x(A ≈ A′ ∧G), C).

The operator T1 has a least fixpoint fix1 =
F

n≥0 T n
1 (I⊥),

where the interpretation I⊥ represents the constant function ∅.

Proceeding successively on the same way, a chain:

fixi−1 vi Ti(fixi−1) vi Ti(Ti(fixi−1)) vi . . .

. . . vi T n
i (fixi−1) vi . . .

can be defined for any stratum i > 1, and a fixpoint of it,

fixi =
G
n≥0

T n
i (fixi−1),

can be found. In particular, if k is the maximum stratum in ∆,
we simplify fixk writing fix. Then, fix(∆) represents the pairs
(A, C) such that A can be deduced from ∆ if C is satisfied.

3. System Description
In this section, we briefly introduce a user-oriented description of
the system and the computation stages of the implementation.

The system incorporates the predefined data types bool (with
true and false as elements) and real, an infinite data type,
whose real numeric range is system-dependent. As well, the user is
able to define new enumerated data types. A data type declaration
is written as:

domain(data type, [constant 1, ..., constant n]).

Intervals for integers are allowed in data type declarations, as in:

domain(months, 1..12).

An n-arity predicate type declaration is written as:

type(predicate(type 1, ..., type n)).

For instance, type(client(client dt, real)) is a type decla-
ration, where client dt can be defined as:

domain(client dt, [smith, brown, mcandrew]).

The syntax for clauses is essentially as introduced in examples
of Section 1, except for constraints, for which we use the syntax
constr(Dom,C), denoting a constraint C ranging over the domain
Dom.

When, in the context of a database ∆, a user query Q is posed
at the system prompt, it is translated into a clause D ≡ A :- Q,
where A is an atom whose predicate symbol is query and whose
arguments are the free variables in Q (they are implicitly existen-
tially quantified in Q and universally quantified in D). In addition,
the types for query are inferred and provided as the type declara-
tion type(query(Types)).

Solving this query entails to add D to the current database ∆, i.e.,
to consider ∆′ = ∆ ∪ {D} for the following computation stages:
1) Check and infer predicate types; 2) Build the dependency graph
of ∆′; 3) Compute a stratification for ∆′ if there is any. If it is not
stratifiable the system throws an error message an stops; 4) If the



previous step success, compute fix(∆′). The answer constraint to
the query Q is the constraint C such that (A,C)∈ fix(∆′).

Next, we describe the different components of the implementa-
tion in detail.

4. Implementing Constraint Solving
This section focuses on the implementation of constraint solving
for the following particular constraint systems: Real numbers, inte-
gers, Boolean and user-defined enumerated types. Firstly, we com-
ment on the type system needed to identify the types of variables
which are used to send a constraint to its corresponding solver.
Then, the constraint systems are described, including their prede-
fined data values, functions and operators. Finally, we show the
implementation of the constraint solvers, which makes use of SWI-
Prolog [Wielemaker 2009] underlying constraint solvers.

4.1 Types
We have implemented a type checking and inferrer system for
HH¬(C) programs which is able to detect type inconsistencies and
lack of type declarations, and to infer types for user queries. Types
are locally annotated for each predicate symbol. A type annotation
consists of storing the type of a variable in an attribute of this
variable (cf. attributed variables [Holzbaur 1990]). A type is known
in the context of a set of clauses: either a) an atom provides its type
(i.e., because of its corresponding predicate type), or b) a constraint
constr(Dom,C) provides its type. A type-conflict exception is
raised when different types are tried to be assigned to the same
variable. A lack-of-type-declaration exception is raised when no
type is assigned to a variable.

4.2 Constraint Systems
As introduced, a constraint system provides a constraint language
for expressing constraints and an entailment relation for ensuring
satisfiability of constraints (this relation will be covered in the next
subsection). Our constraint systems include the concrete syntax
for the required values, symbols, connectives, and quantifiers as
follows: “true”, “false”, “=”, “,”, “not” and “ex(X,C)” which
represent, respectively, >, ⊥, ≈, ∧, ¬ and ∃X C. In addition, we
also include “;” for ∨ and “/=” for the negation of ≈.

We have proposed three constraint systems for the scheme
HH¬(C): Boolean, Reals, and Finite Domains. The first one con-
sists of just the required components plus the universal quantifier.
The constraint system Reals includes the type real (infinite set of
real numeric values) and real constraint operators (+, -, *, . . .) and
functions (abs, sin, exp, min, . . .).

Finite Domains represent a family of specific constraint systems
ranging over denumerable sets. Enumerated types are included
as well as (finite) integer numeric types. Whereas the constraint
systems Boolean and Reals have attached predefined types, Finite
Domains do not. This system also includes comparison operators
(>, >=, . . .), universally quantified constraints (fa(X,C), as above),
and the domain constraint X in Range, where Range is a subset
of data values built with V1..V2, which denotes the set of values in
the closed interval between V1 and V2, and R1\/R2, which denotes
the union of ranges. A finite domain may also include constraint
operators (as +, -, . . .) and constraint functions (as abs, min, . . .).
Note that relevant primitive functions for each system should be
clear from their intended semantics (+ might not be relevant for
Booleans, although it can be used). We allow to use the same
symbols to build constraints in different systems; for instance, both
constr(real, X>Y) and constr(month, X>Y) make sense in
their respective constraint systems.

4.3 Constraint Solvers
We have considered the entailment relation of the classical logic
for every constraint system. This entailment satisfies the minimal
condition imposed to constraint systems. For implementing this
relation, we provide a constraint solver with a generic interface
solve(C,SC) for C `C SC, intended to solve a constraint C, check
its satisfiability and produce a solved form SC. A solved form SC
corresponding to a constraint C is a simplified, more readable form
of the constraint wrt. C. A solved form can be a disjunction of sim-
ple constraints, where a simple constraint does neither include dis-
junctions nor quantifications, nor negations. This generic interface
is implemented as follows:

solve(C,SC) :-
partition_ctr(C,DCs),
solve_ctr_list(DCs,SDCs),
ctr_list_to_ctr(SDCs,CC),
simplify_ctr(CC,SC).

Its first call partitions the input constraint into a list whose
components belong to different constraint domains. The next call
posts each component to its corresponding solve as a call to the
predicate solveFD (described later). After, the solved constraint
represented as a list is transformed back into a constraint data
structure. Finally, this constraint is simplified by logical axioms as
De Morgan’s laws.

In addition to the generic interface, the particular interface
solve(Dom,C,SC) is also provided, which is useful when the
domain Dom is already known and can be directly posted to its
corresponding solver.

Next, we describe our implementation of the constraint solvers
for the constraint systems we propose as practical instances of
HH¬(C).

We rely on the underlying constraint solvers already available
in SWI-Prolog [Wielemaker 2009] for implementing the constraint
systems Finite Domains, Boolean and Reals. For certain con-
straints, we are able to map them to constraints in the underlying
SWI-Prolog finite domain solver because we map data values to
integers. Before posting to this solver, a constraint is rewritten with
the mapped integer values and, after solving, the solved constraint
is rewritten back with the corresponding enumerated values. On the
other hand, there are constraints that the underlying solvers cannot
directly handle (quantifiers and disjunctions) which we explicitly
handle as will be shown later. Since SWI- Prolog does not provide a
Boolean solver, we resort to the finite domain constraint solver for
solving Boolean constraints, and provide the predefined constraint
system bool which is handled as any other enumerated constraint
system.

For the solvers of the constraint systems Finite Domains and
Boolean, the following predicates are available:

• solveFD(+Domain,+Constraint,-SolvedConstraint)
It solves the input Constraint over Domain and returns its
solved form SolvedConstraint associated to Domain , if it is
satisfiable.

• constr conjFD(+Domain,-C1,+C2,+C)
It is read as “C1,C2 = C”, and computes the component C1 of
the conjunction C under the given domain.

Since we consider classical logic for these particular constraint
systems, the following implementation for the second predicate is
sound:

constr_conjFD(Domain,C1,C2,C) :-
solveFD(Domain,(not(C2);C),C1),
solveFD(Domain,(C1,C2),SC).



Whilst the second line is intended to compute C1 under the
assumption of success, the following lines check that the computed
constraint is satisfiable.

The code excerpt of Figure 2 implements the required be-
haviour:

Note that line (05) is intended to replace quantified variables
by fresh ones in order to avoid a name clash. Line (07) maps
domain data values with integers, whereas line (16) replaces back
the (integer) computed data values by the corresponding, mapped
data values. The core of constraint solving lays between lines
(09)-(11), where, first, the constraint is tried to be solved (see
next paragraph describing the predicate solveFD ctr). Second, it
is checked for satisfiability, that is, trying to find a single, concrete
solution via labeling. And, third, the underlying constraint store is
projected with respect to the relevant variables (i.e., those occurring
in the input constraint plus the possible new ones computed by the
underlying solver). Lines (13)-(15) are simply intended for data
structure formatting.

Next, we describe the predicate:

solveFD ctr(+Constraint,-Satisfiable),

which receives a constraint and returns whether it is satisfiable or
not. The first case of this predicate corresponds to a constraint
supported by the constraint solver of SWI-Prolog (where #> is
the finite domain constraint comparison operator provided by this
solver):

solveFD_ctr(X>Y,true) :-
!,
X#>Y.

Negation is, as shown below, explicitly handled because it can
apply to unsupported constraints. The predicate

complement(+Constraint,-ComplementedConstraint)

computes the complemented constraint before solving it.

solveFD_ctr(not(C),B) :-
!,
complement(C,NotC),
solveFD_ctr(NotC,B).

An example of handling unsupported constraints is disjunction,
which is computed by collecting all answers (cf. line (08)). Solv-
ing this constraint is as follows:

solveFD_ctr((C1;_C2),true) :-
solveFD_ctr(C1,true).

solveFD_ctr((_C1;C2),true) :-
solveFD_ctr(C2,true).

Finally, we describe quantifiers. Firstly, the existential quan-
tifier is implemented as follows, where in the last but one line
satisfiable(FC,true) tries to find a concrete value satisfying
FC:

solveFD_ctr(ex(X,C),B) :-
!,
% Replace X by a fresh variable _FX in C:
swap(X,_FX,C,FC),
get_current_domain(DN),
constrain_domains(FC,DN),
% Solving:
(solveFD_ctr(FC,true),
% Checking satisfiability:
satisfiable(FC,true),
B=true ; B=false).

The universal quantifier is solved by imposing a conjunctive
constraint C for all the values of X in the solving domain (cf. the
call to solve forall):

solveFD_ctr(fa(X,C),B) :-
!,
get_current_domain(Domain),
domain_bounds(Domain,L,U),
(solve_forall(X,C,L,U) ->

B=true
;
B=false).

The constraint solver for Reals follows a similar but simpler
route for its implementation since there are neither universal quan-
tifiers, nor domain data values to map.

5. Implementing the Fixpoint Semantics
In this section, we present the implementation of the core sys-
tem, which is independent from the concrete constrain systems ex-
plained in the previous section.

5.1 Fixpoint by Strata
For the fixpoint computation we assume a stratified database ∆,
i.e., a partition st1, . . . , stk over the predicate symbols defined in
it (the stratification algorithm will be explained in Section 6). A
clause of the form A :- G is interpreted as ∀X1, . . . , Xn(G⇒ A),
being X1, . . . , Xn the free variables of (A, G), and is encoded as
the Prolog term

rule(St,Vars,A,G)

where St = str(A) and Vars= [X1, . . . , Xn].
The fixpoint is computed stratum by stratum (although a stratum

may require the computation of the fixpoint for a previous stratum
when the program is enlarged due to implications as we will see in
Section 5.4). The predicate

fixPointStrat(+Delta, +St, -Fix)

computes Fix = fixSt(Delta). Then, if Delta represents a
database such that St = str(Delta) = k, this predicate gives
fixk(Delta), computing previous fixpoints from St = 0 to
St = k.

fixPointStrat(_Delta,0,[]) :- !.

fixPointStrat(Delta,St,FixSt) :- St1 is St-1,
fixPointStrat(Delta,St1,FixSt1),
iterT(Delta,St,FixSt1,FixSt).

Each fixpoint is evaluated by iterating the fixpoint operator as
follows:

iterT(Delta,St,I,FixSt) :-
opT(Delta,Delta,St,I,TI),
(

I==TI,!, FixSt=I
;

iterT(Delta,St,TI,FixSt) ).

I represents the current computed interpretation and FixSt will
be the fixpoint for the stratum under consideration. The operator is
iterated until no more information can be added to the interpretation
(I==TI), i.e., we have reached the fixpoint for the stratum St. The
predicate opT is detailed below.



(00) solveFD(DN,C,SC) :-
(01) set_current_domain(DN), % A flag storing the current domain
(02) copy_term(C,FC), % Input variables keep untouched
(03) get_vars(C,Vars), % Input variables are held to be
(04) get_vars(FC,FVars), % mapped to the solved new vars
(05) swap_qvars_by_fvars(FC,QFC), % Replace quantified vars by fresh ones
(06) constrain_domains(QFC,DN), % Constrain variables to the current domain
(07) domain_to_int(QFC,DN,IC), % Domain mapping from enumerated to integer
(08) bagof((FVars,Cs,Sat), % (Fresh vars,Constraints,Satisfiable)
(09) (solveFD_ctr(IC,true), % Solving
(10) satisfiable(IC,Sat), % Check satisfiability
(11) project_ctrs(FVars,Vars,Cs) % Project constraints wrt. input vars
(12) ), LFVarsCsS), ! % List of (Fresh vars,Constraints,Satisfiable)
(13) filter_ctr_list(LFVarsCsS,LICs), % Pick solved constraints
(14) simplify_disj_list(LICs,SLICs), % Simplify the disjunctive list
(15) disj_list_to_ctr(SLICs,ISC), % Convert list to constraint
(16) int_to_domain(ISC,DN,SC). % Map domain from integer to enumerated

Figure 2. The Predicate solveFD for solving Finite Domain Constraints

5.2 Fixpoint Operator
The predicate opT corresponds to the application of the operator Ti

(for some stratum i) to a given interpretation. Following Definition
5, the predicate

opT(+Rules,+Delta,+St,+I,-TI)

receives in I the set of pairs of T n
i (fixi−1)(Delta) for some n ≥

0, the stratum i = St and computes TI = T n+1
i (fixi−1)(Delta).

The call to opT from iterT has the form

opT(Delta,Delta,St,I,TI)

taking Delta twice because it uses each clause of Delta separately,
but the forcing relation will need the full database Delta. This
operator only uses the clauses of the current stratum St (second
clause) and skips the rest (last clause).

opT([],_Delta,_St,I,I).

opT([rule(St,Vars,A,G)|Rs],Delta,St,I,TI) :-
!,
rename(Vars,(A,G),Vars1,(A1,G1)),
flatHead(A1,A2,Cs),
buildExists(Vars1,(Cs,G1),G2),
(
force(Delta,I,G2,C), !,
addItemLst([(A2,C)],I,I1)

;
I1=I ),

opT(Rs,Delta,St,I1,TI).

opT([_|Rs],Delta,St,I,I1) :-
opT(Rs,Delta,St,I,I1).

The second clause performs some initial transformations on the
rule rule(St,Vars,A,G): the predicates rename, flatHead and
buildExists build the goal to be forced

G2 = ∃ Vars1 (G1 ∧ A1 ≈ A2),

being ∀ Vars1 (G1 ⇒ A1) a variant of rule(St,Vars,A,G).
Then it tries to force the obtained goal G2 using Delta and the
current interpretation I. If it succeeds, we obtain the associated
constraint C and we add the pair (A2,C) to such an interpretation.
Finally, opT performs the same operation on the rest of rules Rs.

5.3 Forcing Relation
We implement the forcing relation �� of Definition 4 by means of
the predicate

force(+Delta,+I,+G,-C).

Given I = T n
i (fixi−1)(Delta) for some n ≥ 0 and a fixed stra-

tum i > 0, force is successful if T n
i (fixi−1), Delta �� (G, C).

An important point to understand the implementation is to keep
in mind the deterministic nature of this predicate. The definition
of �� establishes conditions on a constraint C in order to satisfy
I, Delta �� (G,C), but the predicate force must build a concrete
constraint C. In addition, each possible answer constraint for a goal
must be captured in a single answer constraint (possibly) using dis-
junctions. There is a clause of force for each goal structure. We
explain them shortly, except for the case of implication, that will be
studied in the next subsection:

force(_Delta,_I,constr(Dom,C),C1) :-
!, solve(Dom,C,C1).

force(Delta,I,(G1,G2),C) :-
!, force(Delta,I,G1,C1),
force(Delta,I,G2,C2),
solve((C1,C2),C).

force(Delta,I,(G1;G2),C) :- !,
( force(Delta,I,G1,C1), !,

( force(Delta,I,G2,C2), !,
solve((C1;C2),C)

;
solve(C1,C) )

;
force(Delta,I,G2,C2),
solve(C2,C) ).

force(Delta,I,(constr(Dom,C)=>G),C2) :-
!, force(Delta,I,G,C1),
constr_conj(Dom,C2,C,C1).

force(Delta,I,ex(X,G),C) :-
!, replace(X,X1,G,G1),
force(Delta,I,G1,C1),
solve(ex(X1,C1),C).



force(Delta,I,fa(X,G),C) :-
!, replace(X,X1,G,G1),
force(Delta,I,G1,C1),
solve(fa(X1,C1),C).

force(_Delta,I,not(At),C) :-
!, lookUpAll(At,I,Ls),
( Ls==[], !, C=true
;
buildNegConj(Ls,NLs),
solve(NLs,C) ).

force(_Delta,I,At,C) :-
!, lookUpAll(At,I,Cs),
buildDisj(Cs,C1),
solve(C1,C).

The first clause stands for the forcing of a constraint C within a
domain Dom, that is processed by calling the constraint solver. The
second stands for a conjunction G1,G2; it forces both goals, and
then solves the conjunction of the resulting answer constraints.
For a disjunction G1;G2 (third clause) there are four possible (and
exclusive) situations: both goals can be forced, only G1, only G2,
or neither of two; the answer constraint is obtained by solving the
corresponding constraints or failing in the last case. The fourth
clause of force corresponds to an implication with a constraint
as antecedent; in this case the predicate constr conj obtains a
constraint C2 such that if I forces (G,C1) then the conjunction
C2,C is equivalent to C1.

For the universal quantifier, according to the Definition 4, to
find C such that I, Delta �� (∀X G, C), we obtain G1 as the re-
sult of replacing X by a new variable X1 in G; then we prove
I, Delta �� (G1, C1) and finally C is obtained by solving ∀X1 C1.
For the existential quantifier, according to the Definition 4, we find
C such that there is C’ satisfying I, Delta �� (G[X1/X], C′) and
C `C ∃X1 C′. Then we can use C as the solved form of ∃X1 C′
in the implementation.

For negated atoms not(At), thanks to the stratification we can
ensure that every possible atom At deducible from the database
is already present in the current interpretation I. Then, by means
of lookUpAll(At,I,Ls) we find the list Ls=[C1,...,Cn] such
that (At,Ci)∈I. The variable NLs is used to build the constraint
¬C1∧...∧¬Cn (or true if Ls=[]), that we must solve to obtain
the constraint C we are looking for.

The last (default) case is the forcing of an atom At. As before,
we search for all the pairs (At,C1),...,(At,Cn)∈I and then we
build the disjunction C1∨...∨Cn and solve it with solve.

5.4 The Case of D => G in the Forcing Relation
Implementing force(Delta,I,(D=>G),C) requires some special
treatment. In this case, according with the definition of the rela-
tion �� (see Definition 4), Delta is augmented with the clause D.
Remains that the current set I has been computed in accordance
with the database Delta, in such a way that if i and n are, respec-
tively, the stratum and iteration under construction, (A, C) ∈ I⇔
(A, C) ∈ T n

i (I ′)(Delta), where I ′ is the fixpoint for the stra-
tum i− 1, built from Delta. According to the theory, the next step
will be to prove T n

i (I ′), Delta∪{D} �� (G, C). But the question is
how to compute T n

i (I ′)(Delta ∪ {D}). Notice that I is not useful
here. First, because I(∆) ⊆ I(∆ ∪ {D}) does not hold for ev-
ery I, ∆, D. Second, because I has been built considering always
Delta, in particular the fixpoint I ′ has been computed for Delta,
then it represents fixi−1(Delta). So nothing is known about the
needed set T n

i (I ′)(Delta ∪ {D}).

What it is happening is that the definition of the fixpoint opera-
tor Ti is not constructive for the case of implication due to the in-
crease of the set of clauses. To solve this obstacle, we have adopted
a conservative position: to compute locally the fixpoint of the stra-
tum j for Delta ∪ {D}, where j is the stratum of G, that means
fixj(Delta∪{D}), and then prove if fixj , Delta∪{D} �� (G, C).

Of course, the complexity of the algorithm is considerably aug-
mented on this case. But the code keeps simple. The corresponding
clause for the predicate force is as follows:

force(Delta,I,(D=>G),C) :-
!,
elab(D,De),
localRules(De,Ls),
getStrat(G,StG),
addLocalRules(Ls,Delta,Delta1),
fixPointStrat(Delta1,StG,Fix),
force(Delta1,Fix,G,C).

Calling to the predicates elab(D,De), localRules(De,Ls),
getStrat(G,StG) and addLocalRules(Ls,Delta,Delta1),
the elaboration of the set of clauses Delta ∪ {D} is produced giv-
ing the corresponding set Delta1 in the used format. Executing

fixPointStrat(Delta1, StG, Fix)

finds Fix = fixj(Delta1), where j = StG is the stratum of G,
the consequent of the initial goal D => G. Once Fix is computed,
it is needed to force G with it and the augmented set Delta1. This
corresponds to prove

force(Delta1, Fix, G, C),

that implies T n
i (I ′), Delta∪{D} �� (G, C), as we wanted to prove.

This solution causes the following problem. Consider a clause
in Delta of the form A :- D => G, such that i = str(A) and
j = str(G); from Definition 1, j ≤ i can be deduced. During the
computation of fixi(Delta), the predicate opT takes this clause
into account, in order to look for a pair (A,C) to be added to the
current I. Then

force(Delta, I, (D => G), C)

is executed which calls to

fixPointStrat(Delta1, j, Fix),

where Delta1 = Delta ∪ {D} (except elaboration and variable
renaming). If j = i, that means to build fixi(Delta1), so the
clause A :- D => G will be tried again, because the stratum of
A is i. This gives rise to a non-terminating loop, since Delta1
is augmented with the elaboration of D once more, and so on.
However, if j < i, Fix = fixj(Delta1) can be correctly built.
This is the reason why, in the construction of dependency graphs,
a new kind of negatively labeled edges has been incorporated, that
ensures str(G) < str(A) in these cases. The details are explained
in the following section.

6. Implementing the Dependency Graph
In [Nieva et al. 2006], we defined an algorithm to compute the de-
pendency graph of any set of HH¬(C) formulas. The main ideas
and definitions are introduced in Section 2.2. Due to the problem in-
troduced by nested implications, that we have exposed previously,
a stronger definition of stratifiable database has been adopted in the
current implementation. Now, these implications will introduce ad-
ditional negative dependencies in the dependency graph. More pre-
cisely, if G⇒ A is a clause, such that G contains a subgoal of the
form D ⇒ G′, this nested implication produces negatively labeled
edges from the definite predicate symbols of G′ to the predicate
symbol of A.



• dpClause(A) =<∅, {pA}, ∅>
• dpClause(D1 ∧D2) =<E1 ∪ E2, N1 ∪N2, I1 ∪ I2>

if dpClause(D1)=<E1, N1, I1> and dpClause(D2)=<E2, N2, I2>

• dpClause(∀x D) = dpClause(D)

• dpClause(G⇒ A) =

<EG ∪
S

n∈(NG\IG){n→ pA} ∪
S
¬n∈NG

{n ¬→ pA} ∪
S

n∈IG
{n ¬→ pA}, {pA}, IG>

if dpGoal(G) =<EG, NG, IG>

• dpGoal(A) =<∅, {pA}, ∅>
• dpGoal(¬A) =<∅, {¬pA}, ∅>
• dpGoal(C) =<∅, ∅, ∅>
• dpGoal(C ⇒ G) = dpGoal(G)

• dpGoal(G1 ∧G2) = dpGoal(G1 ∨G2) =<E1 ∪ E2, N1 ∪N2, I1 ∪ I2>
if dpGoal(G1)=<E1, N1, I1> and dpGoal(G2)=<E1, N1, I1>

• dpGoal(∀x G) = dpGoal(∃x G) = dpGoal(G)

• dpGoal(D⇒G) =<ED∪EG∪
S

m∈NG
(
S

n∈ND
{n→m} ∪

S
¬n∈ND

{n ¬→m}), ND∪NG, NG>

if dpClause(D) =<ED, ND, ID> and dpGoal(G) =<EG, NG, IG>

Notation: pA stands for the predicate symbol of the atom A

Figure 3. Dependency Graph for Clauses and Goals

The algorithm for calculating the dependency graph is ex-
pressed by means of the mutually recursive functions dpClause
and dpGoal defined in Figure 3, depending on the structure of the
formula. Both they return a triple <E, N, I>, where E is a set of
edges of the form p → q or p

¬→ q, N and I are auxiliary sets
of link-nodes. N is used to store information about the positive-
negative predicates, and I stores the predicates involved in nested
implications. Using the function dpClause it is straightforward to
calculate the dependency graph of a set of clauses as the union of
the edges obtained for each element of the set. The dependency
graph is used to define the stratification in HH¬(C), that is a syn-
tactic condition for ensuring finiteness in the computations with
negated atoms.

EXAMPLE 2. Consider the clause:
D ≡ ∀x(G⇒ p(x)), where
G ≡ ∃y(q(x, y)⇒ (r(x) ∧ s(y))) ∧ ¬t(x). Then
dpGoal(G) =

<{q → r, q → s}, {q, r, s,¬t}, {r, s}>,
dpClause(D) =

<{q → r, q → s, q → p, r
¬→ p, s

¬→ p, t
¬→ p}, {p}, {r, s}>.

The first component of the tuple dpClause(D) is the dependency
graph associated to D. A database with just this clause is stratifi-
able, but if the clause:

D′ ≡ ∀x∀y(p(x)⇒ q(x, y))

is also present, the database becomes non stratifiable. �

The concrete algorithm for finding a stratification for ∆ (or for
checking that it is not stratifiable) associates to each predicate sym-
bol p an integer variable Xp ∈ [1..N ], where N is the number of
predicate symbols of ∆, and generates an inequation system: each
dependency p → q produces Xp ≤ Xq and p

¬→ q produces
Xp < Xq . Then, solving this system (if possible) provides the
stratum of each p in Xp. The stratification algorithm ends with a
concrete stratification if there exists one or stops with an error mes-

sage (in a polynomial time with respect to the number of predicate
symbols in the database).

A stratification for the clause D of Example 2 will collect all the
predicates in the stratum 1 except p, which will be in the stratum 2.
In particular Xq < Xp. Intuitively, this means that for evaluating
p, the rest of predicates should be evaluated before, in particular
q, that takes part of a nested implication. If the previous clause D′

is considered, we would also have Xq ≥ Xp and the inequation
system does not have any solution.

The new negative dependencies introduced in the graph due to
nested implications restrict the class of stratifiable programs, i.e.,
the syntax of our programs. Nevertheless, in practice this restriction
does not means a loss of expressivity in the language, that is much
more powerful than relational algebra or Datalog.

In the next section, we show (in Figure 4) the whole dependency
graph associated to the bank database plus the queries of Example
1. This set is stratifiable. Notice that the edge interestRate

¬→
query4 is due to the first nested implication inside the clause
defining query4:

query4(R) :- fa(N,ex(S,ex(B,(client(N,B,S) =>
constr(real,B>2000) => interestRate(N,R))))).

This implication produces also client → interestRate and
client→ query4. So, by transitivity, query4 negatively depends
on interestRate, but it also negatively depends on client, be-
cause interestRate depends on client.

7. A System Session
Next, we show the result of executing our system for the database
and queries ∆ that we have shown in Example 1. In this example,
the following enumerated domain and types are declared:

domain(client_dt,[smith,brown,mcandrew]).
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Figure 4. Dependency Graph for Example 1 with some queries.

type(client(client_dt,real,real)).
type(pastDue(client_dt,real)).
type(mortgageQuote(client_dt,real)).
type(hasMortgageQuote(client_dt)).
type(debtor(client_dt)).
type(interestRate(client_dt,real)).
type(newMortgage(client_dt,real)).
type(getMortgage(client_dt)).
type(personalCredit(client_dt,real)).

The following clauses corresponding to a number of queries are
added to the bank database. They are shown along with their types,
which are inferred in the context of the above declarations.

type(query1).
query1 :- fa(N,debtor(N)).

type(query2(client_dt,real,real)).
query2(N,S,Q) :-

ex(B,client(N,B,S),mortgageQuote(N,Q),
constr(real,Q>=100)).

type(query3).
query3 :-

ex(N,ex(A,(debtor(N),pastDue(N,A),
constr(real,A>1000)))).

type(query4(real)).
query4(R) :-

fa(N,ex(S,ex(B,(client(N,B,S) =>
constr(real,B>2000) =>
interestRate(N,R))))).

type(query5(client_dt,real)).
query5(N,A) :-

newMortgage(N,400), not(personalCredit(N,A)).

The dependency graph calculated for the current set of clauses
is shown in Figure 4 (we use dashed lines for dependencies intro-
duced by the queries).

From this graph, the stratification algorithm associates:

• Stratum 1 to client, pastDue, mortgageQuote, debtor,
interestRate, hasMortgage, query1, query2 and query3.

• Stratum 2 to newMortgage,getMortgage, and query4.
• Stratum 3 to personalCredit.
• Stratum 4 to query5.

Since ∆ is stratifiable, the computation of

fixPointStrat(∆,4, Fix)

begins calculating fixi(∆), stratum by stratum from i = 1 to 4, in
order to obtain Fix = fix4(∆).

1. Computation of fix1(∆).
The first iteration of T1 over the empty set, that corresponds
to the execution of opT(∆,∆,1, [], TI), obtains in TI the pairs
associated to the extensional database:

(client(smith,2000,1200), true),
(client(brown,1000,1500), true),
(client(mcandrew,5300,3000), true)
(pastDue(smith,3000), true),
(pastDue(mcandrew,100, true),
(mortgageQuote(brown,400), true),
(mortgageQuote(mcandrew,100), true)

The fixpoint computation of this first stratum requires one more
iteration of T1. After this, the following pairs are added:

(debtor(X), X=smith),
(interestRate(smith, 2), true),
(interestRate(X,Y),

((X=brown, Y=5);
(X=mcandrew, Y=5))),

(query2(X,Y,Z),
((Y=400, Z=1500, X=brown);
(Y=100, Z=3000, X=mcandrew))),

(query3, true),
(hasMortgage(X), (X=brown;X=mcandrew))

Note that no pair due to query1 is added at this stage since
the universally quantified constraint in this clause amounts to a
conjunctive constraint over the domain of debtor, i.e., impos-
ing that all the clients in client dt are debtors, which is not
the case.

2. Computation of fix2(∆).
Determining whether a pair (query4(X),C) can be added to
the current set of pairs gives to locally recalculate fix1, but this
time for ∆ ∪ {client(N, B, S)}.
To obtain fix2(∆), in the first iteration and after the appro-
priate computations to calculate fix1(∆∪{client(N, B, S)}),
the following pairs are added to fix1(∆):



(query4(X), X=5),
(newMortgage(X,Y),

((Y=<200, X=brown);
(Y=<1100, X=mcandrew)))

And, in the second iteration, the next pair is added:

(getMortgage(X), (X=brown;X=mcandrew))

3. Computation of fix3(∆).
Here, a pair for the predicate personalCredit is added to the
previous fixpoint:

(personalCredit(X,Y),
((Y>=6000,Y<20000, X=smith);
(Y<6000, X=brown);
(Y<6000, X=mcandrew)))

4. Computation of fix4(∆).
The final fixpoint requires one iteration of T4 over the fixpoint
of the third stratum

iterT(∆,4,fix3(∆), FixSt),

obtaining the following new pair:

(query5(X,Y),
(X=mcandrew, Y>=6000, Y=<20000))

This completes the result, and fix4(∆) = FixSt captures the
semantics of our database and queries.

In the example, the stratification and fixpoint have been calcu-
lated for the database together with all the queries we had formu-
lated. Hence they can be seen as predefined views. It is not the case
that the fixpoint should be recomputed each time a query is posed.
A more reusable behaviour is also possible in many cases. For a
database Delta, a stratification s and a fixpoint Fix= fix(Delta)
can be computed and stored. If the stratification s is valid for the
posed query Q, then the expected answer constraint C can be ob-
tained by executing: force(Delta,Fix,Q,C).

8. Conclusions and Future Work
In [Nieva et al. 2008] we presented a formalization of the con-
straint logic programing scheme HH¬(C) as an expressive de-
ductive database system that returns constraints as answer of the
queries. A semantics was developed, following stratification and
fixpoint techniques, usual in the framework of deductive database
semantics. But the underlying logic of our system embraces both
constraints and new connectives on the goals or queries (implica-
tions, negation and quantifiers). This fact enlarges expressivity and
efficiency, but introduces some penalties in the implementation.

We have developed a prototype of a deductive database system
that shows the feasibility of the fixpoint semantics as a base for an
actual implementation. The core of this implementation is indepen-
dent of the concrete constraint system. Several constraint systems
are implemented as instances of this scheme. In particular, we have
considered real numbers, integers, Booleans and user defined enu-
merated types (all of these, but reals, belong to the finite domain
constraint family). They have been implemented by taking advan-
tage of the underlying constraint solvers in SWI-Prolog. We have
added types to programs so that relations become typed (as tables
in relational databases) and each constraint is mapped to its solver.

The big difficulties in the implementation of our stratified fix-
point semantics consist of the adaptation of the usual techniques for
not only working with constraints but also taking into account that
a database can dynamically be augmented with local clauses, when
an hypothetical query is formulated. The definition of the fixpoint
operator is not constructive for the case of nested implications, then
a stronger definition of dependency graph has been formulated to
ensure a constructive and terminating fixpoint computation.

Future work The prototype presented in this work can be
enhanced to set it as a practical system. The current implementation
is very close to the theory developed in our previous works and is a
valuable tool for understanding such a theory, but as a consequence
it has an expected penalty in efficiency. On the one hand, we have
implemented a naı̈ve stratification algorithm for this first prototype
that can be easily improved. On the other hand, a more serious
source of inefficiency comes from the forcing of implication. In
this line, well-known methods as magic set transformations [Beeri
and Ramakrishnan 1991] and tabling [Tamaki and Sato 1986] could
be worth to be adapted to the current implementation. This is also
related to widen the set of computable queries and programs, by
adapting the ideas found in the well-founded model [Van Gelder
et al. 1991], that could relax our stratification restrictions. This
can also be coupled with efficient solving methods [Shen et al.
2002]. In addition, to use existing efficient relational technology to
solve concrete queries which do not need the more powerful (less-
efficient) database engine we currently provide.

Moreover, in the field of databases, the useful constraint sys-
tems are often combinations of different domains. The constraint
systems we have implemented work together, but do not cooperate.
Due to the nature of the logic involved in our system, finding meth-
ods for proving satisfiability of constraints in a mixed domain is
a complex task, because the syntax of such constraints will allow,
among other aspects, combining existential and universal quantifi-
cations for variables of the considered domains. In order to de-
velop a mixed solver, we will consider the existing works that com-
bine concrete domains in the context of HH¬(C) [Garcı́a-Dı́az and
Nieva 2003] and the combination of decision methods with tech-
niques applied to constraint solvers. This line comes from a fruitful
research line in combining constraint systems to cope with prob-
lems that, either cannot be handled by a domain constraint solver
alone, or its solving can be significatively improved by coopera-
tion of constraint solvers [Hofstedt and Pepper 2007, Castro and
Monfroy 2004, Granvilliers et al. 2001].
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