
Efficient Techniques for Distributed Implementation of Search-based AI Systems�

Gopal Gupta and Enrico Pontelli
Laboratory for Logic, Databases and Advanced Programming

Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, USA
http://www.cs.nmsu.edu/lldap

Abstract

We study the problem of exploiting parallelism from
search-based AI systems on distributed machines. We
propose stack-splitting, a technique for implementing or-
parallelism, which when coupled with appropriate schedul-
ing strategies leads to: (i) reduced communication during
distributed execution; and, (ii) distribution of larger grain-
sized work to processors. The modified technique can also
be implemented on shared memory machines and should
be quite competitive with existing methods. Indeed, an im-
plementation has been carried out on shared memory ma-
chines, and the results are reported here.

1. Introduction

Artificial Intelligence (AI) is an active field of research,
that has found applications in diverse areas. The field of AI
is very broad and one can find several types of AI systems:
those based on neural networks, those based on tree/graph
search, image recognition systems, etc. In this paper we are
primarily interested in AI systems that rely on traversing a
large search-space, looking for a solution that satisfies cer-
tain criteria [17, 16, 18]. We refer to such systems as search-
based AI systems. Game playing programs, expert systems,
constraint solving applications, and discourse analysis sys-
tems are example of such search-based AI systems. Such
search-based AI systems can take a lot of time to find a
solution, as the search space can be enormous. Given the
compute-intensive nature of search-based AI systems, par-
allel execution is an obvious technique that comes to mind
to speed-up the search. In fact, considerable research has
been done [18, 16, 19, 17, 6] on exploiting parallelism from

�Authors are partially supported by NSF grants CCR 96-25358, INT
95-15256, CDA 97-29848, HRD 96-28450, EIA 98-10732, and CCR-
9900320 and a grant from the Fullbright US-Spain Program.

search-based AI system. Two approaches have been gen-
erally been followed: (i) techniques have been developed
and implemented for extracting parallelism from specific
AI systems (e.g., [13, 14]), (ii) techniques have been de-
veloped and implemented for extracting parallelism from
language constructs in programming languages that are typ-
ically used for coding AI applications (e.g., Prolog, or Lisp)
[6, 11]. In both cases, it is the operation of searching the
solution-space that is parallelized. It should also be men-
tioned that most work on exploiting parallelism falls under
(ii). Nearly not as much work has been done on (i), for the
obvious reason that (ii) represents a more general approach.
Within (ii) considerable work has been done on paralleliz-
ing Prolog. In the rest of the paper, we will present our tech-
niques and results in the context of parallel Prolog, though
they can equally well be applied to specific AI systems that
incorporate searching, as well as other languages that in-
corporate search mechanisms to facilitate programming of
search-based AI applications.

Implementing search (parallel or sequential) requires
that we have a representation of the search space in the
computer’s memory. This representation is usually a tree—
called thesearch tree. Each node of this tree represents a
branch point from where multiple branches emanate. These
branches may lead to further nodes, which may yet split into
other branches, and so on. The nodes, or branch points, are
termedchoice points, and the branches are termedalterna-
tives, if we were to use Prolog’s terminology [6].

The obvious way to search this tree in parallel is to have
multiple processors explore the different branches of the
search-tree in parallel [18, 16, 17, 19]. Given a search tree,
the model of computation that is typically employed is as
follows. Multiple processors traverse the search tree look-
ing for unexplored branches. If an unexplored branch, i.e.,
an unexplored alternative in a choice point, is found, then
the processor will select it and begin its execution. The pro-
cessor will stop either if it fails, i.e., it determines that the
solution cannot lie on that branch, or if it finds a solution.

In case of failure, or if the solution found is not acceptable
to the user, the processor willbacktrack, i.e., move back up
in the tree, looking for other choice points with untried al-
ternatives to explore. This process of traversing the tree in
parallel is complicated by the need of guaranteeing proper
synchronization between processors, e.g., to guarantee that
no two processors selects the same alternative for execution.

This form of search-based parallelism is commonly
termed or-parallelism. Efficient implementation of or-
parallelism has been extensively investigated in the context
of AI systems [18, 19, 17] as well as for the Prolog language
[10]. In sequential implementations of search-based AI sys-
tems or Prolog, typically one branch of the tree resides on
the stack of the processor at any given time. This simpli-
fies implementation quite significantly—e.g., backtracking
is reduced to a simplepop operation on the main stack.
However, in case of parallel systems, multiple branches of
the tree co-exist at the same time, making the parallel im-
plementation complex. Efficient management of these co-
existing branches is quite a difficult problem, and is referred
to as theenvironment management problem[10].

Most parallel implementation of parallel AI systems and
parallel Prolog systems have focused on shared-memory
machines. Very few attempts have been made to realize
such implementations on scalable distributed memory ma-
chines. It should be noted that the most efficient or-parallel
execution models devised for shared memory machines do
not scale up to distributed memory machines, highlighting
the difficulty of realizing or-parallel systems on distributed
machines.

In this paper we present a method for implement-
ing or-parallelism on distributed memory machines. This
method, calledstack-splitting, reuses efficient implementa-
tion mechanisms devised for or-parallel systems on shared-
memory multiprocessor to obtain scalable implementation
of or-parallelism on distributed memory multiprocessors.
This allows us to support or-parallelism on distributed
memory architectures with reduced communication and
without giving up the use of scheduling mechanisms that
have been found to work well for or-parallelism. Stack-
splitting has the potential to: (i) improve locality of com-
putation, reduce communication between parallel threads,
and increase memory access efficiency (e.g., improve the
caching behavior). (ii) allow the use of better scheduling
strategies (specifically scheduling on bottom-most choice
point [1, 4]) to be realized even in distributed memory im-
plementations of or-parallelism.

In this paper we also present results from implementing
stack-splitting on top of the Muse method [1], one of the
most efficient method for implementing or-parallelism on
shared-memory machines.

2. Implementing Or-parallelism

A major problem in implementing or-parallelism is that
multiple branches of the search tree are active simultane-
ously, each of which may produce a solution or may fail.
Each of these branches may potentially bind a variable cre-
ated earlier during the execution. In normal sequential exe-
cution, where only one branch of the search tree is active at
any given time, the binding for the variable created by that
branch is stored in the memory location allocated for that
variable. During backtracking, this binding is removed—
during theuntrailing phase—so as to free the memory loca-
tion for use by the next branch.

However, during or-parallel execution, this memory lo-
cation will have to be turned into aset of locationsshared
between processors, or some other means would have to
be devised to store the multiple bindings that may exist si-
multaneously. In addition, we should be able to efficiently
distinguish the binding that is applicable to each branch,
when it needs to be accessed later in that branch. This prob-
lem of maintaining multiple bindings efficiently is called
the multiple environments representationproblem. An ex-
tensive discussion can be found in [10] and a complexity-
theoretic analysis of the problem is presented in [21]. Nu-
merous solutions have been devised to solve the multiple
environments representation problem, and a survey of these
techniques can be found in [10].

Stack-copying [1] has been one of the most successful
approaches for solving the multiple environments represen-
tation problem. It has been incorporated in the Muse or-
parallel system [1]. In this approach, processors working in
or-parallel maintain aseparatebut identicaladdress space,
i.e., they allocate their data areas starting at the same logical
addresses. Whenever a processorA working in or-parallel
becomes idle, it will start looking for unexplored alterna-
tives generated by some other processorB. Once a choice
pointp with unexplored alternatives is detected in the com-
putation treeTB generated byB, thenA will create a local
copy ofTB and restart the computation by backtracking over
p and executing one of its unexplored alternatives. The fact
that all the the processors working on or-parallel maintain
an identical logical address space reduces the creation of a
local copy ofTB to a simple block memory copying opera-
tion (Figure 1).

However, the stack-copying operation is slightly more
involved than simply copying data structures, as the choice
points have to be copied to an area accessible to all pro-
cessors. This is important because the set of untried alter-
natives is now shared between the two processors, and if
this set is not accessed in a mutually exclusive way then
two processors may execute the same alternative. Thus, af-
ter copying, the choice point will be transferred to a shared
area. Using the terminology used by Muse, we will refer to

CP Env Heap Trail CP Env Heap Trail

Shared
Part

Root

a

b

a

b

Root

LOCAL SPACE OF P1 LOCAL SPACE OF P2

SHARED
SPACE

P1

P2

Processor P2 picks an untried alternative from choice-
point b created by P1. To begin execution along this
alternative, P2 first transfers the choice-points between
the root node and b (inclusive) in a shared global area,
and then copies P1’s local stacks from root node up
to node b. It untrails the appropriate variables to restore
the computation state that existed when b was first created
and begins the execution of the alternative that was picked.

Figure 1. Stack-copying based Or-parallelism

a choice point transferred to the shared memory area as a
shared frame. Both the processor that copies and the pro-
cessor being copied from, will replace their choice points
with a pointer to the appropriate shared frame. Due to in-
volvement of shared frames, this whole operation of ob-
taining work from another processor is termedsharingof
or-parallel work. In order to reduce the number of sharing
operations performed (since each sharing operation may in-
volve a considerable amount of overhead), unexplored al-
ternatives are always picked from thebottom-mostchoice
point in the tree; during the sharing operation all the choice
points between the bottom-most choice point and the top-
most choice point are shared between the two processors.
This means that in each sharing operation we try to maxi-
mize the amount of work shared between the two proces-
sors. Furthermore, in order to reduce the amount of infor-
mation transferred during the sharing operation, copying is
doneincrementally, i.e., only thedifferencebetweenTA and
TB is actually copied.

3. The Stack-Splitting Model

A major reason for the success of the Muse method is
that it performsscheduling on bottom-most choice point, as
mentioned earlier. That is, an idle processor picks work (an
untried alternative) from the bottom-most choice point of an
or-branch. The stack segments upwards of this choice point
are copied before the exploration of this alternative is be-
gun. The copied stack segments may contain other choice
points with untried alternatives. These alternatives will be
tried via standard backtracking on the copied segments (of
course, they may be picked by other processors looking for
work as well). Thus, a significant amount of work poten-

tially becomes available to the copying processor every time
a copying operation is performed.

The shared frames in the shared memory space have to
be accessed in a mutually exclusive manner, to make sure
that the same alternative is not tried by two processors that
have copies of the same stack-segment. This solution for
building an or-parallel system based on the shared frames
works fine on a shared memory multiprocessor, however, on
a distributed memory machine it becomes a source of signif-
icant overhead, as the operation of accessing the shared area
becomes a bottleneck. This is because sharing of informa-
tion in a distributed memory machine leads to frequent ex-
change of messages and hence considerable overhead. Cen-
tralized data structures, such as the shared frames, are, not
unexpectedly, expensive to realize in a distributed setting.
Nevertheless, stack copying has been considered by most
researchers as the best environment representation method-
ology to support or-parallelism in a distributed memory set-
ting [5, 2]. This is because while the choice points are
shared, at least all other data-structures, such as the envi-
ronment, the trail, and the heap, are not. However, the fact
that the choice points are shared is a major drawback for a
distributed implementation of stack-copying. So the ques-
tion we wish to consider is: can we avoid this sharing of
choice points while doing bottom-most scheduling?

3.1. Copying with Stack Splitting

In the stack-copying technique the primary reason why
a choice point has to be shared is because we want to make
sure that the selection of its untried alternatives by various
active processors is serialized, so that no two processors se-
lect the same alternative. The shared frame is locked while

the alternative is picked, to guarantee this property. How-
ever, there are other simple ways of ensuring that no al-
ternative is simultaneously selected by multiple processors:
we cansplit the untried alternatives of a choice point be-
tween the two copies of the choice point stack. We call
this operationChoice Point Stack Splittingor simply stack-
splitting. This will ensure that no two processors pick the
same alternative—since no alternative is visible to more
than one processor at a time.

We can envision different schemes for splitting the set
of alternatives between the two choice points—e.g., each
choice point receives half of the alternatives, or the parti-
tioning can be guided by additional information regarding
the unexplored computation, such as granularity and like-
lihood of failure. In addition, the need for a shared frame,
as a critical section to protect the alternatives from multiple
executions, has disappeared, as each stack copy has a choice
point, though their contents differ in terms of which unex-
plored alternatives they contain. All the choice points can
be evenly split in this way during the copying operation.
The choice point stack-splitting operation is illustrated in
figure 2.

3.2. Advantages of Stack-splitting

The major advantage of stack-splitting is that schedul-
ing on bottom-most can still be used without incurring huge
communication overheads. Essentially, after splitting, the
different or-parallel threads become fairly independent of
each other, and hence communication is minimized dur-
ing execution. In particular, backtracking on a node that
has been copied from a different processor does not require
anymore the use of mutual exclusion. This makes the stack-
splitting technique highly suitable for distributed memory
machines. The possibility of parameterizing the splitting
of the alternatives based on additional semantic informa-
tion (granularity, non-failure, user annotations) can further
reduce the likelihood of additional communications due to
scheduling.

3.3. Overheads of Stack-splitting

The shared frames in the regular stack-copying tech-
nique is also a place where global information related to
scheduling and work-load is kept. The shared frames pro-
vide a globally accessible description of the or-tree, and
each shared frame keeps information that allows one to de-
termine which processor is working in which part of the
tree. This last piece of information is of particular impor-
tance to support the kind of scheduling typically used in
stack-copying systems—work is taken from the processor
that is “closer” in the computation tree, thus reducing the
amount of information to be copied—since the “distance”

between the processors, and the hence the difference be-
tween their stacks, is minimized. The shared nature of
the frames ensures accessibility to this information to all
processors, all of whom see a consistent picture. How-
ever, because the shared frame no longer exists under the
stack-splitting schema, scheduling and work-load informa-
tion will have to be maintained in some other way. It could
be kept in a global shared area similar to the case of shared
memory machines (e.g., by building a representation of
the or-tree), or distributed over multiple processors and ac-
cessed by message passing in case of non-shared memory
machines. The management of scheduling in a distributed
memory system will require communication between pro-
cessors anyway; the use of stack-splitting allows schedul-
ing on bottom-most and is expected to reduce the amount
of scheduling-related communication needed. In particular,
access to non-local information is needed only when a pro-
cessor runs out of local work, and not at each backtracking
step (as in the case of standard stack copying).

Thus, stack-splitting does not completely remove the
need of a shared description of the computation tree. Never-
theless, the use of stack-splitting can mitigate the impact of
accessing logically shared resources—e.g., stack-splitting
allows scheduling on bottom-most which, in general, re-
duces the number of calls to the scheduler [1].

3.4. The Cost of Stack-splitting

Let us next consider the cost of the stack-splitting op-
eration. The stack-copying operation in the stack-splitting
technique is a little involved, though only slightly more
than in regular (a lá Muse) stack-copying. In regular stack-
copying, the original choice point stack is traversed and the
choice points transferred to the shared area. This opera-
tion involves only those choice points that have never been
shared before—if a choice point is already shared, then its
copy already resides in the global shared memory-area. The
update of the actual entries in the choice point stacks of the
the processors takes place only after the appropriate choice
points have been copied to the global shared area.

In the stack splitting technique, after the copying is done,
we need to traverse both the stacks, splitting the untried
alternatives in the choice points of the two stacks. In the
case of shared memory implementations, this operation is
expected to be considerably cheaper than transferring the
choice point to the shared area. The actual splitting can be
represented by a simple pair of indices that refer to the list
of alternatives (which is static and shared by all the proces-
sors). In the case of distributed memory implementations,
the situation is similar: since each processor maintains a
local copy of the code, the splitting can be performed by
communicating to the copying processor which alternatives
it can execute for each choice point (e.g., described as a pair

Fig (i): Processor P1 is busy and P2 idle

a2 a3 a4

a1

b1
b2 b3 b4

c1
c2 c3 c4

P1

P2

idle

copied split choicepoint

untried alternative

Pi processor

LEGEND:

choicepoint

Fig (ii): P1’s Tree after Stack Splitting

a2
a1

b1
b2

c1

P1

c3

Fig (iii): P2’s Tree after Stack Splitting

a3 a4

a1

b1
b3 b4

c2 c4

P2

Figure 2. Stack-splitting based or-parallelism

of pointers to the static list of alternatives).
Thus, in both cases we expect the sharing operation to

have comparable complexity; a slight delay may occur in
the shared memory case, due to the need of performing a
traversal of the choice point stack in both the processors. On
the other hand, in stack-splitting the two traversals (one in
the copying processor and one in the processor from where
we are copying) can be overlapped—in the original stack
copying scheme the copying processor is instead suspended
until the other processor has completed the sharing opera-
tion. However, if the stack being copied is itself a copy of
some other stack, then unlike regular stack-copying, we still
need to traverse both the source and the target stacks and
split the choice points. In such cases, the cost of the sharing
operation will be slightly higher than the cost of copying in
regular stack-copying.

Once a processor picks work from another processor, it
will look for work again only after it finishes the exploration
of this alternatives, as well as all the alternatives it acquired
via stack-splitting. Incremental copying and other opti-
mizations developed for Muse still apply to stack-splitting,
though some extra work is needed. Each processor has
knowledge of the parts of its stack which are shared (this
information is available locally to the processor). These
shared parts, if possible, should not be immediately deal-
located on backtracking; otherwise, when work is picked
from other processors, these shared parts will have to be
copied again.

3.5. Optimizing Stack-splitting Cost

The cost incurred in splitting the untried alternatives be-
tween the copied stack and the stack from which the copy
is made, can be eliminated by amortizing it over the opera-
tion of picking untried alternatives during backtracking, as
shown next.

In the modified approach, no traversal and modification
of the choice points is done during the copying operation.

The untried alternatives are organized as a binary tree (see
Figure 3). Note that the binary alternatives can be efficiently
maintained in an array, using standard techniques found in
any data-structures textbook. In addition, each choice point
maintains the “copying distance” from the very first original
choice point as a bit string. This number is initially 0 when
the computation begins. When stack-splitting takes place
and a choice point whose bit string isn is copied from, then
the new choice point’s bit string isn1 (1 tagged to bit string
n), while the old choice point’s bit string is changed ton0
(0 tagged to bit stringn). When a processor backtracks to
a choice point, it will use its bit string to navigate in the
tree of untried alternatives, and find the alternatives that it is
responsible for. For example, if the bit-string of a processor
is 10, then it means that all the alternatives in the left subtree
of the right subtree of the binary tree are to be executed by
that processor.

However, it is not very clear which of the two
strategies—incurring cost of splitting at copying timevs
amortizing the cost over the operation of picking untried
alternatives—would be more efficient. In case of amortiza-
tion, the cost of picking an alternative from a choice point is,
of course, now slightly higher, as the binary tree of choice
points needs to be traversed to find the right alternative.

3.6. Applicability and Effectiveness

Stack splitting essentially approximates static work dis-
tribution, as the untried alternatives are split at the time of
picking work. If the choice points that are split are balanced,
then we can expect good performance. Thus, we should ex-
pect to see good performance when the choice points gener-
ated by the computation that are parallelized contain a large
number of alternatives. This is the case for applications
which fetch data from databases and for most generate &
test type of applications.

For choice points with a small number of alternatives, the
stack-splitting scheme is more susceptible to problems cre-

nodes of choicepoint tree

pointer to tree of untried alternatives

Pi processor

LEGEND:

choicepoint

a1

P1
a2 a3 a4 a5

Choicepoint
 Tree

Figure 3. Amortizing Splitting Overhead

ated by the static work distribution strategy that implicitly
results from it: for example, in cases where or-parallelism
is extracted from choice points with only two alternatives.
Such choice points arise quite frequently, since many pro-
grams generate or-parallelism from predicates likemem-
ber andselect:

member(X,[X | _]).
member(X,[_ | Y]) :-

member(X,Y).

select(X,[X | Y],Y).
select(X,[Y | Z],[Y | R]) :-

select(X,Z,R).

Both these predicates generate choice points with only
two alternatives each—thus, at the time of sharing, a single
alternative will be available in each choice point. The dif-
ferent alternatives are spread across different choice points.
Stack splitting would assign all the alternatives to the copy-
ing processor, thus leaving the original processor without
local work. However, the problems raised by such situa-
tions can be solved using a number of techniques discussed
in [9]. Most significant of these is the technique ofvertical
splitting of the choice points. In vertical splitting each pro-
cessor is given all the alternatives of alternate choice points.
Thus, in this case, the alternatives are not split, rather the
list of choice points available is split between the two pro-
cessors [9].

3.7. Performance Evaluation

The stack-splitting technique has been implemented by
modifying the Muse or-parallel system, which is itself re-
alized on top of the SICStus Prolog (SICStus 2.1) system
from the Swedish Institute of Computer Science. The first
prototype of stack-splitting has been developed on shared-
memory architectures. The goal of this prototype is to per-
form a preliminary feasibility study of the ideas discussed
in this paper. Porting on distributed-memory architectures
is currently in progress.

The timing results in seconds along with speedups ob-
tained are shown in Table 1 and Table 2. All the bench-
marks for which results are reported involve search. The
benchmarks used are classical benchmarks used for evalu-
ating the parallel behavior of or-parallel systems—and they
have been mostly taken from the benchmarks pool of or-
parallel systems Muse and Aurora.

The results reported in this paper have been obtained on:
(i) A Pentium-Pro 200Mhz 4-node shared memory work-
station, running Solaris 2.7 (software compiled using gcc);
(ii) An 8-node Sequent shared memory system, running
Dynix. The Sequent hardware is relatively old and slow
with respect to current industry standards. Nevertheless it
gives a good feeling for the parallel behavior of the system
and it represents the largest parallel shared memory system
currently available to us. Experiments on Pentium-based
and Sparc-based parallel systems have provided compara-
ble speedups.

The results presented in Table 1 illustrates the execution
times and speedups observed on the Sequent system. In
particular the table presents for each benchmark

� the execution times (in seconds)—the figures reported
are the average execution times over a sequence of 10
runs;

� the relative speedups obtained for different number of
processors;

Additionally, the table presents the results obtained us-
ing the Muse or-parallel system and the or-parallel system
based on Stack Splitting. Table 2 presents the results (time
in milliseconds) obtained on the Pentium-pro hardware. It
can be observed that the speedups on the two systems are
very similar.

All benchmarks have been executed by requiring the sys-
tem to exploit parallelism only from selected promising
predicates, and by declaring all other predicates sequential
(i.e., non-parallelizable). We believe this situation better
reflects the kind of behavior needed to guarantee adequate
performance in a distributed execution (which remains the

Benchmark # Processors
1 3 5 7

Muse SS Muse SS Muse SS Muse SS

Tina 21.4 22.5 25.1 (0.85) 10.1 (2.22) 25.1 (0.85) 8.3 (2.71) 25.0 (0.85) 7.6 (2.97)
Large 131.7 144.9 118.0 (1.12) 54.3 (2.67) 120.1 (1.1) 38.8 (3.73) 118.4 (1.11) 32.3 (4.49)

Queens1 56.8 63.6 49.8 (1.14) 39.5 (1.61) 42.9 (1.32) 36.1 (1.76) 42.1 (1.35) 34.4(1.85)
FQueens 51.3 59.0 18.8 (2.72) 24.5 (2.41) 10.8 (4.77) 13.1 (4.51) 7.5 (6.88) 9.9 (5.95)

Salt 98.8 104.7 38.7 (2.55) 36.2 (2.89) 25.1 (3.93) 23.3 (4.5) 18.6 (5.32) 18.2 (5.76)
Solitaire 22.9 24.4 8.4 (2.71) 8.7 (2.8) 5.3 (4.29) 5.6 (4.37) 4.6 (4.95) 4.1 (5.91)
Houses 37.1 41.2 13.7 (2.71) 14.5 (2.84) 8.9 (4.18) 9.3 (4.45) 6.7 (5.53) 6.9 (5.92)

constraint 67.0 69.7 25.0 (2.68) 25.7 (2.71) 15.2 (4.42) 15.5 (4.49) 10.6 (6.35) 10.8 (6.44)

Table 1. Execution Times on Sequent: Muse vs. Stack-Splitting

ultimate goal of the stack-splitting model). All the bench-
marks have been executed using all-solutions queries.

As can be seen in Table 1, stack-splitting leads in gen-
eral to better speed-ups. The execution time of the stack-
splitting system is occasionally slightly worse than the ex-
ecution times of Muse—on average the sequential stack-
splitting system is 5% to 12% slower than sequential Muse.
This is due to: (i) the temporary removal of some sequential
optimizations from the stack-splitting system, to facilitate
the development of the initial prototype; and, (ii) the pres-
ence of one additional comparison during the backtracking
phase—needed to distinguish between choice points that
have been split and those that have not. The first problem
will be solved in the next version of the prototype. The
second problem is inherent in the current representation of
the alternatives in the choice points used by the SICStus
system (on which the stack-splitting system has been de-
veloped). All choice points associated to the same predi-
cate share the same list of alternatives. This complicates the
implementation of stack-splitting, as the list of alternatives
cannot be directly manipulated (as this may potentially af-
fect other choice points as well). The simple alternative of
duplicating the list of alternatives proved too inefficient. At
present we have introduced two pointers in the choice point
to maintain the segment of alternatives list of interest—and
this leads to the need of discriminating between split and
non-split choice points during backtracking. The adoption
of a different, alternative representation in the engine could
solve this problem—but requires drastic changes to the ba-
sic sequential engine and to the compiler.

In the case ofTina benchmark, the Muse system suffers
a slowdown irrespective of the number of processors em-
ployed. This behavior is rather unusual (and at odds with
the speed-ups reported forTina in the literature for Muse).
We conjecture it originates from the fact that we have ex-
plicitly identified all choice points as parallel or sequential.
Stack-splitting is instead capable of extracting parallelism
from this benchmark reaching a maximum speedup of about
3. Another interesting benchmark isLargewhich generates

a small and balanced number of relatively deep branches—
an ideal situation for the splitting approach. Muse obtains
marginal speed-up, while stack-splitting produces consider-
ably better speedups. Better parallel behavior is obtained
for almost all benchmarks, exceptFQueens. This bench-
mark generates a single choice point with a very large num-
ber of alternatives, and each alternative is small and leads
quickly to success or failure. In this case stack-splitting
pays the price of a slightly more expensive sharing phase.
Nevertheless this is clearly not the kind of situations in
which distributed execution is desired.

An implementation of the stack-splitting method is in
progress on a distributed network of shared-memory mul-
tiprocessors (on a Beowulf Myrinet-based system with
Pentium-2 nodes). From the analysis and discussion pre-
sented above, it is apparent that stack-splitting should per-
form well on distributed memory machines, primarily be-
cause of better locality and because it leads to reduced com-
munication. A low-level performance study of our shared
memory implementation of stack-splitting implementation
is in progress using the SimICS Sparc multiprocessor simu-
lator. The low level performance study of caching behavior,
locality of access, etc., will give us an indication of what
kind of performance to expect from a distributed implemen-
tation of stack-splitting.

Benchmark # Processors
1 2 3

Tina 1215 719 (1.69) 535 (2.27)
Large 8093 4422 (1.83) 3065 (2.64)

Queens1 3520 2466 (1.43) 2207 (1.59)
Salt 6117 3274 (1.87) 2155 (2.84)

Solitaire 1364 704 (1.94) 488 (2.79)
Houses 2425 1263 (1.92) 859 (2.82)

constraint 3030 1569 (1.93) 1102 (2.75)

Table 2. Execution Times on Solaris X86

4. Conclusion and Related Work

In this paper, we presented a technique called stack-
splitting for implementing or-parallelism and discussed its
advantages and disadvantages. Stack-splitting is an im-
provement of stack-copying. Its main advantage, com-
pared to other well-known techniques for implementing or-
parallelism, is that it allows coarse-grain work to be picked
up by idle processors and be executed efficiently without
incurring excessive communication overhead.

Distributed implementation of AI systems has been a
reasonably active area of research. There are several
projects in which a specific AI system has been taken
and parallelized on distributed memory multiprocessors
[15, 22, 8, 12, 7, 17, 16, 18, 19]. Distributed implementation
of Prolog have also been attempted [2, 5]. However, none
of these systems are very effective in producing speedups
over a wide range of benchmarks. Distributed implementa-
tions of Prolog have been attempted on Transputer systems
(The Opera System [23] and the system of Benjumea and
Troya [3]). Of these, Benjumea and Troya’s system has
produced quite good results. However, both the OPERA
system and the Benjumea and Troya’s system have been
developed on now-obsolete Transputer hardware, and, ad-
ditionally, both rely on a stack-copying mechanism which
will produce poor performance in programs where the task-
granularity is small. We hope that our distributed imple-
mentation of Prolog based on stack-splitting will be supe-
rior to these aforementioned distributed implementations.
A distributed parallel implementation of Prolog based on
stack-copying, with ALS Prolog system (www.als.com) as
the underlying engine, is planned in the near future.

References

[1] K.A.M. Ali and R. Karlsson. The MUSE Approach to Or-
parallel Prolog. InInt’l J. of Parallel Prog., 19(2):129–162,
1990.

[2] L. Araujo and J.J. Ruz. A Parallel Prolog System for
Distributed Memory. InJournal of Logic Programming,
33(1):49-79, 1997.

[3] V. Benjumea and J. M. Troya. An OR Parallel Prolog
Model for Distributed Memory Systems. InProcs. of PLILP
Springer Verlag, LNCS 714, pp. 291-301, 1993.

[4] A. Beaumont and D.H.D. Warren. Scheduling Parallel Work
in Or-parallel Prolog Systems. InProc. International Confer-
ence on Logic Programming. pp. 135-150. MIT Press. 1993.

[5] L. F. Castro, C. Geyer et al. DAOS: Distributed And-Or in
Scalable Systems. Technical Report. Department of Com-
puter Science, Federal University of Rio Grande del Sul,
Brazil, 1998.

[6] J. C. de Kergommeaux, P. Codognet. Parallel Logic Pro-
gramming Systems: A Survey. InComputing Surveys, 26(3):
295-336, 1994.

[7] M. Dixon and J. de Kleer. Massively parallel assumption-
based truth maintenance. LNAI, Springer-Verlag. pp. 131–
142. 1989.

[8] J. Gu. Parallel Algorithms and Architectures for Very Fast
AI Search University of Utah, 1989

[9] G. Gupta and E. Pontelli. Stack-splitting: A Simple Tech-
nique for Implementing Or-parallelism and And-parallelism
on Distributed Machines. NMSU Tech. Rep. May 1999.

[10] G. Gupta and B. Jayaraman. Analysis of Or-parallel Exe-
cution Models.ACM Transactions On Programming Lan-
guages and Systems (ACM TOPLAS). Vol 15. No. 4. Septem-
ber 1993. pp. 659-680.

[11] D.A. Kranz, et al. Mul-T: A High-Performance Parallel Lisp.
In ACM Programming Lang. Design and Impl., pp. 81-90,
1989.

[12] A. Jindal, R. Overbeek, W. C. Kabat. Exploitation of paral-
lel processing for implementing high-performance deduction
systems.Journal of Automated Reasoning, 8(1), pp. 23–38,
1992.

[13] J. Hendler et al. Massively Parallel Support for a Case-based
Planning System. In Proceedings of the Ninth IEEE Confer-
ence on AI Applications, Orlando, Florida, March 1993.

[14] H. Kitano, J. A. Hendler (eds.).Massive Parallel Artificial
Intelligence, AAAI Press/MIT Press, Menlo Park, 1994.

[15] J.S. Kowalik.Parallel Computation and Computers for Arti-
ficial Intelligence. Kluwer Academic Publishers. 1987.

[16] V. Kumar, P. S. Gopalakrishnan, L. N. Kanal (eds.),Parallel
Algorithms for Machine Intelligence and Vision. Springer-
Verlag, 1990.

[17] V. Kumar and L. N. Kanal. Parallel Branch-and-Bound For-
mulation for AND/OR Tree Search. InIEEE Transactions
on Pattern Analysis and Machine Intelligence. Volume 6, pp.
768–788. 1984.

[18] V. Kumar and J. N. Rao, Parallel Depth-First Search on Mul-
tiprocessors Part II: Implementation. InInternational Jour-
nal of Parallel Programming, 16(6), pp. 479-499, 1987.

[19] T-H. Lai and S. Sahni. Anomalies in Parallel Branch-and-
Bound Algorithms. InCommunications of the ACM, 27(6):
594-602, 1984.

[20] E. Lusk, D.H.D. Warren, et. al. The Aurora Or-Prolog Sys-
tem. InNew Generation Computing, Vol. 7, No. 2,3, pp. 243-
273, 1990

[21] E. Pontelli, D. Ranjan, G. Gupta. On the Complexity of Or-
parallelism.New Generation Computing, 1999 (to appear).

[22] N. Takahashi et al. Example-Based Machine Translation on
a Massively Parallel Processor. InProcs. of IJCAI, 1993.

[23] O. Werner, A. C. Yamin, J. L. V. Barbosa, C. F. R. Geyer.
OPERA Project: An Approach Towards Parallelism Ex-
ploitation on Logic Programming. InProcs. of WLP, pp. 20-
23, 1994.

