Efficient Techniques for Distributed Implementation of Search-based Al Systents

Gopal Gupta and Enrico Pontelli
Laboratory for Logic, Databases and Advanced Programming
Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, USA
http://www.cs.nmsu.edu/lldap

Abstract search-based Al system. Two approaches have been gen-
erally been followed: (i) techniques have been developed
We study the problem of exploiting parallelism from and implemented for extracting parallelism from specific
search-based Al systems on distributed machines. WeAIl systems (e.g., [13, 14]), (i) techniques have been de-
propose stack-splitting, a technique for implementing or- veloped and implemented for extracting parallelism from
parallelism, which when coupled with appropriate schedul- language constructs in programming languages that are typ-
ing strategies leads to: (i) reduced communication during ically used for coding Al applications (e.g., Prolog, or Lisp)
distributed execution; and, (ii) distribution of larger grain- [6, 11]. In both cases, it is the operation of searching the
sized work to processors. The modified technique can alscsolution-space that is parallelized. It should also be men-
be implemented on shared memory machines and shouldioned that most work on exploiting parallelism falls under
be quite competitive with existing methods. Indeed, an im-(ii). Nearly not as much work has been done on (i), for the
plementation has been carried out on shared memory ma-obvious reason that (i) represents a more general approach.
chines, and the results are reported here. Within (ii) considerable work has been done on paralleliz-
ing Prolog. In the rest of the paper, we will present our tech-
nigues and results in the context of parallel Prolog, though
they can equally well be applied to specific Al systems that
incorporate searching, as well as other languages that in-
corporate search mechanisms to facilitate programming of
Artificial Intelligence (Al) is an active field of research, search-based Al applications.
that has found applications in diverse areas. The field of Al |mplementing search (parallel or sequential) requires
is very broad and one can find several types of Al systems:that we have a representation of the search space in the
those based on neural netWOka, those based on tree/graﬂi’bmputer’s memory. This representaﬂon is usua”y atree—
search, image recognition systems, etc. In this paper we ar@alled thesearch tree Each node of this tree represents a
primarily interested in Al systems that rely on traversing a pranch point from where multiple branches emanate. These
large search-space, looking for a solution that satisfies ceryranches may lead to further nodes, which may yet split into
tain criteria [17, 16, 18]. We refer to such systems as searchyther branches, and so on. The nodes, or branch points, are
based Al systems. Game playing programs, expert systemsermedchoice pointsand the branches are termaterna-
constraint solving applications, and discourse analysis sys+jves if we were to use Prolog’s terminology [6].
tems are example of such search-based Al systems. Such The ghvious way to search this tree in parallel is to have
search-based Al systems can take a lot of time to find & tiple processors explore the different branches of the
solution, as the search space can be enormous. Given thgearch-tree in parallel [18, 16, 17, 19]. Given a search tree,
compute-intensive nature of search-based Al systems, parhe model of computation that is typically employed is as
allel execution is an obvious technique that comes to mindq|iows. Multiple processors traverse the search tree look-
to speed-up the search. In fact, considerable research hagg for unexplored branches. If an unexplored branch, i.e.,
been done [18, 16, 19, 17, 6] on exploiting parallelism from 55 ynexplored alternative in a choice point, is found, then

~Authors are partially supported by NSF grants CCR 96-25358, INT the processor will select it and begin its execution. The pro-

95-15256, CDA 97-29848, HRD 96-28450, EIA 98-10732, and CCR- cessor will StOp either if it faiIS, i.e., it determines that the
9900320 and a grant from the Fullbright US-Spain Program. solution cannot lie on that branch, or if it finds a solution.

1. Introduction

In case of failure, or if the solution found is not acceptable 2. Implementing Or-parallelism
to the user, the processor whlacktrack i.e., move back up
in the tree, looking for other choice points with untried al-

terna:ltl\igs to exp?.lore. dTS'S Erocesz Off traversing ',[he tree 'Mmultiple branches of the search tree are active simultane-
parallel is complicated by the need of guaranteeing prOperously, each of which may produce a solution or may fail.

synchronization between processors, e.g., t-o guarantee ,thaéach of these branches may potentially bind a variable cre-
no two processors selects the same alternative for execut|onateol earlier during the execution. In normal sequential exe-

This form of search-based parallelism is commonly cution, whe_re only one b_ranch of the sgarch tree is active at
termed or-parallelism ~ Efficient implementation of or- ~ any given time, the binding for the variable created by that
parallelism has been extensively investigated in the context®ranch is stored in the memory location allocated for that
of Al systems [18, 19, 17] as well as for the Prolog language varliable. Dur|n'g backtracking, this binding is removed—
[10]. In sequential implementations of search-based Al sys-during theuntrailing phase—so as to free the memory loca-
tems or Prolog, typically one branch of the tree resides onfion for use by the next branch.
the stack of the processor at any given time. This simpli- However, during or-parallel execution, this memory lo-
fies implementation quite significantly—e.g., backtracking cation will have to be turned into set of locationshared
is reduced to a simplpop operation on the main stack. Petween processors, or some other means would have to
However, in case of parallel systems, multiple branches ofbe devised to store the multiple bindings that may exist si-
the tree co-exist at the same time, making the parallel im- multaneously. In addition, we should be able to efficiently
plementation complex. Efficient management of these co-distinguish the binding that is applicable to each branch,
existing branches is quite a difficult problem, and is referred When it needs to be accessed later in that branch. This prob-
to as theenvironment management probl¢ho)]. lem of maintaining multiple bindings efficiently is called

the multiple environments representatipnoblem. An ex-

Most parallel implementation of parallel Al systems and tensive discussion can be found in [10] and a complexity-
parallel Prolog systems have focused on shared-memorytheoretic analysis of the problem is presented in [21]. Nu-
machines. Very few attempts have been made to realizemerous solutions have been devised to solve the multiple
such implementations on scalable distributed memory ma-environments representation problem, and a survey of these
chines. It should be noted that the most efficient or-parallel techniques can be found in [10].

execution models devised for shared memory machines do gtack-copying [1] has been one of the most successful
not scale up to distributed memory machines, highlighting approaches for solving the multiple environments represen-
the difficulty of realizing or-parallel systems on distributed tation problem. It has been incorporated in the Muse or-
machines. parallel system [1]. In this approach, processors working in

In this paper we present a method for implement- or-parallel maintain @eparatebutidenticaladdress space,

ing or-parallelism on distributed memory machines. This i.e., they allocate their data areas startir_ng at the same logical
method, calleagstack-splitting reuses efficient implementa- addresse;. Whengver a procgs&oworkmg in or-parallel
tion mechanisms devised for or-parallel systems on shared-becOmes idle, it will start looking for unexplored alterna-

memory multiprocessor to obtain scalable implementa’tiont'\/(.aS geqerated by some other.proc.eisoOnce a choice
of or-parallelism on distributed memory multiprocessors. pointp with unexplored alternatives is detected in the com-

This allows us to support or-parallelism on distributed putation tre€7s generated big, thenA will create a[ocal

memory architectures with reduced communication and copy of7s anq restartthg computation by backFrackmg over
without giving up the use of scheduling mechanisms that ” and executing one of its unexplored alternatives. The fact
have been found to work well for or-parallelism. Stack- that all the the processors working on or-parallel maintain

splitting has the potential to: (i) improve locality of com- an identical logical address space reduces the creation of a

putation, reduce communication between parallel threads,lf)Cal copy of7s to a simple block memory copying opera-

and increase memory access efficiency (e.g., improve thel'on (Figure 1). . o
However, the stack-copying operation is slightly more

caching behavior). (ii) allow the use of better scheduling . ; b ,
strategies (specifically scheduling on bottom-most choice NVolved than simply copying data structures, as the choice

point [1, 4]) to be realized even in distributed memory im- POINts have to be copied to an area accessible to all pro-
plementations of or-parallelism. cessors. This is important because the set of untried alter-

natives is now shared between the two processors, and if
In this paper we also present results from implementing this set is not accessed in a mutually exclusive way then
stack-splitting on top of the Muse method [1], one of the two processors may execute the same alternative. Thus, af-
most efficient method for implementing or-parallelism on ter copying, the choice point will be transferred to a shared
shared-memory machines. area. Using the terminology used by Muse, we will refer to

A major problem in implementing or-parallelism is that

LOCAL SPACE OF P1 LOCAL SPACE OF P2

CP
|
|
/

Env Heap Trail Env Heap Trail

Part

CP

Root
Shared q
O

P2

P1
Processor P2 picks an untried alternative from choice-

point b created by P1. To begin execution along this h4 Root
alternative, P2 first transfers the choice-points between O
[/ a
b

the root node and b (inclusive) in a shared global area,

and then copies P1's local stacksfrom root node up
tonodeb. It untrailsthe appropriate variables to restore

the computation state that existed when b wasfirst created
and begins the execution of the alternative that was picked.

SHARED
SPACE

Figure 1. Stack-copying based Or-parallelism

a choice point transferred to the shared memory area as dially becomes available to the copying processor every time
shared frame Both the processor that copies and the pro- a copying operation is performed.

cessor being copied from, will replace their choice points The shared frames in the shared memory space have to
with a pointer to the appropriate shared frame. Due to in- be accessed in a mutually exclusive manner, to make sure
volvement of shared frames, this whole operation of ob- that the same alternative is not tried by two processors that
taining work from another processor is termsuhring of have copies of the same stack-segment. This solution for
or-parallel work. In order to reduce the number of sharing building an or-parallel system based on the shared frames
operations performed (since each sharing operation may in4works fine on a shared memory multiprocessor, however, on
volve a considerable amount of overhead), unexplored al-a distributed memory machine it becomes a source of signif-
ternatives are always picked from thettom-mosthoice icant overhead, as the operation of accessing the shared area
point in the tree; during the sharing operation all the choice becomes a bottleneck. This is because sharing of informa-
points between the bottom-most choice point and the top-tion in a distributed memory machine leads to frequent ex-
most choice point are shared between the two processorschange of messages and hence considerable overhead. Cen-
This means that in each sharing operation we try to maxi- tralized data structures, such as the shared frames, are, not
mize the amount of work shared between the two proces-unexpectedly, expensive to realize in a distributed setting.
sors. Furthermore, in order to reduce the amount of infor- Nevertheless, stack copying has been considered by most
mation transferred during the sharing operation, copying is researchers as the best environment representation method-
doneincrementallyi.e., only thedifferencebetweer 4 and ology to support or-parallelism in a distributed memory set-

T is actually copied. ting [5, 2]. This is because while the choice points are
shared, at least all other data-structures, such as the envi-
3. The Stack-SpIitting Model ronment, the trail, and the heap, are not. However, the fact

that the choice points are shared is a major drawback for a

] _ distributed implementation of stack-copying. So the ques-
A major reason for the success of the Muse method istjon we wish to consider is: can we avoid this sharing of

that it performsscheduling on bottom-most choice poss ¢hojce points while doing bottom-most scheduling?
mentioned earlier. That is, an idle processor picks work (an
untried alternative) from the bottom-most choice point of an
or-branch. The stack segments upwards of this choice poin
are copied before the exploration of this alternative is be-
gun. The copied stack segments may contain other choice In the stack-copying technique the primary reason why

points with untried alternatives. These alternatives will be a choice point has to be shared is because we want to make
tried via standard backtracking on the copied segments (ofsure that the selection of its untried alternatives by various

course, they may be picked by other processors looking foractive processors is serialized, so that no two processors se-
work as well). Thus, a significant amount of work poten- lect the same alternative. The shared frame is locked while

3-1. Copying with Stack Splitting

the alternative is picked, to guarantee this property. How- between the processors, and the hence the difference be-
ever, there are other simple ways of ensuring that no al-tween their stacks, is minimized. The shared nature of
ternative is simultaneously selected by multiple processors:the frames ensures accessibility to this information to all
we cansplit the untried alternatives of a choice point be- processors, all of whom see a consistent picture. How-
tween the two copies of the choice point stack. We call ever, because the shared frame no longer exists under the
this operatiorChoice Point Stack Splittingr simply stack- stack-splitting schema, scheduling and work-load informa-
splitting. This will ensure that no two processors pick the tion will have to be maintained in some other way. It could
same alternative—since no alternative is visible to more be kept in a global shared area similar to the case of shared
than one processor at a time. memory machines (e.g., by building a representation of
We can envision different schemes for splitting the set the or-tree), or distributed over multiple processors and ac-
of alternatives between the two choice points—e.g., eachcessed by message passing in case of non-shared memory
choice point receives half of the alternatives, or the parti- machines. The management of scheduling in a distributed
tioning can be guided by additional information regarding memory system will require communication between pro-
the unexplored computation, such as granularity and like-cessors anyway; the use of stack-splitting allows schedul-
lihood of failure. In addition, the need for a shared frame, ing on bottom-most and is expected to reduce the amount
as a critical section to protect the alternatives from multiple of scheduling-related communication needed. In particular,
executions, has disappeared, as each stack copy has a choieecess to non-local information is needed only when a pro-
point, though their contents differ in terms of which unex- cessor runs out of local work, and not at each backtracking
plored alternatives they contain. All the choice points can step (as in the case of standard stack copying).
be evenly split in this way during the copying operation. Thus, stack-splitting does not completely remove the
The choice point stack-splitting operation is illustrated in need of a shared description of the computation tree. Never-
figure 2. theless, the use of stack-splitting can mitigate the impact of
accessing logically shared resources—e.g., stack-splitting
allows scheduling on bottom-most which, in general, re-

3.2. Advantages of Stack-splitting duces the number of calls to the scheduler [1].

The major advantage of stack-splitting is that schedul- o
ing on bottom-most can still be used without incurring huge 3-4- The Cost of Stack-splitting
communication overheads. Essentially, after splitting, the
different or-parallel threads become fairly independent of Let us next consider the cost of the stack-splitting op-
each other, and hence communication is minimized dur-eration. The stack-copying operation in the stack-splitting
ing execution. In particular, backtracking on a node that technique is a little involved, though only slightly more
has been copied from a different processor does not requirghan in regulard la Muse) stack-copying. In regular stack-
anymore the use of mutual exclusion. This makes the stack-copying, the original choice point stack is traversed and the
splitting technique highly suitable for distributed memory choice points transferred to the shared area. This opera-
machines. The possibility of parameterizing the splitting tion involves only those choice points that have never been
of the alternatives based on additional semantic informa-shared before—if a choice point is already shared, then its
tion (granularity, non-failure, user annotations) can further copy already resides in the global shared memory-area. The
reduce the likelihood of additional communications due to update of the actual entries in the choice point stacks of the

scheduling. the processors takes place only after the appropriate choice
points have been copied to the global shared area.
3.3. Overheads of Stack-splitting In the stack splitting technique, after the copying is done,

we need to traverse both the stacks, splitting the untried

The shared frames in the regular stack-copying tech-alternatives in the choice points of the two stacks. In the
nigue is also a place where global information related to case of shared memory implementations, this operation is
scheduling and work-load is kept. The shared frames pro-expected to be considerably cheaper than transferring the
vide a globally accessible description of the or-tree, and choice point to the shared area. The actual splitting can be
each shared frame keeps information that allows one to de+epresented by a simple pair of indices that refer to the list
termine which processor is working in which part of the of alternatives (which is static and shared by all the proces-
tree. This last piece of information is of particular impor- sors). In the case of distributed memory implementations,
tance to support the kind of scheduling typically used in the situation is similar: since each processor maintains a

stack-copying systems—work is taken from the processorlocal copy of the code, the splitting can be performed by
that is “closer” in the computation tree, thus reducing the communicating to the copying processor which alternatives
amount of information to be copied—since the “distance” it can execute for each choice point (e.g., described as a pair

''''''
.....

LEGEND:
® choi cepoint
@ copied split choicepoint

! untried alternative

cl)
processor

Fig (i): Processor P1isbusy and P2 idle Fig (ii): P1'sTree after Stack Splitting Fig (iii): P2's Tree after Stack Splitting

Figure 2. Stack-splitting based or-parallelism

of pointers to the static list of alternatives). The untried alternatives are organized as a binary tree (see
Thus, in both cases we expect the sharing operation toFigure 3). Note that the binary alternatives can be efficiently
have comparable complexity; a slight delay may occur in maintained in an array, using standard techniques found in
the shared memory case, due to the need of performing aany data-structures textbook. In addition, each choice point
traversal of the choice point stack in both the processors. Onmaintains the “copying distance” from the very first original
the other hand, in stack-splitting the two traversals (one in choice point as a bit string. This number is initially 0 when
the copying processor and one in the processor from whergdhe computation begins. When stack-splitting takes place
we are copying) can be overlapped—in the original stack and a choice point whose bit stringriss copied from, then
copying scheme the copying processor is instead suspendethe new choice point’s bit string isl (1 tagged to bit string
until the other processor has completed the sharing operan), while the old choice point’s bit string is changeditod
tion. However, if the stack being copied is itself a copy of (0 tagged to bit string:). When a processor backtracks to
some other stack, then unlike regular stack-copying, we stilla choice point, it will use its bit string to navigate in the
need to traverse both the source and the target stacks anttee of untried alternatives, and find the alternatives that it is
split the choice points. In such cases, the cost of the sharingesponsible for. For example, if the bit-string of a processor
operation will be slightly higher than the cost of copying in is 10, then it means that all the alternatives in the left subtree
regular stack-copying. of the right subtree of the binary tree are to be executed by
Once a processor picks work from another processor, itthat processor.
will look for work again only after it finishes the exploration
of this alternatives, as well as all the alternatives it acquired

via stack-splitting. - Incremental copying and other opti- 54rizing the cost over the operation of picking untried
mizations developed for Muse still apply to stack-splitting, 4 termatives—would be more efficient. In case of amortiza-
though some extra work is needed. Each processor Nagi,, the cost of picking an alternative from a choice pointis,
knowledge of the parts of its stack which are shared (this of course, now slightly higher, as the binary tree of choice

information is available locally to the processor). These ,ints needs to be traversed to find the right alternative.
shared parts, if possible, should not be immediately deal-

located on backtracking; otherwise, when work is picked 5 g Applicability and Effectiveness
from other processors, these shared parts will have to be

However, it is not very clear which of the two
strategies—incurring cost of splitting at copying tinae

copied again. Stack splitting essentially approximates static work dis-
o o tribution, as the untried alternatives are split at the time of
3.5. Optimizing Stack-splitting Cost picking work. If the choice points that are split are balanced,

then we can expect good performance. Thus, we should ex-
The cost incurred in splitting the untried alternatives be- pect to see good performance when the choice points gener-
tween the copied stack and the stack from which the copyated by the computation that are parallelized contain a large
is made, can be eliminated by amortizing it over the opera- number of alternatives. This is the case for applications
tion of picking untried alternatives during backtracking, as which fetch data from databases and for most generate &
shown next. test type of applications.
In the modified approach, no traversal and modification For choice points with a small number of alternatives, the
of the choice points is done during the copying operation. stack-splitting scheme is more susceptible to problems cre-

LEGEND:

@ choicepoint
0 . N Y

nodes of choicepoint tree Choi cepoi nt
i pointer to tree of untried alternatives al /D\ Tree

a2 a3 a4 a5

processor

Figure 3. Amortizing Splitting Overhead

ated by the static work distribution strategy that implicitly The timing results in seconds along with speedups ob-
results from it: for example, in cases where or-parallelism tained are shown in Table 1 and Table 2. All the bench-
is extracted from choice points with only two alternatives. marks for which results are reported involve search. The
Such choice points arise quite frequently, since many pro-benchmarks used are classical benchmarks used for evalu-

grams generate or-parallelism from predicates likem- ating the parallel behavior of or-parallel systems—and they
ber andselect: have been mostly taken from the benchmarks pool of or-
parallel systems Muse and Aurora.
member(X,[X | _]). The results reported in this paper have been obtained on:
member(X,[_ | Y]) :- (i) A Pentium-Pro 200Mhz 4-node shared memory work-
member(X,Y). station, running Solaris 2.7 (software compiled using gcc);
(i) An 8-node Sequent shared memory system, running
select(X,[X | Y]Y). Dynix. The Sequent hardware is relatively old and slow
select(X,[Y | ZL[Y | R]) - with respect to current industry standards. Nevertheless it
select(X,Z,R). gives a good feeling for the parallel behavior of the system

)) ,) and it represents the largest parallel shared memory system
Both these predicates generate choice points with only¢,rrently available to us. Experiments on Pentium-based

two alte.rnati\{es each.—thus., at the time.of shqring, a sin.gleand Sparc-based parallel systems have provided compara-
alternative will be available in each choice point. The dif- o speedups.

fserenkt altlgrnatlves Ere sp'read”a%rossl dlﬁergnt Cho'ﬁe POINES. The results presented in Table 1 illustrates the execution

. tack splitting Wﬁu lass!gn aht e.a.terrl1at|ves tothe (_:(r)]py- times and speedups observed on the Sequent system. In
Ing processor, thus leaving the original processor W't. out particular the table presents for each benchmark

local work. However, the problems raised by such situa-
tions can be solved using a number of techniques discussed o the execution times (in seconds)—the figures reported

in [9]. Most significant of these is the techniquewvetical are the average execution times over a sequence of 10
splitting of the choice points. In vertical splitting each pro- runs:

cessor is given all the alternatives of alternate choice points.
Thus, in this case, the alternatives are not split, rather the 4 {he relative speedups obtained for different number of
list of choice points available is split between the two pro- pProcessors;
cessors [9].
Additionally, the table presents the results obtained us-
3.7. Performance Evaluation ing the Muse or-parallel system and the or-parallel system
based on Stack Splitting. Table 2 presents the results (time
The stack-splitting technique has been implemented byin milliseconds) obtained on the Pentium-pro hardware. It
modifying the Muse or-parallel system, which is itself re- can be observed that the speedups on the two systems are
alized on top of the SICStus Prolog (SICStus 2.1) systemvery similar.
from the Swedish Institute of Computer Science. The first All benchmarks have been executed by requiring the sys-
prototype of stack-splitting has been developed on sharedtem to exploit parallelism only from selected promising
memory architectures. The goal of this prototype is to per- predicates, and by declaring all other predicates sequential
form a preliminary feasibility study of the ideas discussed (i.e., non-parallelizable). We believe this situation better
in this paper. Porting on distributed-memory architectures reflects the kind of behavior needed to guarantee adequate
is currently in progress. performance in a distributed execution (which remains the

Benchmark # Processors
1 3 5 7
Muse | SS Muse | SS Muse | SS Muse | SS

Tina 21.4 225 25.1(0.85) | 10.1(2.22)| 25.1(0.85)| 8.3(2.71) | 25.0(0.85) | 7.6(2.97)
Large 131.7 | 1449 | 118.0(1.12)| 54.3(2.67)| 120.1(1.1)| 38.8(3.73)| 118.4(1.11)| 32.3 (4.49)
Queensl 56.8 63.6 49.8 (1.14) | 39.5(1.61)| 42.9(1.32)| 36.1(1.76)| 42.1(1.35) | 34.4(1.85)
FQueens 51.3 59.0 18.8(2.72) | 24.5(2.41) | 10.8 (4.77)| 13.1(4.51)| 7.5(6.88) 9.9 (5.95)
Salt 98.8 | 104.7 | 38.7(2.55) | 36.2(2.89)| 25.1(3.93)| 23.3(4.5) | 18.6(5.32) | 18.2(5.76)
Solitaire 22.9 24.4 8.4 (2.71) 8.7 (2.8) 5.3(4.29) | 5.6 (4.37) 4.6 (4.95) 4.1(5.91)
Houses 37.1 41.2 13.7(2.71) | 14.5(2.84)| 8.9(4.18) | 9.3 (4.45) 6.7 (5.53) 6.9 (5.92)
constraint 67.0 69.7 25.0 (2.68) | 25.7(2.71)| 15.2(4.42)| 15.5(4.49)| 10.6(6.35) | 10.8 (6.44)

Table 1. Execution Times on Sequent: Muse vs. Stack-Splitting

ultimate goal of the stack-splitting model). All the bench- a small and balanced number of relatively deep branches—
marks have been executed using all-solutions queries. an ideal situation for the splitting approach. Muse obtains
marginal speed-up, while stack-splitting produces consider-

As can be seen in Table 1, stack-splitting leads in gen- S)
eral to better speed-ups. The execution time of the stack_ably better speedups. Better parallel behavior is obtained

splitting system is occasionally slightly worse than the ex- for almost all benc_hmarks, gxceEQuegns This bench-
ecution times of Muse—on average the sequential stack—mark generate;asmgle choice point v'wth'a very large num-
splitting system is 5% to 12% slower than sequential Muse. ber of alternatives, and ?aCh alterngtlve is small andilgads
This is due to: (i) the temporary removal of some sequentialqUICkIy to success or failure. In this case StaC|'<-Sp|IttII’lg
optimizations from the stack-splitting system, to facilitate pays the price O.f a slightly more EXpensive shgrlng pha§e.
the development of the initial prototype; and, (ii) the pres- Neyerth_ele.ss this is clegrly not t_he kind of situations in
ence of one additional comparison during the backtrackingwhICh Q'St”bmed e>'<ecut|on is desired. . o
phase—needed to distinguish between choice points that AN implementation of the stack-splitting method is in
have been split and those that have not. The first problemProgress on a distributed network of shared-memory mul-
will be solved in the next version of the prototype. The tProcessors (on a Beowulf Myrinet-based system with
second problem is inherent in the current representation ofP€Ntium-2 nodes). From the analysis and discussion pre-
the alternatives in the choice points used by the SICStusSented above, it is apparent that stack-splitting should per-
system (on which the stack-splitting system has been deform well on d|str|bgted memory mgchmes, primarily be-
veloped). All choice points associated to the same predi-Cause of better locality and because it leads to reduced com-
cate share the same list of alternatives. This complicates thénunication. A low-level performance study of our shared
implementation of stack-splitting, as the list of alternatives Memory implementation of stack-splitting implementation
cannot be directly manipulated (as this may potentially af- 1S in progress using the SimICS Sparc multiprocessor simu-
fect other choice points as well). The simple alternative of 'ator- The low level performance study of caching behavior,
duplicating the list of alternatives proved too inefficient. At 10cality of access, etc., will give us an indication of what
present we have introduced two pointers in the choice pointkind of performance to expect from a distributed implemen-
to maintain the segment of alternatives list of interest—and tation of stack-splitting.

this leads to the need of discriminating between split and

non-split choice points during backtracking. The adoption Benchmark # Processors
of a different, alternative representation in the engine could 1 | 2 | 3
solve this problem—but requires drastic changes to the ba- Tina 1215] 719 (1.69)] 535 (2.27)
sic sequential engine and to the compiler. Large 8093 | 4422 (1.83)| 3065 (2.64)
In the case offina benchmark, the Muse system suffers Queensl | 3520 | 2466 (1.43)| 2207 (1.59)
a slowdown irrespective of the number of processors em- Salt 6117 | 3274 (1.87)| 2155 (2.84)
ployed. This behavior is rather unusual (and at odds with Solitaire | 1364 | 704 (1.94) | 488(2.79)
the speed-ups reported fdnain the literature for Muse). Houses | 2425| 1263 (1.92)| 859 (2.82)
We conjecture it originates from the fact that we have ex- constraint | 3030 | 1569 (1.93)| 1102 (2.75)

plicitly identified all choice points as parallel or sequential.
Stack-splitting is instead capable of extracting parallelism
from this benchmark reaching a maximum speedup of about
3. Another interesting benchmarkliargewhich generates

Table 2. Execution Times on Solaris X86

4. Conclusion and Related Work [7] M. Dixon and J. de Kleer. Massively parallel assumption-
based truth maintenance. LNAI, Springer-Verlag. pp. 131—
In this paper, we presented a technique called stack- ~ 142.1989.
splitting for implementing or-parallelism and discussed its [8] J. Gu. Parallel Algorithms and Architectures for Very Fast
advantages and disadvantages. Stack-splitting is an im- Al Search University of Utah, 1989

provement of stack-copying. Its main advantage, com- [9] G. Gupta and E. Pontelli. Stack-splitiing: A Simple Tech-

pared to other well-known techniques for implementing or- nique for Implementing Or-parallelism and And-parallelism
parallelism, is that it allows coarse-grain work to be picked on Distributed Machines. NMSU Tech. Rep. May 1999.
up by idle processors and be executed efficiently without 1) G Gupta and B. Jayaraman. Analysis of Or-parallel Exe-

incurring exces'sive Commu'nication overhead. cution Models.ACM Transactions On Programming Lan-
Distributed implementation of Al systems has been a guages and Systems (ACM TOPLA®) 15. No. 4. Septem-

reasonably active area of research. There are several ber 1993. pp. 659-680.

projects in which a specific Al system has been taken 11] p A kranz, etal. Mul-T: A High-Performance Parallel Lisp.

and parallelized on distributed memory multiprocessors In ACM Programming Lang. Design and Imppp. 81-90,

[15,22,8,12,7,17, 16, 18, 19]. Distributed implementation 19809.

of Prolog have also been attemp.ted'[Z, 5] quever, noneélZ] A. Jindal, R. Overbeek, W. C. Kabat. Exploitation of paral-

of these systems are very effective in producing speedup lel processing for implementing high-performance deduction

over a wide range of benchmarks. Distributed implementa- systemsJournal of Automated Reasoning(1), pp. 23-38,

tions of Prolog have been attempted on Transputer systems 1992,

(The Opera System [23] and the system of 'Benjumea and[13] J. Hendler et al. Massively Parallel Support for a Case-based
Troya [3]). Of these, Benjumea and Troya's system has Planning System. In Proceedings of the Ninth IEEE Confer-
produced quite good results. However, both the OPERA ence on Al Applications, Orlando, Florida, March 1993.

system and the Benjumea and Troya's system have beeT14] H. Kitano, J. A. Hendler (eds.Massive Parallel Artificial
developed on now-obsolete Transputer hardware, and, ad* Intelligence AAAI Press/MIT Press, Menlo Park, 1994.

ditionally, both rely on a stack-copying mechanism which _ i)
will produce poor performance in programs where the task- [15] JS. Kowa_llk.ParaIIeI Computation and Computers for Arti-
granularity is small. We hope that our distributed imple- ficial Intelligence Kluwer Academic Publishers. 1987.
mentation of Prolog based on stack-splitting will be supe- [16] V. Kumar, P. S. Gopalakrishnan, L. N. Kanal (ed®arallel
rior to these aforementioned distributed implementations. ~ Algorithms for Machine Intelligence and VisioBpringer-

A distributed parallel implementation of Prolog based on Verlag, 1990.

stack-copying, with ALS Prolog system (www.als.com) as [17] V. Kumar and L. N. Kanal. Parallel Branch-and-Bound For-

the underlying engine, is planned in the near future. mulation for AND/OR Tree Search. IlEEE Transactions
on Pattern Analysis and Machine Intelligens®lume 6, pp.

768—-788. 1984.

References
[18] V. Kumar and J. N. Rao, Parallel Depth-First Search on Mul-
[1] K.A.M. Ali and R. Karlsson. The MUSE Approach to Or- tiprocessors Part II: Impl_ementation. International Jour-
parallel Prolog. Innt'l J. of Parallel Prog, 19(2):129-162, nal of Parallel Programming16(6), pp. 479-499, 1987.
1990. [19] T-H. Lai and S. Sahni. Anomalies in Parallel Branch-and-
[2] L. Araujo and J.J. Ruz. A Parallel Prolog System for Bound Algorithms. InCommunications of the ACN27(6):
Distributed Memory. InJournal of Logic Programming 594-602, 1984.
33(1):49-79, 1997. [20] E. Lusk, D.H.D. Warren, et. al. The Aurora Or-Prolog Sys-
[3] V. Benjumea and J. M. Troya. An OR Parallel Prolog tem. InNew Generation Computinyol. 7, No. 2,3, pp. 243-
Model for Distributed Memory Systems. Frocs. of PLILP 273, 1990
Springer Verlag, LNCS 714, pp. 291-301, 1993. [21] E. Pontelli, D. Ranjan, G. Gupta. On the Complexity of Or-
[4] A. Beaumont and D.H.D. Warren. Scheduling Parallel Work parallelism.New Generation Computind999 (to appear).

in Or-parallel Prolog Systems. Rroc. International Confer-
ence on Logic Programmingp. 135-150. MIT Press. 1993.

[5] L. F. Castro, C. Geyer et al. DAOS: Distributed And-Or in . b
Scalable Systems. Technical Report. Department of Com- [23] O- Wemer, A. C_‘ Yamin, J. L. V. Barbosa, C. F. R. Geyer.
puter Science, Federal University of Rio Grande del Sul, OPERA Project: An Approach Towards Parallelism Ex-
Brazil. 1998. ploitation on Logic Programming. IRrocs. of WLR pp. 20-
’ 23, 1994.

[22] N. Takahashi et al. Example-Based Machine Translation on
a Massively Parallel Processor.Pmocs. of IJCA) 1993.

[6] J. C. de Kergommeaux, P. Codognet. Parallel Logic Pro-
gramming Systems: A Survey. Domputing Survey26(3):
295-336, 1994.

