Granularity Control for Distributed Execution of Logic Programs

George Xirogiannis
Dep. of Computing & Elec. Engineering
Heriot-Watt University
Edinburgh, EH14 4AS, Scotland, UK

G.Xirogiannis@hw.ac.uk

Abstract

Distributed execution of logic programs requires a
match of granularity between a program and the dis-
tributed multi-processor it runs on to exploit its po-
tential for performance fully. This paper presents
methods to control the granularity of tasks on dis-
tributed heterogeneous processors effectively. It con-
siders the characteristics of such platforms and relates
the amount of local computation with the significant
communication overheads by introducing the notion of
a collection of parallel tasks. The experimental re-
sults indicate that the proposed controls can model all
kinds of predicates (recursive, mutually recursive etc.)
satisfactorily and improve the performance of various
forms of parallelism (AND, OR, combinations).

1 Introduction

Granularity analysis has been proposed as a method
to avoid exploiting parallelism in a fine-grained way
by coalescing tasks into larger grains to be executed
on a single processor. In general processes that are
too coarse-grained for a multi-processor system unnec-
essarily limit its ability to exploit parallelism, while
fine-grained processes introduce excessive communi-
cation overheads. This paper presents a scheme for
controlling the grain size of tasks (goals) of Prolog
programs on a process-based parallel logic program-
ming system running in a distributed manner on the
nodes of a virtual multiprocessor. PAN [22] runs on a
LAN of workstations with each Prolog engine running
on a different workstation. Engines employ PVM to
communicate with each other either synchronously or
asynchronously using extra message passing primitives
added to SICStus Prolog. PAN is able to exploit var-
ious forms of parallelism (AND, OR, combinations).
Some of its particular merits are its robustness, ease of
use and 1ts ability to exploit highly available hardware.
The communication cost of the distributed platform
is significant dictating that any further task analysis
should add little execution overhead, otherwise per-

formance could degrade rapidly.

The following sections discuss the design of the con-
trols used in PAN. Section 2 discusses recent granu-
larity analysis models and indicates existing pitfalls.
Section 3 introduces the controls used in PAN and
section 4 presents several experimental results. Fi-
nally section b summarizes the proposed techniques.

2 Relevant Research

Recent proposals for granularity analysis in logic
programming have focused on measuring the complex-
ity of a process (goal) but have paid little attention to
how to use such information. In order to make gran-
ularity decisions it is necessary to estimate the time
spent initiating and conducting communication and
the time spent performing useful computation. The
characteristics of the platform used in this project dic-
tate that the communication overhead must not be
disregarded otherwise theoretical frameworks for con-
trolling the granularity of goals may fail to improve
performance. Early proposals like [26] and [15] inves-
tigated the automatic inference of the complexity of
logic programs but only under several restrictive as-
sumptions that rule out many interesting programs.
For example these systems were unable to deal with
recursive predicates. The complexity of functions to
control parallelism in the parallel evaluation of func-
tional programs has been investigated in [19] as well.
Bockle in [4] presented detailed techniques to exploit
fine-grained parallelism. But he focused on parallelism
where the items processed are machine instructions
offered by superscalar or VLIW architectures rather
than coarse-grained distributed platforms like PAN.

Tick [24] describes a heuristic algorithm for estimat-
ing granularity using weights to quantify the grain of
tasks. However this analysis is crude and does not
model recursive predicates satisfactorily. Performance

measurements showed that this scheme does not per-
form significantly better than conventional distribu-
tion methods. This result is attributed to a combi-
nation of factors: sensitivity to system overheads, low
cost of spawning a goal and the increase of synchro-
nization caused by the method. Moreover this scheme
can not model OR-parallelism efficiently. This scheme
was designed for shared-memory multiprocessors and
would require significant re-engineering in order to be
used in PAN. The algorithm in [25], which is designed
for committed-choice languages, revises the previous
model by introducing iteration parameters to handle
recursive predicates. Even if heuristics and the itera-
tion parameters estimate complexity at compile-time,
run-time execution may diverge from these estimates.
Another problem associated with [25], is how to in-
corporate further information to derive more precise
estimations while keeping analysis costs low.

Debray et al [10] explain how to deal with recursive
predicates by deriving complexity functions for predi-
cates at compile-time to provide a better approxima-
tion of the weight. Once the size of the data 1s known
at run-time these functions can be evaluated. The
size of the data is checked against a threshold to de-
termine whether or not the goal should be evaluated
in parallel. Experimental results show that this model
can improve performance. However in some cases the
model did not provide the expected results and de-
creased speed mainly because too much information is
processed at run-time. This model does not take into
consideration some important factors. The mainte-
nance of grain size information and tests add a certain
execution overhead which should be somehow included
in time complexity estimation. This model disregards
the fact that some predicates may fail or satisfy the
granularity tests at compile-time and thus no run-time
overhead is associated with them. The granularity de-
cisions for OR-parallel tasks do not depend only on
time complexity properties. Other characteristics like
the number of clauses should be considered as well to
make analysis more accurate. The basic idea of De-
bray’s analysis [10] is close to PAN’s needs because it
considers the cost of creating parallel tasks. Garcia et
al [12] refines most of the techniques used by Debray
but still relies on the basic granularity control princi-
ple. The performance of this model will be compared
with the performance of the controls used in PAN.

King and Soper [16] proposed a different technique
for controlling the granularity of tasks at compile-time
only. They point out that in some circumstances the

overhead of thresholding can cause a slow-down. Their
idea is to coalesce processes together if the complex-
ity of their communication dominates the complexity
of the computation on all sizes of possible data. This
model does not add any run-time overhead. However
it may fail to exploit parallelism in cases where the
time required by a goal to communicate dominates its
computation time because the model does not have
the notion of a collection of parallel tasks and it does
not quantify efficiently what useful computation can
be performed during inter-engine communication. It
analyzes goals one by one and does not consider par-
allel execution of a goal in relation to the execution of
other goals. OR-parallelism is not supported as well.

The benefit of automatic grain size control has not
vet been used in distributed implementations. Re-
cent distributed Prolog systems like Delta-Prolog [8],
CS-Prolog [11], PMS-Prolog [27] and Multi-Prolog [5]
still do not accommodate a mechanism for determin-
ing when distributed execution improves performance.
Granularity control mechanisms could also be used in
parallel systems running on shared-memory multipro-
cessors like NUA-Prolog [18], Andorra-I [7], PEPSys
[3], ANDOR-IT [21], Aurora [17], Muse [1] to improve
performance further. The absence of use of such an
analyzer may result in unnecessary communication be-
tween engines that degrades performance and reduces
the attractiveness of these platforms to programmers.
The PDP system [2] controls the grain size of paral-
lel tasks based on Debray’s model. Its results will be
compared with the results obtain by the techniques
used in PAN.

3 Controlling Granularity in PAN

The proposed model concentrates mainly on how
to use granularity information effectively to improve
the performance of the distributed platform. Most of
the analysis is performed at compile-time, using only
few run-time tests to increase the accuracy of gran-
ularity control without imposing significant run-time
overheads. The controls do not require any user dec-
larations or expertise. We assume that an appropriate
program analyzer [28] has determined which goals are
candidates for parallel evaluation. We also assume
that there is an automated mechanism [9] to estimate
the time complexity of a goal at compile-time and es-
timate the time required to process that goal. In cases
where the time estimation depends on input values, a
time function is generated.

3.1 Basic Controls

Consider a clause C :- By, Bs,.....,By.

that program analysis has determined that a set of

Assume

B; (written as G; for convenience) are candidates for
AND-parallel processing. Let these goals be G =
G1,Gs,...,G. This set of goals obeys sequentiality
constraints with the rest of the body goals. Let the ex-
tra time required to process a goal G; on a remote en-
gine be Tiat(Gi) = Teom(Gi) + Tsched(Gi). Tt represents
the communication overhead T,,, and any scheduling
cost Tsepeq. Let T(G’) be the time required to process
G’ = Gy,...,Gi-1,Giy1,...,Gr sequentially.

Granularity Control for AND-
parallelism: An AND-goal G; should be executed in
parallel with the rest G° = Gy,...,Gi-1,Giy1,...,Gg of
T(G’)>Tiat (Gi).

Basic

The control qualifies even if the amount of com-
putation of the remote task G; is less than T (Gj)
in contrast to the proposals of Debray and Garcia.
Intuitively, the basic granularity control for AND-
parallelism will improve performance because:
TparaIIeI(G) = maX{T(G/); Tlat(Gi) + T(GI)}
< max{T(G), T(G") + T(Gi)}

S T(G/) + T(G,) S Tsequential(G)

Consider now a predicate P with clauses
C1,C5,.....,Cp. Assume that a program analyzer
has determined that P can explore its clauses in OR-
parallel order. Let T(P) be a time estimation of P for
a single solution. Let Tiat(Ci) = Teom(Ci) + Tsched (Ci)
be the extra cost for processing P over the head
of clause C; on a remote engine. Also let O’ =
Ci,...,Ci—1,Ciy1,...,C,. The use of a predicate level
directive dictates that either all clauses are candidates
for OR-parallel execution or none.

Basic Granularity Control for
OR-parallelism: The clauses of P
should be explored m OR-parallel if

L= P (P) > maz{ Tiat(Cy), i = 1...n}.

In order to process the clauses of P in parallel the
extra time required to process any C; on a remote
engine should be less than the time required to
process C’ locally. Ideally this should translate to
T(C)>max{Ti(C;), i=1..n}, where T(C') is the
time required to process C' sequentially. However,
mainly due to practical restrictions imposed by
the program analyzer which make the estimation
of the time complexity of C' a non-trivial task,
this condition can apply only to non-recursive
predicates. To model satisfactorily recursive and
mutual recursive predicates the current mechanism

assumes that all clauses of a predicate equally
contribute to its time complexity. It assumes that
T(C;) ~ T(P)/n < T(C') ~ (n;—l)T(P). and imposes
the condition LH%QT(P) > max{T}s:(Ci),i=1...n}.
Garcia suggests using follow sets from the theory
of context free grammars to address the problem of
estimating the complexity of C'. Intuitively this basic
control will improve performance because

Tparattet(P) = max{ “UT(P), max{Tiae(Cj)} + T(Ci)}
< max (2T (P), BHT(P) + T(C))

< UZHT(P) + T(C) < CFHT(P) + 4T(P)

S Tsequential(P)

The controls are particularly suitable for heteroge-
neous distributed platforms like PAN where communi-
cation costs are considerable and local engines are ef-
fective. The basic controls propose new criteria to con-
trol granularity and relate communication costs with
the amount of useful computation that can be per-
formed locally by a set (collection) of goals.

3.2 Further Controls

In order to improve granularity in PAN, not to
generate considerable run-time overheads and to
avoid problems discussed in section 2, the basic
controls are extended with the following criteria
which try to make compile-time granularity controls
more accurate and reduce run-time overheads.

1) Granularity control becomes more accurate
when Teom (G;) is estimated for each goal G;.

2) The time complexity of a goal includes
possible size-checking overheads T, .(G;) and
granularity control is adjusted by setting
Tlat(Gi) = Tcom(Gi) + Tsched(Gi) + Tsc(Gi)~

3) If time complexity depends on the size of the input
data, then the analyzer generates “cheap” (in terms
of time) tests to be checked at run-time. These tests
check for the minimum size of input data for which
parallel execution will improve performance.

4) Unfolding partially loop tests and testing the
term sizes only to the point at which the granularity
threshold is reached can reduce overheads.

5) If the minimum size of input data for a goal is
”too large” to occur in practice then this goal is not
considered worth parallelizing, hence no run-time
size-check 1s added.

6) If analysis detects that goals satisfy the granularity
tests at compile-time, then no run-time test 1s added.
This is the case for non-recursive predicates or for
very complex recursive predicates where even input
data of very small sizes guarantees speed-up.

7) Tt is more efficient to let the scheduler [29] perform
the run-time tests rather than include them as part
of the program code as suggested by [12]. That is
because if there are no available engines (information
only know to the scheduler) then there is no reason
to perform any granularity test.

8) Stricter granularity controls are imposed on
slower engines. Let W, be a "weight” of the
processing capabilities of some engine n, then

Tlat(Gi) = Tcom(Gi) + Wn * Tsched(Gi) + Wn * Tsc(Gi)~

The following heuristics (not considered by [10],
[24], [26], [15] and [19]) may improve performance
further. They are based on the observations that the
time required to process a time consuming goal might
get significantly larger by remote computation.

e Given two goals for parallel execution that
both satisfy the granularity control criteria, the one
with the smaller sum of computation and communica-
tion time should be executed on the remote processor.
e Given more than two parallel goals, performance
may be improved by distributing them in order of
non-increasing computation and communication cost.

Granularity analysis is independent of the number
of available engines. If there are more tasks than
currently available engines a sophisticated scheduler
may have to coalesce tasks further to fit the number
of engines while if there are more engines than tasks,
some engines may stay idle in order to guarantee
speed-up even if that may limit exploitable paral-
lelism. In the case of OR-parallelism the combination
of the following tests might control granularity
better and improve performance further. These tests
also were not considered by some models described
in section 2. They can be performed at compile-
time and the information can be retrieved at run-time.

e The clauses of a predicate should be consid-
ered for exploitation in OR-parallel if there are more
than k of them (the integer k is determined by the
implementation).

e If a clause contains a minimum number (determined
by the implementation) of user-defined sub-goals then
it should be considered for exploitation in OR-parallel
with other clauses.

3.3 Comparisons

The proposed controls are able to overcome many
of the pitfalls and problems of other methods as
described in section 2. The controls used in PAN
are able to relate granularity information effectively

with the communication cost which is significant in
distributed heterogeneous platforms like PAN. In
comparison to other models he proposed controls

e Relate more efficiently the amount of local
computation with the communication cost using the
notion of a collection of tasks.

e Are sensitive to communication overheads that
affect the performance of distributed systems, hence
they are more suitable for platforms like PAN.

e Can model satisfactorily different forms of paral-
lelism (AND, OR, combinations) and introduce new
explicit controls for OR-parallel execution.

e Control the maintenance and testing of size infor-
mation better.

e Are able to make certain granularity decisions at
compile-time only, to reduce run-time overheads.

o Asgsist run-time schedulers to limit certain run-time
overheads and distribute tasks more effectively.

However the controls maintain a conservatism like
most of the techniques presented in section 2, mainly
because the analysis is performed at compile-time with
few (if any) run-time tests only. The fact that it does
not add unnecessary run-time overheads proves bene-
ficial for distributed platforms which are sensitive to
run-time communication overheads. More run-time
tests would make the controls more accurate and more
effective but could degrade performance significantly.

4 Experimental Results

A heterogeneous distributed architecture like PAN
provides a suitable platform to determine if the pro-
posed controls adapt well to the changing needs of
a LAN-based multiprocessor. Large input sizes have
been used on purpose in most benchmarks to provide
long running non-trivial problems to push the controls
and the platform to their limits. The significant com-
munication overhead in PAN generates large granu-
larity thresholds; therefore, only large input sizes can
be used in practice to illustrate the performance of the
proposed controls. In contrast the models described in
section 2 were tested mainly on shared-memory mul-
tiprocessors with low communication overheads, small
input sizes and small granularity thresholds.

The numbers in the following tables represent the
performance improvement (Pl) due to the use of the
controls. Given a program, an input goal and a plat-
form configuration, let Ty ¢ be the time required
to process that goal using the proposed granularity
controls and Ty¢ the time required to process the
same goal without the proposed granularity controls.

Then the performance improvement (Pl) due to the
use of the controls is calculated using the expression

pl= IncSTwe oo

NC
der PAN using SICStus Prolog 3.5 on a variety of SUN|
DEC and IRIX workstations. Each Pl number corre-
sponds to the average value of the best three runs.

The programs were run un-

It 1s not crucial to be precise in determining the best
grain size information for a problem as illustrated in
figure 1. There 1s a reasonable amount of leeway in
how accurate this information has to be mainly for
the following reasons. The estimation of time com-
plexity has a certain inaccuracy itself. Communica-
tion costs may vary at run-time, because of an tran-
sient network load. There is a trade off between ac-
curacy and small run-time overheads. Complex grain
information requires more time to be processed and
in several cases the benefit of accurate analysis can-
not outweigh the time required to perform such tests.
However the amount of leeway detected suggests that
granularity inference can usefully be performed by a
compiler despite a certain inaccuracy.

Granularity Threshold Effect

Performance

0 5 10 15 20 % 30
Granularity Threshold

Figure 1: Performance Improvement vs. Task

Granularity for QuickSort(3000)

The effect of the proposed controls increases as the
size of the input list and the number of engines par-
ticipating in a PAN session increases indicating that
the controls adapt well to the characteristics of the
platform and the nature of the benchmark ranging
up to 56%. The proposed controls cope adequately
with large test sizes and impose small run-time over-
heads as well. Consider that when the size of the in-
put list increases (2000 or 3000 elements), run-time
checks become complicated. However the proposed
controls reduce these tests by allowing the run-time
task schedulers to impose granularity constraints only
when there are available engines to process tasks in
parallel. Debray’s model provides a speed up of 3%
under the ROLOG [14] system and a speedup of 16.2%
under the &-Prolog [13] system for this benchmark.
Under the PDP system performance does not improve
at all when three and fifteen processors are used. Per-
formance improves by 17.8% only when 8 processors
are employed to process quicksort(700). Garcia’s [12]
model improves the performance of quicksort(1000) by
21% running on a hierarchicall implementation of &-
Prolog with 4 processors.

The Perfect Numbers (as presented in [22]) bench-
mark is shown in table 2. This benchmark also illus-
trates that the proposed controls impose small run-
time overheads. In contrast to Quick Sort only in the
last few recursions do the input sizes become small
enough to fail the granularity tests. However, as the
table shows the proposed controls cope with such cases
effectively, improving performance by 24.5%.

Eng. Integer Input Size

75 100 300 500
4 17.018% | 21.502% | 23.650% | 24.528%
8 6.526% | 9.553% | 12.234% | 15.186%
12 8.213% | 13.208% | 15.530% | 17.151%
16 14.074% | 20.067% | 20.383% | 21.641%

4.1

Consider the QuickSort program (as presented in

AND-parallel Execution

[20] page 56) and table 1.

Eng. List Input Size

750 1000 2000 3000
4 5.341% | 40.733% | 45.709% | 49.272%
8 34.043% | 43.033% | 46.510% | 50.613%
12 46.765% | 47.517% | 53.038% | 52.317%
16 38.000% | 48.669% | 53.623% | 55.996%

Table 1: Granularity Control for Quick Sort

Table 2: Granularity Control for Perfect Numbers

The Fibonacci Numbers benchmark (as presented
in [6] is shown in table 3. similar to Perfect Num-
bers. However the controls improve performance more
than the previous example mainly because the input
sizes for Fibonacci Numbers are closer to the grain size
threshold. Debray’s model provides a performance im-
provement of 27.3% under the ROLOG system and
29.2% under the &-Prolog system. This is the only

IEssentially this is an &-Prolog implementation with arbi-
trary overheads added to task creation

benchmark with consistent results under both parallel
systems. Garcia’s model improves the performance of
fib(19) by 24% running on a hierarchical implementa-
tion of &-Prolog with 4 processors.

Eng. Integer Input Size

10 15 20
4 1.28% 7.23% | 15.169%
8 7.011% | 12.814% | 21.81%
12 11.382% | 17.972% | 27.391%
16 17.021% | 22.732% | 31.551%

Table 3: Granularity Control for Fibonacci Numbers

Consider the MergeSort benchmark (as presented in

[6] page 578) and table 4.

Eng. List Input Size

750 1000 2000 3000
4 -3.922% | -1.492% | -4.059% | -10.791%
8 33.333% | 35.514% | 37.828% | 43.878%
12 18.182% | 18.816% | 22.819% | 29.825%
16 37.234% | 43.167% | 46.667% | 50.881%

Table 4: Granularity Control for Merge Sort

This benchmark generates four parallel tasks in a
single recursion, which is twice as many as previous
programs. Extra parallel tasks require extra granular-
ity tests which impose extra run-time overhead. The
table indicates that the controls are able to cope with
such cases effectively and improve performance. De-
bray tests a small 8x8 matrix. The large granularity
threshold of this benchmark in PAN makes the 8x8
matrix multiplication without any practical interest
therefore it can not be compared with Debray’s model.
Garcia’s model improves the performance of the multi-
plication of a 4x2 and a 2x100 matrix by 16.27% under
the &-Prolog system using 4 processors. When a ma-
trix 75x1 and a vector are multiplied under the PDP
system performance does not improve at all regardless
of the number of processors used.

4.2 OR-parallel execution

The set of OR-parallel controls contains several
complex tools which consider properties like potential
OR-branches, and the number of user defined primi-
tives in the body of the clauses of predicates.

The Permutations benchmark (as presented in [23]
page 91) is shown in table 6.

This program is similar to QuickSort. But in this
program the input size becomes small enough to fail
the granularity tests only in the last recursions. The
table indicates that the granularity mechanism copes
adequately and improve the performance when many
engines are being used. Debray’s models improves
performance by 14.1% under the ROLOG system and
1.44% under the PDP system. But the table indicates
that the proposed controls are able to provide a best
case performance improvement of 50.881%.

The Integer Matrix Multiplication benchmark (as pre-
sented in [13]) is shown in table 5.

Eng. List Input Size

6 7 8
4 0.0% -5.932% | -3.833%
8 0571% | 34.118% | 39.0%
12 6.061% | 34.12% | 40.825%
16 22.727% | 32.632% | 42.551%

Eng. NxN Matrix Input Size

15 30 45 60
4 16.901% | 19.672% | 23.354% | 26.979%
8 16.129% | 19.170% | 20.698% | 27.983%
12 21.909% | 22.377% | 26.679% | 33.287%
16 23.750% | 24.493% | 28.708% | 36.935%

Table 5: Granularity Control for Matrix
Multiplication

Table 6: Granularity Control for Permutations

Permutations is a typical example of fine-grained
OR-parallelism. The clauses generate a search tree
with several OR-branches. The table shows that the
proposed model controls granularity effectively, gener-
ating coarse-grained parallel tasks that improve per-
formance on distributed platforms like PAN. Perfor-
mance increases as the input size and the number of
engines increases. This benchmark however does not
perform that well when four processors are used. Since
the percentage of exploitable parallelism is very small,
the effect of granularity controls can not balance the
time required to test the granularity constraints. Per-
formance improves significantly when more processors
are used, because the percentage of exploitable paral-
lelism gets bigger.

The previous example is the core program for other
benchmarks like naive N-Queens (as presented in [23]

page 119). OR-parallelism in N-Queens is generated
in a similar way to Permutations. As a result perfor-
mance figures are very similar. The controls used in
the PDP are able to provide a best case performance
improvement of approximately 5% for this program.

The Tree Lookup benchmark (as presented in [20])
is shown in table 7. In contrast to previous examples,
Tree Lookup may generate more than two OR-branches
in each recursion (depending on the shape of the tree).
Granularity controls are able to improve performance
dramatically because they can exploit the fine-grained
nature of the program and perform profitable size tests
that coalesce many fine-grained tasks. The controls
prove useful when the tree is unbalanced.

Eng. Integer Input Size

5 7 9
4 525% | 65.41% | 77.69%
8 57.86% | 73.10% | 85.20%
12 64.17% | 77.23% | 90.37%
16 68.57% | 81.04% | 93.20%

Table 7: Granularity Control for Tree Lookup

Debray’s model improves performance only by 3%

under the ROLOG system.

5 Summary

Most models described in section 2 base their deci-
sions on the relation between candidates for parallel
execution tasks and communication costs. In contrast
the proposed model makes better use of that informa-
tion and proposes new criteria to relate the commu-
nication cost with the amount of useful computation
that can be performed locally during communication.
This method is particularly suitable for distributed
systems for which communication costs are consider-
able and local engines are effective. The method does
not require any user declarations or expertise. The
model tries to reduce run-time tests that influence the
performance of [10] but also includes estimations of
such costs at any compile-time decision to make the
proposed model more accurate. It bases the analysis
on the notion of a collection of parallel tasks. The
absence of that notion may prevent [16] from mak-
ing correct classifications. Some further heuristics ap-
plied to the basic granularity controls may improve
decisions. Moreover the proposed model makes OR-
parallel granularity decisions as well.

This model exploits a good degree of parallelism be-
cause 1t adjusts to the communication costs which may
change from time to time or from goal to goal. The re-
strictions implied by the controls are proportional to
the system limitations. If the system characteristics
improve, parallelism will become more fine-grained.
Generally speaking granularity control is conservative,
but has good reasons and appropriate justifications for
restricting exploitable parallelism and tries to keep a
balance between performance and distributed execu-
tion. The tables illustrate that performance may im-
prove significantly, making distributed platforms like
PAN more attractive to programmers.

References
[1] K.AM. Ali and R. Karlsson. The MUSE ap-
proach to OR-parallel Prolog. International Jour-
nal of Logic Programming, 19(2):129-162, April
1990.

[2] L. Araujo and J.J. Ruz. A parallel Prolog system
for distributed memory. International Journal of
Logic Programming, 33(1):49-79, October 1997.

[3] U. Baron, J.C. de Kergommeaux, M. Hailperin,
M. Ratcliffe, P. Robert, J.C. Syre, and H. West-
phal:. The parallel ECRC Prolog system PEPSys:
An overview and evaluation results. In ICOT,
editor, International Conference on Fifth Gener-
ation Computer Systems, pages 841-850, Tokyo,
November 1988.

[4] G. Bockle. Exploitation of fine-grained paral-
lelism. Lecture Notes in Computer Science, 942,

1995.

[5] K. De Bosschere and J-M. Jacquet. Multi-Prolog:
Definition, operational semantics and implemen-
tation. In D.S Warren, editor, Proceedings of the
10th International Conference on Logic Program-
ming, pages 299-313, Budapest, June 1993.

[6] I. Bratko. Prolog: Programming for artificial in-
telligence, second edition. Addison Wesley, 1991.

[7] V.S. Costa, D.H.D. Warren, and R. Yang. The
Andorra-1 preprocessor: Supporting full Prolog
on the basic Andorra model. In K. Furukawa, ed-
itor, 8th International Conference on Logic Pro-
gramming, pages 599-613, Paris, June 1991.

[8] J.C. Cunha, P.D. Medeiros, M.B. Carvalhosa,
and L.M. Pereira. Delta-Prolog: A distributed
logic programming language and its implementa-
tion on distributed memory multiprocessors. In

[10]

[13]

[14]

P. Kacsuk and M.J. Wise, editors, Implementa-
tions of Distributed Prolog, pages 335-356, John
Wiley,Chichester, 1992.

S.K. Debray and N. Lin. Automatic complexity
for logic programs. In K. Furukawa, editor, 8th
International Conference on Logic Programming,

pages 599-613, Paris, June 1991.

S.K. Debray, N.W. Lin, and M. Hermenegildo.
Task granularity analysis in logic programs. In
Proceedings of the 1990 ACM Conference on Pro-
grammaing Language Design and Implementation,

pages 174-188, New York, June 1990.

I. Futo. The real time extension of CS-Prolog
professional. In J. Barklund, B. Jayaraman, and
J. Tanaka, editors, ICLP’94 - Workshop on Par-
allel and Data Parallel Execution of Logic Pro-
grams, Santa Margherita Ligure, June 1994.

P.L. Garcia, M.V. Hermenegildo, and S.K. De-
bray. A methodology for granularity based con-
trol of parallelism in logic programs. Journal of

Symbolic Computation, Special Issue on Parallel
Symbolic Computation, 22:715-734, 1996.

M.V. Hermenegildo and K.J. Greene. The &-
Prolog system: Exploiting independent AND-
parallelism. New (Generation Computing,

9(3,4):233-257, 1991.
L.V. Kale. The REDUCE/OR process model for

parallel execution of logic programming. Interna-
tional Journal of Logic Programming, 11(1), July
1991.

S. Kaplan. Algorithmic complexity of logic pro-
grams. In R.A. Kowalski and K.A. Bowen, ed-
itors, Fifth International Conference and Sym-
postum on Logic Programming, pages 780-793,
Seattle, August 1988.

A. King and P. Soper. Heuristics, thresholding
and a new technique for controlling the gran-
ularity of concurrent logic programs. Techni-
cal Report CSTR 92-08, Dep. of Electronics
and Computer Science - Southampton University,

Southampton S09 5NH, 1992.

E. Lusk, D.H.D. Warren, and S. Haridi. The Au-
rora OR-parallel system. New Generation Com-

puting, 7(2,3):243-271, 1990.

D. Palmer and L. Naish. NUA-Prolog, an exten-
sion to the WAM for parallel Andorra. In K. Fu-
rukawa, editor, 8th International Conference on

[28]

[29]

Logic Programming, pages 599-613, Paris, June
1991.

F.A. Rabhi and G.A. Manson. Using complexity
functions to control parallelism in functional pro-
grams. Technical report, Dep. of Computer Sci-
ence, University of Sheffield, England, January
1990.

E. Shapiro and L. Sterling. The art of Prolog.
MIT Press, 1988.

A. Takeuchi. Parallel Logic Programming. PhD
thesis, University of Tokyo, Japan, July 1990.

H. Taylor. Assembling a resolution multiproces-
sor from interface, programming and distributed
processing components. Computer Languages,

92(2,3):181-192, 1996.

E. Tick. Parallel Logic Programming. MIT Press,
1991.

E. Tick. Compile-time granularity analysis of par-
allel logic programming languages. New Genera-
tion Computing, 7(2), January 1990.

E. Tick and X. Zhong. A compile-time granular-
ity analysis algorithm and its performance evalu-
ation. New Generation Computing, 1(3,4), 1993.

B. Wegbreit. Mechanical program analysis. Com-
munications of the ACM, 18(9):528-539, Septem-
ber. 1975.

M.J. Wise, D.G. Jones, and T. Hintz. PMS-
Prolog: A distributed, coarse-grain-parallel Pro-
log with processes, modules and streams. In
P. Kacsuk and M.J. Wise, editors, Implementa-
tions of Distributed Prolog, pages 379-404, John
Wiley,Chichester, 1992.

G. Xirogiannis. Compile-time analysis of free-
ness and side-effects for distributed execution of
Prolog programs. In T. Sellis and G. Pagkalos,
editors, 6th Hellenic Conference on Informatics,

pages 701-722, Athens, December 1997.

G. Xirogiannis and H. Taylor. A Dynamic
Task Distribution and Engine Allocation Strat-
egy for Distributed Execution of Logic Pro-
grams. In 1998 International Conference on
High-Performance Computing & Networking to
appear, Amsterdam, April 1998.

