Parallel Implementation of Constraint Solving*

Alvaro Ruiz-Andino', Lourdes Araujo!, Fernando Sdenz?, and José Ruz?

! Department of Computer Science
University Complutense of Madrid, Spain
{alvaro,lurdes}@sip.ucm.es
2 Department of Computer Architecture
University Complutense of Madrid, Spain
{fernan, jjruz}@eucmax.sim.ucm.es

Abstract. Many problems from artificial intelligence can be described
as constraint satisfaction problems over finite domains (CSP(FD)), that
is, a solution is an assignment of a value to each problem variable such
that a set of constraints is satisfied. Arc-consistency algorithms remove
inconsistent values from the set of values that can be assigned to a vari-
able (its domain), thus reducing the search space. We have developed
a parallelisation scheme of arc-consistency to be run on MIMD multi-
processor. The set of constraints is divided into N partitions, which are
executed in parallel on N processors. The parallelisation scheme has been
implemented on a CRAY T3E multiprocessor with up to thirty-four pro-
cessors. Empirical results on speedup and behaviour are reported and
discussed.

1 Introduction

Constraint Programming over finite domains (CP(FD)) has been used for spec-
ifying and solving complex constraint satisfaction and optimisation problems,
such as resource allocation, scheduling and hardware design [8]. Finite domain
Constraint Satisfaction Problems (CSP) usually describe NP-complete search
problems, but it has been shown that by working locally on constraints and
their related variables it is possible to dynamically prune the search space in an
efficient way. Techniques following this approach, called arc-consistency (AC) al-
gorithms, eliminate inconsistent values from the solution space. They can be used
to reduce the size of the search space both before and while searching. Waltz [9]
proposed the first arc-consistency algorithm, and several improved versions are
described in the literature: AC-5 [7], and AC-6 [1].

We have developed and tested a parallelisation scheme of arc-consistency
for MIMD distributed shared memory multiprocessors. The set of constraints is
partitioned into N sets, which are processed in parallel on N processors.

Several parallel processing methods for solving CSP’s have been proposed.
In [11], a parallel constraint solving technique for a special class of CSP, acyclic

* Supported by project CICYT-TIC98-0445-C03-02/97

V. Malyshkin (Ed.): PaCT-99, LNCS 1662, pp. 466-472, 1999.
© Springer-Verlag Berlin Heidelberg 1999



Parallel Implementation of Constraint Solving 467

constraint networks, is developed. It also presents some results on parallel com-
plexity, generalising results in [3]. In [4], it is concluded that parallel complexity
of constraint networks is critically dependent on subtle properties of the network
which do not influence its sequential complexity. They propose massively parallel
processing of arc-consistency with also very simple processing elements.

In [2,5] Nguyen, Deville and Baudot proposed distributed versions for AC-3,
AC-4, and AC-6 for binary CSP’s. Instead, our work is focused on AC-5, and, we
report empirical data obtained running the parallel arc-consistency algorithms
on a CRAY T3E, a distributed shared memory multiprocessor.

1.1 Constraint Programming

A constraint satisfaction problem over finite domains may be stated as follows.
Given a tuple (V, D, C), where

— V={v1, --,0n}, is a set of domain variables,

— D ={dy,---,dyn}, is the set of an initial finite domain (finite set of values)
for each variable,

— C ={c1, +,cm}, is a set of constraints among the variables in V. A con-

straint ¢ = (V., R.) is defined by a subset of variables V., C V', and a subset
of allowed tuples of values R. C @, ¢y, di, where Q) denotes Cartesian
product.

The goal is to find an assignment for each variable v; € V of a value from
each d; € D which satisfies every constraint ¢; € C. Besides the explicit relational
constraints, the allowed constraints usually include arithmetic ones as well as
some specific symbolic constraints used in classic resource allocation problems
like scheduling and packing.

A constraint ¢ = (V.,R.) € C, V. = {vy,---, v}, is arc-consistent with
respect to domains {dy,---,d;} iff for all v; € V,, for all a € d;, there exists
a tuple (b1,---,bi—1,a,bi41,---,bi) € R, where b; € d;. A CSP is called arc-
consistent iff all ¢; € C are arc-consistent with respect to D.

The starting point of this work is a sequential constraint solver which imple-
ments the AC-5 arc-consistency algorithm [7]. AC-5 revises constraints removing
inconsistent values from the domains of the variables until either a fixed point
is reached, or inconsistency is detected. A propagation queue is used to schedule
the revision of constraints. As the result of revising a constraint the domain of a
variable may be pruned, and in such a case the variable is queued. Termination,
correctness, complexity, and properties of the algorithm have been studied ex-
tensively in the literature [7]. Correctness is independent of the order of revising
the constraints, which constitutes the basis for the correctness of the parallel
version of the algorithm.

The rest of the paper is organised as follows. Next section describes the par-
allel execution scheme. Section 3 reports and discusses the experimental results.
Finally, conclusions are drawn in section 4.



468 Alvaro Ruiz-Andino et al.

2 Parallel Arc-Consistency

The arc-consistency algorithm presents an inherent parallelism. Each constraint
behaves as a concurrent process which updates the domains of variables, trig-
gered by changes in the domains of other variables. There is an inherent se-
quentiality, as well, since a constraint must be revised only as the consequence
of a previous revision of another constraint. This sequentiality defines a partial
order among revising constraints. A constraint is ready if any of its variables has
been pruned after its last revision. At any time during the execution of the arc-
consistency algorithm there will be a set of ready constraints, called the ready
set. In a sequential version of a consistency algorithm the ready set is stored
in a propagation queue (updated whenever a variable is modified), assuring a
sound execution order of constraints, that is, that a constraint is revised after
the pruned variable has been updated. Parallel consistency algorithms simulta-
neously revise the constraints in the ready set, providing mechanisms to maintain
a sound order.

A static partition ensures a sound order of revising constraints, since the
parallel algorithm is basically the sequential one, but applied to a subset of the
constraints. The only coordination mechanism needed by this scheme comes from
the detection of termination, which can be carried out by one of the processors,
called the distinguished one. The mapping of constraints to processors is gener-
ated previously to the execution of arc-consistency. An important factor for the
efficiency of this scheme is the criterion for the distribution of constraints among
processors, therefore different criteria have been investigated.

Parallelisation of the consistency algorithm requires every processor to have
access to a common store for the domains of the variables. Since the presented
parallelisation scheme is focused on distributed memory architecture, each pro-
cessor will maintain a (partial) local copy of the store. Changes in the variables’
domains must be communicated to concerned processors in order to maintain
coherency among local copies of the domains.

The set of constraints C is partitioned into n disjoint subsets, C = C1U- - -UC),.
This partitioning induces a distribution of the set of domain variables V in n
not necessarily disjoint subsets Vi,---,V,, (V = V4 U---UV,). For all con-
straints ¢; € C}, the variables involved in ¢; constitute V;. Partitions (V;, D;, C;)
are mapped one-to-one to processing elements P;. Each processing element P;
performs sequential arc-consistency, revising constraints belonging to C;, and
consequently updating local copies of variables in V;. Since the distribution of
the set of variables V is non-disjoint, some variables will be located at several
processing elements. Therefore, each processing element P; must broadcast the
prunings of the domain of variable v to every processing element P; which has
been assigned any of those constraints which involve variable v. Upon receiving
the notification, processing elements P; intersect their local copies of the domain
with the incoming domain, probably triggering further propagation. Communi-
cation among processors is also needed in order to detect termination of the
algorithm, either because of reaching the global fixed point, or because of incon-
sistency detection.



Parallel Implementation of Constraint Solving 469

2.1 Parallel Algorithm

The parallel arc-consistency algorithm, as the sequential one, is a fixed point
algorithm. Every processor executes a copy of it, maintaining a private propa-
gation queue. The main steps of the algorithm are:

1. Initialize the local propagation queue, as the result of the revision of the
local constraints.
2. Repeat the following steps until the global fixed point is reached or incon-
sistency is detected:
— Revise local constraints until either the local propagation queue is empty
(local fixed point) or inconsistency is detected.
— Notify local fixed point to the distinguished processor, and wait until
either:

e Other processor communicates a change in the domain of a vari-
able, therefore the local fixed point is left and revision of constraints
continues.

e The distinguished processor communicates that the global fixed point
has been reached.

e Other processor communicates inconsistency.

Whenever the revision of a local constraint results in the modification of
the domain of a variable v, the processor broadcasts a message to the set of
processors that have been assigned any of those constraints which involve vari-
able v. Upon receiving the message these processors either detect inconsistency
or properly update their local propagation queue and their local copy of vari-
able v. Whenever a processor detects inconsistency, it broadcasts the failure to
the rest of processors. Inconsistency is detected whenever:

— an empty domain results from the revision of a local constraint.
— an empty domain results from the intersection of the local domain of a
variable with the domain received from another processor.

The global fixed point is reached when every processor is in a local fixed
point and there are no pending messages. The distinguished processor is the
only one responsible for the detection of termination. However, it performs local
propagation as any other processor. In order to be able to detect the global fixed
point, processors must notify to the distinguished one whenever they reach a local
fixed point —along with the number of messages they have sent and received—
and whenever they leave it due to an incoming message. When termination is
detected, the distinguished processor notifies to the rest of processors.

A synchronisation among all processors is needed at the beginning of the
algorithm, just after the initialisation of the communication status variables.
Another synchronisation is needed if the algorithm finishes with inconsistency
detection; otherwise, the global fixed point detection implies a synchronisation
among processors.



470 Alvaro Ruiz-Andino et al.

3 Experimental Results

The presented parallel algorithms have been written in C, and developed and
tested on a CRAY T3E multiprocessor with thirty-four 400-MHz DEC Alpha
processors, 128 Mb of memory per processor, under UNICOS (UNIX) operating
system. Notification of failure, global and local fixed point detection, activity
status, and number of messages sent and received, have been implemented using
the remote memory write feature of the CRAY T3E multiprocessor (routines
from CRAY’s shared memory library). Queues of messages are used for receiving
domain updates. Messages are broadcasted to queues also using the fast remote
memory write feature.

Reported results correspond to the time required to reach the first or all so-
lutions, depending on the benchmark, performing a first fail sequential labelling.
Therefore, reported speedup is lower than speedup achieved in a single call to
the arc-consistency algorithm, since the search for a solution usually comprises
a large number of calls to the arc-consistency algorithm, executed in parallel,
interleaved with the selection and assignment of a value to a variable, executed
sequentially.

We report the results for two representative benchmarks from the set used
to evaluate the performance of the presented parallelisation scheme:

1. N-Queens problem consists in placing N queens in an NxN chess board
in such a way that no queen attacks each other. The instance presented
corresponds to N = 111, size which leads to a significant execution time.

2. Parametrizable Binary Constraint Satisfaction Problem (PBCSP). Synthetic
parametrizable constraint satisfaction problems allow studying the perfor-
mance of an arc-consistency algorithm as some significant problem parame-
ters vary. Instances of this problem are randomly generated given four pa-
rameters: number of variables (nv), the size of the initial domains (ds), den-
sity, and tightness. Figure 1 reports results obtained for an instance of this
problem where nv = 100, ds = 20, density = 0.75, and tightness = 0.85.

Charts in figure 1 show, for each benchmark, the speedup vs. the number of
processors. It can be observed that whereas PBCSP problems present a nearly
linear speedup, the speedup for Queens benchmark stops increasing from a cer-
tain number of processors. The main factor for this different behaviour are that in
PBCSP benchmark calls to the arc-consistency algorithm have a larger execution
time, and revision of constraints has a larger granularity. Besides, PBCSP has
a constraint graph with a more uniform topology, leading to a better workload
balance. In order to study this factor we have measured the minimum and the
maximum number of constraints executed per processor. The difference between
minimum and maximum indicates workload balance quality. For PBCSP bench-
marks, the minimum and maximum values do not differ significantly, indicating
a high balanced workload, whereas this is not the case for Queens benchmark.



Parallel Implementation of Constraint Solving 471

Queens PBCSP

25

1 6 1 16 21 26 31 1 6 1 16 21 26 31
Number of processors Number of processors

Fig. 1. Speedup curves for selected benchmarks.

4 Conclusions

We have developed and evaluated a parallelisation scheme of an arc-consistency
algorithm for constraint satisfaction problems over finite domains. The scheme
has been implemented on a CRAY T3E, a distributed shared memory MIMD
multiprocessor, and empirical data are reported for two benchmarks.

The speedup obtained is nearly linear for PBCSP benchmarks, whereas for
others speedup stops increasing from a problem dependent number of processors.
This difference is mainly due to the more uniform constraint graph and larger
granularity of PBCSP benchmarks, which leads to a better workload balance.
In order to study how the performance of the parallel system depends on the
characteristics of the constraint satisfaction problem to solve, the parametrizable
synthetic benchmark has been tested for different sets of parameters. Results
show that the system is better suited for large scale problems with a dense
constraint graph.

References

1. Bessiere, D.: Arc-consistency and arc-consistency again. Artificial Intelligence Jour-
nal 65 (1994) 179-190. 466

2. Baudot, B., Deville, Y.: Analysis of Distributed Arc-Consistency Algorithms. Tech.
Rep. 97-07. Uni. of Louvain, Belgium (1997). 467

3. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence 45 (1990) 275-286. 467

4. Kasif, S., Delcher, A. L.: Local Consistency in Parallel Constraint-Satisfaction
Networks. Artificial Intelligence 69 (1994) 307-327. 467

5. Nguyen, T., Deville, Y.: A Distributed Arc-Consistency Algorithm. Science of Com-
puter Programming, 30 (1998) 227-250. 467



472

6.

10.

11.

Alvaro Ruiz-Andino et al.

Ruiz-Andino, A., Araujo, L., Ruz, J.: Parallel constraint satisfaction and optimisa-
tion. The PCSO system. Technical Report 71.98. Department of Computer Science.
Universidad Complutense de Madrid (1998)

Van Hentenryck P., Deville, Y., Teng C. M.: A generic Arc-consistency Algorithm
and its Specialisations. Artificial Intelligence 57 (1992) 291-321. 466, 467
Wallace, M.: Constraints in Planning, Scheduling and Placement Problems. Con-
straint Programming, Springer-Verlag (1994). 466

Waltz, D.: Generating semantic descriptions for drawings of scenes with shadows.
Technical Report AI271, MIT, Cambridge, MA. (1972). 466

Yokoo, M.: Asynchronous weak-commitment search for solving distributed con-
straint satisfaction problems. Principles and Practice of Constraint Programming
(1995) 88-102.

Zhang, Y., Mackworth, A. K.: Parallel and Distributed Finite Constraint Satisfac-
tion: Complexity, Algorithms and Experiments. Parallel Processing for Artificial
Intelligence. Elsevier Science. (1993). 466



	Introduction
	Constraint Programming

	Parallel Arc-Consistency
	Parallel Algorithm

	Experimental Results
	Conclusions

