
MSDN Home > Web Services Home > Understanding Web Services > Web Service Basics

Web Services Description Language (WSDL)
Explained
Carlos C. Tapang
Infotects

July 2001

Summary: Using WSDL, users can automate the generation of proxies for Web services in
a truly language- and platform-independent way. (28 printed pages)

Contents

Why WSDL?
WSDL Document Structure
A Sample WSDL File
Namespaces
SOAP Messages
XML Schema in the Types and Messages Sections of WSDL
<portType> and <operation> Elements
<binding> and <operation> Elements
Document-style Binding
<service> and <port> Elements
Summary
Resources

Why WSDL?

Are standards like the Internet Protocol imposed by some authority, or do people recognize them as such because the
benefits obtained far outweigh the cost of compliance? There have been many standards proposed that did not pan out.
Sometimes, standards that do not become widely used are even enforced by law or government regulation: an example is
the Ada programming language.

I believe it is the benefits obtained from following a standard that makes it widely accepted. So what matters for railroad
services, for example, is that train tracks built by different companies come together, or that products from several
companies work together. Several vendors have come together in order to establish SOAP as a standard. Web Services
Description Language (WSDL) makes it easy to reap the benefits of SOAP by providing a way for Web service providers
and users of such services to work together easily. It is easy for train tracks built by several firms to come together: all
they have to agree on is the standard distance between the two rails. For Web services, it's much more complex. We first
have to agree on a standard format for specifying interfaces.

It has been argued that SOAP does not really need an interface description language to go with it. If SOAP is a standard
for communicating pure content, then it needs a language for describing that content. SOAP messages do carry type
information, and so SOAP allows for dynamic determination of type. But I cannot call a function correctly unless I know its
name and the number of parameters and the types of each. Without WSDL, I can determine the calling syntax from
documentation that must be provided, or by examining wire messages. Either way, a human will have to be involved, and
so the process is prone to error. With WSDL, I can automate the generation of proxies for Web services in a truly
language- and platform-independent way. Like the IDL file for COM and CORBA, a WSDL file is a contract between client
and server.

Note that while WSDL has been designed such that it can express bindings to protocols other than SOAP, our main concern
here is WSDL as it relates to SOAP over HTTP. Also, while SOAP is currently used mainly for remote procedure or function
calls, WSDL allows the specification of documents for transmission under SOAP. WSDL 1.1 has been submitted to W3C as a
NOTE (see http://www.w3.org/TR/wsdl.html).

WSDL Document Structure

See This in MSDN Library

Page Options

Página 1 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Servic...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

When trying to understand any XML document, it helps to have a block diagram. The diagram below illustrates the
structure of WSDL, which is an XML document, by showing the relationships among the five sections that make up a WSDL
document.

The WSDL document can be divided into two groups of sections. The top group is comprised of Abstract Definitions, while
the bottom group consists of Concrete Descriptions. The abstract sections define SOAP messages in a platform- and
language-independent manner; they do not contain any machine- nor language-specific elements. This helps define a set
of services that several, diverse Web sites can implement. Site-specific matters such as serialization are then relegated to
the bottom sections, which contain concrete descriptions.

Abstract Definitions

Types
Machine- and language-independent type definitions.

Messages
Contains function parameters (inputs separate from outputs) or document descriptions.

PortTypes
Refers to message definitions in Messages section to describe function signatures (operation name, input
parameters, output pameters).

Concrete Descriptions

Bindings
Specifies binding(s) of each operation in the PortTypes section.

Services
Specifies port address(es) of each binding.

In the diagram below, arrow connectors represent relationships among the different sections of the document. The dot and
arrow connector represents a "refers to" or "uses" relationship. The double-arrow connector represents a "modifier"
relationship. The 3-D arrow connector represents a "contains" relationship. Thus, the Messages section uses definitions in
the Types section; the PortTypes section uses definitions in the Messages section; the Bindings section refers to the
PortTypes section; and the Services section refers to the Bindings section. The PortTypes and Bindings sections contain
operation elements, and the Services section contains port elements. Operation elements in the PortTypes section are
modified or further described by operation elements in the Bindings section.

In this backgrounder I will be using standard XML terminology to describe the WSDL document. The word "element" refers
to an XML element and the word "attribute" refers to an element attribute. Thus:

<element attribute="attribute-value">contents</element>

Contents may also be made up of one or more elements, in recursive fashion. The root element is the top-most element in
which all other elements in a document belong. A child element always belongs to another, parent element.

Note that there can only be one Types section, or no Types section at all. All other sections can have zero, one, or multiple
parent elements. For example, the Messages section can have zero or more <message> elements. The WSDL schema
requires that all sections appear in a specific order: import, types, message, portType, binding, and service. Each abstract
section may be in a separate file by itself and imported into the main document.

Página 2 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Servic...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 3 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Servic...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 4 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Servic...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 5 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Servic...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 6 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Servic...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 7 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Servic...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 8 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Servic...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 9 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Servic...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 10 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 11 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 12 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 13 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 14 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 15 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 16 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 17 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Página 18 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

Figure 1. Abstract and concrete definitions

A Sample WSDL File

Let's dive right into a sample WSDL file to see its structure and how it works. Please be aware that this is a very simple
instance of a WSDL document. Our purpose here is simply to illustrate its most salient features. The following sections
include more detailed discussions.

<?xml version="1.0" encoding="UTF-8" ?>
<definitions name="FooSample"
targetNamespace="http://tempuri.org/wsdl/"
xmlns:wsdlns="http://tempuri.org/wsdl/"
xmlns:typens="http://tempuri.org/xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:stk="http://schemas.microsoft.com/soap-toolkit/wsdl-extension"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://tempuri.org/xsd"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
elementFormDefault="qualified" >
</schema>
</types>

<message name="Simple.foo">
<part name="arg" type="xsd:int"/>
</message>

<message name="Simple.fooResponse">
<part name="result" type="xsd:int"/>
</message>

<portType name="SimplePortType">
<operation name="foo" parameterOrder="arg" >
<input message="wsdlns:Simple.foo"/>
<output message="wsdlns:Simple.fooResponse"/>
</operation>
</portType>

<binding name="SimpleBinding" type="wsdlns:SimplePortType">
<stk:binding preferredEncoding="UTF-8" />
<soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="foo">
<soap:operation
soapAction="http://tempuri.org/action/Simple.foo"/>
<input>
<soap:body use="encoded" namespace="http://tempuri.org/message/"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</input>
<output>
<soap:body use="encoded" namespace="http://tempuri.org/message/"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</output>
</operation>
</binding>

<service name="FOOSAMPLEService">
<port name="SimplePort" binding="wsdlns:SimpleBinding">
<soap:address location="http://carlos:8080/FooSample/FooSample.asp"/>
</port>
</service>
</definitions>

What follows is a bird's eye view of the sample document. Later, I will discuss each section in more detail.

The first line declares that the document is XML. Although it is not required, it helps the XML parser to determine whether
to parse the WSDL file at all or signal an error. The second line is the root element in the WSDL document: <definitions>.

Página 19 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

There are several namespace attributes (namespace declarations) attached to the root element, as well as in the
<schema> child element of the <types> element.

The <types> element comprises the Types section. This section may be omitted if there are no data types that need to be
declared. In the sample WSDL, there are no application-specific types declared but I use the Types section anyway just to
declare schema namespaces used in the document.

The <message> elements comprise the Messages section. If we consider operations as functions, then a <message>
element defines the parameters to that function. Each <part> child element in the <message> element corresponds to a
parameter. Input parameters are defined in a single <message> element, separate from output parameters, which are in
their own <message> element. Parameters that are both input and output have their corresponding <part> elements in
both input and output <message> elements. The name of an output <message> element ends in "Response", as in
"fooResponse", by convention. Each <part> element has a name and type attribute, just as a function parameter has both
a name and type.

When used for document exchange, WSDL allows the use of <message> elements to describe the document to be
exchanged.

The type of a <part> element can be an XSD base type, a SOAP defined type (soapenc), a WSDL defined type (wsdl), or a
Types section defined type.

There can be zero, one, or more <portType> elements in the PortTypes section. Because abstract PortType definitions can
be place in a separate file, it is possible to have zero <portType> element in a WSDL file.' The sample above shows only
one <portType> element. As you can see, a <portType> element defines one or more operations in <operation>
elements. The sample shows only one <operation> element, named "foo". This name is equivalent to a function name. The
<operation> element can have one, two, or three child elements: the <input>, <output>, and <fault> elements. The
message attribute in each <input> and <output> element refers to the relevant <message> element in the Messages
section. Thus, the whole <portType> element in the sample is equivalent to the following C function declaration:

int foo(int arg);

This example shows how much more verbose XML is compared to C. (Including <message> elements, in the sample it
took 12 lines of XML to express the same single-line function declaration.)

The Bindings section can have zero, one, or more <binding> elements. Its purpose is to specify how each <operation> cal
and response is sent over the wire. The Services section can also have zero, one, or more <service> elements. It contains
<port> elements, each of which refers to a <binding> element in the Bindings section. Both the Bindings and Services
sections comprise the concrete descriptions of a WSDL document.

Namespaces

In both the root element <definitions> and child element <schema> are namespace attributes:

<definitions name="FooSample"
targetNamespace="http://tempuri.org/wsdl/"
xmlns:wsdlns="http://tempuri.org/wsdl/"
xmlns:typens="http://tempuri.org/xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:stk="http://schemas.microsoft.com/soap-toolkit/wsdl-extension"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://tempuri.org/xsd"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
elementFormDefault="qualified" >
</schema>
</types>

Each namespace attribute declares a shorthand for each namespace that is used in the document. For instance
"xmlns:xsd" defines a shorthand (xsd) for the namespace http://www.w3.org/2001/XMLSchema. This allows references to

Página 20 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

this namespace later in the document simply by prefixing (or "qualifying") a name with "xsd:" as in "xsd:int", which is a
qualified type name. Normal scoping rules apply for the shorthand prefixes. That is, a prefix defined in an element only
holds within that element.

What are namespaces for? The purpose of namespaces is to avoid naming conflicts. If I establish a Web service whose
WSDL file contains an element with a name of "foo", and you want to use my Web service in conjunction with another,
complementary service, then without namespaces that other Web service can not use the name "foo" anywhere in its
WSDL file. Both services can use the same name only if they mean exactly the same thing in both instances. With two
distinct namespaces, my Web service "foo" can mean a different thing than the other Web service "foo". In your client, you
would have to refer to my "foo" by qualifying it. For example, http://www.infotects.com/fooService#foo is a fully qualified
name which can be equivalent to "carlos:foo" if I declare carlos as a shorthand for http://www.infotects.com/fooService.
Note that URI's are used for namespaces to guarantee their uniqueness and also to allow locators in the document. The
location pointed to by the URI does not have to correspond to a real Web location. A GUID can also be used instead of, or
in addition to, a URI. For example, the GUID "335DB901-D44A-11D4-A96E-0080AD76435D" is a valid namespace
designator.

The targetNamespace attribute declares a namespace to which all names declared in an element will belong. In the sample
WSDL file, the targetNamespace for <definitions> is http://tempuri.org/wsdl. This means that all names declared in this
WSDL document belong to this namespace. The <schema> element has its own targetNamespace attribute with a value of
http://tempuri.org/xsd so that all names defined in this <schema> element belong to this namespace instead of the main
target namespace.

The following line in the <schema> element declares a default namespace. All unqualified names in the schema belong to
this namespace.

xmlns="http://www.w3.org/2001/XMLSchema"

SOAP Messages

One way of looking at a WSDL file is that, for the clients and servers that use it, it determines what gets sent on the wire.
Although SOAP uses low-level protocols such as IP and HTTP, the application determines the high-level protocol that it
uses between a particular client and a particular server. In other words, given an operation, say "echoInt" that simply
echoes back an input integer, the count of parameters, the type of each parameter, and how those parameters are to be
sent through the wire (serialization) make up an application-specific protocol. Such protocol can be specified in many
ways, and I believe the best way is to use WSDL. If we look at it this way, WSDL is not just an "interface contract"; it is
also a protocol specification language. It is precisely what we need if we are to go beyond "fixed" protocols such as IP and
HTTP towards application-specific protocols.

WSDL can specify whether SOAP messages conform to either rpc or document styles. An rpc-style message, as used in the
example, looks like a function call with zero or more parameters. A document-style message is flatter and requires less
nesting levels. The XML messages below are sent and received as a result of parsing the sample WSDL file using the
SoapClient object in MS SOAP Toolkit 2.0 (MSTK2).

Sent from client to make a function call "foo(5131953)":

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<m:foo xmlns:m="http://tempuri.org/message/">
<arg>5131953</arg>
</m:foo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Received back from server (response):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

Página 21 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

<SOAP-ENV:Body>
<SOAPSDK1:fooResponse xmlns:SOAPSDK1="http://tempuri.org/message/">
<result>5131953</result>
</SOAPSDK1:fooResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Both the function call message and its response are valid XML. A SOAP message consists of an <Envelope> element that
contains an optional <Header> element and at a minimum, one <body> element. Both sent and received messages have
a single <Body> element in the main <Envelope> element. The rpc function call message body has an element named
after the operation name "foo", while the response body has a "fooResponse" element. The foo element has one part,
<arg>, which is the single argument, as described in the sample WSDL. The fooResponse likewise has a single <result>
part. Note how the encodingStyle, envelope, and message namespace is as prescribed in the WSDL Bindings section
repeated here:

<binding name="SimpleBinding" type="wsdlns:SimplePortType">
 <stk:binding preferredEncoding="UTF-8" />
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="foo">
 <soap:operation
 soapAction="http://tempuri.org/action/Simple.foo"/>
 <input>
 <soap:body use="encoded"
 namespace="http://tempuri.org/message/"
 encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" />
 </input>
 <output>
 <soap:body use="encoded"
 namespace="http://tempuri.org/message/"
 encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" />
 </output>
 </operation>
 </binding>

XML Schema in the Types and Messages Sections of WSDL

WSDL data typing is based on "XML Schema: Datatypes" (XSD) which is now a W3C Recommendation. There are three
different versions of this document (1999, 2000/10, and 2001), and declaring it in as one of the namespace attributes in
the <definitions> element specifies which version is used in a particular WSDL file:

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

In this article I will consider the 2001 version only. Proponents of the WSDL standard strongly recommend the use of the
2001 version.

In this and the following sections, the following prefixes or namespace shorthands are used:

XSD Base Types

The following table, taken right out of the MSTK2 documentation, enumerates all XSD base types supported by MSTK2. It
shows how the WSDL reader, both on the client and server sides, maps XSD types to variant types and corresponding
types in VB, C++, and IDL.

Prefix Equivalent Namespace Description
soapenc http://schemas.xmlsoap.org/soap/encoding SOAP 1.1 encoding
wsdl http://schemas.xmlsoap.org/wsdl/soap WSDL 1.1
xsd http://www.w3.org/2001/XMLSchema XML Schema

XSD (Soap) Type Variant type VB C++ IDL Comments
anyURI VT_BSTR String BSTR BSTR
base64Binary VT_ARRAY |

VT_UI1
Byte() SAFEARRAY SAFEARRAY(unsigned

char)

boolean VT_BOOL Boolean VARIANT_BOOL VARIANT_BOOL

Página 22 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

byte VT_I2 Integer short short Range validated on
conversion.

date VT_DATE Date DATE DATE Time set to
oo:oo:oo

dateTime VT_DATE Date DATE DATE
double VT_R8 Double double double
duration VT_BSTR String BSTR BSTR No validation or

conversion
performed

ENTITIES VT_BSTR String BSTR BSTR No validation or
conversion
performed

ENTITY VT_BSTR String BSTR BSTR No validation or
conversion
performed

float VT_R4 Single float float
gDay VT_BSTR String BSTR BSTR No validation or

conversion
performed

gMonth VT_BSTR String BSTR BSTR No validation or
conversion
performed

gMonthDay VT_BSTR String BSTR BSTR No validation or
conversion
performed

gYear VT_BSTR String BSTR BSTR No validation or
conversion
performed

gYearMonth VT_BSTR String BSTR BSTR No validation or
conversion
performed

ID VT_BSTR String BSTR BSTR No validation or
conversion
performed

IDREF VT_BSTR String BSTR BSTR No validation or
conversion
performed

IDREFS VT_BSTR String BSTR BSTR No validation or
conversion
performed

int VT_I4 Long long long
integer VT_DECIMAL Variant DECIMAL DECIMAL Range validated on

conversion.
language VT_BSTR String BSTR BSTR No validation or

conversion
performed

long VT_DECIMAL Variant DECIMAL DECIMAL Range validated on
conversion.

Name VT_BSTR String BSTR BSTR No validation or
conversion
performed

NCName VT_BSTR String BSTR BSTR No validation or
conversion
performed

negativeInteger VT_DECIMAL Variant DECIMAL DECIMAL Range validated on
conversion.

NMTOKEN VT_BSTR String BSTR BSTR No validation or
conversion
performed

NMTOKENS VT_BSTR String BSTR BSTR No validation or
conversion
performed

nonNegativeInteger VT_DECIMAL Variant DECIMAL DECIMAL Range validated on
conversion.

Página 23 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

XSD defines two sets of built-in data types: primitive and derived. It is instructive to examine the hierarchy of built-in data
types in http://www.w3.org/TR/2001/PR-xmlschema-2-20010330.

Complex Types

The XML Schema allows for definition of complex types, which in C would be structs. For example, to define the equivalent
of the following C struct:

typedef struct {
 string firstName;
 string lastName;
 long ageInYears;
 float weightInLbs;
 float heightInInches;
} PERSON;

we can write in XML Schema:

<xsd:complexType name="PERSON">
 <xsd:sequence>
 <xsd:element name="firstName" type="xsd:string"/>
 <xsd:element name="lastName" type="xsd:string"/>
 <xsd:element name="ageInYears" type="xsd:int"/>
 <xsd:element name="weightInLbs" type="xsd:float"/>
 <xsd:element name="heightInInches" type="xsd:float"/>
 </xsd:sequence>
</xsd:complexType>

However, <complexType> can express more than just the equivalent of a struct. It can have other child elements other
than <sequence>. Instead of a <sequence>, I could have used <all>:

<xsd:complexType name="PERSON">
 <xsd:all>
 <xsd:element name="firstName" type="xsd:string"/>
 <xsd:element name="lastName" type="xsd:string"/>
 <xsd:element name="ageInYears" type="xsd:int"/>
 <xsd:element name="weightInLbs" type="xsd:float"/>
 <xsd:element name="heightInInches" type="xsd:float"/>
 </xsd:all>

nonPositiveInteger VT_DECIMAL Variant DECIMAL DECIMAL Range validated on
conversion.

normalizedString VT_BSTR String BSTR BSTR
NOTATION VT_BSTR String BSTR BSTR No validation or

conversion
performed

number VT_DECIMAL Variant DECIMAL DECIMAL
positiveInteger VT_DECIMAL Variant DECIMAL DECIMAL Range validated on

conversion.
QName VT_BSTR String BSTR BSTR No validation or

conversion
performed

short VT_I2 Integer short short
string VT_BSTR String BSTR BSTR
time VT_DATE Date DATE DATE Day set to

December 30, 1899
token VT_BSTR String BSTR BSTR No validation or

conversion
performed

unsignedByte VT_UI1 Byte unsigned char unsigned char
unsignedInt VT_DECIMAL Variant DECIMAL DECIMAL Range validated on

conversion.
unsignedLong VT_DECIMAL Variant DECIMAL DECIMAL Range validated on

conversion.
unsignedShort VT_UI4 Long Long Long Range validated on

conversion.

Página 24 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

</xsd:complexType>

This would have meant that the member variable <element>s can come in any order, and each one is optional. That would
not have been exactly the way a C struct should be.

Note the use of built-in datatypes string, int, float in the sample. A C string is also a string in XML, and a float is a float.
But a C long is an XML int (as in the table above).

In a WSDL file, the Types section is where complex types such as the one above can be declared. For example, I can
declare the PERSON type in the following manner and use it in the Messages section:

<?xml version="1.0" encoding="UTF-8" ?>
<definitions Ã‚Â… >
<types>
 <schema targetNamespace="someNamespace"
 xmlns:typens="someNamespace" >
 <xsd:complexType name="PERSON">
 <xsd:sequence>
 <xsd:element name="firstName" type="xsd:string"/>
 <xsd:element name="lastName" type="xsd:string"/>
 <xsd:element name="ageInYears" type="xsd:int"/>
 <xsd:element name="weightInLbs" type="xsd:float"/>
 <xsd:element name="heightInInches" type="xsd:float"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
</types>

<message name="addPerson">
 <part name="person" type="typens:PERSON"/>
</message>

<message name="addPersonResponse">
 <part name="result" type="xsd:int"/>
</message>

</definitions>

In the above example, the first message has a name of "addPerson", and it has one <part> whose type is "PERSON". The
type PERSON is declared as a complex type in the Types section.

If we use a complete WSDL file with the above fragment when initializing the MSTK2 SoapClient, it will parse the file
successfully. Still, it won't be able to send a function call to <addPerson>. This is because SoapClient doesn't know how to
handle complex types by itself; it needs a custom type mapper to handle the complex type. The MSTK2 documentation has
a sample application that includes a custom type mapper.

There is another way to relate a <part> element to a type declaration. This other way of associating type to a <part> is to
use an element instead of a type attribute. In the next example (below) I declare two elements in the Types section
("Person" and "Gender"), which I then refer to in the "addPerson" <message> using an element attribute.

<?xml version="1.0" encoding="UTF-8" ?>
<definitions Ã‚Â… >
<types>
 <schema targetNamespace="someNamespace"
 xmlns:typens="someNamespace" >
 <element name="Person">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="firstName" type="xsd:string"/>
 <xsd:element name="lastName" type="xsd:string"/>
 <xsd:element name="ageInYears" type="xsd:int"/>
 <xsd:element name="weightInLbs" type="xsd:float"/>
 <xsd:element name="heightInInches" type="xsd:float"/>
 </xsd:sequence>
 </xsd:complexType>
 </element>
 <element name="Gender">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">

Página 25 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

 <xsd:enumeration value="Male" />
 <xsd:enumeration value="Female" />
 </xsd:restriction>
 </xsd:simpleType>
 </element>
 </schema>
</types>

<message name="addPerson">
 <part name="who" element="typens:Person"/>
 <part name="sex" element="typens:Gender"/>
</message>

<message name="addPersonResponse">
 <part name="result" type="xsd:int"/>
</message>
</definitions>

The Gender <element> in the Types section has embedded in it an anonymous enumeration type whose possible values
are "Male" and "Female". I then refer to that element in the "addPerson" <message> by using an element attribute instead
of a type attribute.

What is the difference between "element" and "type" attributes when associating a particular type to a <part>? Using the
"type" attribute, we can describe a part that can assume several types (just like a variant), which we can't do when using
the "element" attribute. The example below illustrates this.

<?xml version="1.0" encoding="UTF-8" ?>
<definitions Ã‚Â… >
<types>
 <schema targetNamespace="someNamespace"
 xmlns:typens="someNamespace">
 <xsd:complexType name="PERSON">
 <xsd:sequence>
 <xsd:element name="firstName" type="xsd:string"/>
 <xsd:element name="lastName" type="xsd:string"/>
 <xsd:element name="ageInYears" type="xsd:int"/>
 <xsd:element name="weightInLbs" type="xsd:float"/>
 <xsd:element name="heightInInches" type="xsd:float"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="femalePerson">
 <xsd:complexContent>
 <xsd:extension base="typens:PERSON" >
 <xsd:element name="favoriteLipstick" type="xsd:string" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="malePerson">
 <xsd:complexContent>
 <xsd:extension base="typens:PERSON" >
 <xsd:element name="favoriteShavingLotion" type="xsd:string" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="maleOrFemalePerson">
 <xsd:choice>
 <xsd:element name="fArg" type="typens:femalePerson" >
 <xsd:element name="mArg" type="typens:malePerson" />
 </xsd:choice>
 </xsd:complexType>
 </schema>
</types>

<message name="addPerson">
 <part name="person" type="typens:maleOrFemalePerson"/>
</message>

<message name="addPersonResponse">
 <part name="result" type="xsd:int"/>
</message>

</definitions>

Página 26 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

The above example also illustrates the use of derivation by extension. Both "femalePerson" and "malePerson" are derived
from "PERSON". Each has an extra element: "favoriteLipstick" for "femalePerson" and "favoriteShavingLotion" for
"malePerson". The two derived types are combined into a single complex type, "maleOrFemalePerson", using the <choice>
construct. Finally, in the "addPerson" <message>, the combined type is referred to by the "person" <part>. This <part>
or parameter can then be either a "femalePerson" or a "malePerson".

Arrays

XSD provides the <list> construct for declaring an array of items delimited by whitespace. However, SOAP does not use
XSD lists to encode arrays. Instead, it defines its own type for arrays, the "SOAP-ENC:Array". The following example
shows how to derive from this type to declare a type for a single-dimension array of integers:

<xsd:complexType name="ArrayOfInt">
 <xsd:complexContent>
 <xsd:restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:int[]"/>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

A new complex type is declared by deriving from soapenc:Array using derivation by restriction. An attribute for the
complex type is then declared, the arrayType attribute. The reference to "soapenc:arrayType" actually does the arrayType
attribute declaration as follows:

<xsd:attribute name="arrayType" type="xsd:string"/>

The wsdl:arrayType attribute value then determines the type of each of the members of the array. The array items can
also be of a complex type:

<xsd:complexType name="ArrayOfPERSON">
 <xsd:complexContent>
 <xsd:restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType"
 wsdl:arrayType="typens:PERSON[]"/>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

WSDL requires that the type name for an array is the concatenation of "ArrayOf" and the type of the items in the array. It
is then clear that from the name alone, "ArrayOfPERSON" is an array of PERSON structs. Below I use ArrayOfPERSON to
declare a <message> for adding not just one PERSON but a number of PERSONs:

<?xml version="1.0" encoding="UTF-8" ?>
<definitions Ã‚Â… >
<types>
 <schema targetNamespace="someNamespace"
 xmlns:typens="someNamespace" >
 <xsd:complexType name="PERSON">
 <xsd:sequence>
 <xsd:element name="firstName" type="xsd:string"/>
 <xsd:element name="lastName" type="xsd:string"/>
 <xsd:element name="ageInYears" type="xsd:int"/>
 <xsd:element name="weightInLbs" type="xsd:float"/>
 <xsd:element name="heightInInches" type="xsd:float"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ArrayOfPERSON">
 <xsd:complexContent>
 <xsd:restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType"
 wsdl:arrayType="typens:PERSON[]"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
 </schema>
</types>

Página 27 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

<message name="addPersons">
 <part name="person" type="typens:ArrayOfPERSON"/>
</message>

<message name="addPersonResponse">
 <part name="result" type="xsd:int"/>
</message>

</definitions>

<portType> and <operation> Elements

A PortType defines a number of operations in the abstract. Operation elements within a PortType define the syntax for
calling all methods in the PortType. Each operation element declares the name of the method, the parameters (using
<message> elements), and types of each (<part> elements declared in every <message>).

There can be several <portType> elements within a WSDL document. Each <portType> element groups together a
number of related operations in much the same way that a COM interface groups a number of methods.

In an <operation> element, there can be at most one <input> element, at most one <output> element, and at most one
<fault> element. Each of these three elements has a name and a message attribute.

What is the purpose of the name attribute in the <input>, <output>, and <fault> elements? It can be used to distinguish
between two operations that have the same name (overloading). For instance, consider the following two C functions with
the same name but dissimilar parameters:

void foo(int arg);
void foo(string arg);

This kind of overloading can be expressed in WSDL as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<definitions name="fooDescription"
 targetNamespace="http://tempuri.org/wsdl/"
 xmlns:wsdlns="http://tempuri.org/wsdl/"
 xmlns:typens="http://tempuri.org/xsd"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:stk="http://schemas.microsoft.com/soap-toolkit/wsdl-
 extension"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
 <schema targetNamespace="http://tempuri.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 elementFormDefault="qualified" >
</schema>
</types>

<message name="foo1">
 <part name="arg" type="xsd:int"/>
</message>

<message name="foo2">
 <part name="arg" type="xsd:string"/>
</message>

<portType name="fooSamplePortType">
 <operation name="foo" parameterOrder="arg " >
 <input name="foo1" message="wsdlns:foo1"/>
 </operation>
 <operation name="foo" parameterOrder="arg " >
 <input name="foo2" message="wsdlns:foo2"/>
 </operation>
</portType>

<binding name="fooSampleBinding" type="wsdlns:fooSamplePortType">
<stk:binding preferredEncoding="UTF-8" />

Página 28 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="foo">
 <soap:operation soapAction="http://tempuri.org/action/foo1"/>
 <input name="foo1">
 <soap:body use="encoded" namespace="http://tempuri.org/message/"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </input>
</operation>
<operation name="foo">
 <soap:operation soapAction="http://tempuri.org/action/foo2"/>
 <input name="foo2">
 <soap:body use="encoded"
 namespace="http://tempuri.org/message/"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 />
 </input>
</operation>
</binding>

 <service name="FOOService">
 <port name="fooSamplePort" binding="fooSampleBinding">
 <soap:address
 location="http://carlos:8080/fooService/foo.asp"/>
 </port>
 </service>
</definitions>

At the time of this writing, none of the SOAP implementations are able to do the overloading of operation names. It's
important for Java-based clients because Java-based servers use interfaces that utilize the overloading feature of Java. For
COM-based clients, it's not important because COM does not support overloading.

<binding> and <operation> Elements

The Binding section is where the protocol, serialization, and encoding on the wire are fully specified. Whereas the Types,
Messages, and PortType sections deal with data content in the abstract, the Binding section is where the physical details of
data transmission is dealt with. The Binding section concretizes the abstractions made in the first three sections.

The separation of binding specifications from data and message declarations means that service providers who engage in
the same type of business can standardize on a set of operations (portType). Each provider can then differentiate from
another by providing custom bindings. It helps that WSDL also has an import construct so that the abstract definitions can
be put in their own file, separate from the Bindings and Services sections, which can be distributed among service
providers for whom the abstract definitions will have been established as a standard. For example, banks can standardize
on a set of banking operations that are then accurately described in an abstract WSDL document. Each bank is then still
free to "customize" on an underlying protocol, serialization optimizations, and encoding.

Below is the Binding section of the overloading sample WSDL, repeated here so I can discuss its details:

<binding name="fooSampleBinding" type="wsdlns:fooSamplePortType">
 <stk:binding preferredEncoding="UTF-8" />
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="foo">
 <soap:operation soapAction="http://tempuri.org/action/foo1"/>
 <input name="foo1">
 <soap:body use="encoded"
 namespace="http://tempuri.org/message/"
 encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" />
 </input>
 </operation>
 <operation name="foo">
 <soap:operation soapAction="http://tempuri.org/action/foo2"/>
 <input name="foo2">
 <soap:body use="encoded"
 namespace="http://tempuri.org/message/"
 encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" />
 </input>

Página 29 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

 </operation>
</binding>

The <binding> element is given a name (in this case "fooSampleBinding") so that the <port> element in the Services
section can refer to it. It has a "type" attribute that refers to a <portType>, which in this case is
"wsdlns:fooSamplePortType". The second line is an MSTK2 extension element, <stk:binding>, which specifies the
preferredEncoding, "UTF-8".

The <soap:binding> element specifies the style ("rpc") and transport used. The transport attribute refers to a namespace,
which signifies that the HTTP SOAP protocol is used.

There are two <operation> elements with the same name, "foo". What distinguishes between the two operations are the
two different <input> names, "foo1" and "foo2". The <soap:operation> element within both <operation> elements has
the same "soapAction" attribute, which is a URI. The soapAction attribute is a SOAP-specific URI that simply gets used
in the SOAP message verbatim. The resulting SOAP message has a SOAPAction header and this URI in the
<soap:operation> element becomes its value. The soapAction attribute is required for HTTP binding but should not be
present for non-HTTP binding. Its use is not clear at this writing. It appears that it can be used to help distinguish between
the two "foo" operations in this particular case. SOAP 1.1 states that soapAction is used to identify the "intent" of the
message. It suggests that the server can use this attribute to route the message without having to parse the whole
message. In practice, its use varies. The <soap:operation> element can also contain another attribute, the "style"
attribute that is used if it is necessary to override the style specified in the <soap:binding> element for this particular
operation.

The <operation> element can contain <input>, <output>, and <fault> elements which all correspond to the same
elements in the PortTypes section. Only the <input> element is present in the example above. Each of these three
elements has an optional "name" attribute that can be used, as in this case, to distinguish among operations with the
same name. Inside the <input> element in the example is a <soap:body> element that specifies what gets into the
<body> of the resulting SOAP message. This element has the following attributes:

Use
This is for specifying whether the data is "encoded" or "literal". "Literal" means that the resulting SOAP message
contains data formatted exactly as specified in the abstract definitions (Types, Messages, and PortTypes sections).
"Encoded" means that the "encodingStyle" attribute (see below) determines the encoding.

Namespace
Each SOAP message body can have its own namespace to prevent name clashing. The URI specified in this attribute is
used verbatim in the resulting SOAP message.

EncodingStyle
For SOAP encoding, this should have the URI value of "http://schemas.xmlsoap.org/soap/encoding".

Document-style Binding

In the previous section, the <soap:binding> element has a type attribute, which is set to "rpc". This attribute, when set to
"document" changes the serialization of messages on the wire. Instead of function signatures, the messages are now
document transmissions. In this type of binding, the <message> elements define document formats instead of function
signatures. As an example, consider the following WSDL fragment:

<definitions
 xmlns:stns="(SchemaTNS)"
 xmlns:wtns="(WsdlTNS)"
 targetNamespace="(WsdlTNS)">

<schema targetNamespace="(SchemaTNS)"
 elementFormDefault="qualified">
 <element name="SimpleElement" type="xsd:int"/>
 <element name="CompositElement" type="stns:CompositeType"/>
 <complexType name="CompositeType">
 <all>
 <element name='a' type="xsd:int"/>
 <element name='b' type="xsd:string"/>
 </all>
 </complexType>
</schema>

<message...>
 <part name='p1' type="stns:CompositeType"/>

Página 30 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

 <part name='p2' type="xsd:int"/>
 <part name='p3' element="stns:SimpleElement"/>
 <part name='p4' element="stns:CompositeElement"/>
</message>
Ã‚Â…
</definitions>

The schema has two elements, SimpleElement and CompositeElement, and a type declared (CompositeType). The only
<message> element declared has four parts: p1, which is of type CompositeType; p2, which is of type int; p3, which is a
SimpleElement; and p4, which is a CompositeElement. Below is a table that compares four kinds of bindings as determined
by use/type: rpc/literal, document/literal, rpc/encoded, and document/encoded. The table shows what appears on the wire
for each kind of binding.

rpc / literal
<operation name="method1" style="rpc" ...>
<input>
<soap:body parts="p1 p2 p3 p4"

use="literal"

namespace="(MessageNS)"/>

</input>

</operation>

on the wire:
<soapenv:body... xmlns:mns="(MessageNS)"

xmlns:stns="(SchemaTNS)">

<mns:method1>

<mns:p1>

<stns:a>123</stns:a>

<stns:b>hello</stns:b>

</mns:p1>

<mns:p2>123</mns:p2>

<mns:p3>

<stns:SimpleElement>

123

</stns:SimpleElement>

</mns:p3>

<mns:p4>

<stns:CompositeElement>

<stns:a>123</stns:a>

<stns:b>hello</stns:b>

</stns:CompositeElement>

</mns:p4>

</mns:method1>

</soapenv:body>

document / literal / type=
<operation name="method1"

style="document" ...>

<input>

<soap:body parts="p1" use="literal">

</input>

</operation>

on the wire:

<soapenv:body... xmlns:stns="(SchemaTNS)">

<stns:a>123</stns:a>

<stns:b>hello</stns:b>

</soapenv:body>

rpc / encoded
<operation name="method1" style="rpc" ...>
<input>
<soap:body parts="p1 p2" use="encoded"
encoding=

"http://schemas.xmlsoap.org/soap/encoding/"

namespace="(MessageNS)"/>

</input>

</operation>

on the wire:
<soapenv:body... xmlns:mns="(MessageNS)">

<mns:method1>

<p1 HREF="#1" TARGET="_self"/>

<p2>123</p2>

document / literal / element=
<operation name="method1"

style="document" ...>

<input>

<soap:body parts="p3 p4"

use="literal">

</input>

</operation>

on the wire:

<soapenv:body... xmlns:stns="(SchemaTNS)">

<stns:SimpleElement>

Página 31 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

<service> and <port> Elements

A service is a set of <port> elements. Each <port> element associates a location with a <binding> in a one-to-one
fashion. If there is more than one <port> element associated with the same <binding>, then the additional URL locations
can be used as alternates.

There can be more than one <service> element in a WSDL document. There are many uses for allowing multiple
<service> elements. One of them is to group together ports according to URL destination. Thus, I can redirect all my stock
quote requests simply by using another <service>, and my client program would still work because in this type of service
grouping the protocol is invariant with respect to different services. Another use of multiple <service> elements is to
classify the ports according to the underlying protocol. For example, I can put all HTTP ports in one <service>, and all
SMTP ports in another. My client can then search for the <service> that matches the protocol that it can deal with.

<service name="FOOService">
 <port name="fooSamplePort" binding="fooSampleBinding">
 <soap:address
 location="http://carlos:8080/fooService/foo.asp"/>
 </port>
</service>

Within one WSDL document, the <service> "name" attribute distinguishes one service from another. Because there can be
several ports in a service, the ports also have a "name" attribute.

Summary

In this article I have described the most salient SOAP-specific aspects of the WSDL document. It should be mentioned that
WSDL is not limited to describing SOAP over HTTP. WSDL is expressive enough for describing SOAP using HTTP-POST,
HTTP-GET, SMTP, and others. With WSDL, SOAP is much easier to deal with both for developers and users. I believe that
WSDL and SOAP together will usher in a whole new class of applications that utilize Web services distributed over the net.

WSDL has a number of XML elements in its namespace. The following table summarizes those elements, their attributes,

</mns:method1>

<mns:CompositeType id="#1">

<a>123

hello

</mns:CompositeType>

</soapenv:body>

123

</stns:SimpleElement>

<stns:CompositeElement>

<stns:a>123</stns:a>

<stns:b>hello</stns:b>

</stns:CompositeElement>

</soapenv:body>

 document / encoded
<operation name="method1"

style="document" ...>

<input>

<soap:body parts="p1 p2" use="encoded"

encoding=

"http://schemas.xmlsoap.org/soap/encoding/"

namespace="(MessageNS)"/>

</input>

</operation>

on the wire:
<soapenv:body... xmlns:mns="(MessageNS)">

<mns:CompositeType>

<a>123

hello

</mns:CompositeType>

<soapenc:int>123</soapenc:int>

</soapenv:body>

Página 32 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

 Top of Page

and contents:

Resources:

1. WSDL 1.1

2. SOAP 1.1

3. XML Schema Primer

4. MS SOAP Toolkit Download Site

5. A tool for translating IDL to WSDL

6. Free Web Services resources including a WSDL to VB proxy generator

7. PocketSOAP: SOAP related components, tools & source code

Element Attribute(s) Contents (children)
<definitions> name

targetNamespace
xmlns (other namespaces)

<types>
<message>
<portType>
<binding>
<service>

<types> (none) <xsd:schema>
<message> name <part>
<portType> name <operation>
<binding> name

type
<operation>

<service> name <port>
<part> name

type
(empty)

<operation> name
parameterOrder

<input>
<output>
<fault>

<input> name
message

(empty)

<output> name
message

(empty)

<fault> name

message

(empty)

<port> name
binding

<soap:address>

How would you rate the quality of this content?

1 2 3 4 5 6 7 8 9

Poor Outstanding

Tell us why you rated the content this way. (optional)

Submit

Average rating:
6 out of 9

1 2 3 4 5 6 7 8 9

669 people have rated this page

 Contact Us | MSDN Flash Newsletter | Legal

 ©2003 Microsoft Corporation. All rights reserved. Terms of Use | Privacy Statement

Página 33 de 33Web Service Basics: Web Services Description Language (WSDL) Explained (Web Ser...

29/09/2003http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx?pull=/li...

