
ARTICLES

MARKUP SYSTEMS AND THE FUTURE
OF SCHOLARLY TEXT PROCESSING

Markup practices can affect the move toward systems that support scholars
in the process of thinking and writing. Whereas procedural and
presentational markup systems retard that movement, descriptive markup
systems accelerate the pace by simplifying mechanical tasks and allowing
the authors to focus their attention on the content.

JAMES H. COOMBS, ALLEN H. RENEAR, and STEVEN J. DeROSE

In the last few years, scholarly text processing has en-
tered a reactionary stage. Previously, developers were
working toward systems that would support scholars in
their roles as researchers and authors. Building on the
ideas of Bush [9], people such as Nelson [lo, 27, 281 and
van Dam [lo] prototyped systems designed to parallel
the associative thought processes of researching schol-
ars. Similarly, Engelbart [16, 171 sought to augment hu-
man intellect by providing concept-manipulation aids.
Reid developed Scribe, freeing authors from formatting
concerns and providing them with integrated tools for
bibliography and citation management [SO]. Although
only a small percentage of scholars was exposed to
these ideas, the movement was toward developing new
strategies for research and composition.

Since the introduction of inexpensive and powerful
personal computers, we have seen a change in focus
away from developing such new strategies toward find-
ing ways to do the old things faster. This transition
manifests itself in part through a change in models.
Previously, developers worked with the model of
scholar as researching and composing author. Recently,
however, the dominant model construes the author as
typist or, even worse, as typesetter.’ Instead of enabling
scholars to perform tasks that were not possible before,
today’s systems emulate typewriters. Granted, these
electronic typewriters have built-in search and cut-
paste facilities, but for the knowledgeable user, such

‘Although there remain some important exceptions (e.g.. [14, 31. 331). this
older. limited model of machine-scholar interaction has become dominant.

This work was supported in part by the Mellon Foundation. Although the
issues addressed in this article bear on all electronic document development,
we have chosen to focus on the domain that we know best: scholarly text
processing.

0 1987 ACM OOOl-0782/87/1100-0933 51.50

systems offer only minor improvements and may be
less powerful overall than some of the systems avail-
able 10 and 15 years ago.

There are a number of reasons for this trend. Prob-
ably most important, the transition from centralized
computing to distributed computing began in business
and industry, which remains the most compelling mar-
ket for developers. Traditionally, such installations hire
secretaries to type documents that are already substan-
tially complete. The only tools required in such an en-
vironment are typewriter, scissors, and paste; or, now,
their electronic equivalent.

Even in academia there is reduced impetus for more
intelligent systems. Universities have their own busi-
ness and administrative offices that make good use of
business-oriented systems. Moreover, scholars often
prefer these systems over the alternatives. Those who
have access to more powerful systems rarely have the
time to learn to exploit them fully, and many find them
too complicated to use at all. This is quite understanda-
ble, since most text formatters on minicomputers and
mainframes were developed under a model that is
even more inappropriate than author-as-typist. Writ-
ten by and for programmers, these systems often re-
quire quasi-programming skills, treating authors as
programmer-typists. Most scholars experienced in com-
puting are only too happy to escape such rough and
poorly adapted systems for simple, handy, little pro-
grams that help them get text onto paper quickly. Lack-
ing the concepts necessary to recognize major recent
improvements and unaware of the possibilities for new
strategies for research and composition, they hail this
movement backward as a major advance in scholarly
computing. Because this response comes even from the
most experienced scholars, it carries weight with po-
tential systems developers as well as with those who
are just beginning to use computers. More and more

November 1987 Volume 30 Number 11 Communications of the ACM 933

Articles

scholars call for computing facilities that simply en-
hance their capacity to type; they exert pressure pull-
ing the industry away from significant development.
The consequence is an industry that is clinging to the
past; scholars seek to do what they have always done,
only a little faster.’

This shift in dominant models creates three major
problems: First, the incentive for significant research
and development in computing systems is disappearing,
and a major portion of resources has been diverted into
the enhancement of a minor portion of the document
development process. Lacking the time to train them-
selves in other disciplines, many of the scholars who
are setting the trends in text processing do not under-
stand or value the possibilities. Moreover, the resources
required for the development of sophisticated systems
have been severely underestimated throughout the in-
dustry, and people have become impatient with the
lack of immediately useful products. Thus, we see far
more attention paid to keyboards, printers, fonts, dis-
plays, graphics, colors, and similar features than to the
retrieval and structuring of information or even to the
verification of spelling and grammar.3 The development
of tools providing new capacities has been replaced by
safe and obvious enhancements of comfortable proce-
dures. Second, developers and authors have lost sight
of the fact that there are two products in the elec-
tronic development of a document: the printout and
the “source” file. Currently, everything is directed to-
ward producing the printout; the source is a mere by-
product, wasting valuable disk space, useful for little
more than producing another printout of the same doc-
ument. Proprietary formats and the lack of semantic
and pragmatic coding make these files useless for shar-
ing with colleagues or processing by intelligent systems.
Finally, scholars’ time and energy are diverted from
researching and composing to formatting for final pre-
sentation. The authors of this article pay considerable
attention to the quality of submissions and have typeset
several books, but current systems tend to focus au-
thors’ attention on appearance all of the time, not just
when the document is ready for submission.

Although there is no simple solution to all of these
problems, major improvements in each can be made
by converting to descriptive markup, which is already
widely available. Briefly, the value of descriptive
markup has gone unrecognized because authors and
theorists believe the new document development
systems-the supertypewriters-do not require any
markup. Goldfarb, one of the primary developers of
Generalized Markup Language (GML) [18], made clear.
the advantages of descriptive markup over the usual
procedural markup, but because no one has analyzed

“See Drucker 115) for a discussion of the costs of this tendency as well as of
the failure to take calculated risks.

“At lasl count only four research groups in the country were attempting to
develop sophisticated grammar-checking programs [I]. Spelling correctors and
thesaurus programs have begun to appear in increasing quantities. but tend to
be uneven in quality and are hardly the subject of intense scrutiny.

markup systems fully, users believe that no markup is
even better than descriptive markup. As our analysis of
markup systems makes clear, however, there is no such
thing as “no markup.” All writing involves markup. “No
markup” really consists of a combination of presenta-
tional and punctuational markup. Moreover, of the com-
peting types of markup, descriptive markup is actually
easiest to learn, simplest to use, and best #adapted to the
process of composition. Finally, descriptive markup en-
codes the information necessary to fully develop the
two products in the document development process:
source files as well as printouts. Since the source files
contain semantic and pragmatic coding instead of cod-
ing for formatting, they may easily be shared with
colleagues, submitted directly to publishers, and
processed by intelligent applications as they become
available.4

In the first part of this article, we summarize the
theory of markup systems and clarify the concepts nec-
essary to properly evaluate the alternatives. We will
now present the main arguments for the superiority of
descriptive markup over other forms of markup.

MARKUP THEORY
Whenever an author writes anything, he or she “marks
it up.“’ For example, spaces between words indicate
word boundaries, commas indicate phrase boundaries,
and periods indicate sentence boundaries. This fact is
widely ignored; indeed, markup is usually treated as
an unfortunate requirement of using electronic text-
processing systems, that is, as something to be avoided.
A careful analysis, however, reveals that a.uthors regu-
larly use two types of markup in their manuscripts:
punctuational, for example, placing periods at ends of
sentences; and presentational, for example, numbering
pages. Thus, markup cannot be escaped because our
writing system requires it.

These traditional, scribal types of markup clarify the
written expressions. The markup is not part of the text
or content of the expression, but tells us something
about it. When we “translate” writing into speech (i.e.,
when we read aloud), we do not normally read the
markup directly; instead, we interpret the markup and
use various paralinguistic gestures to convey the appro-

‘This last point should not be underestimated: if we are to correct the current
imbalance in allocation of resources. we must make it possible far newly
developed products to process files created by all text-proce.;sing systems.
Currently. not only do most files contain only paper-directed coding, they also
occur in very incompatible formats. Even for a relatively trivial program. such
as a spelling verifier. it can now cost a developer several months and thou-
sands of dollars to develop the auxiliary programs required 30 process source
files. Moreover. those who do not use the most common texl processors are
cut out of the market and do not have access to the new syswns. The extra
costs and the reduced market created by incompatible and nondescriptive
coding constitute a considerable disincentive to the development of sophisti-
cated systems.

‘The following discussion is based on work by Coombs. This section owes
major debts to Goldfarb 118) and to the recent ANSI-IS0 Standard Generalized
Markup Language (SCML) (2). All d escriptive markup examples are presented
in SGML notation.

934 Comnrunications of the ACM November 1987 Volume .30 Number 11

Arficles

priate information. A question mark, for example,
might become a raising of the voice or the eyebrows.

With the advent of text-processing systems came new
types of markup and new types of processing. When
prepared for reading, either on screen or on paper, doc-
uments are marked up scribally. But, when stored in
electronic files, documents may be marked up scribally
or with special electronic types of markup designed for
processing by computer applications. One uses proce-
dural markup to indicate the procedures that a particu-
lar application should follow (e.g., . sk to skip a line),
descriptive markup to identify the entity type of the
current token (e.g., (p) for paragraphs), referential
markup to refer to entities external to the document
(e.g., &mdash ; for an em dash), and metamarkup to de-
fine or control the processing of other forms of markup
[e.g., (! ENTITY acm "Association for Com-

puting Machinery") todefinethe referential
markup &acm ;).”

Types of Markup

Punctuational. Punctuational markup consists of the
use of a closed set of marks to provide primarily syntac-
tic information about written utterances. Punctuation
has been under study for hundreds of years and is con-
sidered part of our writing system. Because punctuation
is relatively stable, generally familiar to authors, and
very frequent in documents, the usual expectation is
that authors will punctuate their document files just as
if they were typing.

Unfortunately, punctuational markup suffers from
several deficiencies: The system is relatively compli-
cated and subject to considerable stylistic variation.
The authors of this article, for example, do not agree
about the use of commas after sentence-initial adver-
bial phrases; in fact, composition instructors regularly
disagree on such details. In addition to variations in
usage, punctuation marks vary in appearance. For ex-
ample, some people insist dashes should be separated
from surrounding words by spaces; others claim there
should be no such space.’ Even where authors agree
about appearance, there is variation across printing de-
vices. Some devices provide the ability to distinguish
open and close quotation marks: and some devices dis-
tinguish hyphens, en dashes, and em dashes. Finally,
the punctuational markup system is highly ambiguous.
For example, the period is used to indicate abbrevia-

“Strictly speaking. swne of DUT “sloctronic” markup occurs on manuscripts
and typescripts in the form of proofreader’s marks and typesetting directions.
but such markup did not become prominent in the document development
process until the advent of electronic systems. Goldfarb [I& p, 701 and SGML
12. pp. SO-91 1 consider our electronic markup “explicit” and our scribal
markup “implicil.” Actually. Goldfarb ignores presentational markup; SGML
distinguishes “natural-language notation” (punctuational markup) from “for-
matted text notations” (presentational markup). Both types of scribal markup.
however. have physical instantiation and. thus. are not really implicit. More-
over. both are part of a writing system and. thus. part of a medium for
conveying natural-language expressions instead of part of the languages them-
selves.

‘We have observed. for example. that Cambridge University Press favors the
first style of dash: Oxford University Press. the second.

tions as well as sentence boundaries. This ambiguity
creates problems for text formatters, which often im-
properly treat abbreviations as sentence boundaries and
add extra spaces. Authorial aids such as spelling and
grammar correctors must perform considerable extra
processing to disambiguate punctuation marks and
often have to settle for the most likely alternative.

Recognizing the problems with punctuational
markup, authors regularly use referential markup in-
stead. For example, the source files for this article con-
tain &mdash ; instead of ” - ‘I or ” - - ” so the
authors will be free to focus on the content and post-
pone stylistic negotiations until the end. Similarly, de-
scriptive markup may be used to replace punctuation
where the markup identifies a logical element. Short
quotations, for example, are delimited by (q) and (/q)
instead of quotation marks, enabling text formatters
to output open and close marks or neutral marks, de-
pending on the capacities of the display and printing
devices. In addition, applications can quickly locate the
quotations, for whatever purpose the author desires.

Thus, punctuation is not simply part of our writing
system; it is a type of document markup that may vary
and be replaced by other types of markup. Because the
system is subject to stylistic variation, dependent on
available printing devices, and highly ambiguous, we
expect to see more and more punctuation replaced by
referential and descriptive markup. On the other hand,
we see little motivation for the complete replacement
of punctuational markup. Not much is to be gained, for
example, by replacing such standard punctuation as
commas with referential markup. Publishers, or even
text formatters, could use descriptive markup to deter-
mine whether a clause should be punctuated with a
comma or a semicolon, but very few authors have suffi-
cient training in syntax to mark up phrases and clauses
descriptively. Consequently, punctuational markup will
continue to be appropriate and need not be considered
further in this article.

PresentationaL In addition to marking up lower level
elements with punctuation, authors mark up the higher
level entities in a variety of ways to make the presenta-
tion clearer. Such markup-presentational markup-
includes horizontal and vertical spacing, folios, page
breaks, enumeration of lists and notes, and a host of
ad hoc symbols and devices. For example, an author
marks the beginning of a paragraph by leaving some
vertical space and perhaps horizontal space as well.
Occasionally, authors even number their paragraphs.
Similarly, chapters often begin on new pages, may be
enumerated in a variety of styles, and may even be
explicitly labeled “Chapter.”

Although authors have long performed presentational
markup in their manuscripts and typescripts, most now
prefer to have text formatters generate the most repeti-
tive and error-prone markup. Pagination, for example,
is usually automatic even in the most typewriter-
oriented systems. “Local” presentational markup, how-
ever, such as centering lines, is still commonly per-

November 1987 Volume 30 Number 11 Communications of the ACM 935

Articles

formed by the author, often with the assistance of edit-
ing commands. In WordStar, for example, one strikes
the key sequence Ctr 1 - OC to center the current line.

Procedural. In many text-processing systems, presen-
tational markup is replaced by procedural markup,

NO MARKUP
This example may look artificial, but ancient writing was

often in such scriptio continua, with no interword spaces and
littte punctuation.

miltonexpressesthisideamostclearlylaterin
thetracticannotpraiseafugitiveandcloister
edvirtueunexercisedandunbreathedthatnever
salliesoutandseesheradversarybutslinkeout
oftheracewherethatimmortalgaslandistoberu
nfornotwithoutdustandheatsimilarlywordswo
rth

PRESENTATIONAL

Milton expresses this idea most clearly
later in the tract:

I cannot praise a fugitive and
cloistered virtue, unexercised and
unbreathed, that never sallies out
and sees her adversary, but slinks
out of the race where that immortal
garland is to be run for, not with-
out dust and heat.

Similarly, Wordsworth....

PROCEDURAL

Milton expresses this idea most clearly
later in the tract:
.sk 3 a;.in +lO -lO;.ls O;.cp 2
I cannot praise a fugitive and cloistered
virtue, unexercised and unbreathed, that
never sallies out and sees her adversary,
but slinks out of the race where that
immortal garland is to be run for, not
without dust and heat.
.sk 3 a;.in -10 +lO;.cp 2;.ls 1
Similarly, Wordsworth....

DESCRIP-WE

Milton expresses this idea most clearly
later in the tract:
(1q)
I cannot praise a fugitive and cloistered
virtue, unexercised and unbreathed, that
never sallies out and sees her adversary,
but slinks out of the race where that
immortal garland is to be run for, not
without dust and heat.
(lb)
Similarly, Wordsworth....

FIGURE 1. Forms of Markup

which consists of commands indicating how text
should be formatted. For example, one might mark up
a long quotation as in Figure 1. The initial markup di-
rects the text formatter to do the following (roughly):

(1) Skip three lines-the equivalent of double-spacing
twice.

(2) Indent 10 columns from the left and 30 columns
from the right.

(3) Change to single-spacing.
(4) Start a new page if fewer than two lines remain on

the current page.

Obviously, this markup is specific to a particular text
formatter and style sheet. Moreover, it is d.evice depen-
dent; the skip, for example, might well be changed to a
value such as 18 points for a high-resolution printer.

Procedural markup is characteristically associated
with batch text formatters, such as nroff/troff and TFX.
Word processors like WordStar, however, supplement
their presentational editing commands with “dot com-
mands.” For example, they use editing commands to
center lines (Ctrl OC), but include markup in the files
for user-specified page breaks (. pa).

Descriptive. Under the descriptive system of markup,
authors identify the element types of text tokens. In
Figure 1 the tag (lq) identifies the folIowi.ng text as a
long quotation, and the tag (/lq) identifies the end of
the quotation.

Authors who are accustomed to procedural markup
often think of descriptive markup as if it were proce-
dural and may even use tags procedurally. The primary
difference is that procedural markup indicates what a
particular text formatter should do; descriptive markup
indicates what a text element is or, in different terms,
declares that a portion of a text stream is a member of a
particular class. When a text formatter generates a pre-
sentational copy of a descriptively marked-up docu-
ment, it first reads in a set of rules, written in a proce-
dural markup system, that establish what it should do
for each occurrence of each element type. E%y adjusting
this set of rules, the author (or support person) estab-
lishes a presentational markup design that will be exe-
cuted automatically and consistently. Moreover, should
there be reason to modify the design, only the rules
will require editing; the document files remain intact.
Not only will the author be relieved of painful and
monotonous hours of mechanical editing, the text will
not be exposed to corruption.

Most procedurally based systems provide macro facil-
ities, which users have long exploited for descriptive
markup (e.g., the - ms facility for troff), and even some
of the primitives of such systems may be descriptive
(e.g., the . pp “control word” for paragraphs in Waterloo
SCRIPT). GML [18] provided a sound expression of the
conceptual foundation for the systematic use of descrip-
tive markup. Unlike ad hoc macro packages. GML is a
descriptive language generally implemented on top of a
clearly distinct, user-accessible procedural language. In

636 Communications of the ACM November 1987 Volume 30 Number 11

Arficles

addition, GML contributed “attributes” to descriptive
markup languages, providing markup support for such
essential functions as cross-references (which are auto-
matically resolved by applications). Another influential
system, Scribe, enforces the use of descriptive markup
by eliminating procedural markup from the author’s
normal access to the system. Instead of tuning proce-
dural markup to control the processing of descriptive
markup, authors select “document format definitions”
for various types of documents.

The Scribe approach has been widely emulated re-
cently, but with moderate success at best. LATEX, for
example, provides a high-level interface with TEX,
which is designed to provide low-level typesetting con-
trol. Unfortunately, even the beginning LATEX user
must think in terms of low-level markup. For example,
contiguous quotation marks are to be separated by
“/ , “, which is a “typesetting command that causes TEX
to insert a small amount of space” [Zl, pp. 13-141. Simi-
larly, a number of word processors (Microsoft Word,
XyWrite, Nota Bene) have recently adopted Scribe’s
document format definitions under the metaphor of
electronic “style sheets.” Nota Bene, for example, in-
cludes such editing commands as use style block
for long quotations and has the ability to reformat all
blocks when the style sheet is changed. Unfortunately,
the style-sheet metaphor orients authors toward the
presentation instead of toward the role of entities in the
document. Thus, the block style might seem appropri-
ate for any of a number of entity types, and nothing
motivates the author to make distinctions that may be
important later. Furthermore, style sheets tend to be an
optional feature instead of a standard interface.

Referential. Referential markup refers to entities exter-
nal to the document and is replaced by those entities
during processing. We have already noted the use of
referential markup for device-dependent punctuation
(e.g., &mdash ; for an em dash). Another characteristic
use is for abbreviations, such as &acm ; for “Association
for Computing Machinery.” Referential markup might
also refer to entities stored in a separate file or even on
a different computing system.

Most text formatters that support procedural markup
offer referential functionality through user-defined
“variables” and file imbed or include commands.
For the most part, however, referential markup is asso-
ciated with descriptive markup systems, primarily
SGML [2].

Metmarkup. Finally, metamarkup provides authors
and support personnel with a facility for controlling the
interpretation of markup and for extending the vocabu-
lary of descriptive markup languages. Procedural and
descriptive systems provide ways to define markup de-
limiter characters. In addition, procedural systems in-
clude such instructions as define macro, which are
typically used to create descriptive markup represent-
ing a series of processing instructions. The procedural
markup in Figure 1, for example, would typically be
included in macros with names such as quo and

quoend. Applications that process GML, such as Wa-
terloo SCRIPT, also provide markup to define tags, to
specify valid and default attributes, and to indicate
what instructions should be executed when the tag is
encountered. Finally, in SGML, metamarkup appears in
the form of “markup declarations,” of which there are
13 kinds.

All nontrivial systems support metamarkup, but most
do not provide a suitable interface for nonprogrammers.
One notable exception is the menu-oriented group de-
scending from Xerox Bravo and Star; InterLeaf, for ex-
ample, allows authors to create new tags simply by
typing hitherto unknown identifiers in a dialogue box.
Others have attempted to eliminate the need for meta-
markup by providing complete referential and descrip-
tive vocabularies, but such efforts are contrary to the
spirit of human creativity.

Markup Handling
Briefly, markup is selected, performed, stored, and pro-
cessed. Familiarity with particular systems often com-
plicates the task of distinguishing the various types of
markup. Authors perform markup in a variety of ways.
They may type the markup almost as if it were text.
They may strike function keys or select items from
menus. In fact, the methods of markup performance
are limited only by the ingenuity of applications devel-
opers in using input and display devices. Although at
any time there may be a tendency to associate a partic-
ular type of performance with a particular type of
markup, the relationship is merely historical and pro-
vides no basis for characterizing or evaluating the types
of markup.

Markup must be stored someplace, but there are no
relevant limits on how it is stored. Moreover, nothing
prevents a system from eliciting one type of markup
and storing another. XyWrite, for example, elicits pre-
sentational markup, but stores procedural markup.
When the author, who has access to editor commands
but not to the markup language, specifies that text
should be centered, XyWrite records the appropriate
procedural markup around the text in the file and cen-
ters the line in the editing display. In a similar situa-
tion, WordStar simply centers the line: the surrounding
blanks are not differentiated from the text either on
screen or in the file. Thus, when evaluating their
markup systems, authors must examine what is stored
as well as what they see.

There are currently three major categories of markup
processing:

(1) reading (by humans),
(2)’ formatting, and
(3) open-ended (including formatting).

Presentational markup is designed for reading. Proce-
dural markup is designed for formatting, but usually
only by a single program. Descriptive markup is moder-
ately well suited for reading, but primarily designed to
support an open class of applications (e.g., information
retrieval).

November 1987 Volume 30 Number II Communications of the ACM 937

Articles

Exposed, Disguised, Concealed, and Displayed
In “traditional” text-processing systems, authors type
in electronic markup, and documents are formatted by
separate applications. Recently, formatters have been
integrated with editors, and we need another set of dis-
tinctions in order to fully characterize markup in
editing interfaces.

Markup is exposed when the system shows the
markup as it occurs in the source file, that is, without
performing any special formatting. Exposed markup is
typical in systems that consist of separate editors and
formatters. Many of the so-called WYSIWYG (“what
you see is what you get”) programs do not so much
format for editing as expose the scribal markup they
elicit and store. Such systems typically expose any elec-
tronic markup they elicit as well. WordStar, a sophisti-
cated example of this category, exposes the “new page”
command . pa, but also displays a line of hyphens to
represent the page break.

More sophisticated systems often process electronic
markup and then disguise it behind a special character.
XyWrite and Nota Bene, for example, display a “delta”
so that authors can locate and edit markup. Such sys-
tems usually have the capacity to expose the markup as
well. Other systems (Xerox Bravo and Star, MacWrite)
conceal electronic markup entirely. One system (Janus
[ll]) exposes descriptive markup on one monitor and
conceals it on the other.

Finally, systems have recently begun to display elec-
tronic markup; that is, an especially formatted repre-
sentation of the markup in the source file is displayed
along with the text. Etude and Interleaf, for example,
format text for editing, but display descriptive markup
in a margin at the left of the editing window.

Because scribal markup is not well differentiated
from text, current systems simply expose it. In fact,
no other approach makes sense. It can be profitable to
view electronic markup in any of the four modes, how-
ever. Datalogics’ WriterStation, for example, supports
all four modes and allows authors to control the format-
ting of displayed markup.

To summarize, there are six types of document
markup, but only three are in full competition: presen-
tational, procedural, and descriptive. Presentational
markup clarifies the presentation of a document and
makes it suitable for reading. Procedural markup in-
structs a text formatter to “do X,” for example, skip
three lines, in order to create presentational markup.
Finally, descriptive markup tells text formatters that
“this is an X,” for example, a long quotation. Normally,
text formatters treat presentational markup in source
files as if it were text; that is, no special processing is
performed. Procedural markup, however, is processed
according to the rules specified in the documentation
for the system; and descriptive markup is usually
mapped onto procedural markup. In addition, descrip-
tive markup is well suited for processing by an open set
of applications.

Development systems should provide maximum flex-
ibility and support all four modes of markup viewing.
The author-as-typist systems that we have seen em-

braced recently tend to elicit presentational markup
and store presentational and procedural markup; conse-
quently, they bind documents to particular devices and
applications. Some integrated editor/for:matters, how-
ever, support descriptive markup, which, as we will
argue, best supports the process of document develop-
ment and publication.

MAINTAINABILITY
As we point out in our initial characterization, descrip-
tive markup eliminates maintenance concerns. The
development of a scholarly article may take several
months; a book may take several years. In this time, an
author who is not using descriptive markup may have
to modify the markup of document files for any of sev-
eral reasons:

(1) The author learns new techniques or finds that
current techniques cause problems.

(2) The computing environment changes.
(3) The style specifications change.

In the development of A Pre-Raphaelite Friendship [IS],
for example, the editors initially used backslashes (\)
to control highlighting. Their text editor, however,
had the unfortunate habit of throwing away back-
slashes, and their early printouts suffered from random
underscoring. They learned to avoid this problem by
using the underscore character (-) to control under-
scoring, but also had to edit all of the text that had
already been entered. When the book was typeset, they
discovered the underscore character was; also used as
an en dash by their system (but only when typesetting).
Consequently, when in the scope of an underscore
command, en dashes were taken as underscore con-
trols; instead of 1982-1986, the text formatter produced
198286. Thus, the editors again had to edit all of their
files and change the underscore characters to pound
signs (#), and hope that no further conflicts would oc-
cur and that they would not introduce errors into the
text during the process of making the changes. Had
they used descriptive markup for highlighted phrases,
these maintenance problems would not have occurred.

Similar problems occur whenever the author or the
installation changes the computing environment. When
FRESS (File Retrieval and Editing System.) users at
Brown University learned FRESS would no longer be
supported, authors either spent hours converting their
files to the new format (Waterloo SCRIPT) or accepted
the possibility of “losing” their data.’ Even updates in
the current text formatter often require modifications
in files. Changing to a new printer may require modi-
fications. In fact, almost any change in the computing
environment poses a threat to one’s files if they contain
procedural or presentational markup.

Finally, formatting specifications may change during
the process of document development. For example,
the Modern Language Association (MLA) recently pub-

‘FRESS was directly based on the prototype system HES IHypertext Editing
System) [lo].

Communications of the ACM November 1987 Volume 30 Number I I

Articles

lished a new style sheet. To give a sense of the con-
sequences, we need consider only one change. The
previous MLA Handbook [24, p. 231 specified that block
quotations be “set off from the text by triple-spacing,
indented ten spaces from the left margin, and typed
with double-spacing (single-spacing for dissertations)
but without quotation marks.” Accordingly, many
manuscripts include the procedural markup shown in
Figure 1. The new edition of the MLA Handbook [25,
p. 491 specifies that block quotations be “set off from
your text by beginning a new line, indenting ten spaces
from the left margin, and typing it double-spaced, with-
out adding quotation marks.” This modification imme-
diately renders much of the markup obsolete, and now
authors must locate all long quotations and delete
. sk 3 a. Because the markup encodes formatting pro-
cedures instead of element categories, however, the oc-
currence of . sk 3 a cannot be taken as an unambigu-
ous indication that an element is indeed a long quota-
tion. Thus, authors cannot take advantage of global
change facilities, but must inspect every occurrence of
. sk 3 a and determine whether or not the current
element is a long quotation. The conversion process
will be tedious at best, and there is always the risk of
corrupting the text. In addition, there is no guarantee
MLA will not change its style sheet again, requiring
further markup maintenance.

Such maintenance problems would not be reduced
by using presentational markup. In fact, updating might
be even more difficult. With procedural markup, one
has specific character strings, such as . sk 3 a, that
may be located with normal editing facilities. Presenta-
tional markup, however, may not be directly locatable.
Some editors require a series of relatively advanced
commands or the use of regular expression grammars
to locate blank lines, for example. Moreover, simple
editing facilities cannot distinguish, for example, a se-
ries of 5 blank spaces (for a paragraph indent) from a
series of 5 blank spaces contained within a series of
10 blank spaces (for each line of a quotation). Thus,
locating presentational markup accurately often re-
quires the services of a powerful macro language as
well as the ability to program.

With descriptive markup, properly tagged source files
never require modification, and there is no such thing
as markup maintenance. A long quotation, for example,
remains a long quotation, despite changes in presenta-
tion style or even changes in processing systems. To
modify the action taken for long quotations by a text
formatter, one need edit only the program’s “rule” base.
This localization of maintenance can save numerous
hours of editing, protects files from corruption, and
makes it practical to have a single local expert perform
necessary updating of a shared copy of the rule base.g

DOCUMENT PORTABILITY
The ability to “port” or send one’s documents to other
scholars and to publishers has always been a major
concern of scholars. When typewriters ruled the indus-
try, we ported our documents in the form of typescripts
and photocopies. Since there were no alternatives, peo-
ple were generally satisfied with this procedure.

In the last five years, however, more and more au-
thors have shelved their typewriters and converted to
electronic document development. Now we can send
documents from our homes across the continent and
around the world, often receiving acknowledgment of
receipt within a few hours. Our colleagues, with our
source files on their own machines, can use programs
to search for keywords and can integrate our contribu-
tions into collaborative documents, free of the normal
retyping or cutting and pasting. Moreover, publishers
can use our files as a source for typesetting, eliminating
the need for rekeying documents; and once the rekey-
ing process is eliminated, so is the danger of textual
corruption as well as the need to read proofs.“’

Unfortunately, current text markup practices make
this exchange a rarity. Although we have the technol-
ogy for electronic transfer, we lack the markup stan-
dard necessary to guarantee that each recipient can
process the documents prepared by any author. In fact,
the compatibility problem is so severe that publishers
often choose to rekey documents that have been sub-
mitted in electronic form, and sometimes do so without
notifying the authors, who are left with a false sense of
security about the integrity of their texts. As several
publishers have pointed out to us, keying in documents
is a simple, well-understood task requiring the services
of people who are paid minimum wages. File manipula-
tion, however, requires the services of personnel with
programming skills, paid appropriately, and does not
appear to offer sufficient gains to outweigh the risks of
converting to a new process.

Descriptive markup provides an immediate solution
to document incompatibility. Any document with accu-
rate and rigorous descriptive markup can be ported
from one system to another. This is true because de-
scriptive markup guarantees a one-to-one mapping be-
tween logical elements and markup. Thus, element
identifiers may be changed simply by performing global
changes in an editor. For example, one might convert
the markup for a prose quotation from . quo to (lq)
and . quoend to (/Is). In the worst case, syntax dif-
ferences may be resolved by trivial programs.

Recognizing this fact, representatives of publishers
and of organizations with large publishing costs have
joined in an effort to establish an industry-wide stan-
dard based on descriptive markup. In its Eiecfronic Man-
uscript Project [4, p. 71, the Association of American
Publishers (AAP) found that descriptive markup “is

‘Rigorously used. electronic style sheets may provide the same solution to
maintenance problems. Since style sheets are presentation oriented. however.
we expect that authors will not make all of the necessary distinctions. The
“block stvle.” for exam&. mieht temoorarilv orovide aooromiate formattina
for many’different entiiies: prose quoiations:&try qudt&ns. theorems. -
definitions, examples, etc. Later. it may be necessary to distinguish the ele-
ments. and the markup will need revision.

November 1987 Volume 30 Number II Communications of the ACM 939

Articles

the most effective means of establishing a consistent
method for preparing electronic manuscripts which can
feed the publishing process.” The AAP has endorsed
the ANSI-IS0 SGML and devel.oped its first application.
SGML, which is actually a metalanguage for generating
descriptive markup languages, allows for considerable
flexibility and customization. Authors who have been
using descriptive markup will be able to turn their doc-
uments into SGML documents with little or no modifi-
cation. Documents that have been prepared with pre-
sentational or procedural markup, however, will
require extensive editing to conform with the new
standard.

Advantages
Since people are generally reluctant to give up a tech-
nology they have learned, it is crucial that everyone be
aware of what the industry has to gain by conversion to
descriptive markup and, ultimately, to SGML. Consider
this partial list of benefits:

(1)

(41

(5)

(6)

Authors will be able to share documents and col-
laborate with colleagues without the current con-
cerns of incompatibility between text formatters
and printing devices.
Publishers will no longer have to rekey documents,
eliminating an expensive and error-prone task.
In many cases, the proofing process may be elimi-
nated from the production cycle, saving considera-
ble administrative costs for publishers and reduc-
ing the time required to get a document into print.
Moreover, publishers will no longer have to negoti-
ate with authors who want to make changes after
the galleys have been set. For their part, authors
will be relieved of the burden of proofreading doc-
uments that were correct at the time of submission.
Subsequent editions, revisions, or collections may
be generated from the source files for a document;
rekeying will no longer be necessary.
Bibliographic information may be generated di-
rectly from the source files. This will reduce errors
and make citations available almost immediately
to users of on-line bibliographic databases. The
time from submission of a text to entry in the liter-
ature of a field will be cut dramatically.
Documents may be included directly in on-line
databases for electronic publishing and full-text re-
trieval, which is another way of introducing them
into the literature almost instantaneously.

Publishers and authors have already begun to demand
these improvements in the publishing process. With the
expenses of scholarly publishing rising continually, cost’
containment will become more and more important,
and authors will find properly marked electronic man-
uscripts more marketable than other electronic manu-
scripts and typescripts.

Alternatives to Portability
Four alternatives to document portability have been
proposed, but they provide partial solutions at best. The
alternatives include

949 Communications of the ACM

(1) authors typesetting their own work and providing
camera-ready copy:

(2) authors submitting device-independent page de-
scription files, in PostScript, for example;

(3) authors submitting printouts, and publishers using
Optical Character Readers (OCRs) to convert them
to electronic form; and

(4) authors sending source files without descriptive
markup, and publishers converting the markup
with a special utility.

The first alternative involves authors excessively in
the presentation process and distracts them from their
role as authors. This procedure suffers from a number
of severe problems: First, it should be clear that type-
setting is a skilled task requiring special training in
such concepts as typefaces, styles, and sizes; and lead-
ing, weighting, kerning, widows, rectos, versos, letter-
spacing, loose lines, and all the apparatus of profes-
sional designers. Moreover, most typesetting programs
require either programming skills or extensive inter-
vention. The nontechnical problems may be even more
significant. Publisher’s typesetting specifications usu-
ally suffer from a number of inadequacies that are cus-
tomarily resolved through long-term relationships with
local professionals. Thus, authors can expect to expend
considerable time and energy clarifying specifications
and resetting type. Moreover, like professional type-
setters, author-typesetters may be held financially ac-
countable for anything that is not set according to the
publisher’s specifications as well as any costs over the
publisher’s estimate. Finally, author-typesetters become
subject to the tight deadlines of production cycles,
which can interfere with their plans for teaching,
scholarship, and administration.

The second alternative to document portability-pro-
viding page description files-still subjects authors to
most of the problems of typesetting. In order to prepare
page description files, authors must have the full type-
setting specifications and ensure their files accord with
those specifications.

The next alternative-submitting printouts to be read
in by OCRs-relieves authors of typesetting problems,
but does not significantly improve the production pro-
cess. Although OCRs are becoming faster and more ac-
curate, they are still expensive and error prone. Be-
cause of the need for operator intervention, there is
little chance that proofreading could be eliminated
from the production cycle. Moreover, OCRs have lim-
ited capacity to generate marked-up files from print-
outs. Current systems can generate some p:rocedural
markup, but none can distinguish a theorem from an
axiom, for example, or even a section from a subsec-
tion. Thus, OCR-generated files still require the inter-
vention of personnel trained to recognize aad code tex-
tual elements. (Note also that even the operators will
not be trained to make sophisticated distinctions, e.g.,
to distinguish an axiom from a theorem.) As character-
recognition problems are solved, we might Iexpect OCR
manufacturers to concentrate on element recognition.
Without explicit coding, however, automated element

November 1987 Volume 30 Number 11

Articles

recognition will always be a haphazard task, and noth- support mathematics and tabular material. We ha’ve no
ing could be more wasteful than to develop systems reason to believe the standard cannot support graphics
to recover knowledge that was thrown away when it through descriptive markup as well as through referen-
could easily have been recorded in the source files. tial markup.

Finally, there is a popular belief that publishers can
convert authors’ source files to their own formats by
using special equipment. For example, according to
The Seybold Report on Publishing Systems [20, pp. 37-381.
“The Shaffstall communications/conversion system has
gradually become known as a sophisticated tool capa-
ble of handling nearly anything that came along in the
interfacing field.” In their test of the Shaffstall 5000 XT,
however, the reporters tried files from MacWrite 2,
MacWrite 4.2, PageMaker, ReadySetGo, and Microsoft
Word. They found the system processed the Mac-
Write 2 file “nicely,” but failed with the others because
“those programs handle the data differently.” Obviously,
the utility of such a system is jeopardized by every new
version of every program. Moreover, such systems do
not provide necessary element recognition: they simply
generate source files with rudimentary procedural
markup. Trained personnel are still required to identify
each element type and mark it up appropriately. Fi-
nally, files are once again subjected to corruption.”

Portability Not Dependent on a Standard
We do not advocate waiting for SGML to become domi-
nant. As we have illustrated, descriptive markup is
vastly superior to both presentational and procedural
markup. The superiority of descriptive markup is not
dependent on its becoming a standard: instead, descrip-
tive markup is the basis of the standard because of its
inherent superiority over other forms of markup.13

SGML has recently been criticized even by support-
ers of descriptive markup.” Above all, critics consider
SGML too complicated both for authors and implemen-
tors. With its WriterStation, however, Datalogics has
already demonstrated that sophisticated SGML tools
can be developed and SGML document creation can be
an intuitive process. Similarly, SoftQuad has produced
an AAP text processor for the Macintosh. Sobemap has
an SGML parser running under both Microsoft Win-
dows and UNIX’” Version V.

Those of us who have converted to descriptive
markup are already enjoying some of these outlined
benefits. We have sent the source files for articles pub-
lished in newsletters at Brown University to the Uni-
versity of Barcelona, which processed them without
modification. Journals produced at Brown, such as
NOVEL: A Forum on Fiction and Philosophy and Phenome-
nological Research, use descriptive tagging in the typeset-
ting process and are preparing to accept submissions
electronically. We can expect more and more journals
and publishers to convert to this process when they
realize the tremendous savings in administration and
preparation costs. Ultimately, the industry-wide stan-
dard will accelerate this conversion to descriptive
markup.14

This list of products is representative, not exhaus-
tive, and development is actually just getting started.
The Department of Defense is investing approximately
$200 million per year in its SGML-based Computer-
aided Acquisition and Logistics Support (CALS) initia-
tive. Various other large government agencies, such as
the Internal Revenue Service, are investing in SGML,
and private organizations, such as McGraw-Hill, are
planning to convert their systems fully in the near fu-
ture. Some developers resent this pressure, especially
from the government 119, p. 251. The early successes
mentioned above, however, will :sad the way, and we
can expect resistance to transform ii-to serious develop-
ment efforts.

Document portability promises significant reductions
in costs and labor. The alternatives to document porta-
bility fail to address the need to share documents with
colleagues and do not adequately address the problems
of the production process. As AAP has recognized, de-
scriptive markup provides the most complete and effec-
tive solution to the problem of establishing document
portability. Many of the advantages may be enjoyed
immediately, and those documents that have been de-
scriptively coded can be updated easily if necessary as
SGML becomes the industry-wide standard.

MINIMIZATION OF COGNITIVE DEMANDS

Basic Theory
All document markup takes place in three steps:15

Finally, SGML has been criticized for its lack of sup-
port for mathematics, graphics, and tabular material.
SGML has metalinguistic properties, however, and AAP
has already demonstrated that SGML applications can

“The opposite is true of another proposed standard: IBM’s Document Content
Architecture (DCA). Instead of declaring the logical status of textual entities.
Kevisable-Form-Text DCA declares formatting aspects and is presentation ori-
ented. Thus DCA would not enable a publisher. for example. to switch from
endnotes to footnotes or even to change to smaller fonts for block quotations
without revising the source files.

“Our current incompatibility problems are not limited to document files.
Every database management system, for example, has its own format. making
it difficult to share information or even to switch from one system lo another.
Through his “Information Management System for Scholars” (IMSS) [IZj.
Coombs has established that descriptive markup provides an appropriate and
effective format for database portability. Not only can IMSS data files be
ported to other database systems. scholars can now create bibliography and
note files on a variety of machines and import them to IMSS to take advantage
of its advanced functions. As they become aware of the possibilities, authors
will consider such flexibility a requirement instead of a feature.

” For more sophisticated translation efforts. see [ZZ]. Note, however. that
Mamrnk et al. seek to support translation into and out of standards. not from
one arbitrary format to another. Moreover. they chose a descriptive markup
system for their prototyping: SGML.

“See 119. pp. 21-251 for a rcporl of criticisms. Most of the information in this
section on SGML activity has been derived from reports in 171.

UNIX is a registered trademark of AT&T Bell Laboratories
“This analysis generalizes on the three steps of procedural markup that
Goldfarb discusses [IS. p. 681.

November 1987 Volume 30 Number II Communications of the ACM 941

Article:;

(1) Element recognition. One recognizes the current
element is a token of a particular type-paragraph,
prose quotation, footnote, etc.

(2) Markup selection. One determines the markup
that applies to the element type recognized in (1).

(3) Markup performance. One marks the element.

The best markup techniques require the least cognitive
processing (ceteris paribus). We believe that steps (1)
and (3) can be ignored. The first step, element recogni-
tion, is the same for all forms of markup: We have no
pretheoretical motivation for positing that an author
recognizes an entity is a footnote, for example, in one
way when using descriptive markup and in another
way when using other forms of markup. The third step,
markup performance, has received the most attention,

Recall alternatives

1. MlA “new style”
a. Double-space twice
b. Indent 10 from left

c. Do not strand lines
2. MLA “old style”

a. Double-space twice
b. Indent 10 each side
c. Do not strand lines
d. Single-space the quote

a. Double-space twice
b. Indent i0 each side
c. Do not strand lines
d. Single-space the quote

.sk 3 a;.in +lO -10

.cp 2;.ls 0

FIGURE 2. Markup Selection for a Long Quotation (roughly)

resulting in various forms of “keystroke minimization”
and alternative interfaces (such as pull-down menus).
Again, however, we have no pretheoretical motivation
for believing that one form of markup is more suscepti-
ble to performance optimization than another.“j A brief
look at markup selection demonstrates that descriptive
markup requires less cognition than either presenta-
tional or procedural markup. The differences have been
represented visually in Figure 2.

Presentational Markup
Under presentational markup schemes, markup selec-
tion requires an author to identify the set of typograph-
ical conventions for the current element type and then
select the proper alternative.r7 This process is compli-
cated by the fact that the relationship between typo-
graphical convention and text element is arbitrary and
unstable. We have already discussed the maintenance
problems that occur because of the instability of pre-
sentational markup conventions. When MLA changes
its specifications for long quotations, for example, au-
thors not only must update their files, they also must
relearn the markup and are bound to go through a
short period of confusion.

Even more important, the arbitrariness of presenta-
tional markup provides no support for recall and cre-
ates situations where there are an indefinite number of
alternatives. High-frequency elements such as para-
graphs may not present major recall problems; but in-
frequent elements such as citations require trips to
style manuals. Similarly, elements with few alterna-
tives such as paragraphs often do not require considera-
ble reflection (although one may waver over whether a
document is a personal letter or business letter and,
consequently, whether paragraphs should 'be marked
up by skipping lines or by indenting). The :number of
alternatives for higher level elements such as chapters,
however, increases quickly with the flexibility of text
formatters and printing devices. Publishers, who are at
the extreme of flexibility, hire professional designers to
select presentational markup. Authors, however, must
decide for themselves how to mark up such elements
and may spend numerous hours adjusting and readjust-
ing fonts and skips.

One would naturally expect considerable simplifica-
tion of the process after the initial selection of markup
for a text element. Authors report, however, that their

160n the surface. il would seem that descriptive markup would provide for
ootimal markuo oetformance. Whatever the interface. it should be oossible to

. 1

reduce the act of describing an element to a single edit action. but the process
of identifying formatting procedures may well require multiple edit actions.
Many editors. however. provide facilities for reducing a com,?licated series of
editorial functions to a single keystroke. If the user thinks. for example. “By
striking function key 1. I will double-space twice. indent 10 from the left, start
a new page if necessary. and switch to single-spacing.” then the user has
performed relatively complicated presentational markup with as little effort as
would be required to perform descriptive markup. The process of deciding
how to mark up the element. however. will have been much more compli-
cated. and we allow our argument to rest on that point.

“There is a whole range of possibilities for recall and selection that cannot be
discussed here. This section should be considered suggestive instead of ex-
haustive.

942 Communications of the ACM November 1987 Volume 30 Number 11

Articles

memory fails and they often have to look back in a
document to see how they have been formatting an
element type. Moreover, they may well change their
minds about the markup in the middle of the develop-
ment of a document and interrupt the process of com-
position to reformat previously entered elements.

Procedural Markup
Markup selection is considerably more complicated for
procedural-markup schemes. First, the author has to
perform the same markup selection that is required for
presentational markup. Then the author has to deter-
mine the procedural markup required by the target text
formatter to create the selected presentational markup.
Authors using procedural markup keep program docu-
mentation at their workplaces alongside style manuals.

Descriptive Markup
Descriptive markup reduces the process of markup se-
lection to a single step falling naturally out of element
recognition. Once the author has identified the element
type, the proper markup may be determined simply by
selecting the identifier that abbreviates the natural-
language name for the current element type. In fact, the
natural-language name may be used for the identifier
and often is for infrequent elements such as “address.”
Such abbreviations as pq for “poetry quotation” simply
provide for keystroke minimization.

Moreover, the markup selection for the termination
of an element type (where necessary) is short-circuited
by the convention of using a standard affix for the
markup that was just selected to initiate the element.
For example, once an author has selected (pq) as
the appropriate markup to initiate a poetry quotation,
markup for the end of the quotation is automatically
(/pq), which may be arrived at through applying
a standard and unchanging rule of affixation. Thus,
descriptive markup is well suited for selection opti-
mization.‘8

Descriptive markup minimizes cognitive demands by
requiring little more than the normal linguistic process-
ing already necessary to perform element recognition.
Although the relationship between a text element and
its natural-language name may be arbitrary, the rela-
tionship between the name and the descriptive markup
is nonarbitrary. The tag for a paragraph might be p or
para, for example, but it would not be sk or address.
Moreover, the relationship between element name and
descriptive markup is stable. MLA could modify its
style sheet every day, but the descriptive markup for
long quotations would remain (1s). Not only do au-
thors not have to revise their markup, they do not have
to learn new markup for every style variation. Thus,
the composition process need not be interrupted by
trips to style sheets, and authors do not have to look
back into their files to see how they have been format-

“For the sake of markup minimization. SGML introduces an “empty end tag”
(I). Since this tag can he used only in certain contexts. this feature may
complicate markup selection instead of optimizing it.

ting a particular element type. In fact, they are freed
from formatting concerns altogether.

Although authors generally believe that integrated
editor-formatters simplify document development by
eliminating the need for markup, our analysis reveals
not only that such applications require markup, but
also that the markup currently required by most popu-
lar systems is considerably more demanding than de-
scriptive markup. Whether or not our analysis of the
required processing is accurate in detail, it should be
clear that (I) procedural markup selection requires pre-
vious presentational markup selection, and (2) because
of the stable and nonarbitrary relationship between tag
and element name, descriptive markup selection re-
quires less cognition than other forms of markup. Fi-
nally, the additional cognitive processing required by
presentational markup wastes energy that could be ap-
plied to the content of the document and may even
cause a lengthy suspension of the composition process.

CONTENT ORIENTATION
One of the more subtle advantages of descriptive
markup is it supports authors in focusing on the struc-
ture and content of documents. Both presentational and
procedural markup tend to focus authors’ attention on
physical presentation.lg

When one marks up text descriptively, one makes
the logical structure of the text explicit. For example,
the standard tag sets include “heading-level” tags, such
as (h 1) , (h2), (h3) , etc. Such markup clarifies both
hierarchical and sequential relationships. In fact, some
of us regularly begin our documents as skeletal outlines
composed of these tags. As our documents expand, this
markup of the structure helps us stay aware of the
planned focus for each section. Moreover, as we will
detail, we are able to use special applications to zoom
in and out on the structure.

Unlike descriptive markup, presentational and proce-
dural markup fail to support the writer in developing
the structure; even worse, they distract from the con-
tent. As we have already discussed, the first step of
marking up a document, element recognition, is the
same for all forms of markup. The next step, markup
selection, always involves some additional effort, but
descriptive markup keeps this effort focused on the
element and its role in the document. Presentational
markup turns the author’s attention toward typographic
conventions and style sheets: and procedural markup
leads even further away from the document toward the
special markup required to make a particular text for-
matter produce the selected presentational markup.

There are a number of subtleties that we cannot ad-
dress in detail here. The reader should bear in mind,
however, that our argument addresses itself primarily
to the process of markup selection. We have already
noted it may be possible to perform complicated pre-

lG Recognizing this fact, Reid [SO] took presentational and procedural markup
out of the hands of authors altogether. Only the Scribe Database Administra-
tor has access to procedural markup and format definitions.

November 1987 Volume 30 Number 11 Communications of the ACM 943

Articks

sentational or procedural markup as easily as it is to
perform descriptive markup. In other words, any form
of markup can be reduced to a single edit action. Con-
versely, a bad interface could make the performance of
descriptive markup difficult and distracting.

In addition, we have raised, somewhat obliquely, is-
sues of what authors view. We have suggested briefly
that interfaces that expose or display descriptive
markup will help authors focus on content and stay
aware of structure. This is clearly an oversimplifica-
tion. First, not all markup provides significant struc-
tural information or, better, information that is impor-
tant to the author at the moment. Second, even
descriptive markup can become so dense as to obscure
the text. Furthermore, it might be in the author’s best
interests at any particular time to see, for example, the
enumeration of items in a list instead of the descriptive
markup. Ultimately, we have to conclude there is
no simple relationship between viewing format and
content orientation. An ideal system would provide
authors with the ability to select among a number of
different views of a file, and it should be possible to
display the markup for some textual elements and to
conceal the markup for others.

COMPOSITION ASSISTANCE

Without the structural identifications provided by de-

AND SPECIAL PROCESSING

scriptive markup, the text is simply a “character string

Using descriptive markup to identify the logical ele-
ments of a document not only simplifies composition,

that has no form other than that which can be deduced

maintenance, collaboration, and publication, it also en-
ables authors to apply a wide range of tools for compo-

from the analysis of the document’s meaning” [18,

sition assistance. This feature must be exploited if text
processing is going to fulfill its original promise to sig-

p. 68]-and this is a deduction for which computers are

nificantly assist scholarly composition and become
more than just improved typing.

entirely unsuited. The addition of content-descriptive
markup changes this formless character string into a
structured database of text elements, enabling the
scholar to address those elements selectively and sys-
tematically. Two composition-assistance functions
that exploit the ability to address text elements selec-
tively through their markup are alternative views and
structure-oriented editing.

Alternative Views of a Document
If a document is prepared with descriptive markup,
then the text elements that are to be displayed in the
editor can be globally specified by referring to the
markup that identifies those elements. For instance,
one could specify that all block quotations be concealed
from view. Where once a lengthy quotation intervened
between two sentences, there might now be only a flag
indicating the number of lines concealed, or, if the user
prefers, no flag at all: The sentences appear adjacent to
one another. Similarly, all footnotes could be concealed,

or all annotations, or all annotations of a certain class-
say, all annotations about translation or by annotators
other than the author. In this way the sections of the
text that are of current interest are distinguished for
attention, whereas those not of interest are hidden. Of
course, at any point in the editing process, concealed
text can be immediately and selectively disclosed for
viewing.

Also useful are more specialized views, ones that are
not just efficient for general composing and editing but
finely adjusted to assist the scholar in thinking about
the particular subject matter or topic at hand. Consider
a specific example: One of the authors of this article
writes papers on epistemic logic. His papers contain
text-element tags such as primitive [to mark up text that
explicitly introduces a term that is primitive within the
axiomatic system being proposed), definition (for defini-
tions of the system), axiom (for axioms of the system),
and theorem (for theses that follow from the axioms). An
editing utility that exploits this markup maintains a
current list of every axiomatic element in the docu-
ment. This list can be quickly consulted while editing-
it is sometimes displayed in a concurrent editing win-
dow-and can be automatically updated and included
as an appendix whenever the file is printed. Optionally,
the listed axiomatic elements may be sorted and re-
viewed by kind-primitive terms, axioms, definitions,
theorems-regardless of their order in the paper. As
well as simply providing a quick reference to the cur-
rent status of the axiomatic elements in the developing
system, this utility is used to compare sysi.ems (sorted
summaries of their axiomatic elements are put in adja-
cent windows) and to explore ideas about the relation-
ships among elements. Similar techniques can be ap-
plied in other disciplines.

One source of the effectiveness of these viewing
strategies is the simple juxtaposition of related sec-
tions of text for comparison. Another is the directed
rearrangement of these regions-this is because fre-
quently the chosen rhetorical structure of a document
dictates a narrative order of text elements that is not
the best sequence for the author’s own thinking about
the subject matter. In both cases the editing utilities
described are using descriptive markup to overcome in
the compositional environment the limitations imposed
by the presentational requirements of the i.ntended
rhetorical form. This is exactly the sort of assistance a
scholar should expect from the computer.

What is being accomplished here is something that
cannot be performed effectively with conventional
scholarly tools: Scattered sections of text that have been
specified by certain content-related properties are being
quickly presented for comparison and editing. With a
conventional writing medium, like paper, only a labo-
rious searching out of passages and cutting and re-
arranging could accomplish the same thing and even
then with a significant likelihood of error. The time
and energy required by this traditional physical
method limit the number of rearrangements the author
can afford to attempt and make the more experimental

944 Communications of the ACM November 1987 Volume 30 Number 11

Articles

rearrangements especially impractical. With the
computer-assisted approach, every hunch can be imme-
diately explored, and viewing strategies can be progres-
sively refined in accordance with the results of each
trial, all with a minimal cost in time and energy. All
these techniques require the structural information
provided by descriptive markup; without that, comput-
ing scholars are little better off than they were with
pencil, paper, and scissors.

Although the value of alternative views of a file as
an intellectual tool has been described by a number of
authors, surprisingly few scholars are taking advantage
of these features2’ Part of the problem is that the abil-
ity to present for display and editing alternative views
of files is represented as a feature of particular experi-
mental text-processing systems rather than a general
sfrafegy for text processing. However, by simply using a
descriptive markup scheme and a general-purpose pro-
grammable editor any scholar can begin to take advan-
tage of these tools immediately.”

Outlining and Structure-Oriented Editing
A special example of an alternative view is the outline
(see Figure 3). Documents have a natural hierarchical
structure: Chapters have sections, sections have subsec-
tions, and so on, until one reaches sentences, words,
and letters. If the sections of a document are marked up
as such, then it is frequently a simple matter to com-
mand a general-purpose editor to display only the sec-
tion titles, presenting the scholar with a working
outline. Furthermore, as section markup is keyed to
section level, the author can easily have the outliner
display the outline to any desired depth of detail, the
lowest level of detail being the full text or, perhaps, the
text with annotations and alternative versions. The
level-by-level concealing and revealing of successive
levels of detail may be controlled by a “zoom” function.
One may also employ editing utilities to move hierar-
chical components of the document, as displayed in an
outline view, and have the overall document structure
adjust accordingly. For instance, one might directly
move a section, complete with all its nested subsections
and text, to another chapter. Or one might raise a sec-
tion from a third-level section to a second-level section
and have all of its nested subsection headings adjust
their depth markup accordingly. Exploiting the natural
hierarchical structure of text in this way has also been
frequently recommended by text-processing theorists.”
Although recently a number of powerful outlining ap-

ZOlmportant early discussions of alternative views of text are by Nelson
[26. pp. 193-1951. Engelbart and English [16, pp, 400-4011. and Carmody et al.
[IO. pp. 288-3001. But. over a decade later, Meyrowitz and van Dam describe
“the principle of multiple views” as “one that has been sorely underutilized in
the hundreds of editors that have been created” 123. p, 4051.

” Most of the functions described in this section have been im&mented bv
the authors to meet smne immediately perceived compositional need-they
used only IBM’s standard VM applications Xedit and Rexx.

**For an early discussion of outlining and structure-oriented editing, see [IS].
For a selection of later work on structure-oriented editing and related topics,
see the papers in [3].

(ho) Background and New Concepts
(hl) Introduction
(hl) Markup Theory

(h2)

(h2)
(h2)

(h2)

Types of Markup
(h3) Punctuational
(h3) Presentational
(h3) Procedural
(h3) Descriptive
(h3) Referential
(h3) Metamarkup
Markup Handling
Concealed, Exposed,

Disguised, and Displayed
Summary

(ho) Advantages of Descriptive Markup
(hl)
(hl)

(hl)

(hl)
(hl)

(hl)

Maintainability
Document Portability
(h2) Background
(h2) Advantages
(h2) Alternatives to Portability
(h2) Portability Not Dependent on

a Standard
(h2) Summary
Minimization of Cognitive Demands
(h2) Basic Theory
(h2) Presentational Markup
(h2) Procedural Markup
(h2) Descriptive Markup
(h2) Summary
Content Orientation
Composition Assistance and

Special Processing
(h2) Introduction
(h2) Alternative Views of a

Document
(h2) Outlining and Structure-

Oriented Editing
(h2) Summary
Conclusion

FIGURE 3. Outlining with Descriptive Markup

plications have been marketed, again, these products
are mostly specialized applications rather than general
implementations of a strategy based on descriptive
markup.

This kind of maneuver is an instance of a superior
style of editing made possible by descriptive markup:
structure-oriented editing. Descriptive markup allows the
targets of editing operations to be not only characters,
words, and lines, but also the actual text-element to-
kens, the regions of text that fall within the scope of a
particular markup tag. For instance, one can execute
operations such as “delete this footnote” or “move this
quotation.” Structure-oriented editing enables authors
to address their documents at a level of abstraction
appropriate to their authorial role; other forms of edit-
ing require the mediation of line displacements, line
numbers, and marked regions. Thus, structure-oriented

November 1987 Volume 30 Number II Communications of the ACM 945

Articles:

editing minimizes cognitive demands and helps authors
focus on content.

Composition-assistance features such as alternative
views of a document and structure-oriented editing
promise immense improvements in the effectiveness
and productivity of the scholarly composition environ-
ment. The realization of most of these features depends
on descriptive markup. Text processing with any other
kind of markup will ensure that the anachronistic strat-
egies of discarded technologies will continue to domi-
nate computer-assisted document preparation.

CONCLUSION
Descriptive markup solves many of the problems that
scholars face in document development. First, the pro-
cess of marking up the text is simplified because the
author’s attention is focused on the content instead of
on controlling a computer program or on the typogra-
phy of the presentation copy. Second, maintenance
problems are reduced to a few easily identifiable loca-
tions external to document files; updating for style
changes is easy, and documents are not exposed to cor-
ruption. Third, as has been recognized by the AAP,
descriptive markup provides the best means for estab-
lishing the industry-wide standard that we need for full
document portability. Document portability enables
authors to share files with colleagues and significantly
reduces both the cost of publication and the nonauthor-
ial demands on authors. Finally, in descriptively mark-
ing up a document, an author provides the semantic
and pragmatic information necessary for such aids as
alternative views on documents and structure-oriented
editing. Without descriptive markup, only special sys-
tems with incompatible formats will offer even a por-
tion of the authorial support that scholars have a right
to expect from their computers.

In the end, it should be clear that descriptive markup
is not just the best approach of the competing markup
systems; it is the best imaginable approach. Currently,
acceptance of descriptive markup is being retarded by
authors’ desires to retain familiar technologies and
practices and by developers’ use of proprietary formats
to lock users into their products. Equipped with the
basic concepts from the general theory of markup sys-
tems, however, authors quickly recognize the superior-
ity of descriptive markup. As this awareness spreads,
we can expect significant improvements in the quality
of scholarly computing.

Acknowledgments. We are indebted to Mary Elizabeth
McClure for stimulating our thinking about descriptive
markup and to Richard A. Damon, Elli Mylonas, and
David Durand for many helpful discussions. We would
also like to thank Robert J. Scholes and Maurice Glicks-
man for their roles in acquiring the support necessary
to research and develop this article.

Further Reading. For the seminal ideas on sophisti-
cated authorial support systems, see [9], [lo], [lS], [17],
[26], and [28]. Some important recent discussions are

presented in [14], [31], and [33]. A number of good
papers on document development and structure-
oriented editing, including Goldfarb’s important 1981
paper on GML, are contained in [3]. This volume also
contains a useful “Annotated Bibliography of Back-
ground Material on Text Manipulation” compiled by
Reid and Hanson. Reference [23] is the standard survey
of editing systems and provides considerable informa-
tion about formatters as well. Finally, the AAP and
SGML standards are documented in [2] and [5].

REFERENCES

Note: References 16). 181. [ZS], and 132) are not cited in text.

1.

2.

3.

4.

5.

6.

7.

6.

9.

10.

11.

12.

13.

14.

15.

16.

17.

16.

19.

Alexander. G.B. Computer aids for authors and editors: A natural
extension of word processing and typesetting? Seybold Rep. Publ.
Syst. 13, 10 [Feb. 13. 1984), 3-21.

American National Standards Institute. Infornuzfio~~ Processi,lg-Text
and Office Systems-Standard Generalized Markup Language (SGML).
IS0 8879-1986 (E), ANSI, New York. 1986. (First edition: Oct. 15.
1986.)

Association for Computing Machinery. Proceedings ?f thy ACM
SIGPLAN-SIGOA Symposium on Text Manipulatim. ACM. New York,
1981.

Association of American Publishers. Electronic Maruscript Project:
Task I Report. Aspen Systems, Rockville. Md.. 1984.

Association of American Publishers. Standard for EIwtrmtic Manu-
script Preparafion and Markup. Electronic Manuscript Series. Associa-
tion of American Publishers. Washington, D.C.. Feb. 1986.

Association of American Publishers. Author’s Guide fo Electronic
Manuscript Preparation and Markup. Electronic Manuscript Series.
Association of American Publishers. Washington. D.C.. May 1986.

BDS. (TAG) The SGML Newsletter. BDS. Sterling, Va.

Beach. R., and Stone. M. Graphical style-Towards high quality
illustrations. In SIGGRAPH 83 Conference Promdings. ACM, New
York. 1983, pp. 127-135.

Bush. V. As we may think. Afl. Mon. 776. 1 (July 1945). 101-108.

Carmody, S., Cross. W.. Nelson, T.H., Rice, D., and van Dam, A. A
hypertext editing system for the /360. In Perfinmt Concepts in Com-
puter Graphics. M. Faiman and J. Nievergelt. Eds. University of Illi-
nois Press, Urbana. Ill., 1969, pp. 291-330.

Chamberlin. D.D.. et al. JANUS: An interactive system for document
composition. In Proceedings of the ACM SJGPLAN-SIGOA Symposium
on Tut Manipulation (Portland. Oreg., June 9-10). AIZM. New York.
1981, pp. 82-91.

Coombs. J.H. Information management system for scholars. Tech.
Memo. TM 69-2, Computer Center. Brown Univ., Providence. R.I..
Dec. 1986.

Coombs, J.H., Scott, A.M., Landow. G.P.. and Sanders, A.A., Eds. A
Pm-Raphaelite Friendship: The Correspondence of William Holman Hunt
and John Lucas Tupper. UMI Research Press, Ann Arbor. Mich., 1986.

Corda. U.. and Facchetti. G. Concept browser: A system for interac-
tive creation of dynamic documentation. In Texf Processing and Doc-
ument Manipulation, J.C. van Vliet. Ed. Cambridge University Press.
Cambridge. Mass., 1986, pp. 233-245.

Drucker. P.F. Management; Tasks, Responsibilities, Practices. Harper
and Row. New York. 1973.

Engelhart, D.C.. and English, W.K. A research center for augmenting
human intellect. In Proceedings of the AFIPS Fall joint Computer Can-
/erence (San Francisco, Calif.. Dec. 9-11). AFIPS Press, Reston. Va.,
1968. pp. 395-410.

Engelhart. D.C.. Watson, R.W.. and Norton, J.C. The augmented
knowledge workship. In Proceedings of the National Computer Con-
ference (New York, June 4-8). AFIPS Press, Reston, Va., 1973.
pp. 9-2 1.
Goldfarb. CF. A generalized approach to document markup. In Pro-
ceedings of the ACM SIGPLAN-SIGOA Symposium on Text Manipula-
tion (Portland. Oreg.. June 9-10). ACM, New York. 1’381. pp. 68-73.
(Adapted as “Annex A. Introduction to generalized markup” in [z].]

Integration and pagination: Long documents. proposals, books.
Seybold Rep. Publ. Syst. 16. 16 (Apr. 27, 1987). 21-27.

946 Communications of the ACM November 1987 Volume 30 Number 11

Articles

20. Interfaces. media converters and OCR devices. Seybold Rep. Publ.
sysr. 75. 18 (June 2. 1986). 34-39.

21. Lamport. L. LATEX User’s Guide and Reference Manual. Addison-
Wesley. Reading, Mass., 1986.

22. Mamrak. S.A.. Kaclbling. M.I.. Nicholas. C.K.. and Share. M. A soft-
ware archilecture for supporting the exchange of electronic manu-
scripts. Conln~un. ACM 30. 5 (May 1987). 408-414.

23. Meyrowitz. N.. and van Dam, A. Interactive editing systems: Parts I
and II. ACM Conrpuf. Sum. 14. 3 (Sept. 1982). 321-415.

24. Modern Language Association. MLA Handbook. MLA. New York.
1977.

2.5. Modern Language Association. ML.4 Handbook. MLA. New York.
1984.

26. Nelson. T.H. Getting it out of our system. In I~@malio~~ Rcfrieval: A
Critic-al Rruiew. G. Schecter, Ed. Thompson, Washington, D.C.. 1967.
pp. 191-210.

27. Nelson. T.H. Cnrrrpul. Libr. (1974).

28. Nelson. T.H. Llferaq Machirm. Nelson. Nashville. Term.. 1981.

29. Nievergelt. 1.. Coray. G.. Nicoud. I.D.. and Shaw. A.C.. Eds. Documetlf
Prcparafrw Sys~rnrs. North-Holland. Amsterdam. 1982.

30. Reid, B.K. A high-level approach to computer document formatting.
In Pror-erdings of the 7th A~rt~ual ACM Symposium on Programming
Lmguagcs (Ix Vegas. Nev.. lune). ACM, New York. 1980. pp. 24-30.

31. Trigs. R.H.. and We&r. M. TEXTNET: A network-based approach to
texl handling. ACM Trans. Off. /,I{. Sysf. 4. 1 (Jan. 1986). l-23.

32. van Dam, A., and Rice. D.E. On-line text editing: A survey. ACM
Compul. Surv. 3. 3 (Sept. 1971). 93-114.

33. Yankelovich. N.. Meyrowitz. N.. and van Dam. A. Reading and writ-
ing the electronic book. Cunrpufer 78. 10 [Oct. 1985). 15-30.

CR Categories and Subject Descriptors: H.4.1 [Information Systems
Applications]: Office Automation--word processing; 1.7.0 [Text Process-
ing]: General; 1.7.1 [Text Processing]: Text Editing; 1.7.2 [Text Process-
ing]: Document Preparation: K.l [Computing Milieux]: The Compuler
Industry-sratldards: K.2 [Computing Milieux]: History of Compuling-
software: K.6.3 [Management of Computing and Information Systems]:
Software Management

General Terms: Design. Human Factors. Languages. Standardization
Additional Key Words and Phrases: Descriptive markup. document

interchange. generic coding, structure-oriented editing, text manipula-
tion

Authors’ Present Addresses: lames H. Coombs. P.O. Box 2382. Provi-
dence. RI 02906: BITNET: JAZBO @ BROWNVM; Allen H. Renear.
Computing and Information Services. Box 1885, Brown University,
Providence, RI 02912: BITNET: ALLEN @ BROWNVM: Steven 1.
DeRose. Dept. of Linguistics. Box 1978. Providence. RI 02912; BITNET:
NICK @ BROWNVM.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish. requires a fee and/or specific permission.

ACM SPECIAL INTEREST
ARE YOUR TECHNICAL

INTERESTS HERE?

The ACM Special Interest Groups fwth~ the ad-
vancement of computer science and practice in
many speciaked areas. Members of each SIG
rweiveascneoftheirbenefitsaperiodMex-
dusively devoted to the speck4 interest. The fol-
lowing are the publicatiis that are available-
through membership or special subsaiption.

SIGCOMM Computer Coanmunication
Review (Data Communication)

SIGACT NEWS (Automata and
Computability Theory] SIGCPR Newsletter (Computer Personnel

Research)
SIGAda Letters (Ada)

SIGAPL Quote Quad (APL)

SIGCSE Bulletin (Computer Science
Education)

SIGARCH Computer Architecture News SIGCUE Bulletin (Computer Uses in

(Architecture of Computer Systems) Education)

SIGART Newsletter (Artificial
Intelligence)

SIGDA Newsletter (Design Automation)

SIGBDP DATABASE (Business Data
Processing)

SIGDOC Asterisk (Systems
Documentalion)

SIGBIO Newsletter (Biomedical
Computing)

SIGGRAPH Computer Graphics
(Computer Graphics)

SIGIR Forum (Information Retrieval]

SIGCAPH Newsletter (Computers and the
Physically Handicapped) Print Edition

SIGCAPH Newsletter, Cassette Edition

SIGCAPH Newsletter, Print and Cassette
Editions

SIGCAS Newsletter (Computers and
Sociefy)

SIGCHI Bulletin (Computer and Human
Interaction)

GROUPS
SIGMETRICS Performance Evaluation

Review (Measurement and
Evalualion)

SIGMICRO Newsletter
(Microprogramming)

SIGMOD Record (Management of Data)

SIGNUM Newsletter (Numerical
Mathematics)

SIGOIS Newsletter (Office Information
Systems)

SIGOPS Operating Systems Review
(Operating Systems)

SIGPLAN Notices (Programming
Languages)

SIGPLAN FORTRAN FORUM [FORTRAN)

SIGSAC Newsletter (Security. Audit.
and Control)

SIGSAM Bulletin [Symbolic and Algebraic
Manipulation)

SIGSIM Simuletter (Simulation and
Modeling)

SIGSMALL/PC Newsletter (Small and
Personal Computing Systems and
Applications)

SIGSOFT Software Engineering Notes
(Software Engineering)

SIGUCCS Newsletter (University and
College Computing Services)

November 1987 Volume 30 Number II Communications of the ACM 941

