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Abstract. It is given a new algorithm to compute a lower T-transitive approxi-
mation of a fuzzy relation that preserves symmetry. Given a reflexive and sym-
metric fuzzy relation, the new algorithm computes a T-indistinguishability that 
is contained in the fuzzy relation. It has been developed a C++ program that 
generates random symmetric fuzzy relations or random symmetric and reflexive 
fuzzy relations and computes their T-transitive closure  and the new low T-
transitive approximation. Average distances of the fuzzy relation with the T-
transitive closure are similar than the average distances with the low T-transitive 
approximation.  

1   Introduction 

Fuzzy relations have many applications to make fuzzy inference in many branches 
of Artificial Intelligence with uncertainty, imprecision or lack of knowledge. Reflexive 
and T-transitive fuzzy relation (called T-preorders, for any continuous t-norm T) make 
Tarski consequences when using the composite rule of inference, obtaining all the 
consequences of a few premises in just one S-T-composition. Reflexive symmetric and 
T-transitive fuzzy relations (called T-indistinguishabilities) have been very useful in 
many classification and clustering methods, allowing to represent the knowledge to 
distinguish objects. 

A new method to T-transitivize fuzzy relations [Garmendia & Salvador; 2000] can be 
used to measure of T-transitivity of fuzzy relations and to build T-transitive low ap-
proximations of a given fuzzy relations. That algorithm preserves all the diagonal val-
ues, so it preserves the α-reflexivity,  however it doesn’t preserve the symmetry prop-
erty, so we have developed a different version of the algorithm that keeps the symme-
try property. 



Fuzzy relations on a finite set can also represent labeled directed graphs. The T-
transitive closure generalize the transitive closure of a directed graph, and lower T-
transitive approximations are T-transitive subgraphs. Symmetric fuzzy relations can 
represent non directed graphs, where a generalized transitive property could be stud-
ied or inferred.  

The new algorithm is implemented in a C++ program that generate random symmet-
ric fuzzy relations or random reflexive and symmetric fuzzy relations of a given dimen-
sion and computes their Min-transitive closure, Prod- transitive closure and W-
transitive closure,  and compares them with their Min-transitive, Prod-transitive and 
W-transitive low symmetric approximations using the new proposed algorithm. 

It is computed the measure of  low T-transitivity of fuzzy relations measuring the 
difference between the transitive low approximations and the original fuzzy relation, 
using several distances as the absolute value of the difference, euclidean distances or 
normalized distances. Those distances are also measured between the same random 
fuzzy relations and their T-transitive closures, resulting to be higher than the average 
distances with the T-transitive low approximations for all dimensions computed. 

2   Preliminaries 

2 .1   The importance of the transitivity property 

The T-transitive property is held by T-indistinguishabities and T-preorders, and it 
is important when making fuzzy inference to have Tarski consequences. The similari-
ties and T-indistinguishabilities generalize the classical equivalence relations, and are 
useful to classify or to make fuzzy partitions of a set. T-indistinguishability relations 
generalize the classical equivalence relations and they are useful to define degrees of 
‘similarities’ or generalized distances. 

Even though not all the fuzzy inference in control needs transitivity, it looks impor-
tant to know whether the fuzzy relation is T-transitive in order to make fuzzy inference, 
and if a relation is not T-Transitive it is possible to find another T-transitive fuzzy 
relation as close as possible with the initial fuzzy relation. 

2 .2   Transitive closure 

The T-transitive closure RT of a fuzzy relation R is the lowest relation that contains 
R and is T-transitive. There are many proposed algorithms to compute the T-transitive 
closure [Naessens, De Meyer, De Baets; 2002]. 

An algorithm used to compute the transitive closure is the following:  
1) R’ = R ∪Max (RoSup-TR)  
2)  If R’ ≠ R then R := R’ and go back to 1), otherwise stop and RT := R’. 



2 .3   A new T-transitivization algorithm 

At ‘On a new method to T-transitivize fuzzy relations’ [Garmendia & Salvador; 
2000] it is proposed a new algorithm to compute low T-transitive approximations of  
fuzzy relations, obtaining a fuzzy T-transitive relation ‘as close as possible’ from the 
initial fuzzy relation. If the initial relation is T-transitive then it is equal to the T-
transitivized relation.  

The transitivized relation keeps important properties as the µ-T-conditionality prop-
erty and reflexivity that also preserves the transitive closure, but it also keeps some 
more properties as the invariance of the relation degree of every element with himself 
(or diagonal), and so it preserves α-reflexivity. The transitivity closure does not pre-
serve α-reflexivity, but preserves symmetry. 

2 .4   Previous concepts 

Let E = {a1, ..., an} be a finite set. 
A fuzzy relation R: E×E → [0, 1] is a T-indistinguishability when it is reflexive, sym-

metric and T-transitive. 
A T-indistinguishability is called a similarity when T is the minimum t-norm. 
 
Definition 1: Let T be a triangular t-norm [Schweizer & Sklar; 1983]. A fuzzy relation 

R: E×E → [0, 1] is T-transitive  if T(R(a,b), R(b,c)) ≤ R(a,c) for all a, b, c in E. 
Given a fuzzy relation R it is called element ai,j to the relation degree in [0, 1] be-

tween the elements ai and aj in E. So ai,j = R(ai, aj). 
Definition 2: An element ai,j is called T-transitive element if T(ai,k, ak,j) ≤ aij for all k 

from 1 to n. 
Algorithm: The proposed algorithm transform a fuzzy relation R0 into another T-

transitive relation RT contained in R0 in n2-1 steps. In each step can be reduced some 

degrees so R = R0 ⊇ R1 ⊇...⊇ Rm ⊇...⊇ R n2 −1  = RT. 
The idea of this method is to get profit of the fact that each step makes sure that an 

element ai,j will be T-transitive for all further steps, and so it will be T-transitive in the 
final relation RT. In summary, each step m+1 T-transitivize an element ai,j

m in Rm reduc-
ing other elements ai,k

m or ak,j
m, when it is necessary, resulting that ai,j

r is T-transitive in 
Rr for all r≥m. To achieve this, it is important to choose in each step the minimum non 
T-transitivized element as the candidate to transitivize (reducing other elements). 
When choosing to transitivizate the minimum ai,j

m in Rm it is sure that ai,j
m = ai,j

r for all 
r≥m (it will not change in further steps), because the reduction of other elements will 
not make it intransitive anymore and because ai,j

m is lower or equal further transitivized 
elements, it will not cause intransitivity and it will not be reduced. 

Let τ be a set of pairs (i, j) where i, j are integers from 1 to n.  
 
Definition 3: τm is a subset of τ defined by: 
1) τ0=∅ 



2) τm+1 = τm ∪ (i, j) if ai,j
m is the element in Rm chosen to be T-transitivized in the m+1 

step. 
So τm is the set of pairs (i, j) corresponding the T-transitivized elements in Rm and 

(τm)’ is the set of n2-m pairs (i, j) corresponding the not yet transitivized elements.  
 
Building Rm+1 from Rm: Let ai,j

m be the element in Rm that is going to be transitiv-
ized at step m+1 (a i,j

m = Min{av,w
m such that (v, w) ∈(τm)’}). 

 It is defined ar,s
m+1 as 

T m m m m m m
s,j i,j r,s s,j i,j i,s ,

T m m m m m m
i,r i,j i,r r,s i,j i,r ,

m
r,s

J (a , a )    if r=i, T(a , a ) a    and   a

 J (a , a )      if s=j, T(a , a ) a    and   a a   

a                                        otherwise 

m
s j
m
r s

a > ≤
 > ≥



 

(1) 

where JT is the residual operator of the t-norm T, defined by JT (x, y) = sup{z/ T(x, z) ≤ y 
}. 

If T(ai,k
m, ak,j

m) > aij
m for some k, either ai,k

m or ak,j
m will reduce its degree (it could be 

chosen the minimum of both) to achieve that T(a i,k
m+1, ak,j

m+1) ≤ aij
m+1 = aij

m.  
When choosing the minimum between ai,k

m and ak,j
m to reduce, if it is chosen the 

minimum one, the difference between Rm and Rm+1 is lower, so if ai,k
m ≤ ak,j

m then ai,k
m+1 

= JT(ak,j
m,  aij

m) and if ai,k
m > ak,j

m then ak,j
m+1 = JT(ai,k

m, aij
m). The degree of the rest of 

elements remains invariant (a r,s
m+1= ar,s

m). 

3 A new algorithm to compute low T-Transitive approximation of a 
fuzzy relation preserving symmetry 

Algorithm 2.3 can be used to compute low T-transitive approximations of any fuzzy 
relations. However, the algorithm can be modified to take profit of the knowledge that 
the input is going to be a symmetric fuzzy relation 

The idea is that when a relation degree ai,j is T-transitivised, we can use the calcula-
tions to T-transitivized the symmetric degree aj,i at the same time. So the new algorithm 
will  need half of the steps. 

The final algorithm that preserves symmetry is similar to 2.3, but computing ar,s
m+1 at 

the same time than as,r
m+1 

Let E be a set of n elements and let R0 : E×E →[0,1] be a symmetric fuzzy relation. 
 
Algorithm:  
 
The proposed algorithm transform a fuzzy relation R0 into another T-transitive rela-

tion RT contained in R0 in [n2/2] steps. In each step can be reduced some degrees so R 

= R0 ⊇ R1 ⊇...⊇ Rm ⊇...⊇ R

2n
2

 
 
    = RT. 

Let τ be a set of pairs (i, j) where i, j are integers from 1 to n.  



1) τ0=∅ 
2) τm+1 = τm ∪ (i, j) ∪ (j, i) if ai,j

m and is the element in Rm chosen to be T-transitivized 
at step m+1. 

 
Building Rm+1 from Rm: Let ai,j

m be the element in Rm that is  going to be transitiv-
ized at step m+1 (a i,j

m = Min{av,w
m such that (v, w) ∈(τm)’}). 

 
It is defined ar,s

m+1 := as,r
m+1:= 

T m m m m m m
s,j i,j r,s s,j i,j i,s ,

T m m m m m m
i,r i,j i,r r,s i,j i,r ,

m
r,s

J (a , a )    if r=i, T(a , a ) a    and   a

 J (a , a )      if s=j, T(a , a ) a    and   a a   

a                                        otherwise 

m
s j
m
r s

a > ≤
 > ≥



 

 

where JT is the residual operator of the t-norm T, defined by JT (x, y) = sup{z/ T(x, z) ≤ y 
}. 

 
Example 3.1 
Let R be a symmetric fuzzy relation on a set E = {a1, a2, a3} defined by the matrix 

R0=

0,4 1 0,7

1 0,3 0,4
0,7 0,4 0,2

 
 
 
 
 

 

To compute the low Min-transitive approximation, the first step is to Min-
transitivize the lower relation degree, which is  R(a3, a3) = a3,3 = 0,2 using the residuated 
operator of the Min t-norm on values  a3,1 , a1,3 and a3,2 , a2,3 , so 

R1 = 

0,4 1 0,2

1 0,3 0,2
0,2 0,2 0,2

 
 
 
 
 

 

As a3,1  and a3,2 are Min-transitive (and then their symmetric values), no values are 
reduced in the next two steps, and R2=R3=R1. 

The lower non Min-transivized value is a2,2 = 0,3, that is not Min-transitive. Then 

R4 = 

0,4 0,3 0,2

0,3 0,3 0,2
0,2 0,2 0,2

 
 
 
 
 

  

RT = R4 is a low Min-transitive approximation of R 

The Min-transitive closure of R is  RT = 

1 1 0,7

1 1 0,7
0,7 0,7 0,7

 
 
 
 
 

, which does not pre-

serve the diagonal values. 



4 The program 

The most important continuous t-norms that generalize the AND logical values are the 
Minimum, Product, and the Lukasiewicz t-norm, W(x, y)= max{0, x+y-1}. 

4.1 Program Description 

It has been developed a program in C++ that generates a random symmetric fuzzy 
relation (shown at the top of the figure) or a random reflexive and symmetric fuzzy 
relations and computes the Min-transitive closure, Prod-transitive closure and W-
transitive closure, measuring the absolute value distance and euclidean distance with 
the initially generated fuzzy relation. It also computes the Min-transitive, Prod-
transitive and W-transitive low approximations (second row of relations in the figure 
1), and also measures their distances with the same original fuzzy relation.  

 

Fig. 1. General front-end of the program. 
 
As an example, the program generates the following random symmetric fuzzy rela-

tion: 
 
 



 
Fig. 2. Example of generated symmetric random fuzzy relation. 
 
The program computes the Min-transitive closure, Prod-transitive closure and W-

transitive closure measuring the absolute value distance and euclidean distance with 
the initial fuzzy relation:  

Fig. 3. Example of Min-Transitive closure, Prod-transitive closure and W-transitive closure  of 
the random fuzzy relation of Fig. 2, measuring the absolute value distance and euclidean dis-
tance with the initial fuzzy relation. 

 
It also computes the Min-transitive, Prod-transitive and W-transitive low approxi-

mations (second row of relations in the figure) using the algorithm that preserves 
symmetry, and also measures their distances with the same original fuzzy relation: 

 Fig. 4. Example of  Min-transitive, Prod-transitive and W-transitive symmetric low approxi-
mation of the random fuzzy relation of Fig. 2, measuring the absolute value distance and euclid-
ean distance with the initial fuzzy relation 

 
When choosing to generate reflexive and symmetric random fuzzy relations their com-
puted T-transitive closures will be generated T-indistinguishabilities.  

 



The histogram shows the absolute value distance of the last random generated 
fuzzy relation with the (in this order from the left to the right) Min-transitive closure, 
the Min-transitive low approximation, the Prod-transitive closure, the Prod-transitive 
low approximation, the W-transitive closure and the W-transitive low approximation. 
The graphic at the right of the picture compares the absolute value distances of both 
T-transitivization methods for the t-norms (in this order, from the upper to the lower 
graphs) minimum, product and Lukasiewicz for the last hundred of generated random 
symmetric fuzzy relations.  

Fig. 8. The histogram shows the absolute value distance of the last random generated fuzzy 
relation with the Min-transitive closure, the Min-transitive low approximation, the Prod-
transitive closure, the Prod- transitive low approximation,  the W-transitive closure and the W- 
transitive low approximation. The graph at the right of the picture compares the absolute value 
distances of both T-transitivization methods for the t-norms minimum, product and Lu-
kasiewicz for the last hundred of random fuzzy relations. 

The dimension can be changed. The results for the relation of example  3.1 are in the 
following figure: 

 
Fig. 9. Program output for example 3.1 



The program has been scheduled to generate one hundred of random fuzzy rela-
tions for each dimension from two to one hundred. The average distances for each 
dimension have been saved in an Excel document. 

5 Comparing low symmetric T-transitive approximations with T-
transitive closures of random reflexive and symmetric fuzzy relation. 

It has been run the program one hundred times for each dimension from two to one 
hundred, it is, the program has generated 9900 random fuzzy reflexive and symmetric 
relations, computing their T-transitive closures and their T-transitivized relations for 
different t-norms, and computing their average distance of absolute value and euclid-
ean for each dimension. 

The function in the graphic below represents, for each dimension, the average ab-
solute value distance with their W-transitive closure (the line of higher distances) and 
the W-transitivized relation. The aspect of the results could change when using other 
distances, but it is got the same looking for the three t-norms used. 

W-transitive closure and W-transitivized relation
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Fig. 9. Average of the absolute value distances of 100 random reflexive and symmetric 
fuzzy relations with their W-transitive closure and W-transitive low approximation  for 
each dimension from two to one hundred. 

 



Table 2: Interpolation function of the average absolute value distance and euclidean distance of 
the T-transitive closure and T- transitive low approximation of one hundred random fuzzy 
relations for each dimension from two to one hundred. 

Absolute value 
distances 

Min Prod W 

 Transitive  
Closure 

y=0,5x2+1,2x-16,3 y=0,59x2-1,27x+5,9 y=0,506x2-0.01x 

Transitivized  
relation 

y=0,46x2-1,27x+5,9 y=0,50x2-0,83x+2,5 y=0,502x2-0,8x-4,9 

Euclidean  
distances 

Min Prod W 

 Transitive  
Closure 

y=0,61x-0,42 y=0,61x-0,63 y=0,61x-0,68 

Transitivized  
relation 

y=0,56x-0,76 y=0,56x-0,77 y=0,56x-1,19 

6 Results analysis  

After generating 100 random fuzzy relations for each dimensions from 2 to 100, and 
compute their average distance with the T-transitive closure and with the T-
transitivized relation, we have seen for any distance, for any t-norm and for any di-
mension that the T-transitive low approximation is similar to the initial relations than 
the T-transitive closure.  

7 Conclusions 

The T-transitivization algorithm that keeps symmetry, applies to reflexive and sym-
metric fuzzy relations, computes T-transitive low approximations with similar  distances 
than the T-transitive closure for any dimension and any t-norm. They are also differ-
ent, because computes T-transitive relations contained in the initial relation.  

The T-transitive closure is uniquely defined, however we can find several maximal 
T-transitive relations contained in the initial relation.  

It is proven [Garmendia & Salvador; 2000] that the T-transitivization algorithm 
keeps the reflexivity and α-reflexivity. The new algorithm version also preserves sym-
metry, so produce T-indistinguishabilities from reflexive and symmetric relations. 
However the T-transitive closure keeps reflexivity, but not α-reflexivity.  
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