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Abstract. It has been developed a C++ program that generates random fuzzy 
relations of a given dimension and computes their T-transitive closure (that 
contains the initial relation) and the new T-transitivized relation (that is con-
tained in the initial relation) for the t-norms minimum, product and Lu-
kasiewicz. It has been computed several distances between both transitive clo-
sure and transitivized relation with the initial relation one hundred times for 
each dimension and for each t-norm, and the results show that the average dis-
tance of the random fuzzy relations with the transitive closure is higher than the 
average distance with the new transitivized relation. 

1   Introduction 

A new method to T-transitivize fuzzy relations [Garmendia & Salvador; 2000] can 
be used to give new measure of T-transitivity of fuzzy relations. It can also be used to 
build T-transitive fuzzy relations from a given fuzzy relation.  

When the initial fuzzy relation is reflexive, the algorithm generates T-preorders 
that are different to the T-preorders generated form the T-transitive closure. 

The transitive closure of a fuzzy relation contains the initial relation, but the transi-
tivized relation is contained in the initial fuzzy relation. 

This  paper results are obtained from a C++ program that generate random fuzzy 
relations of a given dimension and computes their Min-transitive closure, Prod- tran-
sitive closure and W-transitive closure and their Min-transitivized relation, Prod-
transitivized relation and W-transitivized relation. 

It is computed the measure of T-transitivity of fuzzy relations measuring the dif-
ference between the transitivized relation and the original one, using several distances 
as the absolute value of the difference, euclidean distances or normalised distances. 
Those distances are also measured between the same random fuzzy relations and their 
T-transitive closures, resulting to be higher than the average distances with the T-
transitivized relation for all dimensions computed. 



2   Preliminaries 

2 .1   The importance of transitivity 

The T-transitive property is held by T-indistinguishabities and T-preorders, and it 
is important when making fuzzy inference to have Tarski consequences. The similari-
ties and T-indistinguishabilities generalise the classical equivalence relations, and are 
useful to classify or to make fuzzy partitions of a set.  

Even though not all the fuzzy inference in control needs transitivity, it looks im-
portant to know whether the fuzzy relation is T-transitive in order to make fuzzy 
inference, and if a relation is not T-Transitive it is possible to find another T-
transitive fuzzy relation as close as possible with the initial fuzzy relation. 

2 .2   Transitive closure 

The T-transitive closure RT of a fuzzy relation R is the lower relation that contains 
R and is T-transitive.  

An algorithm used to compute the transitive closure is the following:  
1) R’ = R ∪Max (RoSup-TR)  
2)  If R’ ≠ R then R := R’ and go back to 1), otherwise stop and RT := R’. 

2 .3   A new T-transitivization algorithm 

At ‘On a new method to T-transitivize fuzzy relations’ [Garmendia & Salvador; 
2000] it is proposed a new algorithm to T-transitivize fuzzy relations, obtaining a 
fuzzy T-transitive relation as close as possible from the initial fuzzy relation. If the 
initial relation is T-transitive then it is equal to the T-transitivized relation.  

The transitivized relation keeps important properties as the µ-T-conditionality 
property and reflexivity that also preserves the transitive closure, but it also keeps 
some more properties as the invariance of the relation degree of every element with 
himself (or diagonal), and so it preserves α-reflexivity. The transitivity closure do not 
preserve α-reflexivity. 

2 .4   Previous concepts 

Let E = {a1, ..., an} be a finite set. 
Definition 1: Let T be a triangular t-norm. A fuzzy relation R: E×E → [0, 1] is T-

transitive if T(R(a,b), R(b,c)) ≤ R(a,c) for all a, b, c in E. 
 
Given a fuzzy relation R it is called element ai,j to the relation degree in [0, 1] be-

tween the elements ai and aj in E. So ai,j = R(ai, aj). 



Definition 2: An element ai,j is called T-transitive element if T(ai,k, ak,j) ≤ aij for 
all k from 1 to n. 

 
Algorithm: The proposed algorithm transform a fuzzy relation R0 into another T-

transitive relation RT contained in R0 in n2-1 steps. In each step can be reduced some 

degrees so R = R0 ⊇ R1 ⊇...⊇ Rm ⊇...⊇ R n2 −1  = RT. 
The idea of this method is to get profit of the fact that each step makes sure that an 

element ai,j will be T-transitive for all further steps, and so it will be T-transitive in the 
final relation RT. In summary, each step m+1 T-transitivize an element ai,j

m in Rm 

reducing other elements ai,k
m or ak,j

m, when it is necessary, resulting that ai,j
r is T-

transitive in Rr for all r≥m. To achieve this, it is important to choose in each step the 
minimum non T-transitivized element as the candidate to transitivize (reducing other 
elements). When choosing to transitivizate the minimum ai,j

m in Rm it is sure that ai,j
m 

= ai,j
r for all r≥m (it will not change in further steps), because the reduction of other 

elements will not make it intransitive anymore and because ai,j
m is lower or equal 

further transitivized elements, it will not cause intransitivity and it will not be re-
duced. 

Let τ be a set of pairs (i, j) where i, j are integers from 1 to n.  
 
Definition 3: τm is a subset of τ defined by: 
1) τ0=∅ 
2) τm+1 = τm ∪ (i, j) if ai,j

m is the element in Rm chosen to be T-transitivized in the 
m+1 step. 

So τm is the set of pairs (i, j) corresponding the T-transitivized elements in Rm and 
(τm)’ is the set of n2-m pairs (i, j) corresponding the not yet transitivized elements.  

 
Building Rm+1 from Rm: Let ai,j

m be the element in Rm that is going to be transitiv-
ized at step m+1 (ai,j

m = Min{av,w
m such that (v, w) ∈(τm)’}). 

 It is defined ar,s
m+1 as 

T m m m m m m
s,j i,j r,s s,j i,j i,s ,

T m m m m m m
i,r i,j i,r r,s i,j i,r ,

m
r,s

J (a , a )    if r=i, T(a ,  a ) a    and   a
 J (a , a )      if s=j, T(a ,  a ) a    and   a a   

a                                        otherwise 

m
s j
m
r s

a > ≤
 > ≥



 

(1) 

where JT is the residual operator of the t-norm T, defined by JT (x, y) = sup{z/ T(x, 
z) ≤ y }. 

If T(ai,k
m, ak,j

m) > aij
m for some k, either ai,k

m or ak,j
m will reduce its degree (it could 

be chosen the minimum of both) to achieve that T(ai,k
m+1, ak,j

m+1) ≤ aij
m+1 = aij

m.  
When choosing the minimum between ai,k

m and ak,j
m to reduce, if it is chosen the 

minimum one, the difference between Rm and Rm+1 is lower, so if ai,k
m ≤ ak,j

m then 
ai,k

m+1 = JT(ak,j
m, aij

m) and if ai,k
m > ak,j

m then ak,j
m+1 = JT(ai,k

m, aij
m). The degree of the 

rest of elements remains invariant (ar,s
m+1= ar,s

m). 
 
 



3 The program 

3.1 Program Description 

It has been developed a program in C++ that generates a random fuzzy relation 
(shown at the top of the figure) and computes the Min-transitive closure, Prod-
transitive closure and W-transitive closure (first row of relation in the figure), meas-
uring the absolute value distance and euclidean distance with the initially generated 
fuzzy relation. It also computes the Min-transitivized relation, Prod-transitivized 
relation and W-transitivized relation (second row of relations in the figure), and also 
measures their distances with the same original fuzzy relation.  

 

 
Fig. 1. General front-end of the program. 

 
As an example, the program generates the following random fuzzy relation: 



 
Fig. 2. Example of generated  random fuzzy relation. 

Computes the Min-transitive closure, Prod-transitive closure and W-transitive clo-
sure measuring the absolute value distance and euclidean distance with the initial 
fuzzy relation:  

 

 
Fig. 3. Example of Min-Transitive closure, Prod-transitive closure and W-transitive closure  of 
the random fuzzy relation of Fig. 2, measuring the absolute value distance and euclidean dis-
tance with the initial fuzzy relation. 

It also computes the Min-transitivized relation, Prod-transitivized relation and W-
transitivized relation (second row of relations in the figure), and also measures their 
distances with the same original fuzzy relation: 

 

 
Fig. 4. Example of Min-transitivized relation, Prod-transitivized relation and W-transitivized 
relation  of the random fuzzy relation of Fig. 2, measuring the absolute value distance and 
euclidean distance with the initial fuzzy relation 

After doing this process 100 times, the program shows the percentage of times that 
the T-transitivized relation have a lower distance with the random relation than the 
distance of the T-transitive closure with the initial relation. For the minimum t-norm, 
the 85% of tries the distance with the Min-transitivized relation is lower than the 
distance with the Min-transitive closure. This percentage is 53% when T is the prod-



uct t-norm, and for the Lukasiewicz t-norm a 84% of times is closer the W-
transitivized relation than W-transitive closure: 

 

 
Fig. 5. After doing the Fig 2-3-4 process 101 times, the program shows the percentage of times 
that the T-transitivized relation have a lower distance with the random relation than the dis-
tance of the T-transitive closure with the initial relation.  

It can also tell the program to generate reflexive fuzzy relation, and then there are  
generated two Min-preorders (the Min-transitive closure and the Min-transitivized 
relation), two Prod-preorders and two W-preorders. 

When choosing to generate reflexive and symmetric random fuzzy relations their 
computed T-transitive closures will be generated T-indistinguishabilities. The original 
transitivization method described does not keep the symmetry but we already have 
developed a version to transitivize fuzzy relation keeping the symmetry (when reduc-
ing an element, it is also reduced its symmetric element) and then obtaining T-
indistinguishabilities. 

 

 
 

Fig. 6. Buttons  to start a new process, and to choose the properties of the generated fuzzy 
relation, as the dimension, the reflexive property and the symmetric property.  

 

Fig. 7. The program have buttons to repeat the process fifty times and keep the results 
in an Excel document 

 
The histogram shows the absolute value distance of the last random generated 

fuzzy relation with the (in this order from the left to the right) Min-transitive closure, 
the Min-transitivized relation, the Prod-transitive closure, the Prod-transitivized rela-



tion, the W-transitive closure and the W-transitivized relation. The graph at the right 
of the picture compares the absolute value distances of both T-transitivization meth-
ods for the t-norms (in this order, from the upper to the lower graphs) minimum, 
product and Lukasiewicz for the last hundred of random fuzzy relations. In most 
cases, the distances of the T-transitivized relation is lower than the distances with the 
T-transitive closure for the three t-norms. 

 

 
Fig. 8. The histogram shows the absolute value distance of the last random generated fuzzy 
relation with the Min-transitive closure, the Min-transitivized relation, the Prod-transitive 
closure, the Prod-transitivized relation, the W-transitive closure and the W-transitivized rela-
tion. The graph at the right of the picture compares the absolute value distances of both T-
transitivization methods for the t-norms minimum, product and Lukasiewicz for the last hun-
dred of random fuzzy relations. 

The program has been scheduled to generate one hundred of random fuzzy rela-
tions for each dimension from two to one hundred. The average distances for each 
dimension have been saved in an Excel document. 

4 Program work 

It has been run the program one hundred times for each dimension from two to one 
hundred, it is, the program has generated 9900 random fuzzy relations, computing 
their T-transitive closures and their T-transitivized relations for different t-norms, and 
computing their average distance of absolute value and euclidean for each dimension. 

The function in the graph below represents, for each dimension, the average abso-
lute value distance with their W-transitive closure (the line of higher distances) and 
the W-transitivized relation. The aspect of the results could change when using other 
distances, but it is got the same looking for the three t-norms used. 



W-transitive closure and W-transitivized relation

y = 0,51x2 + 0,49x

y = 0,46x2 - 1,72x + 4,74

0
1000
2000
3000
4000
5000
6000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Fuzzy relation dimension

A
bs

ol
ut

e 
va

lu
e 

di
st

an
ce

W-transitive closure

W-transitivized relation

 Fig. 9. Average of the absolute value distances of 100 random relations with their 
W-transitive closure and W-transitivized relation for each dimension from two to one 

hundred. 
 

The functions for those average distances for the t-norm minimum, product and 
Lukasiewicz are the following: 

Table 1. Interpolation function of the average absolute value distance of the W-transitive 
closure and W-transitivized relation of one hundred random fuzzy relations for each dimension 
from two to one hundred. 

Absolute value 
distance 

Min Prod W 

Transitive  
Closure 

y=0,5x2+1,19x-16,27 y=0,6x2-3,4x+5 y=0,51x2+0,49x 

Transitivized  
relation 

y=0,47x2-1,27x+5,9 y=0,47x2-1,23x+5,1 y=0,46x2-1,72x+4,74 

 
The average distances of the generated relations with the transitive closure is 

higher that for the transitivized relation for all dimensions and for all t-norms. 
However when using the euclidean distances it is also got higher distances for the 

T-transitive closure for the three t-norms, but we get linear functions: 



Min-transitive closure and Min-transitivized relation
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Fig. 10. Average of the euclidean distances of the Min-transitive closure and Min-transitivized 
relation of one hundred random fuzzy relations for each dimension from two to one hundred. 

The linear functions resulting when using euclidean distances are the following: 

Table 2: Interpolation function of the average euclidean distance of the T-transitive closure 
and T-transitivized relation of one hundred random fuzzy relations for each dimension from 
two to one hundred. 

Euclidean  
distances 

Min Prod W 

 Transitive  
Closure 

y=0,61x-0,42 y=0,61x-0,63 y=0,61x-0,68 

Transitivized  
relation 

y=0,56x-0,76 y=0,56x-0,77 y=0,56x-1,19 

 

As the mean distances of the T-transitive closure are higher than the mean dis-
tances for the T-transitivized relations, we have study the difference. The graph be-
low shows those difference between the means using the absolute value distance and 
the minimum t-norm, for dimensions from two to one hundred: 

 



Differences between the average absolute value 
distance 
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 Fig. 11. Differences between the average absolute value distance of the 100 generated rela-
tions with their Min-transitive closure and Min-transitivized relations, for dimensions from 2 to 
100. 

 
Some statistical values for those 9900 generated relations and their transitivized re-

lations using the absolute value distance are the following: 

Table 3: Statistical values of all absolute value distances with the transitivized relations for the 
9900 fuzzy relations generated. 

Minimum Product Lukasiewicz Absolute 
value distance 

 
Transitive 
closure Algorithm 

Transitive 
closure Algorithm 

Transitive 
closure Algorithm 

Mean (average) 1702 1492 1701 1491 1701 1456 
Standard  
deviation 1515,47 1350,05 1516,42 1349,09 1516,60 1326,66
Second quartile 1296,3 1111,0 1296,3 1109,7 1296,3 1079,1 
First quartile 335,4 279,0 334,3 278,5 334,2 264,0 
Third quartile 2846,8 2504,9 2846,8 2502,7 2846,8 2448,8 

 

Table 4: Statistical values of all Euclidean distances with the transitivized relations for the 
9900 fuzzy relations generated. 

Minimum Product Lukasiewicz Euclidean 
 distance 
 

Transitive 
closure Algorithm 

Transitive 
closure Algorithm 

Transitive 
closure Algorithm 



Mean (average) 30 27 30 27 30 27 
Standard  
deviation 17,38 16,22 17,47 16,22 17,49 16,16 
Second quartile 30,1 27,4 30,1 27,4 30,1 26,9 
First quartile 15,2 13,6 15,1 13,6 15,1 13,1 
Third quartile 44,6 41,3 44,6 41,3 44,6 40,7 

5 Results analysis  

After generating 100 random fuzzy relations for all dimensions from 2 to 100, and 
compute their average distance with the T-transitive closure and with the T-
transitivized relation, we have seen for any distance, for any t-norm and for any di-
mension that the T-transitivized relation is closer to the initial relations than the T-
transitive closure.  

When obtaining global measures for the 9900 relations, the transitivized relation is 
also closer than the transitive closure, and has lower dispersion. 

6 Conclusions 

The T-transitivization algorithm gives closer T-transitive relations than the T-
transitive closure for any dimension and any t-norm. They are also different, because 
gives T-transitive relations contained in the initial relation.  

The T-transitive closure is uniquely defined, however we can find several T-
transitive relations contained in the initial relation.  

It is proven [Garmendia & Salvador; 2000] that the T-transitivization algorithm 
keeps the reflexivity and α-reflexivity. However the T-transitive closure keeps reflex-
ivity, but not α-reflexivity. However the algorithm does not keep symmetry as the 
transitive closure does, and so it does not produce T-indistinguishabilities from re-
flexive and symmetric relations. We have already developed a new version that does 
keep it, reducing the symmetric element of all reduced elements.  
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