## L. Garmendia • A. Salvador • E. Trillas • C. Moraga

# On measuring $\mu$-T-inconditionality of fuzzy relations 

Published online:
© Springer-Verlag 2003


#### Abstract

In this paper two methods are proposed to measure the $\mu$-T-inconditionality character of any fuzzy relation for any continuous $t$-norm $T$, and it is studied when both methods result to be equivalent.


Keywords: Fuzzy relation • Measures of conditionality . Conditionalized fuzzy relation

## Introduction

The fuzzy relations that are used to make fuzzy inference should generalise the Modus Ponens property. A way to do this is through the $\mu-T$-conditionality property [1-3] of fuzzy relations, a worldwide known generalised modus ponens definition.

In some environments it have been used fuzzy relations that not always verify the $\mu-T$-conditionality property. In this case it looks interesting to study a degree of satisfaction of this property to find measures for the $\mu-T$-conditionality property of fuzzy relations.
The $\mu-T$-inconditionality of a fuzzy relation refers to the subset of the domain of a fuzzy relation in which it is not a $\mu$ - $T$-conditional.

In this paper two ways for measuring the $\mu$ - $T$-inconditionality property of fuzzy relations are proposed. A first way computes a generalized distance

[^0]between a fuzzy relation $R$ and the greatest $\mu-T$-conditional relation that is contained in $R$. The other way measures the difference between $T(\mu(a), R(a, b))$ and $\mu(\mathrm{b})$ in all points $(a, b)$ in which $R$ is not $\mu-T$-conditional.

It is proven that when T is any continuous $t$-norm, and when a generalized distance defined from a residuated operator of the T-norm is used, both methods give the same measures of $\mu$ - $T$-inconditionality of fuzzy relations.

## Preliminaries

1. Let $E_{1}, E_{2}$ be two sets, let E be the set $E_{1} \cup E_{2}$, let $\mu$ : $E \rightarrow[0,1]$ be a fuzzy set and let T be a continuous $t$-norm. A fuzzy relation $R: E_{1} \times E_{2} \rightarrow[0,1]$ is $\mu$ - $T$-conditional if and only if $T(\mu(a), R(a, b)) \leq \mu(b)$ for all $(a, b)$ in $E_{1} \times E_{2}$.
2. The $\mu$ - $T$-inconditionality region of a fuzzy relation, $\mathrm{INC}_{T}^{\mu}(R)$, is defined as the subset of $E_{1} \times E_{2}$ in which $R$ is not $\mu-T$-conditional, that is:
$\mathrm{INC}_{T}^{\mu}(R)=\left\{(a, b) \in E_{1} \times E_{2} \mid T(\mu(a), R(a, b))>\mu(b)\right\}$
3. Let $T_{R}^{\mu}$ be the fuzzy relation defined by $T_{R}^{\mu}(a, b)=T(\mu(a), R(a, b))$. For example, $\operatorname{Min}_{R}^{\mu}$ is the relation defined by $\operatorname{Min}_{R}^{\mu}(a, b)=\operatorname{Min}(\mu(a), R(a, b))$. Then the $\mu$ - $T$-inconditionality region of a fuzzy relation may also be expressed as:
$\operatorname{INC}_{T}^{\mu}(R)=\left\{(a, b) \in E_{1} \times E_{2} \mid T_{R}^{\mu}(a, b)>\mu(b)\right\}$
4. From the well known operation in $[0,1], J^{T}(\mathrm{x}, \mathrm{y})=$ Sup z: $\mathrm{T}(\mathrm{x}, \mathrm{z}) \leq \mathrm{y},[5-7]$, let $J_{\mu}^{T}$ be defined as the residual relation $J_{\mu}^{T}(a, b)=J^{T}(\mu(a), \mu(b))$. This allows a third way of expressing the $\mu$ - $T$-inconditionality region of a fuzzy relation:
$\operatorname{INC}_{T}^{\mu}(R)=\left\{(a, b) \in E_{1} \times E_{2} \mid R(a, b)>J_{\mu}^{T}(a, b)\right\}$
5. The $\mu$ - $T$-conditionalized relation of R , [8], is defined as: $R_{C}^{\mu-T}(a, b)=\operatorname{Min}\left(R(a, b), J_{\mu}^{T}(a, b)\right)$


| Dispatch: 2.12.2003 | Journal: SERRA |  | No. of pages: 8 |
| :--- | :--- | :--- | :--- |
| Author's disk received $\square$ | Used $\square$ | Corrupted $\square$ | Mismatch $\square$ |

$= \begin{cases}R(a, b) & \text { if } T_{R}^{\mu}(a, b) \leq \mu(b) \\ J_{\mu}^{T}(a, b) & \text { otherwise }\end{cases}$
6. Given a fuzzy set $\mu: E \rightarrow[0,1]$ the fuzzy relation $\mu_{2}$ : $E_{1} \times E_{2} \rightarrow[0,1]$ is defined as $\mu_{2}(a, b)=\mu(b)$.

## $\mu$-T-inconditionality of fuzzy relations

## Theorem 1

Let $R$ be a fuzzy relation, let $\mu$ be a fuzzy set and let T be any continuous $t$-norm, then
$J^{T}\left(R(a, b), J_{\mu}^{T}(a, b)\right)=J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)$
for all $(a, b)$ in $E_{1} \times E_{2}$

## Proof

The proof is a consequence of Lemmata 1 to 7. (See Appendix)

## Corollary

Given any continuous $t$-norm $T$, for all $(a, b)$ in $E_{1} \times E_{2}$, the distance $1-J^{T}$ between a fuzzy relation $R$ in the point $(a, b)$ and its $\mu$-T-conditionalized relation in $(a, b)$ is the same as the distance $1-J^{T}$ between $T_{R}^{\mu}(a, b)$ and $\mu_{2}(a, b)$.

## $\mu$-T-inconditionality measures of finite fuzzy relations

## Definition

A $T^{*}$-distance between two fuzzy relation $R$ and $R^{\prime}$ is defined by
$d_{T}\left(R, R^{\prime}\right)=\operatorname{Sup}_{(a, b) \in E_{1} \times E_{2}}\left\{1-J^{T}\left(R(a, b), R^{\prime}(a, b)\right)\right\}$.
The measure of $\mu$ - $T$-inconditionality, $M_{T}$, of a fuzzy relation can be defined as

$$
\begin{aligned}
M_{T}(R) & =d_{T}\left(R, J_{\mu}^{T}\right) \\
& =\operatorname{Sup}_{(a, b) \in E_{1} \times E_{2}}\left\{1-J^{T}\left(R(a, b), J_{\mu}^{T}(a, b)\right)\right\} .
\end{aligned}
$$

In other words:
For any continuous $t$-norm the distance $d_{T}$ between a fuzzy relation $R$ and its $\mu$ - $T$-conditionalized fuzzy relation is equal to the distance $d_{T}$ between $T(\mu(a), R(a, b))$ and $\mu_{2}(a, b)=\mu(b)$.

For any continuous $t$-norm, a $\mu$ - $T$-inconditionality measure of fuzzy relation could be calculated as
$\operatorname{Sup}_{(a, b) \in E_{1} \times E_{2}}\left\{1-J^{T}\left(R(a, b), J_{\mu}^{T}(a, b)\right)\right\} \quad$ or as
$\operatorname{Sup}_{(a, b) \in E_{1} \times E_{2}}\left\{1-J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)\right\}$.

Example:
Let $\mu$ be a fuzzy set on $E=\{a, b, c\}$ with membership degrees $\mu=\{0.2 / a, 0.5 / b, 0.8 / c\}$.
Let $R: E \times E \rightarrow[0,1]$ be a fuzzy relation defined by
$R=\begin{gathered}a \\ b \\ c\end{gathered}\left(\begin{array}{ccc}a & b & c \\ 1 & 0.1 & 0.9 \\ 0.6 & 1 & 0.4 \\ 0.3 & 0.7 & 1\end{array}\right)$

Case 1: $T=$ Min
When $T=$ Min, the residual relation $J_{\mu}^{\text {Min }}$ is represented by

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
0.2 & 1 & 1 \\
0.2 & 0.5 & 1
\end{array}\right)
$$

The measure of $\mu$-Min-inconditionality $M_{\operatorname{Min}}(R)$ is computed as follows

$$
\begin{aligned}
M_{\operatorname{Min}}(R)= & d_{\operatorname{Min}}\left(R, J_{\mu}^{\mathrm{Min}}\right) \\
= & \operatorname{Sup}_{(a, b) \in E_{1} \times E_{2}}\left\{1-J^{\mathrm{Min}}\left(R(a, b), J_{\mu}^{\mathrm{Min}}(a, b)\right)\right\} \\
= & \operatorname{Sup}\left\{1-J^{\mathrm{Min}}(0.6,0.2), 1-J^{\operatorname{Min}}(0.3,0.2), 1\right. \\
& \left.-J^{\mathrm{Min}}(0.7,0.5)\right\} \\
= & 1-J^{\mathrm{Min}}(0.6,0.2)=0.8
\end{aligned}
$$

So $R$ is not a $\mu$-Min-conditional relation and the measure of $\mu$ - $T$-inconditionality is $M \operatorname{Min}(R)=0.8$.

Case 2: $T=$ Product t-norm
$J_{\mu}^{\text {Prod }}$ is represented by $\left(\begin{array}{ccc}1 & 1 & 1 \\ 0.4 & 1 & 1 \\ 0.25 & 0.625 & 1\end{array}\right)$.
The measure of $\mu$-Prod-inconditionality $M_{\operatorname{Prod}}(R)$ is computed as follows:

$$
\begin{aligned}
& M_{\text {Prod }}(R)=d_{\text {Prod }}\left(R, J_{\mu}^{\text {Prod }}\right) \\
& =\operatorname{Sup}_{(a, b) \in E_{1} \times E_{2}}\left\{1-J^{\text {Prod }}\left(R(a, b), J_{\mu}^{\text {Prod }}(a, b)\right)\right\} \\
& =\operatorname{Sup}\left\{1-J^{\text {Prod }}(0.6,0.4),\right. \\
& \\
& \left.\quad 1-J^{\text {Prod }}(0.3,0.25), 1-J^{\text {Prod }}(0.7,0.625)\right\} \\
& \left.=1-J^{\text {Prod }}(0.6,0.4)\right\}=0.333
\end{aligned}
$$

So $R$ is not a $\mu$-Prod-conditional relation and the measure of $\mu$ - $T$-inconditionality is $M \operatorname{Prod}(R)=0.333$.

Case 3: $T=$ Łukasiewicz t-norm
$J_{\mu}^{W}$ is represented by $\left(\begin{array}{ccc}1 & 1 & 1 \\ 0.7 & 1 & 1 \\ 0.4 & 0.7 & 1\end{array}\right)$, which contains $R$,
so the measure of $\mu$ - $W$-inconditionality $M_{\text {Prod }}(R)$ is
computed as

$$
\begin{aligned}
M_{W}(R) & =d_{W}\left(R, J_{\mu}^{W}\right) \\
& =\operatorname{Sup}_{(a, b) \in E_{1} \times E_{2}}\left\{1-J^{W}\left(R(a, b), J_{\mu}^{W}(a, b)\right)\right\} \\
& =\operatorname{Sup}\{1-1, \ldots, 1-1\}=0
\end{aligned}
$$

so $R$ is a $\mu$ - $W$-conditional fuzzy relation.

## $\mu$-T-inconditionality measures of infinite fuzzy relations

## Definition

$M_{T}^{\prime}(R)=\iint_{(a, b) \in E_{1} \times E_{2}}\left(1-J^{T}\left(R(a, b), J_{\mu}^{W}(a, b)\right)\right) \mathrm{da} \mathrm{db}$
This new measure of $\mu$-T-inconditionality is monotone. It is not based just on a point in which the supremum is reached, but it is based on the points in which the $\mu-T$-conditional property does not hold. Observe that the expression in the integral is zero for all points on which the $\mu-T$-conditional property holds.

## Examples

Some operators are frequently used to make fuzzy inference. Fuzzy operators are fuzzy relations on the universe $E_{1} \times E_{2}=[0,1] \times[0,1]$.

The following examples show the evaluation of the measures $M_{T}^{\prime}$ for some implication operators. For all of them, it is taken the fuzzy set $\mu$ as the identity (i.e., as a function $\mu:[0,1] \rightarrow[0,1]$ such that $\mu(x)=x)$.
Table 1 shows the $M_{T}^{\prime}$ measures of the most used residual implication operators, S-implications, QM-implications and conjunctions for the $t$-norms minimun, product and Lukasiewicz:
The calculation of some of these measures is shown in what follows:

## Example 1: Goguen implication

The Goguen implication is defined by
$J^{\text {Prod }}(x, y)= \begin{cases}1 & \text { when } x \leq y \\ y / x & \text { otherwise },\end{cases}$

Table $1 \mathrm{M}^{\prime}{ }_{\mathrm{T}}$ measures of Id-T-inconditionality of some operators

| Operator | $T=$ Min | $T=\operatorname{Prod}$ | $T=\mathrm{W}$ |
| :--- | :--- | :--- | :--- |
| $J^{\text {Min }}$ | 0 | 0 | 0 |
| $J^{\text {Prod }}$ | $\frac{1}{3}$ | 0 | 0 |
| $\operatorname{Max}(1-x, y)$ | $\frac{5}{24}$ | $\frac{1}{30}$ | 0 |
| $1-x+x y$ | $\frac{1}{3}$ | $\frac{3}{2}-2 \ln 2$ | 0 |
| $\operatorname{Min}(x, y)$ | 0 | 0 | 0 |
| $\operatorname{Prod}(x, y)=x y$ | $\frac{1}{3}$ | 0 | 0 |
| $1(x, y)=1$ | $\frac{1}{3}$ | $\frac{1}{4}$ | $\frac{1}{6}$ |

so it is the residual operator $J^{\text {Prod }}$ of the product $t$-norm. The values of this operator on $E_{1} \times E_{2}=[0,1] \times[0,1]$ are shown in Fig. 1.

It is known that this operator is Prod-conditional and W-conditional, but not Min-conditional. So it is computed the distance $1-J^{\text {Min }}$ between $\operatorname{Min}\left(\mu(x), J^{\operatorname{Prod}}(x, y)\right)$ and $\mu(y)$. The graphical representation of the expression $\operatorname{Min}(x, \operatorname{Goguen}(x, y))$ is shown in Fig. 2.

The $M_{\text {Min }}^{\prime}$ measure of $\mu$-Min-inconditionality of the Goguen implication operator is computed as:

$$
\begin{aligned}
& \quad \iint_{(x, y) \in E_{1} \times E_{2}} 1-J^{\operatorname{Min}}(\operatorname{Min}(x, \operatorname{Goguen}(x, y)), y) \cdot \mathrm{d} x \cdot \mathrm{~d} y \\
& =\iint_{0 \leq x \leq y \leq 1}\left(1-J^{\operatorname{Min}}(x, y)\right) \cdot \mathrm{d} x \cdot \mathrm{~d} y \\
& \quad+\int_{0 \leq x^{2} \leq y<x \leq 1}\left(1-J^{\operatorname{Min}}(x, y)\right) \mathrm{d} x \cdot \mathrm{~d} y \\
& \quad+\int_{0 \leq y<x^{2} \leq 1}\left(1-J^{\left.\operatorname{Min}\left(\frac{y}{x}, y\right)\right) \cdot \mathrm{d} x \cdot \mathrm{~d} y}\right. \\
& =\int_{0 \leq x \leq y \leq 1}(1-1) \mathrm{d} \mathrm{~d} y+\iint_{0 \leq x^{2} \leq y<x \leq 1}(1-y) \mathrm{d} x \mathrm{~d} y \\
& \\
& =1
\end{aligned}
$$

Fig. 1 The Goguen Implication


Fig. 2 Graphics of Min $_{\text {Goguen }}^{\text {ld }}$

$$
\begin{aligned}
& +\iint_{0 \leq y<x^{2} \leq 1}(1-y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{1} \int_{0}^{x}(1-y) \mathrm{d} y \mathrm{~d} x=\frac{1}{3} .
\end{aligned}
$$

## Example 2: Kleene-Dienes implication

The Kleene-Dienes implication operator is defined as $\operatorname{Max}(1-x, y)$. The graphical representation of the expression $\operatorname{Min}(x$, Kleene-Dienes $(x, y))$ is shown in Fig. 3. The $M_{\text {Min }}^{\prime}$ measure of $\mu$-Min-inconditionality of the Kleene-Dienes implication is computed as follows

$$
\begin{aligned}
& \iint_{(a, b) \in E_{1} \times E_{2}}\left(1-J^{\operatorname{Min}}(\operatorname{Min}(x, \operatorname{Max}(1-x, y)), y) \mathrm{d} x \mathrm{~d} y\right. \\
& =\iint_{0 \leq x \leq y \leq 1}\left(1-J^{\operatorname{Min}}(x, y)\right) \mathrm{d} x \mathrm{~d} y \\
& +\iint_{0 \leq y \leq x \leq \frac{1}{2}}\left(1-J^{\mathrm{Min}}(x, y)\right) \mathrm{d} x \mathrm{~d} y \\
& +\int_{0 \leq y<\frac{1}{2} \leq x \leq 1} 1-J^{\mathrm{Min}}(1-x, y) \mathrm{d} x \mathrm{~d} y \\
& =\iint_{0 \leq x \leq y \leq 1}(1-1) \mathrm{d} x \mathrm{~d} y+\iint_{0 \leq y \leq x \leq \frac{1}{2}}(1-y) \mathrm{d} x \mathrm{~d} y \\
& +\int_{0 \leq y<\frac{1}{2} \leq x \leq 1}(1-y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{\frac{1}{2}} \int_{y}^{1-y}(1-y) \mathrm{d} x \mathrm{~d} y=\frac{5}{24} .
\end{aligned}
$$

The graphical representation of the expression $\operatorname{Prod}(x$, $\operatorname{Max}(1-x, y))$ is shown in Fig. 4.

The $M_{\text {Prod }}^{\prime}$ measure of $\mu$-Prod-inconditionality of the Kleene-Dienes implication is computed as follows


Fig. $3 \operatorname{Min}(x$, Kleene-Dienes( $x, y)$ )


Fig. 4 Graphics of Prod ${ }_{\text {Kleene-Dienes }}^{\text {Id }}$

$$
\begin{aligned}
& \iint_{a, b) \in E_{1} \times E_{2}}\left(1-J^{\operatorname{Prod}}(\operatorname{Prod}(x, \text { Kleene-Dienes }\right. \\
& (x, y)), y) \cdot \mathrm{d} x \cdot \mathrm{~d} y \\
& =\int_{0 \leq y \leq x-x^{2} \leq 1}\left(1-J^{\operatorname{Prod}}(x \cdot \operatorname{Max}(1-x, y), y)\right) \cdot \mathrm{d} x \cdot \mathrm{~d} y \\
& =\iint_{0 \leq x-x^{2} \leq y \leq 1}(1-1) \cdot \mathrm{d} x \cdot \mathrm{~d} y \\
& +\int_{0 \leq y \leq x-x^{2} \leq 1}\left(1-\frac{y}{x-x^{2}}\right) \cdot \mathrm{d} x \cdot \mathrm{~d} y \\
& =\int_{0}^{1} \int_{0}^{x-x^{2}}\left(1-\frac{y}{x-x^{2}}\right) \cdot \mathrm{d} y \cdot \mathrm{~d} x=\frac{1}{30} .
\end{aligned}
$$

## Conclusion

This paper proposes two methods to study a degree for the $\mu$ - $T$-conditionality property of a fuzzy relation, in order to check whether the modus ponens is generalized when doing fuzzy inference.

The first method is based on computing a generalized distance between the fuzzy relation and the greatest $\mu-T$ conditional relation contained in it. Another method consists in computing a generalized distance between $T(\mu(a), R(a, b))$ and $\mu(b)$ on all the points $(a, b)$ in $E_{1} \times E_{2}$ where the punctual property of $\mu-T$-conditionality does not hold.

It is proven that for any continuous $t$-norm both methods give the same values when the generalized distance $1-J^{T}$ is used.

There are defined two measures of inconditionality based on fuzzy relations distances, one for finite fuzzy relations an another one for infinite fuzzy relations.

Several examples are provided, especially for the most well known implication operators.

## References

1. Garmendia L (2001) Contribución al Estudio de las Medidas en la Lógica Borrosa: Condicionalidad, Especificidad and

Transitividad. Madrid. Ph. D. Thesis. Universidad Politécnica de Madrid. E.T.S.I. Caminos, Canales y Puertos (in Spanish)
2. Garmendia L (1997) $\mu$ - $T$-Condicionalización de una relación difusa. Medida de $\mu$ - $T$-Condicionalidad. Proc Estylf ${ }^{\circ} 97$ : 281-286 (in Spanish)
3. Garmendia L, Trillas E, Salvador A (1998) Sobre "medir" la condicionalidad. Proc Estylf 98: 57-62 (in Spanish)
4. Garmendia L, Trillas E, Salvador A (1999) On measuring $\mu$ - $T$ conditionality of fuzzy relations (Part II). Proc Estylf' 99: 235238
5. Trillas E, Alsina C, Terricabras J.M (1995) Introducción a la Lógica Borrosa. Editorial Ariel. Barcelona (in Spanish)
6. Trillas E (1993) On Logic and Fuzzy Logic. Int J Uncertainty, Fuzziness and Knowledge-based Syst 1-2: 107-137.
7. Trillas E, Valverde L (1984) An Inquiry into Indistinguishability Operators. In: Skala H.J. et al. (Eds) Aspects of Vagueness. Reidel Publ. Co., Dordrecht, The Netherlands, pp. 231-256
8. Weber S (1991) Conditional measures and their applications to fuzzy sets. Fuzzy Sets Sys 42: 73-85

## Appendix

## Preliminaries

1. A generalized metric space is a triplet $(E, \wp, m)$ where $E$ is a set, $\wp=(A, S, \leq, e)$ is a commutative monoide with neutral element $e$, and $m$ is an S-distance, which is a mapping $m: E \times E \rightarrow A$ such that:
1) $m(a, a)=e$, for all a in $E$
2) $m(a, c) \leq S(m(a, b), m(b, c))$, for all $a, b, c$ in $E$ (S-triangular inequality)
Let $T *$ be the dual t-conorm of a $t$-norm $T$, defined by $T^{*}(x, y)=1-T(1-x, 1-y)$.
Let $\Im^{*}=\left([0,1], T^{*}, \leq, 0\right)$ be a commutative ordered monoide with neutral element 0 .
Given a relational structure $(E, J)$, if $J$ is a $T$-preorder then the function $d(a, b)=1-J^{T}(a, b)$ is a $T^{*}$-distance in the generalized metric space $\left([0,1], \Im^{*}, d\right)$ [4].
2. The family of $t$-norms of a triangular $t$-norm $T$ is the set of $t$-norms defined as: $T_{\varphi}(x, y)=\varphi^{-1}(T(\varphi(x), \varphi(y))$, given any continuous, strictly increasing function $\varphi:[0,1] \times[0,1] \rightarrow[0,1]$ such that $\varphi(0)=0$ and $\varphi(1)=1$.
Let $\varphi \mu: E \rightarrow[0,1]$ be the fuzzy set $(\varphi \circ \mu)$ defined by $\varphi \mu(a)=\varphi(\mu(a))$.
Let $\varphi R: E_{1} \times E_{2} \rightarrow[0,1]$ be the fuzzy relation $(\varphi \circ R)$ defined by $\varphi R(a, b)=\varphi(R(a, b))$.
3. A $t$-norm $T$ is an ordinal sum if there exist a finite or numerable collection of archimedean $t$-norms $\left\{T_{i}: i \in J\right\}$ and a collection of disjoint intervals $\left\{\left(a_{i}, b_{i}\right): i \in J\right\}$ in $[0,1]$ such that
$T(x, y)= \begin{cases}a_{i}+\left(b_{i}-a_{i}\right) T_{i}\left(\frac{x-a_{i}}{b_{i}-a_{i}}, \frac{y-a_{i}}{b_{i}-a_{i}}\right) & \text { if }(x, y) \in\left[a_{i}, b_{i}\right]^{2} \\ \operatorname{Min}(x, y) & \text { otherwise }\end{cases}$

## Remarks

Some necessary conditions for the point $(a, b)$ of $E_{1} \times E_{2}$ to be in $\mathrm{INC}_{T}^{\mu}(R)$ are the following:

Condition (1): $R(a, b)>R_{C}^{\mu-T}(a, b)=J_{\mu}^{T}(a, b)$.
Condition (2): $T_{R}^{\mu}(a, b)=T(\mu(a), R(a, b)>\mu(b)$.
Condition (3): $\mu(a)>\mu(b)$.
Conditions (1) and (2) are held if and only if $(a, b)$ is in $I N C_{T}^{\mu}(R)$.

## Lemma 1

Given a fuzzy relation $R$ and given a fuzzy set $\mu$, $J^{\mathrm{Min}}\left(R(a, b), J_{\mu}^{\mathrm{Min}}(a, b)\right)=J^{\operatorname{Min}}\left(\operatorname{Min}_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)$.

Proof
$J^{\mathrm{Min}}\left(R(a, b), J_{\mu}^{\mathrm{Min}}(a, b)\right)$
$= \begin{cases}1 & \text { if } R(a, b) \leq J_{\mu}^{\text {Min }}(a, b) \\ J_{\mu}^{\text {Min }}(a, b) & \text { otherwise }\end{cases}$
$J^{\mathrm{Min}}\left((\operatorname{Min})_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)$
$= \begin{cases}1 & \text { if } \operatorname{Min}_{R}^{\mu}(a, b) \leq \mu(b) \\ \mu(b) & \text { otherwise }\end{cases}$
If the point $(a, b)$ is not in $\operatorname{INC}_{\text {Min }}^{\mu}(R)$, then conditions (1) and (2) do not hold, so both expressions get the value 1. If the point $(a, b)$ is in $\operatorname{INC}_{\text {Min }}^{\mu}(R)$, then:
$J^{\text {Min }}\left(R(a, b), J_{\mu}^{\text {Min }}(a, b)\right)=J_{\mu}^{\text {Min }}(a, b) \quad$ by condition $(1)$
$=\left\{\begin{array}{ll}1 & \text { if } \mu(a) \leq \mu(b) \\ \mu(b) & \text { if } \mu(a)>\mu(b)\end{array} \quad\right.$ by condition(3)
$=\mu(b) \quad$ by condition $(2)$
$=J^{\text {Min }}\left(\operatorname{Min}_{R}^{\mu}(a, b), \mu(b)\right)$.

## Lemma 2

Given a fuzzy relation $R$ and a fuzzy set $\mu$,
$J^{\text {Prod }}\left(R(a, b), J_{\mu}^{\text {Prod }}(a, b)\right)=J^{\text {Prod }}\left(\operatorname{Prod}_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)$
Proof
$J^{\text {Prod }}\left(R(a, b), J_{\mu}^{\text {Prod }}(a, b)\right)$
$= \begin{cases}1 & \text { if } R(a, b) \leq J_{\mu}^{\text {Prod }}(a, b) \\ J^{\operatorname{Prod}_{\mu}(a, b)} & \text { if } R(a, b)>J_{\mu}^{\text {Prod }}(a, b)\end{cases}$
$J^{\operatorname{Prod}}\left(\operatorname{Prod}_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)$
$= \begin{cases}1 & \text { if } \operatorname{Prod}_{R}^{\mu}(a, b) \leq \mu(b) \\ \frac{\mu(b)}{\operatorname{Prod}_{R}^{p}(a, b)} & \text { if } \operatorname{Prod}_{R}^{\mu}(a, b)>\mu(b)\end{cases}$
If the point $(a, b)$ is not in $\mathrm{INC}_{\text {Prod }}^{\mu}$
$(R)$, then conditions (1) and (2) do not hold, and both expressions are 1. If $(a, b)$ is in $\mathrm{INC}_{\text {Prod }}^{\mu}(R)$ then
$J^{\text {Prod }}\left(R(a, b), J_{\mu}^{\text {Prod }}(a, b)\right)$
$=\frac{J_{\mu}^{\text {Prod }}(a, b)}{R(a, b)}$ by conditions $(1),(3$

$$
\begin{aligned}
& =\frac{\mu(b)}{\mu(a) R(a, b)} \\
& =\frac{\mu(b)}{(\operatorname{Prod})_{R}^{\mu}(a, b)} \quad \text { by condition }(2) \\
& =J^{\operatorname{Prod}}\left(\operatorname{Prod}_{R}^{\mu}(a, b), \mu(b)\right) \\
& =J^{\operatorname{Prod}}\left(\operatorname{Prod}_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)
\end{aligned}
$$

## Lemma 3

Let $W$ be the Lukasiewicz $t$-norm. Given a fuzzy relation $R$ and given a fuzzy set $\mu$,

$$
J^{W}\left(R(a, b), J_{\mu}^{W}(a, b)\right)=J^{W}\left(W_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)
$$

## Proof

If the point $(a, b)$ is not in $I N C_{W}^{\mu}(R)$ then conditions (1) and (2) are not verified, so both expressions are 1. If $(a, b)$ is in $\mathrm{INC}_{W}^{\mu}(R)$, then:

$$
\begin{aligned}
J^{W} & \left(R(a, b), J_{\mu}^{W}(a, b)\right) \\
= & \operatorname{Min}\left(1,1-R(a, b)+J_{\mu}^{W}(a, b)\right) \quad \text { by condition }(1) \\
= & 1-R(a, b)+\operatorname{Min}(1,1-\mu(a) \\
& +\mu(b)) \text { by condition }(3) \\
= & 1-R(a, b)+1-\mu(a)+\mu(b) \\
= & 1-(\mu(a)+R(a, b)-1)+\mu(b) \\
= & 1-\operatorname{Max}(0, \mu(a)+R(a, b)-1)+\mu(b) \\
= & 1-W(\mu(a), R(a, b))+\mu(b) \quad \text { by condition }(2) \\
= & \mathrm{M} \operatorname{in}\left(1,1-W_{R}^{\mu}(a, b)+\mu(b)\right) \\
= & J^{W}\left(W_{R}^{\mu}(a, b), \mu(b)\right)=J^{W}\left(W_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)
\end{aligned}
$$

## Lemma 4

Given a fuzzy relation R , and given a fuzzy set $\mu$ and a $t$-norm $T_{\varphi}$ in the family of the product or the Lukasiewicz $t$-norm, it is verified that

$$
J^{T_{\varphi}}\left(R(a, b), J_{\mu}^{T_{\nu}}(a, b)\right)=J^{T_{\varphi}}\left(\left(T_{\varphi}\right)_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)
$$

## Proof

Let T be the product or the Lukasiewicz $t$-norm. Applying Lemmas 2 and 3 to the fuzzy relation $\varphi \mathrm{R}$ and to the fuzzy set $\varphi \mu$, it is deduced that

$$
J^{T}\left(\varphi R(a, b), J_{\varphi \mu}^{T}(a, b)\right)=J^{T}\left(T_{\varphi R}^{\varphi \mu}(a, b), \varphi \mu_{2}(a, b)\right)
$$

It is shown that this condition is held if and only if
$J^{T_{\varphi}}\left(R(a, b), J_{\mu}^{T_{\nu}}(a, b)\right)=J^{T_{\varphi}}\left(\left(T_{\varphi}\right)_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)$.
And then the result is proven for all $t$-norms in the family of the product and in the family of the Lukasiewicz $t$-norm. This proof is shown by the equivalence of the following equivalences
$J^{T}\left(\varphi R(a, b), J_{\varphi \mu}^{T}(a, b)\right)=J^{T}\left(T_{\varphi R}^{\varphi \mu}(a, b), \varphi \mu_{2}(a, b)\right)$
by the definition of $J_{\varphi \mu}^{T}$ we have

$$
\begin{aligned}
& J^{T}\left(\varphi R(a, b), J^{T}(\varphi \mu(a), \varphi \mu(b))\right) \\
& \quad=J^{T}\left(T_{\varphi R}^{\varphi \mu}(a, b), \varphi \mu_{2}(a, b)\right)
\end{aligned}
$$

by the definition of $T_{\varphi R}^{\varphi \mu}$

$$
\begin{aligned}
& J^{T}\left(\varphi R(a, b), J^{T}(\varphi \mu(a), \varphi \mu(b))\right) \\
& \quad=J^{T}\left(T(\varphi \mu(a), \varphi R(a, b)), \varphi \mu_{2}(a, b)\right)
\end{aligned}
$$

adding $\varphi \varphi^{-1}$

$$
\begin{aligned}
& J^{T}\left(\varphi R(a, b), \varphi \varphi^{-1} J^{T}(\varphi \mu(a), \varphi \mu(b))\right) \\
& \quad=J^{T}\left(\varphi \varphi^{-1} T(\varphi \mu(a), \varphi R(a, b)), \varphi \mu_{2}(a, b)\right)
\end{aligned}
$$

if and only if

$$
\begin{aligned}
& J^{T}\left(\varphi R(a, b), \varphi J_{\varphi}^{T}(\mu(a), \mu(b))\right) \\
& \quad=J^{T}\left(\varphi T_{\varphi}(\mu(a), R(a, b)), \varphi \mu_{2}(a, b)\right)
\end{aligned}
$$

by the definition of $\left(T_{\varphi}\right)_{R}^{\mu}$

$$
\begin{aligned}
& J^{T}\left(\varphi R(a, b), \varphi J_{\varphi}^{T}(\mu(a), \mu(b))\right) \\
& \quad=J^{T}\left(\varphi\left(T_{\varphi}\right)_{R}^{\mu}(a, b), \varphi \mu_{2}(a, b)\right)
\end{aligned}
$$

applying $\varphi^{-1}$ to both sides

$$
\begin{aligned}
& \varphi^{-1} J^{T}\left(\varphi R(a, b), \varphi J_{\varphi}^{T}(\mu(a), \mu(b))\right) \\
& \quad=\varphi^{-1} J^{T}\left(\varphi\left(T_{\varphi}\right)_{R}^{\mu}(a, b), \varphi \mu_{2}(a, b)\right)
\end{aligned}
$$

by the definition of $J_{\varphi}^{T}$

$$
\begin{aligned}
& J_{\varphi}^{T}\left(R(a, b), J_{\varphi}^{T}(\mu(a), \mu(b))\right) \\
& \quad=J_{\varphi}^{T}\left(\left(T_{\varphi}\right)_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)
\end{aligned}
$$

by lemma 5

$$
\begin{aligned}
& J^{T_{\varphi}}\left(R(a, b), J^{T_{\varphi}}(\mu(a), \mu(b))\right) \\
& \quad=J^{T_{\varphi}}\left(\left(T_{\varphi}\right)_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)
\end{aligned}
$$

and by the definition of $J_{\mu}^{T_{V}}$

$$
\begin{aligned}
& J^{T_{\varphi}}\left(R(a, b), J_{\mu}^{T_{\nu}}(a, b)\right) \\
& \quad=J^{T_{\varphi}}\left(\left(T_{\varphi}\right)_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)
\end{aligned}
$$

## Lemma 5

It is held that $J_{\varphi}^{T}=J^{T_{\varphi}}$
Proof

$$
\begin{aligned}
& J_{\varphi}^{T}(x, y)=\varphi^{-1} J^{T}(\varphi(x), \varphi(y)) \\
&=\varphi^{-1} \operatorname{Sup}\{\mathrm{z}: T(\varphi(x), z) \leq \varphi(y)\} \\
& \quad=\varphi^{-1} \operatorname{Sup}\{\varphi(z): T(\varphi(x), \varphi(z)) \leq \varphi(y)\} \\
& \quad=\operatorname{Sup}\{z: T(\varphi(x), \varphi(z)) \leq \varphi(y)\} \\
& \quad=\operatorname{Sup}\left\{z: \varphi^{-1} T(\varphi(x), \varphi(z)) \leq y\right\} \\
& \quad=\operatorname{Sup}\left\{z: T_{\varphi}(x, z) \leq y\right\} \\
&=J^{T_{\varphi}}(x, y) .
\end{aligned}
$$

## Lemma 6

Let T be an ordinal sum defined through a collection of archimedean $t$-norms $\left\{T_{i}: i \in J\right\}$ and a collection of disjoint intervals $\left\{\left(a_{i}, b_{i}\right): i \in J\right\}$. The residuated operation of $T$ is $J^{T}(x, y)=\sup \{z / T(x, z) \leq y\}$
$\mu_{I i}(a)=\frac{\mu(a)-a_{i}}{b_{i}-a_{i}}$

## Lemma 7

Let $R$ be a fuzzy relation, $\mu$ be a fuzzy set and $T$ be an ordinal sum, then

$$
= \begin{cases}1 & \text { if } x \leq y \\ y & \text { if } x>y \text { and }(x, y) \notin\left[a_{i}, b_{i}\right] \text { for all } i \in J \\ a_{i}+\left(b_{i}-a_{i}\right) J_{i}^{T}\left(\frac{x-a_{i}}{b_{i}-a_{i}}, \frac{y-a_{i}}{b_{i}-a_{i}}\right) & \text { if } x>y \text { and }(x, y) \notin\left[a_{i}, b_{i}\right]\end{cases}
$$

## Proof

1) If $x \leq y$, any residuated operation of a $t$-norm takes the value 1 .
2) If $x>y$ and $(x, y) \notin\left[a_{i}, b_{i}\right]^{2}$, then $J^{T}(x, y)=y$. This is because
2.1) If $x \notin\left[a_{i}, b_{i}\right]$, then $J^{T}(x, y)=\sup \{z: T(x, z) \leq y\}$ $=\sup \{z: \operatorname{Min}(x, z) \leq y\}=y$.
2.2) If $x \in\left[a_{i}, b_{i}\right]$ and $y \notin\left[a_{i}, b_{i}\right]$, then $z=J^{T}(x, y)$ is not in $\left[a_{i}, b_{i}\right]$, because $y<x$, so $y<a_{i}$ and if $z=J^{T}(x, y)$ would be in $\left[a_{i}, b_{i}\right]$, then, by Lemma 1, $T(x, z)$ would also be in $\left[a_{i}, b_{i}\right]$ which contradicts $T(x, z) \leq y$. As $z \notin\left[a_{i}, b_{i}\right]$, the $t$-norm must be the minimum and $J^{T}(x, y)=\sup \{z: T(x, z) \leq y\}$ $=\sup \{z: \operatorname{Min}(x, z) \leq y\}=y$.
3) If $x>y$ and $(x, y) \in\left[a_{i}, b_{i}\right]^{2}$, then $J^{T}(x, y) \in\left[a_{i}, b_{i}\right]$. This holds because if $z=J^{T}(x, y)$ would not be in $\left[a_{i}, \quad b_{i}\right], \quad$ then $\quad J^{T}(x, y)=\sup \{z: T(x, z) \leq y\}$ $=\sup \{z: \operatorname{Min}(x, z) \leq y\}=y$, which contradicts with $y \in\left[a_{i}, b_{i}\right]$. So, in this case:

$$
\begin{aligned}
J^{T} & (x, y)=\sup \{z: T(x, z) \leq y\} \\
& =\sup \left\{z / a_{i}+\left(b_{i}-a_{i}\right) T_{i}\left(\frac{x-a_{i}}{b_{i} a_{i}}, \frac{z-a_{i}}{b_{i} a_{i}}\right) \leq y\right\} \\
& =\sup \left\{z / T_{i}\left(\frac{x-a_{i}}{b_{i} a_{i}}, \frac{z-a_{i}}{b_{i} a_{i}}\right) \leq \frac{y-a_{i}}{b_{i}-a_{i}}\right\} \\
& =\left\{z / \frac{z-a_{i}}{b-a_{i}}=J^{T i}\left(\frac{x-a_{i}}{b_{i} a_{i}}, \frac{y-a_{i}}{b_{i} a_{i}}\right)\right\} \\
& =a_{i}+\left(b_{i}-a_{j}\right) J^{T i}\left(\frac{x-a_{i}}{b_{i} a_{i}}, \frac{z-a_{i}}{b_{i} a_{i}}\right)
\end{aligned}
$$

## Definition

Let $R$ be a fuzzy relation. The fuzzy relation $R_{I i}$ restricted from $R$ to the interval $I_{i}=\left[a_{i}, b_{i}\right]$, is defined by:
$R_{I i}(a, b)=\frac{R(a, b)-a_{i}}{b_{i}-a_{i}}$
Let $\mu$ be a fuzzy set. The fuzzy set $\mu_{I i}$ restricted from $\mu$ to the interval $\left[a_{i}, b_{i}\right]$, is defined by:

$$
\begin{aligned}
& J^{T}\left(R(a, b), J_{\mu}^{T}(a, b)\right) \\
& \quad=J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right) \text { for all }(a, b) \operatorname{in} E_{1} \times E_{2}
\end{aligned}
$$

## Proof

The proof follows from Sublemmas 1, 2, 3, 4, 5 and 6.

## Sublemma 1

If $R(a, b) \leq J_{\mu}^{T}(a, b)$ and if $T_{R}^{\mu}(a, b) \leq \mu_{2}(a, b)$, then: $J^{T}\left(R(a, b), J_{\mu}^{T}(a, b)\right)=J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)$.

Proof
By the properties of the residuated operation:
$J^{T}\left(R(a, b), J_{\mu}^{T}(a, b)\right)=J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)=1$.
Note that in this case it is always held that $\mu(\mathrm{a}) \leq \mu(\mathrm{b})$. In the other cases, it is verified that $\mathrm{R}(\mathrm{a}, \mathrm{b})>J_{\mu}^{T}(a, b)$, so
$T_{R}^{\mu}(a, b)>\mu_{2}(a, b)$ and $\mu(a)>\mu(b)$.

## Sublemma 2

If $\mu(\mathrm{b}) \notin\left[a_{i}, b_{i}\right]$, then
$J^{T}\left(R(a, b), J_{\mu}^{T}(a, b)\right)=J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)$.

## Proof

By Lemma 6, case 2.2 it holds that:

$$
\begin{aligned}
J^{T} & \left(R(a, b), J_{\mu}^{T}(a, b)\right) \\
& =J^{T}\left(R(a, b), J^{T}(\mu(a), \mu(b))\right. \\
& =J^{T}(R(a, b), \mu(b))=\mu(b) \\
& =J^{T}\left(T_{R}^{\mu}(a, b), \mu(b)\right) \\
& =J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right) .
\end{aligned}
$$

## Sublemma 3

If $\mu(a), \mu(b) \in\left[a_{i}, b_{i}\right]$ and $\mathrm{R}(a, b) \notin\left[a_{i}, b_{i}\right]$ then:
$J^{T}\left(R(a, b), J_{\mu}^{T}(a, b)\right)=J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)$.

## Proof

$T(\mu(a), R(a, b))>\mu(b)$, so $R(a, b))>\mu(b)$, but $R(a, b) \notin$ $\left[a_{i}, b_{i}\right], \quad$ so $\left.\quad a_{i} \leq \mu(b)<\mu(a) \leq b_{i}<R(a, b)\right), \quad$ and $\operatorname{Min}(\mu(a), R(a, b))=\mu(a)$. By Lemma 6 it holds that:
$J^{T}\left(R(a, b), J_{\mu}^{T}(a, b)\right)=J_{\mu}^{T}(a, b)=J^{T}(\mu(a), \mu(b))$

$$
=J^{T}(\operatorname{Min}(\mu(a), R(a, b)), \mu(b))=J^{T}(T(\mu(a), R(a, b))
$$

$$
\mu(b))=J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)
$$

## Sublemma 4

If $R(a, b), \mu(b)$ are in $\left[a_{i}, b_{i}\right]$ and $\mu(a) \notin\left[a_{i}, b_{i}\right]$, then
$J^{T}\left(R(a, b), J_{\mu}^{T}(a, b)\right)=J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)$.

## Proof

$T(\mu(a), R(a, b))>\mu(b)$, so $R(a, b))>\mu(b), \quad$ and $\quad a_{i} \leq$ $\mu(b)<R(a, b) \leq b_{i}<\mu(a), \quad$ so $\quad \operatorname{Min}(\mu(a), \quad R(a, b))=$ $R(a, b)$.

$$
\begin{aligned}
J^{T} & \left(R(a, b), J_{\mu}^{T}(a, b)\right) \\
& =J^{T}\left(R(a, b), J^{T}(\mu(a), \mu(b))\right. \\
& =J^{T}(R(a, b), \mu(b))=J^{T}(\operatorname{Min}(\mu(a), R(a, b)), \mu(b)) \\
& =J^{T}(T(\mu(a), R(a, b)), \mu(b)) \\
& =J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)
\end{aligned}
$$

## Sublemma 5

If $\mu(b) \in\left[a_{i}, b_{i}\right]$ and $\mu(a), R(a, b)$ are not in $\left[a_{i}, b_{i}\right]$, then $J^{T}\left(R(a, b), J_{\mu}^{T}(a, b)\right)=J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)$.

## Proof

Let T be an ordinal sum. If $\mathrm{x}, \mathrm{y} \in\left[a_{i}, b_{i}\right]$, then $\mathrm{T}(\mathrm{x}, \mathrm{y}) \in$ [ $a_{i}, b_{i}$ ]. This is because T is monotonous, $\mathrm{T}\left(a_{i}, a_{i}\right)=a_{i}$, $\mathrm{T}\left(b_{i}, b_{i}\right)=b_{i}$, so $a_{i} \leq T(x, y) \leq b_{i}$.
As $\mu(a), \mathrm{R}(a, b)$ are not in $\left[a_{i}, b_{i}\right]$, then $\mathrm{T}(\mu(a), \mathrm{R}(a, b))$ is not in $\left[a_{i}, b_{i}\right]$.

$$
\begin{aligned}
J^{T} & \left(R(a, b), J_{\mu}^{T}(a, b)\right) \\
& =J^{T}\left(R(a, b), J^{T}(\mu(a), \mu(b))\right. \\
& =\mu(b)=J^{T}(T(\mu(a), R(a, b)), \mu(b)) \\
& =J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)
\end{aligned}
$$

Sublemma 6
If $\mu(\mathrm{a}), \mu(\mathrm{b}), \mathrm{R}(\mathrm{a}, \mathrm{b}) \in\left[a_{i}, b_{i}\right]$, then
$J^{T}\left(R(a, b), J_{\mu}^{T}(a, b)\right)=J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)$.

## Proof

Note 1: For archimedean $t$-norms it holds that $J^{T}(R(a, b)$, $\left.J_{\mu}^{T}(a, b)\right)=J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)$, so, for any $t$-norm $T_{i}$, the fuzzy relation $R_{I i}$ restricted to interval $\left[a_{i}, b_{i}\right]$ and the fuzzy set $\mu_{I i}$ restricted to $\left[a_{i}, b_{i}\right.$ ] holds that
$J^{T i}\left(R_{I i}(a, b), J_{\mu_{I i}}^{T i}(a, b)\right)=J^{T i}\left(\left(T_{i}\right)_{R_{I i}}^{\mu_{I i}}(a, b), \mu_{I i}(b)\right)$.
Note 2: By lemma 5,

$$
\begin{aligned}
& T(\mu(a), R(a, b)) \\
& =a_{i}+\left(b_{i}-a_{i}\right) T_{i}\left(\frac{\mu(a)-a_{i}}{b_{i}-a_{i}}, \frac{R(a, b)-a_{i}}{b_{i}-a_{i}}\right) \in\left[a_{i}, b_{i}\right]
\end{aligned}
$$

By lemma 6, case 3, it holds that:

$$
\begin{aligned}
J^{T} & \left(R(a, b), J_{\mu}^{T}(a, b)\right) \\
& =J^{T}\left(R(a, b), a_{i}+\left(b_{i}-a_{i}\right) J^{T i}\left(\frac{\mu(a)-a_{i}}{b_{i}-a_{i}}, \frac{\mu(b)-a_{i}}{b_{i}-a_{i}}\right)\right) \\
& =a_{i}+\left(b_{i}-a_{i}\right) J^{T i}\left(\frac{R(a, b)-a_{i}}{b_{i}-a_{i}}, J^{T i}\left(\frac{\mu(a)-a_{i}}{b_{i}-a_{i}}, \frac{\mu(b)-a_{i}}{b_{i}-a_{i}}\right)\right) \\
& =a_{i}+\left(b_{i}-a_{i}\right) J^{T i}\left(R_{I i}(a, b), J_{\mu_{I i}}^{T i}\right. \\
& =a_{i}+\left(b_{i}-a_{i}\right) J^{T i}\left(\left(T_{i}\right)_{R_{I i}}^{\mu_{I i}}(a, b), \mu_{I i}(b)\right) \\
& =a_{i}+\left(b_{i}-a_{i}\right) J^{T i}\left(T_{i}\left(\frac{\mu(a)-a_{i}}{b_{i}-a_{i}}, \frac{R(a, b)-a_{i}}{b_{i}-a_{i}}\right), \frac{\mu(b)-a_{i}}{b_{i}-a_{i}}\right) \\
& =J^{T}\left(a_{i}+\left(b_{i}-a_{i}\right) T_{i}\left(\frac{\mu(a)-a_{i}}{b_{i}-a_{i}}, \frac{R(a, b)-a_{i}}{b_{i}-a_{i}}\right), \mu(b)\right)
\end{aligned}
$$

See Note 2

$$
\begin{aligned}
& =J^{T}(T(\mu(a), R(a, b)), \mu(b)) \\
& =J^{T}\left(T_{R}^{\mu}(a, b), \mu_{2}(a, b)\right)
\end{aligned}
$$


[^0]:    L. Garmendia ( $\triangle$ )

    Universidad Complutense de Madrid. Dpto. de Lenguajes y Sistemas Informáticos. 28040 Madrid
    E-mail: lgarmend@fdi.ucm.es
    A. Salvador

    Technical University of Madrid. E.T.S.I. Caminos. Dpto. de Matemática Aplicada.
    E. Trillas

    Technical University of Madrid. Facultad de Informática. Dpto. de Inteligencia Artificial.
    C. Moraga

    University of Dortmund,
    Faculty of Computer Science.

