A CLASSIFICATION METHOD BASED ON INDISTINGUISHABILITIES

Luis Garmendia

Technical University of Madrid. E.T.S.I. Caminos Dpto. de Matemática Aplicada. and IBM Learning Services. luisgarmendia@es.ibm.com Adela Salvador Technical University of Madrid. E.T.S.I. Caminos Dpto. de Matemática Aplicada E-mail: ma09@caminos.upm.es Enric Trillas Technical University of Madrid. Facultad de Informática. Dpto. de Inteligencia Artificial E-mail: etrillas@fi.upm.es

Abstract:

This paper works on the inference independent clustering method to solve the problem of classifying a classical set given a fuzzy set and a Tindistinguishability.

It is shown an application of this method for computing measures of specificity of fuzzy sets under T-indistinguishabilities.

Keywords: T-indistinguishability, inference independent classes, clustering.

1 INTRODUCTION

This paper gives a method to classify in classes a finite set X given a fuzzy set and a Tindistinguishability on X.

The new method builds up a set of classes of X that are 'inference independent', that is, a set of classes in such a way that given two elements of X in different classes, it is not possible to infer a degree of membership of an element greater than the degree of membership given by μ by fuzzy inference through the t-norm T and the T indistinguishability with the other element.

It is also given a fuzzy set on the set of inference independent classes.

It is shown an application of the method to compute measures of specificity of fuzzy sets under T-indistinguishabilities. When the knowledge available is increased through a Tindistinguishability, the specificity of fuzzy sets is also increased. The specificity of a fuzzy set under a T-indistinguishability can be computed as the specificity of the before defined fuzzy set.

X will be a crisp finite set, and R: $X \times X \rightarrow [0, 1]$ a **T-indistinguishability** (that is, R is reflexive, simetric and T-transitive).

A T-indistinguishability is called a similarity when T = min.

2 INFERENCE INDEPENDENT CLASSES

Let μ be a fuzzy set on a finite space $X = \{x_1, ..., x_n\}$, let S be a T-indistinguishability on X and let T be a t-norm.

Definition

 x_k is related with x_j , and it is denoted by $\mathbf{x_k} \succeq \mathbf{x_j}$, if and only if $T(\mu(x_k), S(x_k, x_j)) \ge \mu(x_j)$.

Two elements x_k and x_j in X are in the same inference independent class if and only if they are comparable by the \geq preorder.

So, it is defined the class of an element x_k as follows:

 $[\mathbf{x}_k] = \{\mathbf{x}_j \text{ such that } \mathbf{x}_k \succeq \mathbf{x}_j \text{ or } \mathbf{x}_j \succeq \mathbf{x}_k\}$

This definition means that when x_k is related with x_j , it is possible to deduce the same or more of what we know of x_j from x_k by making fuzzy inference with the t-norm T ant the given Tindistinguishability. That is, x_k is related with x_j when the information on x_j is increased by knowing the membership degree of x_k and its Tindistinguishability relation with x_j .

Proposition

Let μ be a fuzzy set on a finite set X={x₁, ..., x_n} and let S be a T-indistinguishability, then the relation \succeq is a classical preorder relation on X.

Proof

• The \succeq relation is reflexive: $T(\mu(x_i), S(x_i, x_i))) = T(\mu(x_i), 1) = \mu(x_i)$, so $x_i \succeq x_i$. • The \succeq relation is transitive: Let's suppose that $x_i \succeq x_j$ and $x_j \succeq x_k$. $x_i \succeq x_j$, so $T(\mu(x_i), S(x_i, x_j)) \ge \mu(x_j)$. $x_j \succeq x_k$, so $T(\mu(x_j), S(x_j, x_k)) \ge \mu(x_k)$. Hence $\mu(x_k) \le T(\mu(x_j), S(x_j, x_k))$ $\le T(T(\mu(x_i), S(x_i, x_j)), S(x_j, x_k))$ (T is associative) $= T(\mu(x_i), T(S(x_i, x_j), S(x_j, x_k)))$ (S is T-transitive)

and so $x_i \succeq x_k$.

Definition

The fuzzy set \Im on the crisp set of inference independent classes is defined as follows: $\hat{A}([x_k]) = Max_j(T(\mathbf{m}(x_j), S(x_k, x_j))).$

It is trivial to show that the membership degree of $[x_k]$ in \mathfrak{I} is greater or equal than $\mu(x_k)$ for all x_k in X.

3 ALGORITHM TO COMPUTE INFERENCE INDEPENDENT CLASSES

By the previous definition, the membership degree of the classes of the elements $\{x_1, ..., x_n\}$ is computed by the Max-T rule of compositional inference using the fuzzy set μ and the T-indistinguishability S.

So, $\Im([x_j]) = Max_k(T(\mu(x_k), S(x_k, x_j)))$

= $T(\mu(x_k), S(x_k, x_i))$ for a particular k.

If $k \neq j$, then x_k represents the dass of x_j ($x_k \geq x_i$).

The following algorithm's purpose is to get rid of elements x when it exits a k such that $[x_j] = [x_k]$ because $x_k \geq x_j$.

The transitive property of the \succeq relation is necessary for this algorithm to finish in a few steps, because when an element x_k represents another element x_j ($x_k \succeq x_j$), we can eliminate x_j without taking care that x_j could represent a

third element x $(x_i \geq x_i)$, because in this case x would represent x_i ($x_k \geq x_i$) and x_i , x_i and x_k would belong to $[x_k]$. As x_k would represent x_k , the algorithm also gets rid of x_i in a further step. the algorithm summary, detects In and eliminates the elements of Х that are represented by other elements, toward getting a final set of elements X' that represents the

This algorithm steps are the following:

different inference independent classes ($X' \subseteq X$).

Step 1: Compute $\mathbf{m}_{0Max-T} S(*, x_1)$.

If $Max_j(T(\mu(x_j), S(x_j, x_1))) \ge \mu(x_1)$ for some $j \ne 1$ then $X^1 := X - \{x_1\}$, and μ^1 and S^1 are the restrictions of de μ and S to X^1 .

Otherwise, $X^1 = X$ (x₁ represents its own class and will belong to the final set of classes X').

Step k: Compute $\mathbf{m}_{\mathbf{Max-T}} \mathbf{S}(*, \mathbf{x}_k)$. If $\operatorname{Max}_j(T(\mu^{k-1}(x_j), \mathbf{S}^{k-1}(x_j, \mathbf{x}_k))) \ge \mu^{k-1}(\mathbf{x}_k)$ for some $j \ne k$ then $\mathbf{X}^k = \mathbf{X}^{k-1} - \{\mathbf{x}_k\}$. Otherwise $\mathbf{X}^k = \mathbf{X}^{k-1}$.

Repeating this process until the n^{th} step, the set $X^n = X'$ is the set of inference independent classes and their membership degree are given by the fuzzy set restricted to X^n

Example

Let μ be the fuzzy set on X={x₁, ..., x₅}: $\mu = 1/x_1+0.7/x_2+0.5/x_3+0.2/x_4+0/x_5.$ Let S be a T-Indistinguishability represented by

	(1	1	0	0.5	0.2	١
	1	1	0	0.5	0.2	
S =	0	0	1	0	0	ļ,
	0.5	0.5	0	1	0.2	
	0.2	0.2	0	0.2	1	

which is reflexive and Min-transitive.

Let T be the t-norm minimum. The membership degree \Im of the inference independent classes for the elements x_i are the following:

$$\mu o_{Max-Min} S$$

= (1, 0.7, 0.5, 0.2, 0) $o_{Max-Min} S$
= (1, 1, 0.5, 0.5, 0.2)

The following algorithm steps are done to decide a set of classes that are Min-inference independent.

Step 1 Compute

$$\mu o_{Max-Min} S(*, x_1) =$$

$$(1, 0.7, 0.5, 0.2, 0) o_{\text{Max-Min}} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0.5 \\ 0.2 \end{pmatrix}$$

$$= Max\{1, 0.7, 0, 0.2, 0\} = 1 = \mu(x_1).$$

As $1 = Max(T(\mu(x_1), S(x_1, x_1))) = \mu(x_1)$, then x_1 represents its own class, and $[x_1]$ belongs to X / \geq .

So $X^1=X$, $\mu^1=\mu$ and $S^1=S$.

Step 2 Compute

(1,

$$\mu^{1} o_{\text{Max-T}} S^{1}(*, x_{2}) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

0.7, 0.5, 0.2, 0)
$$o_{\text{Max-Min}} \begin{bmatrix} 0\\ 0.5\\ 0.2 \end{bmatrix} =$$

 $Max\{1, 0.7, 0, 0.2, 0\} = 1 \ge 0.7 = \mu(x_2).$

As $1 = Max(T(\mu^1(x_1), S^1(x_1, x_2))) \ge \mu^1(x_2)$ then x_1 represents x_2 (by the relation \ge), that is, $[x_1] = [x_2]$, so

 $X^2 = X^1 {-} \{x_2\} = \{x_1, \ x_3, \ x_4, \ x_5\}, \ \mu^2 \ \text{is} \ \mu^1$ restricted to X^1 and

$$\mathbf{S}^{2} = \begin{pmatrix} 1 & 0 & 0.5 & 0.2 \\ 0 & 1 & 0 & 0 \\ 0.5 & 0 & 1 & 0.2 \\ 0.2 & 0 & 0.2 & 1 \end{pmatrix}$$

on $X^2 \times X^2$, (that is, on $\{x_1, x_3, x_4, x_5\}^2$).

Step 3 Compute

$$\mu^2 o_{Max-T} S^2(*, x_3) =$$

$$(1, 0.5, 0.2, 0) \circ_{\text{Max-Min}} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} =$$

Max{0, 0.5, 0, 0} = $0.5 = \mu(x_3)$.

As $0.5 = \mu(x_3)$, x_3 represents its own class and $[x_3]$ will be a new element in X / \geq . $X^3 = X^2$, $\mu^3 = \mu^2$ and $S^3 = S^2$.

Step 4 Compute

$$\mu^3 o_{Max-T} S^3(*, x_4) =$$

$$(1, 0.5, 0.2, 0) \circ_{\text{Max-Min}} \begin{pmatrix} 0.5 \\ 0 \\ 1 \\ 0.2 \end{pmatrix} =$$

 $Max\{0.5, 0, 0.2, 0\} = 0.5 \ge 0.2 = \mu(x_4).$

As $0.5 = Max(T(\mu^{3}(x_{1}), S^{3}(x_{1}, x_{4}))) \ge \mu^{3}(x_{4}) = 0.2$ then x_{1} represents x_{4} by the relation \succeq , so $X^{4} = X^{3} - \{x_{4}\} = \{x_{1}, x_{3}, x_{5}\}, \mu^{4}$ is μ^{3} restricted to X^{4} and

$$\mathbf{S}^4 = \begin{pmatrix} 1 & 0 & 0.2 \\ 0 & 1 & 0 \\ 0.2 & 0 & 1 \end{pmatrix}$$

on $X^4 \times X^4$.

Step 5 computes

 $\mu^4 \ o_{Max-T} \ S^4(*, \, x_5) =$

$$(1, 0.5, 0) o_{\text{Max-Min}} \begin{pmatrix} 0.2 \\ 0 \\ 1 \end{pmatrix} =$$

 $Max\{0.2, 0, 0\} = 0.2 \ge 0 = \mu(x_5).$

As $0.2 = Max(T(\mu^3(x_1), S^4(x_1, x_5))) \ge \mu^4(x_5) = 0$ then x_1 represents x_5 by the relation \ge .

 $X^5 = X^4 \cdot \{x_5\} = \{x_1, x_3\}$, so the set of Mininference independent classes in X / \succeq are $\{[x_1], [x_3]\} = \{\{x_1, x_2, x_4, x_5\}, \{x_3\}\}$, and their membership degree are those of \Im restricted to X^5 , that is, $\{1/x_1, 0.5/x_3\}$.

4 APPLYING THE ALGORITHM TO COMPUTE SOME MEASURES OF SPECIFICITY.

Yager [Yager; 1991, 91] introduced the concept of specificity of a fuzzy set under similarities using the *Zadeh* [Zadeh; 1971] concept of similarity or Min-indistinguishability.

The α -cut of a similarity S is a classical equivalence relation [3] denoted S_{α} . Let π_{α} be the set of equivalence classes of S for a given value α . Let μ_{α}/S be the set of equivalence classes of π_{α} defined in the following way: class $\pi_{\alpha}(i)$ belongs to μ_{α}/S if there exists an element x contained in $\pi_{\alpha}(i)$ and in the μ 's α -cut (μ_{α}).

Definition

Yager [1991, 91] definition of measure of specificity of a fuzzy set μ under a similarity is the following:

$$\mathbf{S}_{\mathbf{p}}(\mathbf{m}\mathbf{S}) = \int_{0}^{\alpha_{max}} \frac{1}{Card(\mu_{\alpha} / S)} \, \mathbf{da} \, .$$

The measure of specificity under similarities are maximal when μ_{α} is contained in one class of S_{α} for all α .

This definition is good enough when the information is increased by a similarity, but it is not well defined for any T-indistinguishability, because when T is not the minimum t-norm the α -cut of S is not an equivalence relation and then μ_{α}/S is not well defined.

Definition

Let Sp be a measure of specificity.

A measure of specificity of a fuzzy set **m** under a **T-indistinguishability** S is the measure of specificity Sp of the fuzzy set \Im on the set of classes $X^n = X / \geq$.

Theorem

The measure of specificity of μ under S computed by the algorithm satisfies the four axioms of a measure of specificity under a T-indistinguishability.

Proof

The proof is in [1].

EXAMPLE

When using the previous example given to show how the algorithm works, the following Mininference independent classes are found:

{ $\{x_1, x_2, x_4, x_5\}$, { x_3 }}. Their membership degrees to the fuzzy set \Im are $1/[x_1]+0.5/[x_3]$.

So, the measure of specificity of munder the Min-indistinguishability S is the measure of specificity of the fuzzy set \hat{A} on the set of classes $[x_1]$ and $[x_3]$ with membership degrees $1/[x_1]+0.5/[x_3]$.

When using, for example, the linear measure of specificity of Yager [1990] with a weight $w_2 = 1$, the measure of specificity of μ under S is:

$$Sp (\mu / S) = Sp(\Im) = Sp (1/[x_1]+0.5/[x_3]) = 1 - 0.5 = 0.5.$$

Compare this result with the linear measure of specificity of μ with a weight $w_2 = 1$.

Sp (
$$\mu$$
)
=Sp (1/x₁+0.7/x₂+ 0.5/x₃+0.2/x₄+ 0/x₅)
= 1 - 0.7 = 0.3.

Observe that the measure of specificity of μ under a T-indistinguishability S is greater than the measure of specificity of μ . This is because the T-indistinguishability adds information which tells that four of the five elemetns of X are similar. When using the measure of specificity as a measure of the information of a fuzzy set in order to make a decision of an element of X, the Min-indistinguishability is telling us that four of the five possible decisions are similar, so the decision is simplify to two classes of elements of X.

The fuzzy set \Im on the inference independent classes is usefull to define and compute new measures of specificity of a fuzzy set μ when the information is increased by a T-indistinguishability.

Conclusions

This paper gives an algorithm to classify a finite set X into inference independent classes given a fuzzy set and a T-indistinguishability on X.

A fuzzy set \mathfrak{I} on the set of inference independent classes is given.

It is shown an application of the algorithm to define and compute new measures of specificity of a fuzzy set under a T-indistinguishability.

Adknoledgements

This paper has been partially subventioned by the spanish proyects CICYT: PB-98-1379-c02-02 (MEC) and TIC 00-1420.

References

[1] L. Garmendia. Contribución al Estudio de las Medidas en la Lógica Borrosa: Condicionalidad, Especificidad and Transitividad. Madrid. 2001. Ph. D. Thesis. Universidad Politécnica de Madrid. E.T.S.I. Caminos, Canales y Puertos (in Spanish).

[2] L. Garmendia, R.R. Yager, E. Trillas, A. Salvador. On t-norms based measures of specificity. *Fuzzy Sets and Systems*. Acepted for publication in 2000.

[3] E. Trillas, C. Alsina and J. M. Terricabras. *Introducción a la Lógica Borrosa*. Editorial Ariel. Barcelona (in Spanish). 1995.

[4] R. R Yager, Ordinal measures of specificity. *International Journal of General Systems* 17, pp. 57-72, 1990.

[5] R. R Yager, Similarity based measures of specificity. *International Journal of General Systems* 19, pp. 91-106, 1991.

[6] L. A. Zadeh, Similarity relations and fuzzy orderings. *Information Sciences* 3, pp. 177-200, 1971.