

ibm.com/redbooks

DB2 for z/OS
Application Programming
Topics

Bart Steegmans
Rafael Garcia

Luis Garmendia
Anne Lesell

How to implement object-oriented
enhancements

Increased program design
flexibility

Examples of more powerful
SQL

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

DB2 for z/OS Application Programming Topics

October 2001

SG24-6300-00

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set
forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (October 2001)

This edition applies to Version 7 of IBM DATABASE 2 Universal Database Server for z/OS and OS/390 (DB2
for z/OS and OS/390 Version 7), Program Number 5675-DB2.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in
any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the general
information in “Special notices” on page 257.

Contents

Contents . iii

Figures . ix

Tables . xi

Examples . xiii

Preface . xvii
The team that wrote this redbook. xvii
Special notice . xviii
IBM trademarks . xix
Comments welcome. xix

Chapter 1. Introduction . 1

Part 1. Object-oriented enhancements . 5

Chapter 2. Schemas . 7
2.1 What is a schema? . 8
2.2 Schema characteristics . 8

2.2.1 Authorizations on schemas. 8
2.2.2 Schema path and special register. 9
2.2.3 How is a schema name determined? . 10

2.3 The schema processor . 10

Chapter 3. Triggers . 13
3.1 Trigger definition . 14
3.2 Why use a trigger . 14
3.3 Trigger characteristics . 16

3.3.1 Trigger activation time. 17
3.3.2 How many times is a trigger activated? . 18
3.3.3 Trigger action condition. 19
3.3.4 Trigger action . 19
3.3.5 Transition variables. 20
3.3.6 Transition tables . 21

3.4 Allowable combinations. 22
3.5 Valid triggered SQL statements . 22
3.6 Invoking stored procedures and UDFs . 23
3.7 Setting error conditions . 24
3.8 Error handling . 26
3.9 Trigger cascading . 28
3.10 Global trigger ordering . 29
3.11 When external actions are backed out . 30
3.12 Passing transition tables to SPs and UDFs . 30
3.13 Trigger package . 32
3.14 Rebinding a trigger package . 33
3.15 Trigger package dependencies. 33
3.16 DROP, GRANT, and COMMENT ON statements. 34
3.17 Catalog changes . 35
© Copyright IBM Corp. 2001 iii

3.18 Trigger and constraint execution model . 35
3.19 Design considerations. 37
3.20 Some alternatives to a trigger . 38
3.21 Useful queries . 41
3.22 Trigger restrictions . 42

Chapter 4. User-defined distinct types (UDT) . 43
4.1 Introduction . 44
4.2 Creating distinct data types . 44
4.3 CAST functions . 45
4.4 Privileges required to work with UDTs . 46
4.5 Using CAST functions . 48
4.6 Operations allowed on distinct types. 49

4.6.1 Extending operations allowed in UDTs . 49
4.7 Usage considerations . 53

4.7.1 UDTs in host language programs . 53
4.7.2 Using the LIKE comparison with UDTs . 54
4.7.3 UDTs and utilities . 54
4.7.4 Implementing UDTs in an existing environment . 55
4.7.5 Miscellaneous considerations . 56

4.8 UDTs in the catalog. 56

Chapter 5. User-defined functions (UDF) . 57
5.1 Terminology overview . 58
5.2 Definition of a UDF . 59
5.3 The need for user-defined functions . 59
5.4 Implementation and maintenance of UDFs . 60

5.4.1 Scalar functions . 60
5.4.2 Column functions . 61
5.4.3 Table functions . 62

5.5 UDF design considerations . 64
5.5.1 Maximizing UDF efficiency . 64
5.5.2 Consider sourced functions . 65

Chapter 6. Built-in functions . 71
6.1 What is a built-in function? . 72
6.2 Why use a built-in function . 72
6.3 Built-in function characteristics . 72
6.4 List of built-in functions before Version 6 . 72
6.5 New built-in functions in Version 6 . 73
6.6 New functions in Version 7 . 75
6.7 Built-in function restrictions . 76

Part 2. Enhancements that allow a more flexible design . 77

Chapter 7. Temporary tables . 79
7.1 Summary of differences between types of tables . 80
7.2 Created temporary tables . 80

7.2.1 What is a created temporary table? . 81
7.2.2 Why use created temporary tables . 81
7.2.3 Created temporary tables characteristics . 82
7.2.4 Created temporary tables pitfalls . 86
7.2.5 Created temporary tables restrictions . 86

7.3 Declared temporary tables . 88
iv DB2 for z/OS Application Programming Topics

7.3.1 What is a declared temporary table? . 88
7.3.2 Why use declared temporary tables . 88
7.3.3 Declared temporary tables characteristics . 88
7.3.4 Creating a temporary database and table space . 89
7.3.5 Creating a declared temporary table. 90
7.3.6 Using declared temporary tables in a program . 92
7.3.7 Creating declared temporary tables for scrollable cursors 93
7.3.8 Remote declared temporary tables. 93
7.3.9 Creating indexes . 94
7.3.10 Usage considerations . 94
7.3.11 Converting from created temporary tables . 95
7.3.12 Authorization . 95
7.3.13 Declared temporary table restrictions . 95

Chapter 8. Savepoints. 97
8.1 What is a savepoint? . 98
8.2 Why to use savepoints . 98
8.3 Savepoint characteristics . 99
8.4 Remote connections . 101
8.5 Savepoint restrictions . 102

Chapter 9. Unique column identification . 103
9.1 Identity columns . 104

9.1.1 What is an identity column? . 104
9.1.2 When to use identity columns . 104
9.1.3 Identity column characteristics . 104
9.1.4 Creating a table with an identity column . 105
9.1.5 How to populate an identity column . 106
9.1.6 How to retrieve an identity column value . 109
9.1.7 Identity columns in a data sharing environment . 110
9.1.8 Trying to overcome the identity column deficiencies. 110
9.1.9 Application design considerations. 111
9.1.10 Identity column restrictions . 112

9.2 ROWID and direct row access . 112
9.2.1 What is a ROWID? . 113
9.2.2 ROWID implementation and maintenance . 113
9.2.3 How ROWIDs are generated . 115
9.2.4 Casting to a ROWID data type . 117
9.2.5 ROWIDs and partitioning keys . 118
9.2.6 ROWID and direct row access . 119
9.2.7 ROWID and direct row access restrictions . 121

9.3 Identity column and ROWID usage and comparison . 122

Part 3. More powerful SQL . 123

Chapter 10. SQL CASE expressions . 125
10.1 What is an SQL CASE expression? . 126
10.2 Why use an SQL CASE expression . 127
10.3 Alternative solutions . 131
10.4 Other uses of CASE expressions . 131
10.5 SQL CASE expression restrictions . 133

Chapter 11. Union everywhere. 135
11.1 What is a union everywhere? . 136
 Contents v

11.2 Why union everywhere . 136
11.3 Unions in nested table expressions . 136
11.4 Unions in subqueries. 137

11.4.1 Unions in basic predicates . 137
11.4.2 Unions in quantified predicates . 137
11.4.3 Unions in EXISTS predicates . 138
11.4.4 Unions in IN predicates. 139
11.4.5 Unions in selects of INSERT statements . 139
11.4.6 Unions in UPDATE . 140

11.5 Unions in views . 140
11.6 Explain and unions . 142
11.7 Technical design and new frontiers. 143

Chapter 12. Scrollable cursors. 149
12.1 What is a scrollable cursor? . 150
12.2 Why use a scrollable cursor . 150
12.3 Scrollable cursors characteristics . 151

12.3.1 Types of cursors . 151
12.3.2 Scrollable cursors in depth . 152

12.4 How to choose the right type of cursor . 153
12.5 Using a scrollable cursor . 154

12.5.1 Declaring a scrollable cursor. 155
12.5.2 Opening a scrollable cursor . 155
12.5.3 Fetching rows . 157
12.5.4 Moving the cursor . 164
12.5.5 Using functions in a scrollable cursor . 168

12.6 Update and delete holes . 170
12.6.1 Delete hole . 171
12.6.2 Update hole. 172

12.7 Maintaining updates . 174
12.8 Locking and scrollable cursors . 177
12.9 Stored procedures and scrollable cursors. 178
12.10 Scrollable cursors recommendations . 179

Chapter 13. More SQL enhancements . 181
13.1 The ON clause extensions . 182

13.1.1 Classifying predicates . 182
13.1.2 During join predicates . 182

13.2 Row expressions . 185
13.2.1 What is a row expression? . 185
13.2.2 Types of row expressions . 185
13.2.3 Row expression restrictions . 188

13.3 ORDER BY . 188
13.3.1 ORDER BY columns no longer have to be in select list (V5) 188
13.3.2 ORDER BY expression in SELECT (V7) . 189
13.3.3 ORDER BY sort avoidance (V7) . 190

13.4 INSERT . 191
13.4.1 Using the DEFAULT keyword in VALUES clause of an INSERT 191
13.4.2 Inserting using expressions . 192
13.4.3 Inserting with self-referencing SELECT . 192
13.4.4 Inserting with UNION or UNION ALL . 193

13.5 Subselect UPDATE/DELETE self-referencing . 193
13.6 Scalar subquery in the SET clause of an UPDATE . 195
vi DB2 for z/OS Application Programming Topics

13.6.1 Conditions for usage . 196
13.6.2 Self-referencing considerations. 197

13.7 FETCH FIRST n ROWS ONLY. 197
13.8 Limiting rows for SELECT INTO . 198
13.9 Host variables . 199

13.9.1 VALUES INTO statement . 199
13.9.2 Host variables must be preceded by a colon . 200

13.10 The IN predicate supports any expression . 201
13.11 Partitioning key update . 202

Part 4. Utilities versus applications . 203

Chapter 14. Utilities versus application programs. 205
14.1 Online LOAD RESUME. 206

14.1.1 What is online LOAD RESUME? . 206
14.1.2 Why use Online LOAD RESUME . 206
14.1.3 Online LOAD RESUME versus classic LOAD . 207
14.1.4 Online LOAD RESUME versus INSERT programs. 208
14.1.5 Online LOAD RESUME pitfalls . 209
14.1.6 Online LOAD RESUME restrictions . 209

14.2 REORG DISCARD . 210
14.2.1 What is REORG DISCARD?. 210
14.2.2 When to use a REORG DISCARD . 210
14.2.3 Implementation and maintenance . 210
14.2.4 REORG DISCARD restrictions . 211

14.3 REORG UNLOAD EXTERNAL and UNLOAD . 212
14.3.1 What are REORG UNLOAD EXTERNAL and UNLOAD? 212
14.3.2 REORG UNLOAD EXTERNAL. 212
14.3.3 UNLOAD . 213
14.3.4 UNLOAD implementation . 213
14.3.5 UNLOAD restrictions. 214
14.3.6 UNLOAD highlights . 214
14.3.7 UNLOAD pitfalls . 215
14.3.8 Comparing DSNTIAUL, REORG UNLOAD EXTERNAL and UNLOAD 215

14.4 Using SQL statements in the utility input stream . 217
14.4.1 EXEC SQL utility control statement . 217
14.4.2 Possible usage of the EXEC SQL utility statement. 218

Part 5. Appendixes . 221

Appendix A. DDL of the DB2 objects used in the examples . 223
E/R-diagram of the tables used by the examples . 224
JCL for the SC246300 schema definition. 224
Creation of a database, table spaces, UDTs and UDFs . 225
Creation of tables used in the examples . 228
Creation of sample triggers . 236
Populated tables used in the examples . 238
DDL to clean up the environment. 240

Appendix B. Sample programs . 243
Returning SQLSTATE from a stored procedure to a trigger . 244
Passing a transition table from a trigger to a SP . 246

Appendix C. Additional material . 251
 Contents vii

Locating the Web material . 251
Using the Web material . 251

How to use the Web material . 251

Related publications . 253
IBM Redbooks . 253

Other resources . 253
Referenced Web sites . 254
How to get IBM Redbooks . 254

IBM Redbooks collections. 255

Special notices . 257

Abbreviations and acronyms . 259

Index . 261
viii DB2 for z/OS Application Programming Topics

Figures

3-1 Allowable trigger parameter combinations. 22
3-2 Allowed SQL statement matrix. 23
3-3 Trigger cascading . 29
3-4 SQL processing order and triggers . 36
4-1 Comparison operators allowed on UDTs created WITH COMPARISONS 49
8-1 Travel reservation savepoint sample itinerary . 98
9-1 Identity column value assignment in a data sharing environment 110
12-1 Fetch syntax changes to support scrollable cursors . 158
12-2 How to scroll within the result table . 167
12-3 SQLCODEs and cursor position . 168
12-4 How DB2 validates a positioned UPDATE. 176
12-5 How DB2 validates a positioned DELETE . 177
12-6 Stored procedures and scrollable cursors . 179
13-1 Improved sort avoidance for ORDER BY clause . 190
14-1 Online LOAD RESUME . 208
14-2 Generated LOAD statements. 211
14-3 Sample UNLOAD utility statement. 213
A-1 Relations of tables used in the examples . 224
© Copyright IBM Corp. 2001 ix

x DB2 for z/OS Application Programming Topics

Tables

4-1 Catalog changes to support UDTs. 56
5-1 Allowable combinations of function types . 59
7-1 Distinctions between DB2 base tables and temporary tables 80
10-1 Functions equivalent to CASE expressions . 131
11-1 PLAN_TABLE changes for UNION everywhere . 142
12-1 Cursor type comparison. 154
12-2 Sensitivity of FETCH to changes made to the base table . 161
13-1 How the FETCH FIRST clause and the OPTIMIZE FOR clause interact 198
14-1 Comparing different means to unload data . 216
© Copyright IBM Corp. 2001 xi

xii DB2 for z/OS Application Programming Topics

Examples

2-1 Overriding the implicit search path. 9
2-2 Schema authorization . 10
3-1 Trigger to maintain summary data . 14
3-2 Trigger to maintain summary data . 16
3-3 Trigger to initiate an external action. 16
3-4 BEFORE trigger . 17
3-5 Multiple trigger actions. 19
3-6 Transition variables . 20
3-7 Transition table . 21
3-8 Single trigger action . 21
3-9 Invoking a UDF within a trigger . 24
3-10 Raising error conditions . 24
3-11 Signaling SQLSTATE . 25
3-12 Information returned after a SIGNAL SQLSTATE . 25
3-13 Sample information returned when trigger receives an SQLCODE. 26
3-14 Passing SQLSTATE back to a trigger . 27
3-15 Cascading error message . 29
3-16 Using table locators . 30
3-17 Sample COBOL program using a SP and table locator. 31
3-18 Rebinding a trigger package . 33
3-19 Information retuned when trigger package is invalid . 34
3-20 Comment on trigger . 34
3-21 Check constraint is better than a trigger . 39
3-22 Trigger is better than a check constraint . 40
3-23 Alternative trigger. 40
3-24 Identify all triggers for a table. 41
3-25 Identify all triggers for a database . 41
4-1 Sample DDL to create UDTs . 44
4-2 Automatically generated CAST functions . 45
4-3 Create table using several UDTs . 46
4-4 GRANT USAGE/ EXECUTE ON DISTINCT TYPE . 47
4-5 DROP and COMMENT ON for UDTs . 47
4-6 Strong typing and invalid comparisons . 48
4-7 Two casting methods . 48
4-8 Using sourced functions. 50
4-9 Defining sourced column sourced functions on UDTs . 50
4-10 Strong typing and invalid comparisons . 51
4-11 Comparing pesetas and euros. 52
4-12 Another way to compare pesetas and euros . 52
4-13 Automatic conversion of euros. 53
4-14 Using LIKE on a UDT. 54
4-15 Loading a table with a UDT . 54
5-1 Example of an SQL scalar function . 60
5-2 User-defined external scalar function . 61
5-3 Sourced column function . 61
5-4 User-defined table function . 62
5-5 External UDF to convert from SMALLINT to VARCHAR . 66
5-6 Creating a sourced UDF . 66
5-7 Using CAST instead of a UDF . 67
5-8 Built-in function instead of a UDF . 67
 Examples xiii

5-9 CHARNSI source code . 67
7-1 Created temporary table DDL . 82
7-2 Created temporary table in SYSIBM.SYSTABLES . 82
7-3 Use of LIKE clause with created temporary tables . 83
7-4 View on a created temporary table . 83
7-5 Dropping a created temporary table . 84
7-6 Using a created temporary table in a program. 84
7-7 Sample DDL for a declared temporary table . 88
7-8 Create a database and table spaces for declared temporary tables 89
7-9 Explicitly specify columns of declared temporary table . 91
7-10 Implicit define declared temporary table and identity column 91
7-11 Define declared temporary table from a view . 91
7-12 Dropping a declared temporary table. 91
7-13 Declared temporary tables in a program . 92
7-14 Three-part name of declared temporary table . 93
8-1 Setting up a savepoint . 100
9-1 IDENTITY column for member number . 105
9-2 Copying identity column attributes with the LIKE clause . 106
9-3 Insert with select from another table . 108
9-4 Retrieving an identity column value . 109
9-5 ROWID column . 113
9-6 SELECTing based on ROWIDs . 114
9-7 Copying data to a table with GENERATED ALWAYS ROWID via subselect 115
9-8 Copying data to a table with GENERATED BY DEFAULT ROWID via subselect. . 116
9-9 DCLGEN output for a ROWID column. 117
9-10 Coding a ROWID host variable in Cobol . 117
9-11 Why not to use a ROWID column as a partitioning key . 118
9-12 ROWID direct row access . 119
9-13 Inappropriate coding for direct row access. 121
10-1 SELECT with CASE expression and simple WHEN clause. 126
10-2 Update with CASE expression and searched WHEN clause. 126
10-3 Three updates vs. one update with a CASE expression . 127
10-4 One update with the CASE expression and only one pass of the data 128
10-5 Three updates vs. one update with a CASE expression . 128
10-6 Same update implemented with CASE expression and only one pass of the data . 128
10-7 Same update with simplified logic . 129
10-8 Avoiding division by zero . 129
10-9 Avoid division by zero, second example . 129
10-10 Replacing several UNION ALL clauses with one CASE expression 130
10-11 Raise an error in CASE statement. 131
10-12 Pivoting tables . 132
10-13 Use CASE expression for grouping . 132
11-1 Unions in nested table expressions . 136
11-2 Using UNION in basic predicates . 137
11-3 Using UNION with quantified predicates . 137
11-4 Using UNION in the EXISTS predicate . 138
11-5 Using UNION in an IN predicate . 139
11-6 Using UNION in an INSERT statement . 139
11-7 Using UNION in an UPDATE statement . 140
11-8 Create view with UNION ALL. 141
11-9 Use view containing UNION ALL . 142
11-10 PLAN_TABLE output . 142
11-11 DDL to create split tables. 144
11-12 DDL to create UNION in view . 146
11-13 Sample SELECT from view to mask the underlying tables 147
xiv DB2 for z/OS Application Programming Topics

11-14 Views to use for UPDATE and DELETE . 147
11-15 WITH CHECK OTPION preventing INSERT . 147
12-1 Sample DECLARE for scrollable cursors. 155
12-2 Opening a scrollable cursor . 156
12-3 Example of a FETCH SENSITIVE request which creates an update hole 163
12-4 Scrolling through the last five rows of a table . 165
12-5 Several FETCH SENSITIVE statements . 166
12-6 Using functions in a scrollable cursor . 168
12-7 Using functions in an insensitive scrollable cursor. 169
12-8 Aggregate function in a SENSITIVE cursor . 169
12-9 Aggregate function in an INSENSITIVE cursor . 170
12-10 Scalar functions in a cursor . 170
12-11 Expression in a sensitive scrollable cursor . 170
12-12 Delete holes . 172
12-13 Update holes . 173
13-1 Sample tables and rows. 182
13-2 Inner join and ON clause with AND . 183
13-3 LEFT OUTER JOIN with ANDed predicate on WORKDEPT field in the ON clause 183
13-4 LEFT OUTER JOIN with ON clause and WHERE clause . 184
13-5 Inner join and ON clause with OR in the WORKDEPT column 184
13-6 Row expressions with equal operation . 185
13-7 Row expressions with = ANY operation. 186
13-8 Row expression with <> ALL operator . 186
13-9 IN row expression . 187
13-10 NOT IN row expression . 187
13-11 Row expression restrictions. 188
13-12 ORDER BY column not in the select list . 188
13-13 ORDER BY expression in SELECT . 189
13-14 Data showing improved sort avoidance for the ORDER BY clause. 190
13-15 Inserting with the DEFAULT keyword . 191
13-16 Inserting using an expression . 192
13-17 Inserting with a self-referencing SELECT . 192
13-18 UPDATE with a self referencing non-correlated subquery 193
13-19 UPDATE with a self referencing non-correlated subquery 193
13-20 DELETE with self referencing non-correlated subquery . 194
13-21 DELETE with self referencing non-correlated subquery . 194
13-22 Invalid positioned update . 194
13-23 Non-correlated subquery in the SET clause of an UPDATE 195
13-24 Correlated subquery in the SET clause of an UPDATE. 195
13-25 Correlated subquery in the SET clause of an UPDATE with a column function . . . 195
13-26 Correlated subquery in the SET clause of an UPDATE using the same table 196
13-27 Row expression in the SET clause of an UPDATE . 196
13-28 FETCH FIRST n ROWS ONLY . 197
13-29 Limiting rows for SELECT INTO . 199
13-30 Use of VALUES INTO . 199
13-31 Some uses of the SET assignment statement. 199
13-32 IN predicate supports any expression . 201
14-1 REORG DISCARD utility statement. 211
14-2 REORG UNLOAD EXTERNAL . 212
14-3 List of dynamic SQL statements . 217
14-4 Create a new table with the same layout as SYSIBM.SYSTABLES 217
A-1 Schema creation . 224
A-2 DDL for the stogroup, database, table space creation. 226
A-3 DDL for UDT and UDF creation . 227
A-4 DDL for the table creation . 228
 Examples xv

A-5 DDL for triggers . 236
A-6 Populated tables used in the examples . 238
A-7 DDL to clean up the examples environment . 240
B-1 Returning SQLSTATE to a trigger from a SP . 244
B-2 Passing a transition table from a trigger to a SP . 246
xvi DB2 for z/OS Application Programming Topics

Preface

This IBM Redbook describes the major enhancements that affect application programming
when accessing DB2 data on a S/390 or z/Series platform, including the object-oriented
extensions such as triggers, user-defined functions and user-defined distinct types, the usage
of temporary tables, savepoints and the numerous extensions to the SQL language to help
you build powerful, reliable and scalable applications, whether it be in a traditional
environment or on an e-business platform.

IBM DATABASE 2 Universal Database Server for z/OS and OS/390 Version 7 (or just DB2 V7
throughout this book) is currently at its eleventh release. Over the last couple of versions a
large number of enhancements were added to the product. Many of these enhancements
affect application programming and the way you access your DB2 data.

This book will help you to understand how these programming enhancements work and
provide examples of how to use them. It provides considerations and recommendations for
implementing these enhancements and for evaluating their applicability in your DB2
environments.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, San Jose Center.

Bart Steegmans is a DB2 Product Support Specialist in IBM Belgium who has recently
joined the ITSO. He has over 12 years of experience in DB2. Before joining IBM in 1997, Bart
worked as a DB2 system administrator at a banking and insurance group. His areas of
expertise include DB2 performance, database administration, and backup and recovery.

Rafael Garcia has been in the IT business for 19 years and has held various positions. He
was a COBOL and CICS developer, an application development manager and a DB2
applications DBA for one of the top 10 banks in the US. For the last five years he has been a
Field DB2 Technical Specialist working for the IBM Silicon Valley Laboratory supporting DB2
for OS/390 customers across various industries, including migrations to data sharing. He has
an associate’s degree in Arts and an associate’s degree in Science in Business Data
Processing from Miami-Dade Community College.

Luis Garmendia is a DB2 Instructor for IBM Learning Services in Spain and has more than
three years of experience teaching DB2 application and system performance, database and
system administration, recovery, and data sharing. He has a doctorate in Mathematics (fuzzy
logic and inference) and he also teaches Computer Sciences in the Technical University of
Madrid.

Anne Lesell is a DB2 and Database Design Instructor and Curriculum Manager for IBM in
Finland. Anne has been working with DB2 since 1987. Before joining IBM in 1998, she
worked as a Database Administrator in a large Finnish bank where she specialized in
database design and DB2 application tuning.
© Copyright IBM Corp. 2001 xvii

Thanks to the following people for their contributions to this project:

Emma Jacobs
Yvonne Lyon
Gabrielle Velez
International Technical Support Organization, San Jose Center

Sherry Guo
William Kyu
Roger Miller
San Phoenix
Kalpana Shyam
Yunfei Xie
Koko Yamaguchi
IBM Silicon Valley Laboratory

Robert Begg
IBM Toronto, Canada

Michael Parbs
Paul Tainsh
IBM Australia

Rich Conway
IBM International Technical Support Organization, Poughkeepsie Center

Peter Backlund
Martin Hubel
Gabrielle Wiorkowski
IBM Database Gold Consultants

Special notice
This publication is intended to help managers and professionals understand and evaluate
some of the application related enhancements that were introduced over the last couple of
years into the IBM DATABASE 2 Universal Database Server for z/OS and OS/390 products.
The information in this publication is not intended as the specification of any programming
interfaces that are provided by the IBM DATABASE 2 Universal Database Server for z/OS and
OS/390. See the PUBLICATIONS section of the IBM Programming Announcement for the
IBM DATABASE 2 Universal Database Server for z/OS and OS/390 for more information
about what publications are considered to be product documentation.
xviii DB2 for z/OS Application Programming Topics

IBM trademarks
The following terms are trademarks of the International Business Machines Corporation in the
United States and/or other countries:

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your comments about this
or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.

e (logo)®
IBM ®
AIX®
CICS®
DB2®
DB2 Connect™
DB2 Universal Database™
DFS™
DRDA®
ECKD™
Enterprise Storage Server™
IMS™
MORE™
MVS™
MVS/ESA™

Redbooks™
Redbooks Logo
Notes®
OS/390®
Parallel Sysplex®
Perform™
QMF™
RACF®
RETAIN®
S/390®
SP™
System/390®
TME®
WebSphere®
z/OS™
 Preface xix

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xx DB2 for z/OS Application Programming Topics

Chapter 1. Introduction

New DB2 versions and releases have always been a balanced mixture between system
related enhancements and improvements that benefit database administrators and the
application programming community.

When we first started to lay out the content of this book we wanted to include all the
application programming related enhancements since DB2 Version 4, where a lot of major
programming related enhancements like OUTER JOIN and nested table expressions to name
only a few, became available. Even though these are very important enhancements and very
relevant to application programming and design, we soon had to give up the idea and decided
to concentrate mainly on the enhancements since DB2 Version 6, and even that turned out to
be over ambitious. Therefore, if a certain topic is not included in this redbook, it is most likely
because it has already been covered in some of the other available redbooks. Good
references are:

� DB2 UDB Server for OS/390 and z/OS Version 7 Presentation Guide, SG24-6121
� DB2 UDB Server for OS/390 Version 6 Technical Update, SG24-6108
� DB2 Server for OS/390 Version 5 Recent Enhancements - Reference Guide, SG24-5421

There is also another category of enhancements, that, although application related, did not
make it into this redbook. Stored procedures and Java support are good examples. They have
a big impact on the way you develop applications and are, or therefore will be, treated in
separate redbooks like:

� DB2 for OS/390 and z/OS Powering the World’s e-business Solutions, SG24-6257
� DB2 Java Stored Procedures Learning by Example, SG24-5945
� Cross-Platform DB2 Stored Procedures: Building and Debugging, SG24-5485

For a complete list of recent DB2 for OS/390 related redbooks, see “Related publications” on
page 253, or visit the Redbooks Web site at: ibm.com/redbooks.

This redbook is based on DB2 for z/OS Version 7 (PUT0106)1 and all the examples in this
book are written using a Version 7 system. However, since a large customer basis is still
running DB2 V6, we mention when a feature was introduced in V7. If the version is not
specifically mentioned, it is part of Version 6. (Some features that were introduced in Version
5 are also included in the book.)

1

1 PUT0106 indicates the maintenance level.
© Copyright IBM Corp. 2001 1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

DB2 Version 6 was a very large release and had a vast number of enhancements that have
an impact on application programming and application design. With V6, DB2 for z/OS
stepped into the world of object-oriented databases, introducing features like triggers,
user-defined distinct types and user-defined functions. With these feature you can turn your
database management system from a passive database into an active database.

Triggers provide automatic execution of a set of SQL statements (verifying input, executing
additional SQL statements, invoking external programs written in any popular language)
whenever a specified event occurs. This opens the door for new possibilities in application
and database design.

User-defined distinct types can help you enforce strong typing through the database
management system. The distinct type reflects the use of the data that is required and/or
allowed. Strong typing is especially valuable for ad-hoc access to data where users don’t
always understand the full semantics of the data.

The number of built-in functions increased considerably in last versions of DB2. There are
now over 90 different functions that perform a wide range of string, date, time, and timestamp
manipulations, data type conversions, and arithmetic calculations.

In some cases even this large number of built-in functions does not fit all needs. Therefore,
DB2 allows you to write your own user-defined functions that can call an external program.
This extends the functionality of SQL to whatever you can code in an application program;
essentially, there are no limits. User-defined functions also act as the methods for
user-defined data types by providing consistent behavior and encapsulating the types.

Another set of enhancements is more geared toward giving you more flexibility when
designing databases and applications.

When you need a table only for the life of an application process, you don’t have to create a
permanent table to store this information but you can use a temporary table instead. There
are two kinds of temporary tables: created temporary tables, also know as global
temporary tables and declared temporary tables. Their implementation is different from
normal tables. They have reduced or no logging and also virtually no locking. The latter is not
required since the data is not shared between applications. The data that is stored in the
temporary table is only visible to the application process that created it.

Another major enhancement that can make you change the way you have been designing
applications in the past is the introduction of savepoints. Savepoints enable you to code
contingency or what-if logic and can be useful for programs with sophisticated error recovery,
or to undo updates made by a stored procedure or subroutine when an error is detected, and
to ensure that only the work done in a stored procedure or subroutine is rolled back.

Another area which has always caused a lot of debate is how and when to assign a unique
identification to a relational object. Often a natural key is available and should be used to
identify the relation. However, this is not always the case and this is where a lot of discussions
start. Should we use an ever-ascending or descending key? Should it be random instead?
Should we put that ever-increasing number in a table and if so, how do we access it and when
do we update the number? These are all questions that keep DBA’s from loosing their jobs.

Recently DB2 has introduced two new concepts that can guarantee unique column values
without having to create an index. In addition, you can eliminate the application coding that
was implemented to assign unique column values for those columns.

The first concept is the introduction of identity columns. Identity columns offer us a new
possibility to guarantee uniqueness of a column and enables us to automatically generate the
value inside the database management system.
2 DB2 for z/OS Application Programming Topics

The second concept is the usage of a new data type called ROWID. There three aspects to
ROWIDs. Its first and primary function is to access the LOB data from LOB columns (like
audio and video) stored in the auxiliary table. (This usage of ROWID is beyond the scope of
this redbook). The second function is the fact that a ROWID can be a unique random number
generated by the DBMS. This looks like a very appealing option to solve many design issues.
The third aspect of using ROWID columns is that they can be used for a special type of
access path to the data, called direct row access.

Another major enhancement is scrollable cursors. The ability to be able to scroll backwards
as well as forwards has been a requirement of many screen-based applications. DB2 V7
introduces facilities not only to allow scrolling forwards and backwards, but also the ability to
jump around and directly retrieve a row that is located at any position within the cursor result
table. DB2 also can, if desired, maintain the relationship between the rows in the result set
and the data in the base table. That is, the scrollable cursor function allows the changes
made outside the opened cursor, to be reflected in the result set returned by the cursor.

DB2 utilities are normally not directly the terrain of the application programmer. However, new
DB2 utilities have been introduced and existing utilities have been enhanced in such a way
that they can take over some of the work that was traditionally done in application
programs. Some ideas where these enhancements can be used and how they compare to
implementing the same processes using application code will be provided, such as using
online LOAD RESUME versus coding your own program to add rows to a table, using
REORG DISCARD versus deleting rows via a program followed by a REORG to reclaim
unused space and restore the cluster ratio, and comparing REORG UNLOAD EXTERNAL,
the new UNLOAD utility to a home grown program or the DSNTIAUL sample program.

And last but not least, we will discuss and provide examples for a large list of enhancements
to the SQL language that will boost programmer productivity, such as CASE expressions,
that allow you to code IF-THEN logic inside an SQL statement, UNION everywhere, that
enables you to code a full select, wherever you were allowed to code a subselect before. This
also included the long-awaited union-in-view feature and will finally allow you to code a
UNION clause inside a CREATE VIEW statement. With this enhancement, DB2 is delivering
one of the oldest outstanding requirements which should make a lot of people want to migrate
to Version 7 sooner rather than later.

With such a vast range of programming capabilities, that not only provide rich functionality but
also good performance and great scalability, DB2 for z/OS Version 7 is certainly capable of
competing with any other DBMS in the marketplace.

We hope you enjoy reading this Redbook as much as we did writing it.
Chapter 1. Introduction 3

4 DB2 for z/OS Application Programming Topics

Part 1 Object-oriented
enhancements

In this part we describe and discuss various object-oriented enhancements that can
transform DB2 from a passive database manager into an active one by allowing you to move
application logic into the database. These enhancements allow you to move application logic
that may reside in various places, platforms, and environments into one place, the database
itself.

These are the enhancements we discuss:

� Schemas

� Triggers

� User-defined distinct types

� User defined functions

� Built-in functions

Part 1
© Copyright IBM Corp. 2001 5

6 DB2 for z/OS Application Programming Topics

Chapter 2. Schemas

The concept of schemas has been around for quite a some time.

In this section, we discuss the schema concept, since it is now starting to be widely used in a
DB2 for z/OS environment and is required for some features implemented in DB2 V6, like
triggers, user-defined functions, user-defined distinct types and stored procedures.

2

© Copyright IBM Corp. 2001 7

2.1 What is a schema?
When tables, views, indexes, and aliases are created, they are given a qualified name. When
the qualified name is a two-part name; the second part is the name of the object and the first
part (an authorization id) is a qualifier that distinguishes the object from other objects that
have the same name.

In Version 6, to be consistent with the ANSI/ISO SQL92 standard, the concept of qualified
names is extended to refer to the qualifier as a schema name. The qualifier of the new object
types introduced in Version 6 (user-defined distinct types, user-defined functions and triggers)
as well as stored procedures, is a schema name.

A schema name has a maximum length of eight bytes. All objects qualified by the same
schema name can be thought of as a group of related objects. The schema name SYSIBM is
used for built-in data types and functions, the schema name SYSPROC is used for stored
procedures migrated from Version 5 and can be used for procedures created in V6. SYSFUN
is the schema name used for additional functions shipped with other members of the DB2
family. Although DB2 for z/OS does not use the SYSFUN schema, it can be useful to have
SYSFUN in the CURRENT PATH special register when doing distributed processing and
another DB2 family member is the server.

2.2 Schema characteristics
This section covers the following topics:

� Authorizations on schemas
� Schema path and special registers
� How a schema name is determined

2.2.1 Authorizations on schemas
The new GRANT (schema privileges) statement is used to grant privileges on schemas. The
schema privileges are:

� CREATEIN

The privilege to create user-defined distinct types, user-defined functions, triggers, and
stored procedures in the designated schemas.

� ALTERIN

The privilege to alter user-defined functions and stored procedures, or specify a comment
for user-defined distinct types, user-defined functions, triggers, and stored procedures in
the designated schemas.

� DROPIN

The privilege to drop user-defined distinct types, user-defined functions, triggers, and
stored procedures in the designated schemas.

The specified schemas do not need to exist when the grant is executed.

Restriction: CREATE statements cannot specify a schema name that begins with 'SYS'
(unless it is 'SYSADM' or 'SYSPROC' for stored procedures).
8 DB2 for z/OS Application Programming Topics

2.2.2 Schema path and special register
The new PATH bind option is applicable to BIND PLAN, BIND PACKAGE, REBIND PLAN and
REBIND PACKAGE. The ordered list of schemas specified in the PATH is used to resolve
unqualified references to user-defined distinct types (UDTs) and user-defined functions
(UDFs) in static SQL statements. It is also used to resolve unqualified stored procedure
names when the SQL CALL statement specifies a literal for the procedure name.

The default for the PATH bind option is “SYSIBM”, “SYSFUN”, “SYSPROC”, QUALIFIER
(plan or package). If the PATH option is not specified on a REBIND, the previous value is
retained.

The new SET CURRENT PATH statement is used to change the list of schemas held in the
CURRENT PATH special register. The CURRENT PATH special register is used to resolve
unqualified references to user-defined distinct types and user-defined functions in dynamic
SQL statements. It is also used to resolve unqualified stored procedure names when the
SQL CALL statement specifies a host variable for the procedure name.

The CURRENT PATH special register is initialized at run time as follows:

� If the PATH bind option was specified at bind time, the CURRENT PATH special register is
initialized to the path specified at bind time.

� If the PATH bind option was not specified at bind time, then the default path is used. The
CURRENT PATH special register is initialized to “SYSIBM”, “SYSFUN”, “SYSPROC”,
CURRENT SQLID.

� The initialization of the CURRENT PATH special register in a nested stored procedure or
UDF also depends upon whether the SET CURRENT PATH statement has been issued
previously.

The schemas SYSIBM, SYSFUN and SYSPROC do not need to be included in the PATH
bind option or the CURRENT PATH special register. If one is not included in the path, it is
implicitly assumed as the first schema. If more than one is not included in the path, SYSIBM
is put first in the path followed by SYSFUN and then SYSPROC. In Example 2-1, we see what
happens when the CURRENT PATH special register is set to some values.

Example 2-1 Overriding the implicit search path

SET CURRENT PATH = "SCHEMA1", "SCHEMA2" ;
sets the path as:
SYSIBM, SYSFUN, SYSPROC, SCHEMA1, SCHEMA2

SET CURRENT PATH = "SCHEMA1", "SCHEMA2", "SYSIBM" ;
sets the path as:
SYSFUN, SYSPROC, SCHEMA1, SCHEMA2, SYSIBM

SET CURRENT PATH = "SCHEMA1", "SYSFUN", "SCHEMA2" ;
sets the path as:
SYSIBM, SYSPROC, SCHEMA1, SYSFUN, SCHEMA2

Note: An authorization ID 'JOHN' has the implicit CREATEIN, ALTERIN, and DROPIN
privileges for the schema named 'JOHN'.
Chapter 2. Schemas 9

2.2.3 How is a schema name determined?
The schema name can be specified explicitly when the object is referenced in a CREATE,
ALTER, DROP or COMMENT ON statement.

If the object is unqualified and the statement is embedded in a program, the schema name of
the object is the authorization ID in the QUALIFIER bind option when the plan or package was
created or last rebound. If QUALIFIER was not used, the schema name of the object is the
owner of the plan or package. If the object is unqualified and the statement is dynamically
prepared, the SQL authorization ID contained in the CURRENT SQLID special register is the
schema name of the object.

2.3 The schema processor
A lot of installations create the objects through an SQL processor program like SPUFI or
DSNTEP2.

Another way to create objects is by means of a schema processor (program DSNHSP) and
the use of the CREATE SCHEMA statement. This statement cannot be used by ‘normal’ SQL
processor programs like SPUFI, but is only understood by the schema processor. The
schema processor allows you to create a set of related objects that belong to a single schema
(corresponding with an authorization id) in one CREATE SCHEMA operation.

The ability to process schema definitions is provided for conformance to ISO/ANSI
standards.The result of processing a schema definition is identical to the result of executing
the SQL statements without a schema definition.

Using a schema processor has some advantages over using other means of running DDL
statements. Outside of the schema processor, the order of statements is important. They
must be arranged so that all referenced objects have been previously created. For example,
in order to create an index on a table, the table must first be created. This restriction is
relaxed when the statements are processed by the schema processor, as long as the object
table is created within the same CREATE SCHEMA. The requirement that all referenced
objects have been previously created is not checked by the schema processor until all of the
statements have been processed. So, with the schema processor, it is sufficient that the
create table statement for the table is present anywhere in the input file.

The schema processor sets the current SQLID to the value of the schema authorization ID
(which is also the schema name) before executing any of the statements in the schema. In
Example 2-2 we create a schema “SC246300”, the schema authorization is the same as the
schema name. All the objects created within this schema will have a schema name and
owner of “SC246300”. As you can see the statements after the CREATE SCHEMA can be in
any order.

Example 2-2 Schema authorization

CREATE SCHEMA AUTHORIZATION SC246300

CREATE INDEX
CREATE DISTINCT TYPE
CREATE DATABASE ...
CREATE TABLE

Tip: The order in which statements appear is not important when using the schema
processor.
10 DB2 for z/OS Application Programming Topics

CREATE TABLESPACE
GRANT
CREATE TABLE
CREATE INDEX
CREATE DISTINCT TYPE
CREATE FUNCTION
CREATE UNIQUE INDEX
CREATE INDEX
CREATE TRIGGER
GRANT

All statements passed to the schema processor are considered one unit of work. If one or
more statements fail with a negative SQLCODE, all other statements continue to be
processed. However, when the end of the input is reached, all work is rolled back. You can
only process one schema per job step execution.

An example of a schema processor job can be found in DDL of the DB2 objects used in the
examples, Example A-1 on page 224.

Important: Databases and table spaces can and should be defined through the schema
processor, however they are not part of a schema (not schema objects) since database
names must be unique within the DB2 system and table space names must be unique
within a database.

Note: The CREATE SCHEMA statement cannot be embedded in a host program or
executed interactively. It can only be executed in a batch job using the schema processor
program DSNHSP.
Chapter 2. Schemas 11

12 DB2 for z/OS Application Programming Topics

Chapter 3. Triggers

Triggers provide automatic execution of a set of SQL statements whenever a specified event
occurs. This opens the door for new possibilities in application design. In this section we
discuss triggers, and how and when to use them.

3

© Copyright IBM Corp. 2001 13

3.1 Trigger definition
A trigger is a schema object that defines an action or a set of actions (SQL statements) that
are to be executed when a specific SQL data change operation occurs on a specified table.

These SQL statements can validate and edit database changes, read and modify the
database, and invoke functions that perform operations both inside and outside the database.

In Example 3-1, we show you a simple trigger to update two summary tables when a new
order comes in. The number of orders is increased by one for each region and state when a
new order is processed.

Example 3-1 Trigger to maintain summary data

CREATE TRIGGER SC246300.TGSUMORD
AFTER INSERT ON SC246300.TBORDER
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE SC246300.TBREGION
SET NUM_ORDERS = NUM_ORDERS + 1;

UPDATE SC246300.TBSTATE
SET NUM_ORDERS = NUM_ORDERS + 1;

END

Triggers provide several improvements to the development and execution of DB2
applications and can bring a lot of benefits to your organization:

� Faster application development. Because triggers are stored in the database, the actions
performed by triggers do not have to be coded in each application.

� Code reusability. A trigger can be defined once and then automatically used by every
application program that changes data in the table on which the trigger is defined.

� Enforce data integrity rules system wide. No matter what application performs inserts,
updates, or deletes on a table, you can be certain that the associated business rules that
are imbedded in the trigger are carried out. This is especially important with highly
distributed applications, ad-hoc queries, and dynamic SQL.

� Easier maintenance. If a business policy changes, only a change to the corresponding
triggers is needed, instead of changes to multiple application programs.

� Having trigger support in DB2 makes it easier for customers to migrate from other
relational database management systems that also have triggers. Triggers can also be
used during migration to make some updates to the old system transparent to the
applications, when not all programs have yet converted to the new system.

3.2 Why use a trigger
Triggers enable you to encapsulate business logic into the database, and this has many
advantages.

Some of the common uses for triggers are:

� Enforce transitional business rules

– Validate input data (constraints)

� Generate or edit column values for inserted and updated rows
14 DB2 for z/OS Application Programming Topics

– Set default values based on business logic

� Cross-reference other tables (enhance RI)

� Maintain summary data

� Initiate external actions via User-Defined Functions (UDFs) and Stored Procedures (SPs)
to:

– Propagate changes to an external file
– Send e-mail, fax, or pager notifications
– Maintain an audit trail
– Schedule a batch job

Enforcement of transitional business rules: Triggers can enforce data integrity rules with
far more capability than is possible with declarative (static) constraints. Triggers are most
useful for defining and enforcing transitional business rules. These are rules that involve
different states of the data. In Example 3-11 on page 25, we show a trigger constraint that
prevents a salary column from being increased by more than twenty percent. To enforce this
rule, the value of the salary before and after the increase must be compared. This is
something that cannot be done with a check constraint.

Generation and editing of column values: Triggers can automatically generate values for
newly inserted rows, that is, you can implement user-defined default values, possibly based
on other values in the row or values in other tables. Similarly, column values provided in an
insert or update operation can be modified/corrected before the operation occurs.

An example of this can be found in Example 4-13 on page 53. This trigger generates a value
for the EUROFEE column based on a conversion formula that calculates an amount in euro
based on an amount in pesetas (PESETAFEE).

Cross-reference other tables: You can enhance the existing referential integrity rules that
are supported by DB2. For example, RI allows a foreign key to reference a primary key in
another table. With the new union everywhere feature you can change your design to split a
logical table into multiple physical tables (as an alternative to partitioning). Now it has become
impossible to use DB2 RI to implement a foreign key relationship, because you cannot refer
multiple tables to check whether it has an existing primary key value. Here triggers can come
to the rescue. You can implement a before trigger to check the different tables to make sure
the value you are inserting has a parent row.

You can also implement so called ‘negative RI’ this way. Instead of checking whether a row
exists in a parent table (normal RI), you can use a trigger to make sure a row or column value
does not exist in another table. For example, when you want to add a new customer to the
customer table (TBCUSTOMER), you might want to check (using a trigger) whether that
customer does not already exists in the customer archive database (TBCUSTOMER_ARCH,
that contains customers that have not placed any orders the past year). If it does, you restrict
the insert of the new customer and make the application copy the existing customer
information from the customer archive database.

Note: Make sure you have the PTF for APAR PQ53030 (still open at the time of writing)
applied on your system when trying this.
Chapter 3. Triggers 15

Maintenance of summary data: Triggers can automatically update summary data in one or
more tables when a change occurs to another table. For example, triggers can ensure that
every time a new order is added, updates are made to rows in the TBREGION and TBSTATE
table to reflect the change in the number of orders per region and state. Example 3-2 shows
part of the solution to implement this. You also need to define an UPDATE and DELETE
trigger to cover all cases if you want the number of outstanding orders to be correctly
reflected at the region and state level.

Example 3-2 Trigger to maintain summary data

CREATE TRIGGER SC246300.TGSUMORD
AFTER INSERT ON SC246300.TBORDER
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE SC246300.TBREGION
SET NUM_ORDERS = NUM_ORDERS + 1;

UPDATE SC246300.TBSTATE
SET NUM_ORDERS = NUM_ORDERS + 1;

END

Initiate external actions: In Example 3-3, we demonstrate how a user-defined function can
be used within a trigger to initiate an external function. Since a user-defined function can be
written in any of the popular programming languages, using a user-defined function in a
trigger gives access to a vast number of possible actions you can code. A common uses may
be to communicate with an e-mail package and send out an e-mail to the employee to let him
know that a change was made to his payroll data.

Example 3-3 Trigger to initiate an external action

CREATE TRIGGER PAYROLL1
AFTER UPDATE ON PAYROLL
FOR EACH STATEMENT MODE DB2SQL

VALUES (PAYROLL_LOG (USER, 'UPDATE', CURRENT TIME, CURRENT DATE))

3.3 Trigger characteristics
These are some basic characteristics of triggers:

� The trigger name is qualified by a schema name and is limited to 8 characters.

� The triggering table is the table on which the trigger is defined.

� The triggering operation is the SQL data change operation (INSERT, UPDATE or
DELETE) for which the trigger is activated. Triggers are often referred to as insert, update,
or delete triggers. These are the possible triggering operations:

INSERT An insert operation can only be caused by an INSERT statement. Triggers
are not activated when data is loaded using utilities that do not use INSERT,
such as the LOAD utility (except online LOAD RESUME in V7).

UPDATE An update operation can be caused by an UPDATE statement or as a result
of enforcing a referential constraint rule of ON DELETE SET NULL. Please
note that an UPDATE statement does not actually have to change data to
cause a trigger to be activated.
16 DB2 for z/OS Application Programming Topics

DELETE A delete operation can be caused by a DELETE statement or as a result of
enforcing a referential constraint rule of ON DELETE CASCADE.

Triggers cannot be activated by SELECT statements. The table named as the triggering
table cannot be a DB2 catalog table, view, alias, synonym, or a three-part table name.

A triggering operation can be the result of changes that occur due to referential constraint
enforcement. For example, given two tables TBDEPARTMENT and TBEMPLOYEE, if
deleting from TBDEPARTMENT causes propagated deletes (ON DELETE CASCADE) or
updates (ON DELETE SET NULL) to TBEMPLOYEE because of a referential constraint,
then delete or update triggers defined on TBEMPLOYEE will be activated. The triggers
defined on TBEMPLOYEE run either before or after the referential constraint operation
depending on their defined activation time (whether they are a before or after trigger).

When you define an update trigger you can specify that it should only be activated when
certain columns of the triggering table are updated.

Of course, if an SQL data change operation affects a table through a view, any triggers
defined on the table for that operation are activated.

� A triggering event is the occurrence of the triggering operation on the triggering table
which causes the trigger to be activated.

3.3.1 Trigger activation time
The trigger activation time specifies when a trigger is activated in relation to the triggering
operation. It is specified as:

� NO CASCADE BEFORE

– The trigger is activated before the triggering operation is performed.
– It is used to validate/edit/generate input data.
– It cannot be used to further modify the database.
– It is often referred to as a before trigger.

The trigger action is activated before the triggering operation is processed. The trigger
action is activated for each row in the set of affected rows, as the rows are accessed, but
before the triggering operation is performed on each row and before any table check or
referential integrity constraints that the rows may be subject to are processed. The NO
CASCADE keyword is required and serves to remind you that a before trigger cannot
perform update operations and, therefore, cannot cause trigger cascading.

Before triggers are generally used as an extension to the constraint system. In
Example 3-4, an error is passed back to the application when an INSERT is performed
containing an invalid CITY (the CITY being inserted is not in the TBCITIES table). Please
note that this could have been implemented using a CHECK CONSTRAINT, RI, or using
application logic and all have different performance characteristics. More information on
this can be found in sections 3.19, “Design considerations” on page 37 and 3.20, “Some
alternatives to a trigger” on page 38.

Example 3-4 BEFORE trigger

CREATE TRIGGER SC246300.TGBEFOR7
 NO CASCADE BEFORE INSERT
 ON SC246300.TBCUSTOMER
 REFERENCING NEW AS N
 FOR EACH ROW
 MODE DB2SQL
 WHEN (NOT EXISTS (SELECT CITYKEY
 FROM SC246300.TBCITIES
 WHERE CITYKEY = N.CITYKEY))
Chapter 3. Triggers 17

SIGNAL SQLSTATE 'ERR10' ('NOT A VALID CITY') #

When inserted rows satisfy the WHEN condition you receive:

DSNT408I SQLCODE = -438, ERROR: APPLICATION RAISED ERROR WITH DIAGNOSTIC TEXT:
NOT A VALID CITY

DSNT418I SQLSTATE = ERR10 SQLSTATE RETURN CODE

� AFTER

– The trigger is activated after the triggering operation is performed.

– The trigger can be viewed as a segment of application logic to:

• Perform follow-on update operations
• Perform external actions

– This type of trigger is often referred to as an after trigger.

The trigger action is activated after the triggering operation has been processed and after
all table check constraints and referential constraints that the triggering operation may be
subject to have been processed.

After triggers can be viewed as segments of application logic that run every time a specific
event occurs. After triggers see the database in the state that an application would see it
following the execution of the change operation. This means they can be used to perform
actions that an application might otherwise have performed such as maintaining summary
data or an audit log. Example 3-6 on page 20 shows an after trigger.

3.3.2 How many times is a trigger activated?
Important to the concept of trigger granularity is understanding which rows are affected by
the triggering operation. The set of affected rows contains all rows that are deleted, inserted
or updated by the triggering operation.

A trigger definition specifies the granularity of the trigger activation as follows:

� FOR EACH ROW

– The trigger is activated once for each row affected by the triggering operation (as many
times as the number of rows in the set of affected rows). This is often referred to as a
row trigger. A row trigger is only activated if the set of affected rows is not empty.

� FOR EACH STATEMENT

– The trigger is activated once for the triggering operation. This is often referred to as a
statement trigger. The statement trigger is always fired once even if the set of affected
rows is empty.
18 DB2 for z/OS Application Programming Topics

3.3.3 Trigger action condition
The trigger action condition (WHEN clause) controls whether or not the set of triggered
SQL statements are executed for the row or statement for which the trigger is executing. This
acts as an additional filter between the triggering operation and the trigger action. If the
WHEN clause is omitted, the triggered SQL statements are always executed.

In a row trigger, the condition is evaluated for each row in the set of affected rows. In a
statement trigger, the condition is evaluated only once as the trigger is activated only once.

3.3.4 Trigger action
The trigger action, also called the trigger body, is the set of triggered SQL statements,
performing the real actions of the trigger. If more than one triggered SQL statement is coded,
the set of statements must be surrounded by the keywords BEGIN ATOMIC and END. Each
statement in the set must be terminated by a semicolon.

The significance of the required ATOMIC keyword (see Example 3-5), is that the set of SQL
statements is treated as an atomic unit. That is, either all of the statements are executed or
none. If, for example, the second UPDATE statement shown in Example 3-5 fails, all changes
made to the database as part of the triggered operation and the triggering operation are
backed out. For more details see 3.8, “Error handling” on page 26.

Example 3-5 Multiple trigger actions

CREATE TRIGGER NEWPROJ
AFTER INSERT ON PROJECT

REFERENCING NEW AS N_ROW
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE DEPARTMENT SET PROJ_COUNT = PROJ_COUNT + 1
WHERE DEPTNO = N_ROW.RESP_DEPT;

CALL INFORM_MANAGER (N_ROW.RESP_DEPT, N_ROW.PROJ_NAME);
UPDATE EMPLOYEE SET PROJ_COUNT = PROJ_COUNT + 1

WHERE EMPNO = N_ROW.RESP_EMP;
END

Note: For a cursor-controlled UPDATE or DELETE (with a WHERE CURRENT OF
clause), a statement trigger is executed once per row because only one row is affected.
For online LOAD RESUME, each row that is loaded is treated as a statement. When
you have a statement trigger defined on that table, it will be invoked for every row that is
added to the table.
Chapter 3. Triggers 19

The trigger activation time determines which statements are allowed in the trigger body. See
Figure 3-1 on page 22 for a list of the allowable combinations.

3.3.5 Transition variables
Transition variables enable row triggers to access row data as it existed both before and
after the triggering operation has been performed

When a row trigger is activated it is likely for the trigger to refer to the column values of the
row for which it was activated. The REFERENCING clause of the CREATE TRIGGER
statement enables a row trigger to refer to the column values for a row, as they were before,
and as they are after, the triggering operation has been performed. The REFERENCING
clause is specified as:

� REFERENCING OLD AS correlation-name Specifies a correlation name that can be used
to reference the column values in the original state of the row, that is, before the triggering
operation is executed.

� REFERENCING NEW AS correlation-name Specifies a correlation name that can be used to
reference the column values that were used to update the row, after the triggering
operation is executed.

Example 3-6 Transition variables

CREATE TRIGGER BUDG_ADJ
 AFTER UPDATE OF SALARY ON SC246300.TBEMPLOYEE
 REFERENCING OLD AS OLD_EMP
 NEW AS NEW_EMP
 FOR EACH ROW MODE DB2SQL
 UPDATE SC246300.TBDEPARTMENT
 SET BUDGET = BUDGET + (NEW_EMP.SALARY - OLD_EMP.SALARY)
 WHERE DEPTNO = NEW_EMP.WORKDEPT

The above example shows how transition variables can be used in a row trigger to maintain
summary data in another table. Assume that the department table has a column that records
the budget for each department. Updates to the SALARY of any employee (for example, from
$50,000 to $60,000) in the TBEMPLOYEE table are automatically reflected in the budget of
the updated employee's department. In this case, NEW_EMP.SALARY has a value of 60000
and OLD_EMP.SALARY a value of 50000, and BUDGET is increased by 10000.

Tip: SQL processor programs, such as SPUFI and DSNTEP2, might not correctly parse
SQL statements in the trigger action that are ended with semicolons. These processor
programs accept multiple SQL statements, each separated with a terminator character, as
input. Processor programs that use a semicolon as the SQL statement terminator can
truncate a CREATE TRIGGER statement with embedded semicolons and pass only a
portion of it to DB2. Therefore, you might need to change the SQL terminator character for
these processor programs. For information on changing the terminator character for
SPUFI and DSNTEP2, see DB2 UDB for OS/390 and z/OS Version 7 Application
Programming and SQL Guide, SC26-9933.
20 DB2 for z/OS Application Programming Topics

3.3.6 Transition tables
For those statements that affect more that one row (like non-positioned DELETE and
UPDATE statements and INSERTs with a sub-select), transition tables enable after triggers
to access the set of affected rows as they were before, and as they are after, the execution of
the triggering operation.

In both row and statement triggers it might be necessary to refer to the whole set of affected
rows. For example, triggered SQL statements might need to apply aggregations over the set
of affected rows (MAX, MIN, or AVG of some column values). A trigger can refer to the set of
affected rows by using transition tables. Transition tables are specified in the REFERENCES
clause of the CREATE TRIGGER statement. The columns in transition tables are referred to
using the column names of the triggering table. Like transition variables, there are two kinds
of transition tables which are specified as:

� REFERENCING OLD_TABLE AS identifier: Specifies a table identifier that captures the original
state of the set of affected rows, that is, their state before the triggering operation is
performed.

� REFERENCING NEW_TABLE AS identifier: Specifies a table identifier that captures the after
state of the set of affected rows, that is, their state after the triggering operation has been
performed.

In Example 3-7, we show the use of a transition table in a statement trigger. The UDF named
LARGE_ORDER_ALERT is invoked for each row in the new transition table that corresponds
to an order worth more than $10,000.

Example 3-7 Transition table

SET CURRENT PATH = 'SC246300' #

CREATE TRIGGER SC246300.LARG_ORD
AFTER INSERT ON SC246300.TBORDER
REFERENCING NEW_TABLE AS N_TABLE
FOR EACH STATEMENT MODE DB2SQL

SELECT LARGE_ORDER_ALERT(CUSTKEY, TOTALPRICE, ORDERDATE)
FROM N_TABLE WHERE TOTALPRICE > 10000

In Example 3-8, a trigger is used to maintain the supply of parts in the PARTS table. The
trigger action condition specifies that the set of triggered SQL statements should only be
executed for rows in which the value of the ON_HAND column is less than ten per cent of the
value of the MAX_STOCKED column. When this condition is true, the trigger action is to
reorder (MAX-STOCKED - ON_HAND) items of the affected part using a UDF called
ISSUE_SHIP_REQUEST.

Example 3-8 Single trigger action

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

REFERENCING NEW AS N_ROW
FOR EACH ROW MODE DB2SQL
WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)

VALUES (ISSUE_SHIP_REQUEST(N_ROW.PARTNO, N_ROW.MAX_STOCKED -N_ROW.ON_HAND))

Important: Transition tables are populated by DB2 before any after-row or after-statement
trigger is activated. Transition tables are read-only.
Chapter 3. Triggers 21

3.4 Allowable combinations
Some combinations of trigger granularity, trigger activation time, transition variables, and
transition tables do not make sense. For example, after-statement triggers cannot reference
transition variables because transition variables refer to column values on a per row basis
and after-statement triggers are executed once per execution of the triggering operation. (An
after-statement trigger can access individual rows in a transition table). Also, it does not make
sense to be able to define a before-statement trigger. See Figure 3-1 for a diagram of
allowable syntax.

The triggering operation also affects which transition variables and transition tables can be
referenced:

INSERT An insert trigger can only refer to new transition variables or a new transition
table. Before the execution of an insert operation the affected rows do not
exist in the database. That is, there is no original state of the rows that would
define old values before the insert operation is applied to the database.

UPDATE An update trigger can refer to both old and new transition variables and
tables.

DELETE A delete trigger can only refer to old transition variables or an old transition
table. Because the rows will be deleted, there are no new values to
reference.

Figure 3-1 Allowable trigger parameter combinations

3.5 Valid triggered SQL statements
The trigger activation time determines which triggered SQL statements are allowed. When
DB2 executes triggered SQL statements, it does not return any query output to the trigger.
Host variables and cursor operations are not allowed in the body of a trigger. For example,
SELECT INTO and FETCH statements that read data into host variables are not allowed in a
trigger body. See Figure 3-2, for a matrix of the allowable SQL statements for each type of
trigger.

Granularity Activation
Time

Triggering
Operation

Transition
Variables
Allowed

Transition Tables Allowed

ROW

STATEMENT

BEFORE

AFTER

BEFORE

AFTER

INSERT

UPDATE

DELETE

INSERT

UPDATE

DELETE

INSERT

UPDATE

DELETE

NEW

NEW

OLD

OLD

OLD, NEW

OLD, NEW

NONE

INVALID TRIGGER

NONE

NEW_TABLE

OLD_TABLE, NEW_TABLE

OLD_TABLE

OLD_TABLE, NEW_TABLE

OLD_TABLE

NEW_TABLE
22 DB2 for z/OS Application Programming Topics

Figure 3-2 Allowed SQL statement matrix

SET and VALUES statements
The SET transition variable statement can be used in before row triggers to modify values of
new transition variables:

SET NEWROW.MODIFIER = CURRENT USER

The VALUES statement can be used in BEFORE and AFTER triggers to invoke UDFs:

VALUES (expression, expression...)

An example of the usage of the VALUES statement can be found in Example 3-8 on page 21.

3.6 Invoking stored procedures and UDFs
The limited control logic and restrictions on SQL allowed in triggers make it necessary for
triggers to invoke UDFs or stored procedures for many tasks, for example:

� Conditional logic and looping
� Initiation of external actions
� Access to non-DB2 resources

Only SQL operations are allowed in a trigger body. However, the ability to invoke an external
UDF or stored procedure from within a trigger greatly expands the types of trigger actions
possible.

If a before trigger invokes an external UDF or stored procedure, that function or procedure
cannot execute an INSERT, UPDATE, or DELETE statement because before triggers cannot
update the database. Attempts to do so results in an SQLCODE -817.

Note: SET transition-variable and VALUES are only allowed in a trigger body

BEFO RE Trigger AFTER Trigger
SET transition-variable IN SERT

S earched UP DATE
(not a cursor UP DATE)

S earched DE LETE
(not a cursor DE LETE)

Fu ll se lect and the VALUES statem ent
(can be used to invoke User Defined Functions)

CA LL procedure-nam e

S IG NAL SQ LS TATE
Chapter 3. Triggers 23

UDFs cannot be invoked in a stand-alone manner, that is, they must appear in an SQL
statement. A convenient method for invoking a UDF is to use a VALUES statement or a full
select as show in Example 3-9.

Example 3-9 Invoking a UDF within a trigger

VALUES (UDF1(NEW.COL1), UDF2(NEW.COL2))

SELECT UDF1(COL1), UDF2(COL2)
FROM NEW_TABLE
WHERE COL1 > COL3

3.7 Setting error conditions
Triggers can be used for detecting and stopping invalid updates. Two methods are available:

SIGNAL SQLSTATE - a new SQL statement that halts processing and returns the requested
SQLSTATE and message to an application

� Only valid as a triggered SQL statement
� Can be controlled with a WHEN clause

RAISE_ERROR - a built-in function that provides similar results

� Can appear where expressions appear
� Can be controlled with a CASE statement

In Example 3-10, we show how a trigger can be used to enforce constraints on inserts to the
TBEMPLOYEE table. Please note that at least one clause of the CASE expression must
result in a non-RAISE_ERROR condition. The constraints are:

HIREDATE must be date of insert or a future date

HIREDATE cannot be more than 1 year from date of insert

Example 3-10 Raising error conditions

CREATE TRIGGER CHK_HDAT
 NO CASCADE BEFORE INSERT ON SC246300.TBEMPLOYEE
 REFERENCING NEW AS NEW_EMP
 FOR EACH ROW MODE DB2SQL
 VALUES (CASE

WHEN NEW_EMP.HIREDATE < CURRENT DATE
THEN RAISE_ERROR('75001','HIREDATE HAS PASSED')
WHEN DAYS(NEW_EMP.HIREDATE) - DAYS(CURRENT DATE) > 365
THEN RAISE_ERROR ('85002','HIREDATE TOO FAR IN FUTURE')
ELSE 0

END) #

Attention: If the SQLCODE is ignored by the stored procedure or the UDF and returns to
the invoking trigger, the triggering action is NOT undone. More information on how to deal
with error situations in triggers can be found in Section 3.8, “Error handling” on page 26.
24 DB2 for z/OS Application Programming Topics

In Example 3-11, we show how a trigger can be used to ensure that salary increases do not
exceed 20%.

Example 3-11 Signaling SQLSTATE

CREATE TRIGGER CHK_SAL
NO CASCADE BEFORE UPDATE OF SALARY
ON SC246300.TBEMPLOYEE
REFERENCING OLD AS OLD_EMP

NEW AS NEW_EMP
FOR EACH ROW MODE DB2SQL
WHEN (NEW_EMP.SALARY > OLD_EMP.SALARY * 1.20)

SIGNAL SQLSTATE '75001'('INVALID SALARY INCREASE - EXCEEDS 20%')

The SIGNAL SQLSTATE statement is only valid in a trigger body. However, the
RAISE_ERROR built-in function can also be used in SQL statements other than a trigger.

When SIGNAL SQLSTATE and RAISE_ERROR are issued, the execution of the trigger is
terminated and all database changes performed as part of the triggering operation and all
trigger actions are backed out. The application receives SQLCODE -438 along with the
SQLSTATE (in SQLCA field SQLSTATE) and text (in SQLCA field SQLERRMC) that have
been set by the trigger. For instance, if you perform an illegal update against the CHK_SAL
trigger of Example 3-11, you will receive the following information in the SQLCA as shown in
Example 3-12.

Example 3-12 Information returned after a SIGNAL SQLSTATE

After calling DSNTIAR

DSNT408I SQLCODE = -438, ERROR: APPLICATION RAISED ERROR WITH DIAGNOSTIC TEXT:
INVALID SALARY INCREASE - EXCEEDS 20%

DSNT418I SQLSTATE = 75001 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNXRTYP SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = 1 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X'00000001' X'00000000' X'00000000'

X'FFFFFFFF' X'00000000' X'00000000' SQL DIAGNOSTIC INFORMATION

’Raw’ SQLCA format

*** START OF UNFORMATTED SQLCA ***
SQLCAID X(8) SQLCA
SQLCABC I 000000136
SQLCODE I -000000438
SQLERRML SI +000000037
SQLERRMC X(70) INVALID SALARY INCREASE - EXCEEDS 20%
SQLERRP X(8) DSNXRTYP
SQLERRD1 I +000000001
SQLERRD2 I +000000000
SQLERRD3 I +000000000
SQLERRD4 I -000000001
SQLERRD5 I +000000000
SQLERRD6 I +000000000
SQLWARN0 X(1)
SQLWARN1 X(1)
SQLWARN2 X(1)
SQLWARN3 X(1)
SQLWARN4 X(1)
SQLWARN5 X(1)
Chapter 3. Triggers 25

SQLWARN6 X(1)
SQLWARN7 X(1)
SQLWARN8 X(1)
SQLWARN9 X(1)
SQLWARNA X(1)
SQLSTATE X(5) 75001
*** END OF UNFORMATTED SQLCA ***

3.8 Error handling
If a triggered SQL statement fails, SQLCODE -723 is returned to the application (the
triggering SQL statement). The SQLCA contains the trigger name, the original SQLCODE
and as much of the original message as possible from the failed triggered SQL statement. In
some cases, the original error is returned. These include errors that cause an automatic
rollback, that put the application process into a must-rollback state. In these cases, the
SQLCODE associated with that error is reported back to the application.

Example 3-13 shows you what is returned in case the trigger somehow fails to execute. In this
case the UPDATE statement (not shown) fails with an SQLCODE -723. The trigger
DB28710.TR5EMP that is fired by the UPDATE statement failed because the table space
DSNDB04.LOGGING, that is part of the trigger action, is stopped for all access (x’00C90081’)
and therefore the trigger gets an SQLCODE -904. As you can see, the original error (-904) is
nicely imbedded in the SQLCODE -723 that is returned to the program.
The easiest way to format the information returned in the SQLCA is probably by calling
DSNTIAR, but you can also handle the information yourself, as shown in the bottom part of
the example.

Example 3-13 Sample information returned when trigger receives an SQLCODE

Formatting done by DSNTIAR

DSNT408I SQLCODE = -723, ERROR: AN ERROR OCCURRED IN A TRIGGERED SQL STATEMENT IN
TRIGGER DB28710.TR5EMP, SECTION NUMBER 2.

INFORMATION RETURNED: SQLCODE -904, SQLSTATE 57011,
AND MESSAGE TOKENS 00C90081,00000200,DSNDB04.LOGGING

DSNT418I SQLSTATE = 09000 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNXRUID SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = -110 13172746 0

13223106 -974970879 12714050 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X'FFFFFF92' X'00C9000A' X'00000000'

X'00C9C4C2' X'C5E32001' X'00C20042' SQL DIAGNOSTIC INFORMATION

’Raw’ SQLCA format

*** START OF UNFORMATTED SQLCA ***
SQLCAID X(8) SQLCA
SQLCABC I 000000136
SQLCODE I -000000723
SQLERRML SI +000000062
SQLERRMC X(70) DB28710.TR5EMP 2 -904 57011 00C90081,00000200,DSNDB04.LOGGING
DSNXRUID
SQLERRP X(8) DSNXRUID
SQLERRD1 I -000000110
SQLERRD2 I +013172746
SQLERRD3 I +000000000
SQLERRD4 I +013223106
26 DB2 for z/OS Application Programming Topics

SQLERRD5 I -974970879
SQLERRD6 I +012714050
SQLWARN0 X(1)
SQLWARN1 X(1)
SQLWARN2 X(1)
SQLWARN3 X(1)
SQLWARN4 X(1)
SQLWARN5 X(1)
SQLWARN6 X(1)
SQLWARN7 X(1)
SQLWARN8 X(1)
SQLWARN9 X(1)
SQLWARNA X(1)
SQLSTATE X(5) 09000
*** END OF UNFORMATTED SQLCA ***

If a stored procedure (SP) or UDF is invoked by a trigger, and the SP/UDF encounters an
error, the SP/UDF can choose to ignore the error and continue or it can return an error to the
trigger.

External UDFs or stored procedures can be written to perform exception checking and to
return an error if an exception is detected. When a SP/UDF is invoked from a trigger, and that
SP/UDF returns an SQLSTATE, this SQLSTATE is translated into a negative SQLCODE by
DB2. The trigger execution terminates and all database changes performed as part of the
triggering operation are backed out.

Remember that a stored procedure cannot return output parameters (containing for instance
the SQLCODE) when invoked from a trigger. To pass back an SQLSTATE to the invoking
trigger, the PARAMETER STYLE DB2SQL option has to be used on the CREATE
PROCEDURE or CREATE FUNCTION statement. This indicates to DB2 that additional
information can be passed back and forth between the caller and the procedure or function.
This information includes the SQLSTATE and a diagnostic string. For more details on how to
use PARAMETER STYLE DB2SQL, please refer to the DB2 UDB for OS/390 and z/OS
Version 7 Application Programming and SQL Guide, SC26-9933.

Example 3-14 shows how the error is returned to the triggering statement. A full listing and
additional information is available in the additional material that can be downloaded from the
Internet (see Appendix C, “Additional material” on page 251) as well as “Returning
SQLSTATE from a stored procedure to a trigger” on page 244. Both the SQLSTATE 38601
and diagnostic string ’SP HAD SQL ERROR’ are set by the stored procedure after it detects
its initial error.

Example 3-14 Passing SQLSTATE back to a trigger

Formatted by DSNTIAR

DSNT408I SQLCODE = -723, ERROR: AN ERROR OCCURRED IN A TRIGGERED SQL STATEMENT IN
TRIGGER SC246300.TSD0BMS3, SECTION NUMBER 2.

Attention: If the SQLCODE is ignored by the SP or the UDF and returns to the invoking
trigger, the triggering action is NOT undone. To avoid data inconsistencies it is best
(easiest) for the SP/UDF to issue a ROLLBACK. This will place the SP/UDF in a
MUST_ROLLBACK state and will cause the triggering action to be rolled back also.
Another way is to return an SQLSTATE to the trigger that will translate into an
SQLCODE -723.
Chapter 3. Triggers 27

INFORMATION RETURNED: SQLCODE -443, SQLSTATE 38601, AND MESSAGE TOKENS
SD0BMS3,SD0BMS3,SP HAD SQL ERROR,

DSNT418I SQLSTATE = 09000 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNXRRTN SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = -891 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X'FFFFFC85' X'00000000' X'00000000'

X'FFFFFFFF' X'00000000' X'00000000' SQL DIAGNOSTIC INFORMATION

Or directly from the SQLCA

*** START OF UNFORMATTED SQLCA ***
SQLCAID X(8) SQLCA
SQLCABC I 000000136
SQLCODE I -000000723
SQLERRML SI +000000064
SQLERRMC X(70) SC246300.TSD0BMS3 2 -443 38601 SD0BMS3,SD0BMS3,SP HAD SQL ERROR,
SQLERRP X(8) DSNXRRTN
SQLERRD1 I -000000891
SQLERRD2 I +000000000
SQLERRD3 I +000000000
SQLERRD4 I -000000001
SQLERRD5 I +000000000
SQLERRD6 I +000000000
SQLWARN0 X(1)
SQLWARN1 X(1)
SQLWARN2 X(1)
SQLWARN3 X(1)
SQLWARN4 X(1)
SQLWARN5 X(1)
SQLWARN6 X(1)
SQLWARN7 X(1)
SQLWARN8 X(1)
SQLWARN9 X(1)
SQLWARNA X(1)
SQLSTATE X(5) 09000
*** END OF UNFORMATTED SQLCA ***

If a trigger invokes a stored procedure or external UDF and that procedure or function does
something that puts the thread into a must-rollback state, no further SQL is allowed.
SQLCODE -751 is returned to the trigger which causes the trigger to terminate. All database
changes performed as part of the triggering operation are backed out and control is returned
to the application. All subsequent SQL statements receive an SQLCODE -919.

3.9 Trigger cascading
The activation of a trigger can cause trigger cascading. An example of this is shown in
Figure 3-3. This occurs when the activation of one trigger executes SQL statements that
cause the activation of other triggers or even the same trigger again. A long chain of triggers
and referential integrity delete rules can cause significant change to the database as a result
28 DB2 for z/OS Application Programming Topics

of a single delete, insert or update operation. In addition, triggers can invoke external UDFs
and stored procedures, which in turn can activate other triggers, UDFs and stored
procedures. The cascade path can therefore involve a combination of triggers, UDFs and
stored procedures.

Figure 3-3 Trigger cascading

The allowed run-time depth level of a trigger, UDF or stored procedure is 16. If a trigger, UDF
or stored procedure at nesting level 17 is activated, SQLCODE -724 is returned to the
application. None of the database changes made as part of the triggering operation are
applied to the database. This provides protection against endless loop situations that can be
created with triggers.

In Example 3-15, you can see the error message you receive in your application program if
you attempt to go beyond the 16 nesting levels permitted.

Example 3-15 Cascading error message

DSNT408I SQLCODE = -724, ERROR: THE ACTIVATION OF THE TRIGGER OBJECT objectname
WOULD EXCEED THE MAXIMUM LEVEL OF INDIRECT SQL CASCADING

3.10 Global trigger ordering
Multiple triggers can be created on the same triggering table and for the same triggering
operation and trigger activation time. The order in which these triggers are activated is the
order in which they were created. That is, the most recently created trigger will be the last
trigger activated.

CALL SP1
SP1

INSERT INTO
TABLE1

TRIGGER1

Application

VALUES (UDF1) UDF1

UPDATE TABLE2

UPDATE TABLE1

TRIGGER1

INSERT INTO
TABLE2

TRIGGER2

Application

UPDATE TABLE3

Up to 16 levels of nesting allowed

Tip: Remember before triggers cannot cause trigger cascading because INSERT,
UPDATE, and DELETE statements are not allowed in a before trigger.
Chapter 3. Triggers 29

When triggers are defined using the CREATE TRIGGER statement, their creation time is
registered by a timestamp in the DB2 catalog table SYSIBM.SYSTRIGGERS. The value of
this timestamp is subsequently used to order the activation of triggers when there is more
than one trigger that should be run at the same time.

Existing triggers are activated before new triggers so that new triggers can be used as
incremental additions to the logic that affects the database. For example, if a triggered SQL
statement of trigger T1 inserts a new row into a table T, a triggered SQL statement of trigger
T2 that is run after T1 can be used to update the new row table T with specific values.

This ordering scheme means that if you drop the first trigger created and re-create it, it will
become the last trigger to be activated by DB2.

3.11 When external actions are backed out
When external actions are driven by triggers, those actions are generally not under the
recovery control of DB2 in the event of a failure. There are two cases to consider:

� Case 1: The trigger and external action complete successfully, but the application later
executes a rollback operation.

External actions are rolled back if the DB2 application and the affected external resource
managers are under the control of the OS/390 Transaction Management and Recoverable
Resource Manager Services (RRS) for commitment control. With this facility, all actions
performed by resource managers under the control of RRS are treated as a single unit of
recovery.

� Case 2: The external action completes successfully, but an error occurs later during the
processing of the trigger or triggering operation.

In the case of a trigger or triggering operation failure after external actions have
completed, the thread is put in a must-rollback state if the DB2 application and the
affected external resource managers are under the control of RRS. When this occurs,
DB2 does not allow any further SQL requests until a rollback operation is performed.
When the rollback occurs, changes to any external resource managers under the same
commit control, are rolled back.

3.12 Passing transition tables to SPs and UDFs
Transition tables can be passed from a trigger as arguments to stored procedures and
user-defined functions. Using table locators, transition tables can be referenced within a
stored procedure or UDF in the FROM clause of a SELECT statement or in the subselect of
an INSERT statement.

Table locators can be passed as arguments in VALUES and CALL statements. A table locator
cannot be used as an argument outside of a trigger action.

The trigger definition shown in Example 3-16, uses the TABLE keyword to pass new transition
table NTAB as a table locator argument to a SP called SPTRTT.

Example 3-16 Using table locators

CREATE PROCEDURE SYSPROC.SPTRTT

Tip: If you want a trigger to remain the first one activated, you must drop all the triggers
defined on the table and recreate them in the order you want them executed.
30 DB2 for z/OS Application Programming Topics

 (IN TABLE LIKE SC246300.TBEMPLOYEE AS LOCATOR)
 LANGUAGE COBOL
 EXTERNAL NAME SPTRTT
 COLLID BARTCOB
 PROGRAM TYPE MAIN
 NO WLM ENVIRONMENT
 PARAMETER STYLE DB2SQL #

CREATE TRIGGER SC246300.TRTTTR
 AFTER UPDATE OF SALARY ON SC246300.TBEMPLOYEE
 REFERENCING NEW_TABLE AS NTAB
 FOR EACH STATEMENT MODE DB2SQL
 BEGIN ATOMIC
 CALL SPTRTT (TABLE NTAB) ;
 END #

The SP SPTRTT is defined with a single table locator argument. The keyword LIKE followed
by SC246300.TBEMPLOYEE specifies that the table represented by the table locator has the
same column names and data types as table SC246300.TBEMPLOYEE.

To access a transition table in an external UDF or stored procedure, you need to:

1. Declare a parameter to receive the table locator
2. Declare a table locator host variable
3. Assign the parameter value to the table locator host variable
4. Use the table locator host variable to reference the transition table

In Example 3-17, the SQL syntax used to declare the table locator host variable TRIG-TBL-ID
is transformed by the precompiler to a COBOL host language statement. The keyword LIKE
followed by table-name specifies that the table represented by the table locator host variable
TRIG-TBL-ID has the same column names and data types as table
SC246300.TBEMPLOYEE. A full listing is available in “Passing a transition table from a
trigger to a SP” on page 246 and in the additional material downloadable from the Internet.
See Appendix C, “Additional material” on page 251 for instructions.

Using a transition table is an interesting technique. This way you call the stored procedure
only once using a statement trigger, instead of using a row trigger that would call the stored
procedure for every row that is updated. Passing a transition table to a UDF or SP allows you
to do things that you cannot do with row triggers like calculations based on the entire set of
rows that were changed by the triggering action.

Example 3-17 Sample COBOL program using a SP and table locator

 IDENTIFICATION DIVISION.
 PROGRAM-ID. "SPTRTT".
 DATA DIVISION.
 WORKING-STORAGE SECTION.
.....
* **
* 2. DECLARE TABLE LOCATOR HOST VARIABLE TRIG-TBL-ID
* **
 01 TRIG-TBL-ID SQL TYPE IS
 TABLE LIKE SC246300.TBEMPLOYEE AS LOCATOR.
.....

 LINKAGE SECTION.
* **
* 1. DECLARE TABLOC AS LARGE INTEGER PARM
Chapter 3. Triggers 31

* **
 01 TABLOC PIC S9(9) USAGE BINARY.
 01 INDTABLOC PIC S9(4) COMP.
.....
 PROCEDURE DIVISION USING TABLOC , INDTABLOC, P-SQLSTATE,
 P-PROC, P-SPEC, P-DIAG.

* ***
* 4. DECLARE CURSOR USING THE TRANSITION TABLE
* ***
 EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT EMPNO, FIRSTNME
 FROM TABLE (:TRIG-TBL-ID LIKE SC246300.TBEMPLOYEE)
 END-EXEC.
* ***
* 3. COPY TABLE LOCATOR INPUT PARM TO THE TABLE LOCATOR HOST VAR
* ***
 MOVE TABLOC TO TRIG-TBL-ID.
.....
Start processing the transition table

3.13 Trigger package
A trigger package is created by DB2 when a CREATE TRIGGER statement is executed.
Trigger packages are recorded in the DB2 catalog table SYSIBM.SYSPACKAGE.

The name of the created trigger package is the same as the name of the created trigger. The
collection-id of the package is the same as the schema name of the trigger. The CREATE
TRIGGER statement fails if a package already exists with the same name. The BIND
PACKAGE options are set by DB2 when the trigger is created.

A trigger package is always accessible regardless of the plan or package being executed
when a trigger is activated. There is no need to include trigger packages in the package list.

It is not necessary to grant privileges on a trigger package to executors. There is no execution
time authorization check for triggers.

A trigger package cannot be deleted by a FREE PACKAGE subcommand or DROP
PACKAGE statement. A DROP TRIGGER statement must be used to delete the trigger
package. A trigger package cannot be executed by normal application programming
interfaces.

Versioning is not allowed for trigger packages and the version ID column for triggers
packages in the catalog reflects an empty string.
32 DB2 for z/OS Application Programming Topics

3.14 Rebinding a trigger package
A trigger package can be explicitly rebound using the REBIND TRIGGER PACKAGE
subcommand, see Example 3-18. You can use this subcommand to change a limited subset
of the bind options (CURRENTDATA, ENCODING, IMMEDWRITE, EXPLAIN, FLAG,
ISOLATION, RELEASE) that DB2 used to create the package. You might also rebind a trigger
package to re-optimize its SQL statements after you create a new index or use the
RUNSTATS utility. A trigger package cannot be explicitly bound using the BIND PACKAGE
subcommand and BIND PACKAGE cannot be used to create a trigger package, replace an
existing trigger package, nor copy an existing trigger package.

Example 3-18 Rebinding a trigger package

REBIND TRIGGER PACKAGE (SG246300.ITEMNMBR)
EXPLAIN(YES)
CURRENTDATA(NO)
ISOLATION(CS) ;

3.15 Trigger package dependencies
Triggers are dependent on the existence of all referenced database objects and on all the
privileges required for the creation of the trigger. These dependencies are enforced as
dependencies of the trigger package. Each dependency is recorded in the DB2 catalog table
SYSIBM.SYSPACKDEP. Please note that if a Stored Procedure (SP) is called in a trigger
body, the trigger package dependency only shows a dependency on the SP and not the
objects the SP references.

When an object is dropped or a privilege is revoked, any trigger package containing a trigger
action that references that object or requires that privilege, is invalidated. Like a regular
package, an automatic rebind is performed on the invalid trigger package when the trigger is
next activated. A trigger package that has been marked invalid has the VALID column set to
'N'. If a subsequent INSERT, UPDATE, or DELETE statement activates an invalid trigger, the
SQL statement will fail with a resource unavailable condition (SQLCODE -904). To make the
SQL statement work again, you must either drop the trigger or fix the problem that invalidated
the trigger and explicitly rebind the trigger package. The information that is returned to the
application, after DSNTIAR formatting, looks like Example 3-19.

(DB28710.TR5EMP.16D1060E1 is the name of the trigger package and the start of the
consistency token, since not all fits in the allotted space in the SQLERRMC field of the
SQLCA.)

Note: Only a package is created for the trigger and no associated plan is created. Trigger
packages are implicitly loaded at execution time.

Tip: We recommend that you treat trigger packages in the same way as standard
packages in that you REBIND them when you REBIND other types of package, for
example, when there are significant changes to the statistics. This ensures that access
paths are based on accurate information.
Chapter 3. Triggers 33

Example 3-19 Information retuned when trigger package is invalid

DSNT408I SQLCODE = -723, ERROR: AN ERROR OCCURRED IN A TRIGGERED SQL STATEMENT
 IN TRIGGER DB28710.TR5EMP, SECTION NUMBER 1.
 INFORMATION RETURNED: SQLCODE -904, SQLSTATE 57011, AND MESSAGE TOKENS
 00E30305,00000801,DB28710.TR5EMP.16D1060E1
DSNT418I SQLSTATE = 09000 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNXEAAL SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = -150 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X'FFFFFF6A' X'00000000' X'00000000' X'FFFFFFFF'
 X'00000000' X'00000000' SQL DIAGNOSTIC INFORMATION

3.16 DROP, GRANT, and COMMENT ON statements
DROP TRIGGER also drops the package used by the trigger. The RESTRICT clause must be
specified when dropping a trigger in Version 6, even if a trigger does not have dependencies
that would restrict (prevent) it from being dropped. The restrict clause is no longer needed in
V7.

DROP TRIGGER trigger-name RESTRICT (Version 6)

DROP TRIGGER trigger-name (Version 7)

The GRANT TRIGGER ON TABLE statement grants the privilege to use the CREATE
TRIGGER statement on the specified table(s).

GRANT TRIGGER ON table-name TO ...

You can add comments for triggers.

COMMENT ON TRIGGER trigger-name IS string-constant

Example 3-20 Comment on trigger

COMMENT ON TRIGGER CHK_SAL
IS ‘Validate that salary increase is not more than 20%’

Note: A user-defined function cannot be dropped if it is referenced within a triggered SQL
statement.

Tip: If a triggering table is dropped, its triggers are also dropped. If the table is recreated,
and you want the triggers back, then they must be recreated.
34 DB2 for z/OS Application Programming Topics

3.17 Catalog changes
There is a new catalog table SYSIBM.SYSTRIGGERS in DSNDB06.SYSOBJ, which contains
at least one row for each trigger and records the trigger characteristics. Some of the trigger
characteristics stored in this table are: creation timestamp, validity marker, and the full
CREATE TRIGGER statement text. If the CREATE TRIGGER statement text is longer than
3460 characters, then additional rows are placed in SYSIBM.SYSTRIGGERS to contain the
remainder of the trigger statement text.

Some new columns have been added to existing catalog tables. The TYPE column was
added to SYSIBM.SYSPACKAGE to indicate trigger packages. Type ‘T’ is for triggers. Also,
TRIGGERAUTH was added to SYSTABAUTH to record the TRIGGER privilege.

3.18 Trigger and constraint execution model
When constructing systems with complex combinations of triggers and declarative
constraints, it is important to understand the processing model to achieve the desired results.
The general order of processing for an SQL statement that updates a table is shown in
Figure 3-4. What follows is a description of the boxes and other items in the figure. SQL
statement S1 is the DELETE, INSERT, or UPDATE statement that begins the process. S1
identifies a table (or an updatable view over some table) referred to as the target table
throughout this description.

1. Determine the set of affected rows (SAR)

This step is the starting point for a process that repeats for referential constraint delete
rules of CASCADE and SET NULL and for cascaded SQL statements from after triggers.

The purpose of this step is to determine the SAR for the SQL statement. The set of rows
included in the SAR is based on the statement:

– For INSERT, the rows identified by the VALUES clause or the fullselect.

– For UPDATE, all rows that satisfy the search condition or the current row for a
positioned UPDATE.

– For DELETE, all rows that satisfy the search condition or the current row for a
positioned DELETE.

2. Process before triggers

All before triggers are processed in ascending order of creation. Each before-row trigger is
activated once for each row in the SAR.

An error may occur during the processing of a trigger action in which case all changes
made as a result of the original SQL statement S1 (so far) are rolled back.

If there are no before triggers or the SAR is empty, this step is skipped.

3. Apply constraints

The constraints associated with the target table are applied. This includes referential
constraints, table check constraints and checks associated with the WITH CHECK
OPTION on views. Referential constraints with delete rules of CASCADE or SET NULL
may cause additional triggers to be activated.

Tip: We recommend that you use COMMENT ON TRIGGER to comment the function
implemented by the trigger.
Chapter 3. Triggers 35

A violation of any constraint or WITH CHECK OPTION results in an error and all changes
made as a result of the original S1 (so far) are rolled back.

If the SAR is empty, this step is skipped.

4. Apply the SAR to the target table

The actual DELETE, INSERT, or UPDATE is applied using the SAR to the target table.

An error may occur when applying the SAR (such as attempting to insert a row with a
duplicate key where a unique index exists) in which case all changes made as a result of
the original SQL statement S1 (so far) are rolled back.

5. Process after triggers

All after triggers activated by S1 are processed in ascending order of creation.

After-statement triggers are activated exactly once, even if the SAR is empty. After-row
triggers are activated once for each row in the SAR.

An error may occur during the processing of a trigger action in which case all changes
made as a result of the original S1 (so far) are rolled back.

The trigger action of an after trigger may include triggered SQL statements that are
DELETE, INSERT or UPDATE statements. Each such statement is considered a
cascaded SQL statement because it starts a cascaded level of trigger processing. This
can be thought of as assigning the triggered SQL statement as a new S1 and performing
all of the steps described here recursively.

Once all triggered SQL statements from all after triggers activated by each S1 have been
processed to completion, the processing of the original S1 is complete.

Figure 3-4 SQL processing order and triggers

Triggering operation S1
(DELETE, INSERT or UPDATE)

Determine set of
affected rows

Process all
BEFORE triggers

Process all
AFTER triggers

error ROLLBACK

error
ROLLBACK

Apply set of affected
rows to triggering table

error ROLLBACK

Apply constraints
(CHECK and RI)

violation
ROLLBACK

error ROLLBACK

cascaded SQL
statement
36 DB2 for z/OS Application Programming Topics

3.19 Design considerations
Triggers might have a performance impact. There are a number of issues that you must be
aware of:

� During the execution of an SQL statement, any activated triggers add, of course, to the
resource utilization needed to execute the statement. This is somewhat offset by the fact
that the application does not need to perform the trigger actions.

� When optimizing an SQL INSERT, UPDATE or DELETE statement, the DB2 optimizer
does not know what triggers will be executed and cannot take this cost into account when
choosing an access path. For triggers, only default values are inserted into the
SQL_STATEMNT_TABLE and a COST_CATEGORY of “B” and a REASON of
“TRIGGERS”.

� The predictive governor does not include the cost of trigger execution in its execution time
estimate.

Now, let us review the factors that influence the cost of triggers. Understanding these factors
help you evaluate the likely cost of triggers and estimate their cost relative to an application
implementation of the logic, or the use of check constraints, or referential integrity.

� The base cost of a trigger (that is, all work except for the execution of the SQL in the
trigger body) is about equivalent to the cost of a fetch. Where a trigger is defined but not
fired, for example, if the trigger is defined as AFTER/BEFORE UPDATE OF column1 and
an UPDATE statement updates column2, the trigger is not activated, and so the overhead
is normally negligible. However, a very complicated and badly coded WHEN clause in the
trigger can still impact performance whether or not the trigger is fired.

� The trigger package has to be loaded into the EDM pool. I/O has to occur if it is not
already in the EDM pool. Options to alleviate problems in this area include:

– Monitor and increase the size of the EDM pool.

– Consider REBIND of the trigger package with the RELEASE(DEALLOCATE) option. Be
aware, though, that RELEASE(DEALLOCATE) results in more resources being held — you
face the same issues as binding application packages with RELEASE(DEALLOCATE).

� The object descriptor (OBD) of the trigger package is a part of the table. Therefore, be
aware of the impact to the DBD size and its potential to impact the EDM pool if you already
have large DBDs.

� Transition tables reside in the workfile database (usually named DSNDB07). The cost of a
trigger that processes workfiles depends critically on the amount of workfile processing
required (including row length and whether you have OLD and NEW transition variables).
Transition tables need to be processed with a table space scan for each row trigger
because there are no indexes. Trigger performance also depends on whether there is
contention for the workfiles. You should anticipate the cost to be several times greater than
the base cost of the trigger, because significantly more work has to be carried out.

� As we have indicated, the use of transition variables and transition tables in AFTER
triggers represent a significant proportion of the cost of such a trigger. Where a trigger has
to manipulate workfiles, contributions to the cost are:

– Creation, use, and deletion of workfiles
– Any I/O or GETPAGE request necessary to process the data
– Base cost of trigger processing

� There is no overhead for an SQL statement that is not the triggering action. For example, if
a INSERT trigger was defined on a table, it would have no overhead on update or delete
statements.
Chapter 3. Triggers 37

We recommend that you prototype your physical design first if you are considering using
triggers for tables that are heavily updated and/or fire SQL statements that process significant
quantities of data. You can then evaluate their cost relative to the cost of equivalent
functionality embedded in your applications. Be cautious when using triggers to create
summary tables from tables that are heavily updated, you may end up creating a locking
bottleneck on the summary table rows.

When you begin physical design, you may find that you need several triggers defined on a
single table. To avoid the overhead of multiple triggers, you can write a stored procedure to do
all the triggered processing logic. The body of the trigger could then simply consist of a CALL
stored-procedure-name.

When porting applications from other RDBMS systems, don’t forget that there may be syntax
incompatibility with these other platforms.

Triggers can be very helpful in a number of areas, but can also make the design more
complex. You can no longer just rely on looking at the programs to find out what is happening
to the data, you also have to look inside the DBMS. Adding triggers to the data model should
be implemented with great care, especially when you get into cascading situations. People
doing program design should be aware of existing triggers. Otherwise you might end up doing
the same update twice, once in the application program and again in the trigger.

3.20 Some alternatives to a trigger
Triggers have a number of valuable usages. However, some functions that can be
implemented using triggers can be better implemented using other alternatives provided by
DB2. Triggers should be defined on tables to enforce rules that involve different states of the
data. For rules that do not involve more than one state of the data, table check constraints
and referential constraints provide a better solution since they often have performance
advantages over triggers.

Constraints are enforced when they are created but the creation of a trigger does not check
existing rows and does not cause check pending to be turned on.

Triggers are not triggered by utilities (except by an online LOAD RESUME). In the following
subsection, we discuss some alternatives to triggers.

Note: APAR PQ34506 provides an important performance improvement for triggers
with a WHERE clause and a subselect. A where clause in the subselect can now be
evaluated as a Stage 1 predicate.

Tip: Within DB2’s resource limit facility, the execution of a trigger is counted as part of the
triggering SQL statement.

Important: You should not use triggers just for the sake of using them. You should first see
if what you are trying to implement can be done with a check constraint, if not, then try with
referential integrity, if not, then try with a trigger. Do not get “trigger happy”!!!
38 DB2 for z/OS Application Programming Topics

Referential integrity

Triggers are implemented through the Relational Data Systems (RDS) component of DB2
through the use of packages. Referential Integrity is enforced by Data Manager which has
a shorter path length and thus has a performance advantage. Referential Integrity is
enforced when created and can be checked through existing utilities and triggers cannot.

User-defined defaults

If the default value can change over time, then a trigger may be a better way to implement
it since all that is required is dropping and recreate the trigger with the new values. Making
such a change to a column defined with a default would involve the unloading, dropping,
recreating of the table with the new default value, and reloading the table (this may
change in a future version of DB2). As you can see, the trigger would be much less
disruptive but takes additional CPU resources to be performed. If the default value does
not change, then use user-defined defaults instead of triggers to achieve better
performance results.

Data replication and propagation

Although triggers can be used for simple propagation (for example, to create an audit
trail), they are not intended to be used as an alternative to, or a replacement for Data
Propagator.

Table check constraints

Before triggers are generally used as an extension to the constraint system. There are
trade-offs between when to use a trigger versus a table check constraint. A good rule of
thumb is that if the values of the constraint are static (no new values added or values not
changed very often), then it is better to enforce the constraint via the use of a table check
constraint. If the values of the constraint are dynamic (often changed, many new values
added, and so on), then a BEFORE trigger would be a better choice to enforce the
constraint. For example, (see Example 3-21), if you wanted to specify a constraint to
validate a column such as sex, a check constraint would be the better choice to implement
it since there are a finite number of sex codes or values and they are not changed very
often. However, if you wanted to specify a constraint to validate an item number or store
number (see Example 3-22), then a BEFORE trigger could be a better choice to
implement the constraint since new items are constantly added and deleted and new
stores may be opened or closed frequently depending on the volatility or growth of the
business. In this case RI could also be used and may be a better solution.

Constraints are good for declarative comparisons, they are enforced when created and
through existing utilities.

In Example 3-21, we demonstrate equivalent constraints. One is coded as a check and the
other as a trigger. Lets assume that the values of L_ITEM_NUMBER are constantly changing.
That is, new items are often added and old items removed. In order to make these changes to
the check constraint, you would have to drop the check constraint and alter the table to
re-add it. This causes the table to be in check pending status (with CURRENT RULES =
’DB2’) until the check utility completes and the table will be unavailable to the application
causing an outage. If high online availability is important, and you can afford the extra cost of
processing a trigger, then the trigger is a better choice.

Example 3-21 Check constraint is better than a trigger

CREATE TRIGGER SC246300.SEXCNST
NO CASCADE BEFORE INSERT ON SC246300.TBEMPLOYEE
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
Chapter 3. Triggers 39

WHEN (N.SEX NOT IN('M','F'))
SIGNAL SQLSTATE 'ERRSX' ('SEX MUST BE EITHER M OR F')

CREATE TRIGGER SC246300.SEXCNST
NO CASCADE BEFORE UPDATE ON SC246300.TBEMPLOYEE
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (N.SEX NOT IN('M','F'))

SIGNAL SQLSTATE 'ERRSX' ('SEX MUST BE EITHER M OR F')

or

ALTER TABLE SC246300.TBEMPLOYEE
ADD CHECK (SEX IN ('M','F'))

Example 3-22 Trigger is better than a check constraint

CREATE TRIGGER SC246300.ITEMNMBR
NO CASCADE BEFORE INSERT ON SC246300.TBLINEITEM
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (N.L_ITEM_NUMBER NOT IN (1, 5, 6, 9996,9998,10000))
 SIGNAL SQLSTATE 'ERR30' ('ITEM NUMBER DOES NOT EXIST')

CREATE TRIGGER SC246300.ITEMNMBR
NO CASCADE BEFORE UPDATE ON SC246300.TBLINEITEM
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (N.L_ITEM_NUMBER NOT IN (1, 5, 6, 9996,9998,10000))
 SIGNAL SQLSTATE 'ERR30' ('ITEM NUMBER DOES NOT EXIST')

or

ALTER TABLE SC246300.TBLINEITEM
ADD CHECK (L_ITEM_NUMBER IN (1, 5, 6, 9996,9998,10000))

In Example 3-23, we show another way that the trigger in Example 3-22 can be coded. This
example is more flexible since there is no need to update the trigger with new values but
merely to insert the new values in a table called TBITEMS. This could also be accomplished
more efficiently with RI because a foreign key causes less overhead and guarantees the
consistency when using utilities (the trigger is only enforced in an online LOAD RESUME
utility). However, a foreign key must reference a unique key and a trigger does not have that
requirement. The trigger can return a customized error message.

Example 3-23 Alternative trigger

CREATE TRIGGER SC246300.ITEMNMB2
NO CASCADE BEFORE INSERT ON SC246300.TBLINEITEM
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (N.L_ITEM_NUMBER NOT IN

(SELECT ITEM_NUMBER FROM SC246300.TBITEMS
WHERE N.L_ITEM_NUMBER = ITEM_NUMBER)

SIGNAL SQLSTATE 'ERR30' ('ITEM NUMBER DOES NOT EXIST')
40 DB2 for z/OS Application Programming Topics

3.21 Useful queries
In Example 3-24, we provide a query that can be used to identify all the triggers defined for a
particular table and shows the order in which the triggers are executed. The column TEXT
contains the entire DDL used to create the trigger. If you are using SPUFI, you may have to
modify the column width default to be able to view the entire content of the column TEXT.

Example 3-24 Identify all triggers for a table

SELECT SCHEMA
,NAME
,CASE WHEN TRIGTIME = 'B' THEN 'BEFORE'

WHEN TRIGTIME = 'A' THEN 'AFTER'
ELSE ' '

 END AS TIME
,CASE WHEN TRIGEVENT = 'I' THEN 'INSERT OF'

WHEN TRIGEVENT = 'U' THEN 'UPDATE OF'
WHEN TRIGEVENT = 'D' THEN 'DELETE OF'
ELSE ' '

 END AS EVENT
,CASE WHEN GRANULARITY = 'R' THEN 'ROW'

WHEN GRANULARITY = 'S' THEN 'STATEMENT'
ELSE ' '

 END AS GR
,REPLACE(TEXT,' ','') AS TRIGGER
--TEXT IS 3460 BYTES WIDE AND HAS A LOT OF BLANKS

FROM SYSIBM.SYSTRIGGERS
WHERE TBOWNER = 'SC246300'
AND TBNAME = 'TBORDER'

ORDER BY TRIGTIME DESC, CREATEDTS, SEQNO;

In Example 3-25, we provide a query that can be used to identify all the triggers defined for all
the tables in a particular database and the order in which the triggers are executed.

Example 3-25 Identify all triggers for a database

SELECT TBOWNER
 , TBNAME
 , SCHEMA
 , T. NAME
 , CASE WHEN TRIGTIME = 'B' THEN 'BEFORE'
 WHEN TRIGTIME = 'A' THEN 'AFTER'
 ELSE ' '
 END AS TIME
 , CASE WHEN TRIGEVENT = 'I' THEN 'INSERT OF'
 WHEN TRIGEVENT = 'U' THEN 'UPDATE OF'
 WHEN TRIGEVENT = 'D' THEN 'DELETE OF'
 ELSE ' '
 END AS EVENT
 , CASE WHEN GRANULARITY = 'R' THEN 'ROW'
 WHEN GRANULARITY = 'S' THEN 'STATEMENT'
 ELSE ' '
 END AS GR
 , REPLACE(TEXT,' ','') AS TRIGGER
 --TEXT IS 3460 BYTES WIDE AND HAS LOT OF BLANKS
Chapter 3. Triggers 41

FROM SYSIBM.SYSTRIGGERS T, SYSIBM.SYSDATABASE D
WHERE D.NAME = 'DB246300'
 AND T.DBID = D.DBID
ORDER BY TBOWNER, TBNAME, TRIGTIME DESC, T.CREATEDTS, SEQNO;

3.22 Trigger restrictions
Triggers cannot be created on a view, temporary table, catalog table, auxiliary table, alias, or
synonym.

No program code other than calls to stored procedures or user-defined functions are allowed
in the body of a trigger.

Three-part names cannot be used within the body of a trigger. However, a trigger can call a
stored procedure or UDF that can access or change data on a remote system.

The maximum number of triggers, stored procedures, and user-defined functions that an SQL
statement can implicitly or explicitly reference is 16 nesting levels. If you attempt to go beyond
the 16 nesting levels, your application program receives an SQLCODE = -724.

The LOAD Utility does not cause triggers to get activated. Online LOAD RESUME does
activate the triggers.

Triggers can be activated by UPDATE, INSERT, and DELETE operations but not by SELECT
operations.
42 DB2 for z/OS Application Programming Topics

Chapter 4. User-defined distinct types (UDT)

User-defined distinct types (UDTs) allow you to define data types to DB2 based on the built-in
data types (like CHAR, VARCHAR, DECIMAL, INTEGER and SMALLINT). By allowing the
installation to define data types to DB2, code to enforce data typing is not required within the
application.

User-defined distinct types are also used in object-oriented systems for strong typing,
because the distinct type reflects the use of the data that is required and/or allowed. Strong
typing is especially valuable for ad-hoc access to data. The user taking advantage of a query
tool might attempt to compare such things as “euros” and “pesetas” without realizing his or
her error. DB2 can now prevent such comparisons through the implementation of UDTs.

4

© Copyright IBM Corp. 2001 43

4.1 Introduction
A distinct type is based (sourced) on an existing built-in data type.

Once a distinct type is defined, column definitions can reference that type when tables are
created or altered. A UDT is a schema object. If a distinct type is referenced without a
schema name, the distinct type is resolved by searching the schemas in the CURRENT
PATH.

Each column in a table has a specific data type which determines the column's data
representation and the operations that are allowed on that column. DB2 supports a number of
built-in data types, for example, INTEGER and CHARACTER. In building a database, you
might decide to use one of the built-in data types in a specialized way; for example, you might
use the INTEGER data type to represent ages, or the DECIMAL(8,2) data type to represent
amounts of money. When you do this, you might have certain rules in mind about the kinds of
operations that make sense on your data. For example, it makes sense to add or subtract two
amounts of money, but it might not make sense to multiply two amounts of money, and it
almost certainly makes no sense to add or compare an age to an amount of money.

UDTs provide a way for you to declare such specialized usages of data types and the rules
that go with them. DB2 enforces the rules, by performing only the kinds of computations and
comparisons that you have declared to be reasonable for your data. You have to define the
operations that are allowed on the UDT. In other words, DB2 guarantees the type-safety of
your queries.

4.2 Creating distinct data types
The way to declare a specialized use of data is to create a new data type of your own, called
a user-defined distinct type (UDT), to supplement DB2's built-in data types. UDTs are defined
with the CREATE DISTINCT TYPE DDL statement. The distinct-type-name is a two-part
name which must be unique within the DB2 subsystem. The qualifier is a schema name.

The owner of the distinct type is determined in a similar way to other DDL. The owner is given
the USAGE privilege on the distinct type, and the EXECUTE privilege on each of the
generated CAST functions, with the GRANT option. (CAST functions are discussed in more
detail in 4.3, “CAST functions” on page 45.)

The distinct type shares a common internal representation with one of the built-in data types,
called its source data type. This is also known as the distinct type is sourced on a built-in data
type. Despite this common representation, the distinct type is considered to be a separate
data type, distinct from all others (hence the name).

In Example 4-1, we show three user-defined distinct types: two UDTs are based on the
built-in data type DECIMAL and are intended to represent monetary values in European
euros and in Spanish pesetas; the other is based on the built-in data type CHARACTER and
is created for customer identification.

Example 4-1 Sample DDL to create UDTs

CREATE DISTINCT TYPE SC246300.PESETA
AS DECIMAL(18,0)

Note: You cannot specify LONG VARCHAR or LONG VARGRAPHIC as the source type of
a distinct type.
44 DB2 for z/OS Application Programming Topics

WITH COMPARISONS ;

CREATE DISTINCT TYPE SC246300.EURO
AS DECIMAL(17,2)
WITH COMPARISONS ;

CREATE DISTINCT TYPE SC246300.CUSTOMER
AS CHAR(11)
WITH COMPARISONS ;

An instance of a distinct type is considered comparable only with another instance of the
same distinct type. The WITH COMPARISONS clause serves as a reminder that instances of
the new distinct type can be compared with each other, using any of the comparison
operators. (For a list of comparison operators allowed on UDTs, see Figure 4-1 on page 49.)
This clause is required if the source data type is not a large object data type. If the source
data type is BLOB, CLOB, or DBCLOB, the phrase is tolerated with a warning message
(SQLCODE +599, SQLSTATE 01596), even though comparisons are not supported for these
source data types.

4.3 CAST functions
One of the characteristics of a UDT is that they enforce strong typing. This implies that
columns that are defined with that distinct type can only be compared to other columns using
the same distinct type. You can only compare EURO columns to other EURO columns for
example. This is even true when comparing the distinct type (EURO) to its built-in type
(DECIMAL(17,2)).

In order to enable you to convert between the built-in data type and a distinct type in both
directions, CAST functions are used. These CAST functions are automatically generated
because we specified the WITH COMPARISONS clause on the CREATE DISTINCT TYPE
SQL statements.

In Example 4-2, we show the equivalent of the CAST functions that are automatically
generated from the creates performed in Example 4-1. The CAST function to convert from the
source data type to the distinct data type has the same name as the UDT (in this case
PESETA and EURO). The CAST function to convert from the UDT to the source data type will
have the same name as the source data type (in this case DECIMAL).

Example 4-2 Automatically generated CAST functions

-- Function PESETA(DECIMAL) returns a PESETA type
CREATE FUNCTION SC246300.PESETA(DECIMAL(18,0)) RETURNS SC246300.PESETA

SOURCE SYSIBM.DECIMAL(DECIMAL(18,0)) ;

-- Function DECIMAL(PESETA) returns a DECIMAL type
CREATE FUNCTION SC246300.DECIMAL(PESETA) RETURNS SYSIBM.DECIMAL

SOURCE SYSIBM.DECIMAL(DECIMAL(18,0)) ;

Note: Do not specify WITH COMPARISONS for sourced-data-types that are BLOBS,
CLOBs, or DBCLOBs. The WITH COMPARISONS clause is required for all other
source-data-types.
Chapter 4. User-defined distinct types (UDT) 45

-- Function EURO(DECIMAL) returns a EURO type
CREATE FUNCTION SC246300.EURO(DECIMAL(17,2)) RETURNS SC246300.EURO

SOURCE SYSIBM.DECIMAL(DECIMAL(17,2)) ;

-- Function DECIMAL(EURO) returns a DECIMAL type
CREATE FUNCTION SC246300.DECIMAL(EURO) RETURNS SYSIBM.EURO

SOURCE SYSIBM.DECIMAL(DECIMAL(17,2)) ;

-- Function CUSTOMER(CHAR) returns a CUSTOMER type
CREATE FUNCTION SC246300.CUSTOMER(CHAR(11)) RETURNS SC246300.CUSTOMER

SOURCE SYSIBM.CHAR(CHAR(11)) ;

-- Function CHAR(CUSTOMER) returns a PESETA type
CREATE FUNCTION SC246300.CHAR(CUSTOMER) RETURNS SYSIBM.CHAR

SOURCE SYSIBM.CHAR(CHAR(11)) ;

CAST functions are also used to convert a data type to use a different length, precision or
scale. This is explained in more detail in Section 4.5, “Using CAST functions” on page 48.

4.4 Privileges required to work with UDTs
Now that the distinct types have been defined you can start using them. In Example 4-3, we
create a table TBCONTRACTS using the UDTs we created in Example 4-1. The column
PESETAFEE has a distinct type of PESETA and column EUROFEE has a distinct type of
EURO. The column BUYER uses the CUSTOMER UDT.

Example 4-3 Create table using several UDTs

SET CURRENT PATH = ‘SC246300’;
-- Current Path is needed to find the PESETA
-- and EURO UDTs because the UDTs where created
-- for schema SC246300.
-- You can also use full UDT name SC246300.udt

CREATE TABLE SC246300.TBCONTRACT
 (
 SELLER CHAR (6) NOT NULL ,
 BUYER CUSTOMER NOT NULL ,
 RECNO CHAR(15) NOT NULL ,
 PESETAFEE SC246300.PESETA ,

PESETACOMM PESETA ,
 EUROFEE SC246300.EURO ,

EUROCOMM EURO ,
CONTRDATE DATE,

 CLAUSE VARCHAR(500) NOT NULL WITH DEFAULT,
 FOREIGN KEY (BUYER) REFERENCES SC246300.TBCUSTOMER,
 FOREIGN KEY (SELLER) REFERENCES SC246300.TBEMPLOYEE
)
 IN DB246300.TS246308
 WITH RESTRICT ON DROP;

In order to be allowed to reference a distinct type in a DDL statement, you need to have the
proper authorizations.
46 DB2 for z/OS Application Programming Topics

The GRANT USAGE ON DISTINCT TYPE statement is used to grant users the privilege to:

� Use a UDT as a column data type (that is, in a CREATE or ALTER TABLE statement)

� Use a UDT as a parameter of a stored procedure or user-defined functions (that is, in a
CREATE PROCEDURE or CREATE FUNCTION statement)

The GRANT EXECUTE ON statement allows users to use CAST functions on a UDT.

Both the USAGE and EXECUTE privileges can be revoked. In Example 4-4, we show a few
typical grants.

Example 4-4 GRANT USAGE/ EXECUTE ON DISTINCT TYPE

GRANT USAGE ON DISTINCT TYPE SC246300.EURO TO PUBLIC#

GRANT EXECUTE ON FUNCTION SC246300.EURO(DECIMAL) TO PUBLIC#

GRANT EXECUTE ON FUNCTION SC246300.DECIMAL(EURO) TO PUBLIC#

In Example 4-5, we show the use of the DROP and COMMENT ON statements for distinct
types. The DATA keyword can be used as a synonym for DISTINCT.

The RESTRICT clause on the DROP statement, must be specified when dropping a distinct
type. This clause restricts (prevents) dropping a distinct type if one of the dependencies
below exist:

� A column of a table is defined as this distinct type

� A parameter or return value of a user-defined function or stored procedure is defined as
this distinct type.

� This distinct type's CAST functions are used in:

– A view definition
– A trigger definition
– A check constraint on CREATE or ALTER table
– A default clause on CREATE or ALTER table

If the distinct type can be dropped, DB2 also drop the CAST functions that were generated for
the distinct type. However, if you have created additional functions to support the distinct type
(second bullet above), you have to drop them first before dropping the UDT.

Use COMMENT ON to document what the distinct data type is to be used for.

Example 4-5 DROP and COMMENT ON for UDTs

SET CURRENT PATH = ‘SC246300’;

COMMENT ON {DISTINCT/DATA} TYPE EURO IS string-constant;

DROP {DISTINCT/DATA} TYPE EURO RESTRICT;
Chapter 4. User-defined distinct types (UDT) 47

4.5 Using CAST functions
There are many occasions where a value with a given data type needs to be casted to a
different data type or to the same data type with a different length, precision or scale. One
example is specifying a comparison in the WHERE clause when a UDT is involved.

Suppose you want to know which contracts are more than 100000 euro. Literals are always
considered to be source-type values and therefore the query in Example 4-6 will fail.

Example 4-6 Strong typing and invalid comparisons

SET CURRENT PATH = ‘SC246300’;

SELECT RECNO, BUYER, SELLER
FROM SC246300.TBCONTRACT
WHERE EUROFEE > 100000.00;

DSNT408I SQLCODE = -401, ERROR: THE OPERANDS OF AN ARITHMETIC OR COMPARISON
OPERATION ARE NOT COMPARABLE

DSNT418I SQLSTATE = 42818 SQLSTATE RETURN CODE

Because you cannot compare data of type EURO (the EUROFEE column is defined as a
EURO distinct type) with data of the source type of EURO (that is, DECIMAL) directly, you
must use the CAST function to cast data from DECIMAL to EURO. You can also use the
DECIMAL function, to cast from EURO to DECIMAL.
Either way you decide to cast, from or to the UDT, you can use:

� The function name notation, data-type(argument) or
� The cast notation, CAST(argument AS data-type)

An example of both is shown in Example 4-7.

In fact, the EURO CAST function can be invoked on any data type that can be promoted to
the DECIMAL data type by the rules of data type promotion. More details on data type
promotion can be found in the DB2 UDB for OS/390 and z/OS Version 7 SQL Reference,
SC26-9944.

Example 4-7 Two casting methods

SET CURRENT PATH = ‘SC246300’;

SELECT RECNO, BUYER, SELLER
FROM SC246300.TBCONTRACT
WHERE EUROFEE > EURO (100000.00)

-- Function name notation

SELECT RECNO, BUYER, SELLER
FROM SC246300.TBCONTRACT

 WHERE EUROFEE > CAST (100000.00 AS EURO)
-- CAST notation
48 DB2 for z/OS Application Programming Topics

4.6 Operations allowed on distinct types
When a distinct type is created (WITH COMPARISONS), the only operations that are
automatically allowed on it are casting between the distinct type and its source type (in both
directions), and comparisons between two values of the distinct type (provided the source
type is not a large object data type).
The comparison operators that can be used with a distinct data type are shown in Figure 4-1.

Other operators and functions that might apply to the source type, such as arithmetic
operators, are not automatically inherited by the distinct type.

Figure 4-1 Comparison operators allowed on UDTs created WITH COMPARISONS

4.6.1 Extending operations allowed in UDTs
DB2 supports 5 built-in operators to build up expressions (CONCAT (or ||), /, *, +, and -). In
order to understand the behavior of a distinct type, it is important to realize that DB2 treats
these operators as functions that operate on the built-in data types. For example, the
expression col1 + col2 can be seen as an invocation of the function "+" (col1,col2). Arithmetic
and character operators and built-in functions that apply to the source type are not
automatically inherited by the distinct type. Because of this, these operators can only be used
by distinct types if they are defined as functions on the distinct types. These operators and
functions need to be created explicitly.

Defining sourced functions on UDTs
The built-in data types come with a collection of built-in functions that operate on them.
Some of these functions implement operators such as the arithmetic operators on numeric
data types and the concatenate operator on string data types. Other built-in functions include
scalar functions, such as LENGTH and SUBSTR, and column functions, such as SUM and
AVG.

Note: The LIKE and NOT LIKE comparison operators are not supported for UDTs.

BETWEEN
IS NULL
IN
NOT BETWEEN
IS NOT NULL
NOT IN

=
<
>
>=
<=
<>
¬=
¬<
¬>

Note: It is possible to invoke a function on a UDT instance that is allowed on its source
data type even though that function has not been defined on the UDT. To do this, you
must first cast the UDT instance to its source data type.
Chapter 4. User-defined distinct types (UDT) 49

After creating a distinct type, you can specify that the distinct type inherits some or all of the
functions that operate on its source type. This is done by creating new functions, called
sourced functions, that operate on the distinct type and duplicate the semantics of built-in
functions that operate on the source type.

For example, you might specify that your distinct type WEIGHT inherits the arithmetic
operators “+” and “-”, and the column functions SUM and AVG, from its source type FLOAT.
By selectively inheriting the semantics of the source type, you can make sure that programs
do not perform operations that make no sense, such as multiplying two weights, even though
the underlying source type supports multiplication.

Table SC246300.TBCONTRACT has columns EUROFEE and EUROCOMM defined with
distinct type EURO, and columns PESETAFEE and PESETACOMM defined with distinct type
PESETA. The first query shown in Example 4-8 is invalid because there is no "+" function
defined on distinct type EURO nor PESETA. However, the "+" function can be defined for
EURO and PESETA by sourcing it on the built-in "+" function for DECIMAL as shown in the
CREATE statement.

Example 4-8 Using sourced functions

SET CURRENT PATH = ‘SC246300’;

SELECT BUYER, SELLER, RECNO, EUROFEE + EUROCOMM, PESETAFEE + PESETACOMM
 FROM SC246300.TBCONTRACT

WHERE SELLER LIKE ‘A%’
-- This is an invalid query because
-- the sourced function ‘+’ has not
-- been defined on UDT EURO.

CREATE FUNCTION SC246300.”+” (EURO,EURO)
RETURNS EURO
SOURCE SYSIBM.”+” (DECIMAL(17,2),DECIMAL(17,2))

SELECT BUYER, SELLER, RECNO, EUROFEE + EUROCOMM, PESETAFEE + PESETACOMM
 FROM SC246300.TBCONTRACT

WHERE SELLER LIKE ‘A%’
-- This is still an invalid query because
-- the sourced function “+“ has not
-- been defined on UDT PESETA

CREATE FUNCTION SC246300.”+” (PESETA,PESETA)
RETURNS PESETA
SOURCE SYSIBM.”+” (DECIMAL(18,0),DECIMAL(18,0));

SELECT BUYER, SELLER, RECNO, EUROFEE + EUROCOMM, PESETAFEE + PESETACOMM
 FROM SC246300.TBCONTRACT

WHERE SELLER LIKE ‘A%’
-- This is a valid query now that
-- functions “+” has been defined on
-- UDTs EURO and PESETA

Example 4-9 uses the SUM and AVG column sourced functions.

Example 4-9 Defining sourced column sourced functions on UDTs

SET CURRENT PATH = ‘SC246300’;
50 DB2 for z/OS Application Programming Topics

SELECT SELLER, SUM(PESETAFEE), AVG(PESETAFEE)
 FROM SC246300.TBCONTRACT

GROUP BY SELLER ;
-- This is an invalid query because
-- the sourced column function SUM has not
-- been defined on UDT PESETA.

CREATE FUNCTION SC246300.SUM(PESETA)
RETURNS PESETA
SOURCE SYSIBM.SUM(DECIMAL(18,0)) ;

SELECT SELLER, SUM(PESETAFEE), AVG(PESETAFEE)
 FROM SC246300.TBCONTRACT

GROUP BY SELLER ;
-- This is still an invalid query because
-- the sourced column function AVG has not
-- been defined on UDT PESETA.

CREATE FUNCTION SC246300.AVG(PESETA)
RETURNS PESETA
SOURCE SYSIBM.AVG(DECIMAL(18,0)) ;

SELECT SELLER, SUM(PESETAFEE), AVG(PESETAFEE)
 FROM SC246300.TBCONTRACT

GROUP BY SELLER ;
-- This is now a valid query

Defining external functions on UDTs
You can also go beyond mere inheritance of source-type functions and give your distinct type
semantics of its own. This is done by creating external functions, written in a host
programming language, that operate on your distinct type.

The two columns in Example 4-10 cannot be directly compared and the query fails with an
SQLCODE -401. This prevents you from making the mistake of directly comparing or
performing arithmetic operations with columns of different currency types.

Example 4-10 Strong typing and invalid comparisons

SET CURRENT PATH = ‘SC246300’;

SELECT CUSTOMERNO, BUYER
FROM SC246301.TBCONTRACT
WHERE PESETAFEE > EUROFEE;

DSNT408I SQLCODE = -401, ERROR: THE OPERANDS OF AN ARITHMETIC OR COMPARISON
OPERATION ARE NOT COMPARABLE

DSNT418I SQLSTATE = 42818 SQLSTATE RETURN CODE

In order to directly compare or perform arithmetic operations with columns of different
currency types, it is necessary to first cast the column(s) to a common data type. In
Example 4-11, show how the WHERE clause of the query in Example 4-10 can be re-coded
in order to be able to compare pesetas to euros. The example converts EUROFEE to its
Chapter 4. User-defined distinct types (UDT) 51

source data type (DECIMAL) using the automatically generated CAST function DECIMAL,
then multiplies it by 166 (the current monetary conversion factor to convert from euros to
pesetas), and finally this result is casted to pesetas with the PESETA function and compared
with the column PESETAFEE which is a PESETA distinct type column.

Example 4-11 Comparing pesetas and euros

SET CURRENT PATH = ‘SC246300’;

SELECT CUSTOMERNO, BUYER
FROM SC246301.TBCONTRACT
WHERE PESETAFEE = PESETA((DECIMAL(EUROFEE))*166)

Example 4-12 accomplished the same thing than Example 4-11, but we have placed the
conversion factor (multiplication by 166) into a user-defined function called EUR2PES. For
more information on user-defined functions see Chapter 5, “User-defined functions (UDF)” on
page 57. In the additional material you can find an external UDF (EUR22PES) using a Cobol
program to implement the same functionality. See Appendix C, “Additional material” on
page 251 for details.

Example 4-12 Another way to compare pesetas and euros

SET CURRENT PATH = ‘SC246300’;

CREATE FUNCTION SC246300.EUR2PES (X DECIMAL)
 RETURNS DECIMAL
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 NOT DETERMINISTIC
 RETURN X*166 ;

-- DB2 V7 allows to create functions
-- with LANGUAGE SQL, so it is not
-- necessary to use external code.

SELECT CUSTOMERNO, BUYER
FROM SC246301.TBCONTRACT
WHERE PESETAFEE = PESETA(EUR2PES(DECIMAL(EUROFEE)))

You can also code the UDF the following way:

CREATE FUNCTION SC246300.EUR22PES (X EURO)
 RETURNS PESETA
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 NOT DETERMINISTIC
 RETURN PESETA (DECIMAL(X) * 166) #

And refer to it as:

SELECT CUSTOMERNO, BUYER
FROM SC246301.TBCONTRACT
WHERE PESETAFEE = EUR2PES(EUROFEE)
52 DB2 for z/OS Application Programming Topics

Example 4-13 shows the use of the CAST functions EURO(DECIMAL) and
DECIMAL(PESETA) in a trigger. The trigger automatically supplies a value for the EUROFEE
column with the amount in euros when a contract is inserted in table
SC246300.TBCONTRACT with the fee in pesetas (the insert includes the PESETAFEE
column).

Example 4-13 Automatic conversion of euros

SET CURRENT PATH = ‘SC246300’;

CREATE TRIGGER SC246300.TGEURMOD
 NO CASCADE BEFORE
 INSERT ON SC246300.TBCONTRACT
 REFERENCING NEW AS N
 FOR EACH ROW MODE DB2SQL

 SET N.EUROFEE = EURO(DECIMAL(N.PESETAFEE)/166)

The use of this sort of trigger can be interesting during a conversion. Programs that have not
been converted can continue to INSERT values in pesetas into the PESETAFEE column,
whereas new programs can already use the new EUROFEE column. This way you don’t have
to change all the programs in one big operation, but have a more gradual migration.

4.7 Usage considerations
In this section we focus on some specific areas related to using distinct data types.

4.7.1 UDTs in host language programs
Application programmers need to understand that CAST functions might be required when
constants and host variables are used in SQL statements to specify instances of distinct data
types. Application programmers also need to understand how to correctly define host
variables such that they can be used in assignment operations that involve distinct data
types. (An assignment operation is the process of giving a new value to a column in a table or
to a host variable. Assignment operations can be performed during the execution of INSERT,
UPDATE, FETCH, SELECT INTO and SET statements and during function invocation.)

We recommend that you put the source type of a column in the DECLARE TABLE statement
instead of the distinct data type name. This enables the precompiler to check the embedded
SQL, otherwise checking is deferred until bind time.

Note: The EUR2PES function to convert euros to pesetas that is used here is just for
illustration purposes. The actual conversion formula is somewhat more complicated and is
probably best implemented through an external function using a regular programming
language like C, Cobol or PL/I.

Note: You probably need to implement an UPDATE trigger with similar functionality when
there is a process that can updated the PESETAFEE column.
Chapter 4. User-defined distinct types (UDT) 53

A host variable is compatible with a distinct type if the host variable type is compatible with
the source type of the distinct type. You can assign a column value of a distinct type to a host
variable if you can assign a column value of the distinct type's source type to the host
variable. In other words you should use the same definition for your host variables when
referring to a UDT than you would use when referring to its source data type.

If for example, a Cobol program needs to reference a distinct type named CUSTOMER that is
based on a CHAR(15) built-in data type, you should define the host variable as PIC X(15).

4.7.2 Using the LIKE comparison with UDTs
As mentioned in 4.6, “Operations allowed on distinct types” on page 49, you cannot use the
LIKE comparison operator on a distinct type. In order to be able to use the LIKE operator on a
column that is defined as a UDT, you have to cast it to CHAR data type. This is shown in
Example 4-14.

Example 4-14 Using LIKE on a UDT

SET CURRENT PATH = ‘SC246300’;

SELECT RECNO, BUYER, SELLER
FROM SC246300.TBCONTRACT
WHERE BUYER LIKE ‘A%’;

-- This results in:
--DSNT408I SQLCODE = -414, ERROR: A LIKE PREDICATE IS INVALID BECAUSE THE FIRST
-- OPERAND IS NOT A STRING
--DSNT418I SQLSTATE = 42824 SQLSTATE RETURN CODE

-- You have to convert the BUYER column into a type that allows for LIKE comparison

SELECT RECNO, BUYER, SELLER
FROM SC246300.TBCONTRACT
WHERE CHAR(BUYER) LIKE ‘A%’;

-- or

SELECT RECNO, BUYER, SELLER
FROM SC246300.TBCONTRACT
WHERE CAST(BUYER AS CHAR) LIKE ‘A%’;

4.7.3 UDTs and utilities
Utilities don’t understand distinct types. You should use the built-in data type (or its external
representation equivalent) when referring to a UDT in a DB2 utility statement. When loading
table SC246300.TBCONTRACT as shown in Example 4-15, you do not specify the UDTs. If
you try, the LOAD utility would fail.

Example 4-15 Loading a table with a UDT

TEMPLATE U6830982
 DSN(BART.&DB..&TS..UNLOAD)

Note: DCLGEN generates a DECLARE TABLE statement that refers to the source data
type and not the distinct type.
54 DB2 for z/OS Application Programming Topics

 DISP(OLD,CATLG,CATLG)
LOAD DATA INDDN U6830982 LOG NO RESUME YES
 EBCDIC CCSID(00037,00000,00000)
 INTO TABLE "SC246300"."TBCONTRACT "
WHEN(00001:00002 = X'0041')
("SELLER " POSITION(00003:00008) CHAR(006)
, "BUYER " POSITION(00009:00019) CHAR(011)
, "RECNO " POSITION(00020:00034) CHAR(015)
, "PESETAFEE " POSITION(00036:00045) DECIMAL
 NULLIF(00035)=X'FF'
, "PESETACOMM " POSITION(00047:00056) DECIMAL
 NULLIF(00046)=X'FF'
, "EUROFEE " POSITION(00058:00066) DECIMAL
 NULLIF(00057)=X'FF'
, "EUROCOMM " POSITION(00068:00076) DECIMAL
 NULLIF(00067)=X'FF'
, "CONTRDATE " POSITION(00078:00087) DATE EXTERNAL
 NULLIF(00077)=X'FF'
, "CLAUSE " POSITION(00088) VARCHAR
)

-- To enable you to compare, we show the table definition of TBCONTRACT hereafter

CREATE TABLE SC246300.TBCONTRACT
 (
 SELLER CHAR (6) NOT NULL ,
 BUYER CUSTOMER NOT NULL ,
 RECNO CHAR(15) NOT NULL ,
 PESETAFEE SC246300.PESETA ,
 PESETACOMM PESETA ,
 EUROFEE SC246300.EURO ,
 EUROCOMM EURO ,
 CONTRDATE DATE,
 CLAUSE VARCHAR(500) NOT NULL WITH DEFAULT,
 FOREIGN KEY (BUYER) REFERENCES SC246300.TBCUSTOMER,
 FOREIGN KEY (SELLER) REFERENCES SC246300.TBEMPLOYEE

ON DELETE CASCADE
)

 IN DB246300.TS246308
 WITH RESTRICT ON DROP;

4.7.4 Implementing UDTs in an existing environment
User distinct types can bring a lot of benefits to your organization especially the strong typing
that goes hand in hand with UDTs.

When implementing distinct types in an existing environment careful planning is required.
When you decide to change the column of an existing table to a user-defined distinct type,
you have to make sure that all programs and ad-hoc queries that reference that column are
changed accordingly (using the proper CAST functions and UDFs). You also have to make
sure that if this column is part of an RI structure, that the other tables referencing the column
you are trying to change to a UDT, are also changed. For more on RI and UDTs, see 4.7.5,
“Miscellaneous considerations” on page 56.
Chapter 4. User-defined distinct types (UDT) 55

4.7.5 Miscellaneous considerations
An application requestor can only issue SQL statements that reference columns defined with
a distinct data type if the DRDA protocol is used.

You can define RI relationships on columns that are defined with a distinct type. However,
both the parent’s primary key column(s) must have the same data (distinct) type as the
foreign key’s. For example, a foreign key on a column (BUYER) that is defined with a data
type of CUSTOMER in TBCONTRACT, can reference the primary key column (CUSTID) in
the TBCUSTOMER table, because the primary key is also defined as a CUSTOMER distinct
type. If they don’t have a matching data type, you receive the following SQL error:

SQLCODE = -538, ERROR: FOREIGN KEY BUYERFK DOES NOT CONFORM TO THE DESCRIPTION OF A
PARENT KEY OF TABLE SC246300.TBCUSTOMER
SQLSTATE = 42830 SQLSTATE RETURN CODE

You cannot create a declared temporary table that contains a user distinct type. It is not
supported and you receive the following error:

DSNT408I SQLCODE = -607, ERROR: OPERATION OR OPTION USER DEFINED DATA TYPE IS NOT
DEFINED FOR THIS OBJECT
DSNT418I SQLSTATE = 42832 SQLSTATE RETURN CODE

A field procedure can be defined on a distinct data type column. The source type of the
distinct data type must be a short string column that has a null default value. When the field
procedure is invoked, the value of the column is casted to its source type and then passed to
the field procedure.

Also be aware that are indexable predicates:

WHERE BUYER = CAST ('ANNE' AS CUSTOMER) and
WHERE CHAR(BUYER) = 'ANNE'#

4.8 UDTs in the catalog
In Table 4-1, we see the changes made to the DB2 catalog to support UDTs.

Table 4-1 Catalog changes to support UDTs

Catalog Table Contents

SYSIBM.SYSDATATYPES one row for each distinct type

SYSIBM.SYSROUTINES one row for each CAST function

SYSIBM.SYSROUTINEAUTH records privileges held by users on CAST
functions

SYSIBM.SYSRESAUTH new value added to OBTYPE for distinct
type USAGE privilege
56 DB2 for z/OS Application Programming Topics

Chapter 5. User-defined functions (UDF)

The number of built-in functions increased considerably in Version 6 and Version 7 over
previous releases. There are now over 90 different functions that perform a wide range of
string, date, time, and timestamp manipulations, data type conversions, and arithmetic
calculations.

In some cases even this large number of built-in functions does not fit all needs. Therefore,
DB2 allows you to write your own user-defined functions (UDF) that call an external program.
This extends the functionality of SQL to whatever you can code in an application program;
essentially, there are no limits.

In this section, we discuss the different sorts of user-defined functions and how to use them.

5

© Copyright IBM Corp. 2001 57

5.1 Terminology overview
Before we head out to explore user-defined functions we first discuss some general
characteristics and types of functions available in DB2 for z/OS.

There are different ways to categorize functions. You can classify them as:

Built-in functions Built-in functions are so-called because they are built into
DB2's system code. Examples of built-in functions are
CHAR and AVG.
These functions now reside in the SYSIBM schema.
For more details on built-in functions see Chapter 6,
“Built-in functions” on page 71.

User-defined functions UDFs allow you to write your own functions for the usage
in SQL statements. They reside in the schema you create
them in.

Another way to categorize them is by the type of arguments they use as input and the number
of arguments they return as output:

Scalar functions A scalar function is an SQL operation that returns a single
value from another value or set of values, and is expressed
as a function name, followed by a list of arguments that are
enclosed in parentheses. Each argument of a scalar
function is a single value. Examples of scalar functions are
CHAR, DATE, and SUBSTR.

Column functions A column function is an SQL operation that produces a
single value from the values of a single column (or a
subset thereof). As with scalar functions, column functions
also return a single value. However, the argument of a
column function is a set of like values. Examples of column
functions are: AVG, COUNT, MAX, MIN and SUM.

Table functions A table function is a function that returns a table to the SQL
statement that references it. A table function can be
referenced only in the FROM clause of a SELECT
statement. In general, the returned table can be referenced
in exactly the same way as any other table. Table functions
are useful for performing SQL operations on non-DB2 data
or moving non-DB2 data into a DB2 table.

Arithmetic and string operators These are the traditional operators that are allowed on
columns (depending on their data type). They can also be
thought of as functions. Arithmetic and string operators
are: “+”, ”-”, “*”, “/”, CONCAT and “||”.

When discussing user-defined functions, you can classify those as:

External Are based on programs written by you, and may be written
in any of the programming languages supported by the
target database management system.
DB2 V7 even allows you to build external functions using
SQL. These are SQL functions. You can only define scalar
functions this way.

Internal/sourced Are based on existing built-in functions or existing
user-defined functions that are already known to DB2.
Their primary purpose is to extend existing functions (for
example, the AVG function or the LENGTH function) for the
58 DB2 for z/OS Application Programming Topics

source data type to a newly created user-defined distinct
type.

The following Table 5-1shows the different combinations of function types that are allowed:

Table 5-1 Allowable combinations of function types

5.2 Definition of a UDF
User-Defined Functions (UDFs) allow you to write your own functions for the usage in SQL
statements. The user-defined functions provided by you can be used in Data Manipulation
Language (DML) statements or Data Definition Language (DDL) statements. When creating a
UDF, you can either create your own source code (external function) or use another function
as the source (sourced function).

When writing external UDFs, the functions have to follow certain conventions concerning the
passing and returning of arguments, but you can do pretty much what you want. If this
program contains SQL statements then there is an associated package that contains the
program's bound SQL statements.

When you source a UDF on another function, that function can be either a built-in function or
another UDF.

5.3 The need for user-defined functions
A user-defined function is a mechanism by which you can write your own extensions to the
SQL language. The built-in functions supplied with DB2 are a useful set of functions, but they
might not satisfy all of your requirements. You might need to extend the SQL language for the
following reasons:

� Customization - The function specific to your application does not exist in DB2. Whether
the function is a simple transformation, a trivial calculation, or a complicated analysis, you
can probably use a UDF to do the job.

� Flexibility - The DB2 built-in function does not quite permit the variations that you wish to
include in your application.

� Standardization - Many of the programs at your site implement the same basic set of
functions, but there are minor differences in all the implementations. Thus, you are unsure
about the consistency of the results you receive. If you correctly implement these
functions once, in a UDF, then all these programs can use the same implementation
directly in SQL and provide consistent results.

� Object-relational support - UDTs can be very useful in extending the capability and
enforcing consistent use of the data in your DB2 system. UDFs act as the methods for
UDTs by providing consistent behavior and encapsulating the types. More information can
be found in Chapter 4, “User-defined distinct types (UDT)” on page 43.

� Migration from other DBMS systems - When you are migrating from another DBMS to DB2
it is not unlikely that the DBMS you are migrating from has some functions built into it that

Scalar Column Table Arithmetic

Built-in function OK OK N/A OK

UDF External OK N/A OK N/A

Sourced OK OK N/A OK
Chapter 5. User-defined functions (UDF) 59

DB2 does not have or have a different name. You can make up for this by creating your
own UDF to implement the function from the other DBMS in your DB2 system.

� UDFs and UDTs can also be exploited by software developers who write specialized
applications. The software developer can provide UDTs and UDFs as part of their software
package. This approach is used in the family of DB2 Extender products.

� Simplifying SQL syntax - With a UDF you can encapsulate the logic of having to write a
complex expression into a UDF. Replacing a complex expression by a UDF improves
readability of the SQL statement. It can also avoid coding errors as you can easy make a
mistake when repeatedly coding the same complex expressions.

5.4 Implementation and maintenance of UDFs
User-defined functions are extensions or additions to the built-in functions of the SQL
language. UDFs are defined to DB2 using the CREATE FUNCTION statement. A
user-defined function (external or sourced) can be either a:

� Scalar function
� Column function
� Table function

You can overload functions. You can define multiple functions with the same name as long as
the signatures of the various functions are different. This means that the data type of at least
one parameter or the number of parameters must be different. Based on the data types of the
arguments passed, the database management system is capable of selecting the proper
function.

A user-defined function is invoked by specifying its function name followed by parentheses
enclosing the input arguments to the function; function-name(argument-1, argument-2, ..).

5.4.1 Scalar functions
A scalar function is an SQL operation that produces a single value from another value or set
of values and is expressed as a function name, followed by a list of arguments that are
enclosed in parentheses

The number of different business applications using DB2 as a database manager is wide and
varied, and the number continues to grow. This diverse usage places demands on the
database to support a wide variety of scalar functions.

Example 5-1 creates an SQL scalar function (available in V7) that returns size of the surface
area of a circle based on its radius.

Example 5-1 Example of an SQL scalar function

CREATE FUNCTION AREA_CIRCLE (X DOUBLE)
 RETURNS DOUBLE
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN X*X* 3.1415926 #
SELECT AREA_CIRCLE (3) FROM SYSIBM.SYSDUMMY1 # -- Test

Tip: External functions can be either scalar functions or table functions, they cannot be
column functions.
60 DB2 for z/OS Application Programming Topics

 +0.2827433340000000E+02

Another example of an SQL scalar UDF can be found in Example 4-12 on page 52.

Example 5-2 demonstrates the definition and use of a user-defined scalar function called
CALC_BONUS. The CALC_BONUS function is defined to DB2 by using the CREATE
FUNCTION statement which associates the function with a user-written C program called
CBONUS. The function calculates the bonus for each employee based upon the employee's
salary and commission. The function takes two input parameters (both DECIMAL(9,2)) and
returns a result of DECIMAL(9,2). Note that a scalar function can only return one value. The
external name 'CBONUS' identifies the name of the load module containing the code for the
function.

A user-defined scalar function can be referenced in the same context that built-in functions
can be referenced; that is, wherever an expression can be used in a SELECT, INSERT,
UPDATE or DELETE statement. User-defined scalar functions can also be referenced in
CALL, VALUES and SET statements. The UPDATE statement in Example 5-2 shows how to
use the CALC_BONUS function.

Example 5-2 User-defined external scalar function

CREATE FUNCTION CALC_BONUS (DECIMAL(9,2),DECIMAL(9,2))
 RETURNS DECIMAL(9,2)
 EXTERNAL NAME 'CBONUS'
 LANGUAGE C

Function Program pseudo code:
cbonus (salary,comm,bonus)

bonus=(salary+comm)*.10
return

UPDATE SC246300.EMPLOYEE
 SET BONUS = CALC_BONUS (SALARY,COMM)

5.4.2 Column functions
A column function is an SQL operation that uses the values of a single column (or a subset
thereof from the result set of an SQL statement) and returns a single value which generally is
derived from the values of the column.

Example 5-3 shows the creation of a column function used to be able to calculate the
minimum value in a PESETA UDT column.

Example 5-3 Sourced column function

SET CURRENT PATH = ‘SC246300’;

CREATE FUNCTION SC246300.MIN(PESETA)
RETURNS PESETA
SOURCE SYSIBM.MIN(DECIMAL(18,0)) ;

See also Example 4-9 on page 50.
Chapter 5. User-defined functions (UDF) 61

User-defined column functions can be referenced wherever a built-in column function can be
used in a SELECT, INSERT, UPDATE or DELETE statement. The ALL or DISTINCT
keywords can only be specified for a built-in or user-defined column function. Transition
tables cannot be passed to user-defined column functions.

User-defined column functions can only be created based on a DB2 built-in column function;
you cannot create your own programs to do that.

5.4.3 Table functions
A user-defined table function is a function that returns a table to the SQL statement that
references it. A user-defined table function can be referenced only in the FROM clause of a
SELECT statement. In general, the returned table can be referenced in exactly the same way
as any other table. Table functions are useful for performing SQL operations on non-DB2 data
or moving non-DB2 data into a DB2 table.

Example 5-4 demonstrates the definition and use of a user-defined table function called
EXCH_RATES. This function is written in Cobol and returns exchange rate information for
various currencies. The function takes no input parameters but returns a table of 3 columns.
The external name 'EXCHRATE' identifies the name of the load module that contains the
code for the function. The SELECT statement in the example shows how the EXCH_RATES
function is invoked. In the additional material you can find sample coding showing how to
implement this table UDF. See Appendix C, “Additional material” on page 251 for details.

Table UDFs can be helpful when the actual data that is returned in the table is coming from an
external resource (non-DB2 resource). In our example, currency exchange rates change
constantly and our financial analyst wants to have the latest numbers when simulating his
investment model. Since his model uses ad-hoc queries instead of regular programs, we
cannot use a stored procedure to obtain the information, because you cannot use a CALL
statement outside a program. By using a table UDF, you can provide a result table to the user.
Inside the program that is actually invoked by the UDF, you code pretty much the same things
that you would have when using a stored procedure. To keep our example simple, we obtain
the information from a sequential file. In real life you will probably connect to an external
system to obtain the exchange rate information.

Example 5-4 User-defined table function

CREATE FUNCTION
 SC246300.EXCH_RATES()
 RETURNS
 TABLE(
 CURRENCY_FROM CHAR(30) CCSID EBCDIC,
 CURRENCY_TO CHAR(30) CCSID EBCDIC,
 EXCHANGE_RATE DECIMAL (12,4)
)
 LANGUAGE COBOL
 NOT DETERMINISTIC
 NO SQL
 EXTERNAL NAME EXCHRATE
 PARAMETER STYLE DB2SQL
 CALLED ON NULL INPUT
 EXTERNAL ACTION
 SCRATCHPAD
 FINAL CALL
 DISALLOW PARALLEL
 NO COLLID
 ASUTIME LIMIT 5
62 DB2 for z/OS Application Programming Topics

 STAY RESIDENT NO
 PROGRAM TYPE SUB
 WLM ENVIRONMENT V7PERF
 SECURITY DB2
 NO DBINFO ;

 SELECT *
 FROM TABLE(SC246300.EXCH_RATES()) AS X
 WHERE CURRENCY_FROM = 'USD' ;

---------+---------+---------+--------+-------+---------+
CURRENCY_FROM CURRENCY_TO EXCHANGE_RATE
---------+---------+---------+--------+-------+---------+
USD EURO 1.0970
USD FF 7.1955
USD BEF 44.6730

When considering table UDFs there are a few additional things that you have to know. Table
UDFs do not use the same mechanism to pass information back and forth as triggers do
when passing transition tables to for instance a stored procedure. There are no table locator
variables used when dealing with table UDFs.

The program that is invoking the table UDF (SPUFI in the example above) does its normal
SQL processing as with any other ’regular’ table. It will OPEN the cursor, FETCH rows from it
and CLOSE the cursor. (We are ignoring here the additional calls that can take place with
dynamic SQL like PREPARE and DESCRIBE.) When executing OPEN, FETCH and CLOSE
calls, a trip is made to the UDF program that executes in a WLM address space. On each trip
to the UDF program, a ’CALLTYPE’ parameter is passed to the (Cobol) program that is
invoked. The program uses this information to do decide what part of the code to execute. If
you are using the FINAL CALL keyword in the CREATE FUNCTION statement a couple of
extra calls (with a special CALLTYPE) are executed. Following is a list of possible
CALLTYPEs that are used with table UDFs. For more information, see section "Passing
parameter values to and from a user-defined function" in the DB2 UDB for OS/390 and z/OS
Version 7 Application Programming and SQL Guide, SC26-9933.

-2 This is the first call to the user-defined function for the SQL statement.
This type of call occurs only if the FINAL CALL keyword is specified in
the user-defined function definition.

-1 This is the OPEN call to the user-defined function by an SQL
statement.

0 This is a FETCH call to the user-defined function by an SQL
statement. For a FETCH call, all input parameters are passed to the
user-defined function. If a scratchpad is also passed, DB2 does not
modify it. You will have multiple calls of this type, basically one for
every row you want to pass back to the caller to end up in the result
table.

1 This is a CLOSE call.

2 This is a final call. This type of final call occurs only if FINAL CALL is
specified in the user-defined function definition.

255 This is another type of final call. This type of final call occurs when the
invoking application executes a COMMIT or ROLLBACK statement, or
when the invoking application abnormally terminates. When a value of
255 is passed to the user-defined function, the user-defined function
Chapter 5. User-defined functions (UDF) 63

cannot execute any SQL statements, except for CLOSE CURSOR. If
the user-defined function executes any close cursor statements during
this type of final call, the user-defined function should tolerate
SQLCODE -501 because DB2 might have already closed cursors
before the final call.

When you want to signal to the calling application (SPUFI in our example) that you have
finished passing rows (reached the end of the sequential file in our case), you set the
SQLSTATE variable to ’02000’ before returning to the invoker.

When you want to preserve information between subsequent invocations of the same table
UDF (for instance when processing/reading the sequential file - CALLTYEP=’0’) you can use
a scratchpad to store that information. In our example there is no real need to do so. The
CREATE FUNCTION does specify the SCRATCHPAD keyword because to debug the code, it
was interesting to keep a counter to track the number of invocations of the table UDF to build
the result table.

The filtering from the WHERE clause is done by DB2 not by the table UDF’s program. The
WHERE clause information is not passed to the program. So when the amount of information
that you pass back to the invoker is large (big sequential file) and almost all of the rows are
filtered out by a WHERE clause, you can end up using more resources than you might expect
based on the number of rows that actually show up in the result set.

You must code a user-defined table function that accesses external resources as a
subprogram. Also ensure that the definer specifies the EXTERNAL ACTION parameter in the
CREATE FUNCTION or ALTER FUNCTION statement. Program variables for a subprogram
persist between invocations of the user-defined function, and use of the EXTERNAL ACTION
parameter ensures that the user-defined function stays in the same address space from one
invocation to another.

5.5 UDF design considerations
User-defined functions are part of the SQL99 standard. Be aware that they are fairly new and
not (yet) supported by all database management systems when your installation has
cross-platform requirements.

Just as there are techniques to ensure efficient access paths using SQL, there are ways you
can maximize the efficiency and reduce the costs of UDFs.

5.5.1 Maximizing UDF efficiency
The difference between the cost of DB2’s built-in functions and a user-defined function can be
understood when you know that the UDF is fenced, by definition. This means that a UDF
does not execute within the DB2 address spaces, to protect the integrity of DB2 from
application code errors. Your external UDF executes under Language Environment (LE)
control in a WLM address space. Conversely, DB2 built-in functions are a component of the
data base engine. Therefore, overhead is necessarily associated with external UDFs.

However, there are several ways you can improve the efficiency of external UDFs:

� You should try to avoid the cost of having to create a WLM address space and re-use an
existing WLM address space. This may not always be possible, though, if you have a
requirement to isolate different workloads and applications.
64 DB2 for z/OS Application Programming Topics

� If you can, code your load module as re-entrant. This allows you to override the default
NO of the STAY RESIDENT option of the CREATE FUNCTION statement. If you specify
YES:

– The load module remains in storage after it has been loaded.
– This single copy of the module can then be shared across multiple invocations of the

UDF.

The impact of STAY RESIDENT YES is very important if multiple instances of a UDF are
specified in the same SQL statement.

� There is overhead processing for each input parameter, so keep the number to the
minimum required.

� Remember that, just as with built-in functions, or with any change to your application, the
access path chosen by DB2 can be affected by an external UDF. A statement that is
indexable without the function may become non-indexable by adding an improperly coded
function. There are two obvious cases in which the statement can become non-indexable:

– The UDF is returning a CHAR value with a length different from the one that it is
compared to.

– The UDF is returning a nullable result and the compared value is not nullable.

We strongly recommend that you use EXPLAIN to determine whether the access path is
what you expect, and whether it is as efficient as it can be. If you think the UDF is
preventing DB2 from choosing an efficient access path, experiment by coding the
statement with and without the UDF. This helps you understand the impact of the UDF on
the access path.

UDFs have been fully integrated into the SQL language. This means that the UDF call can
appear anywhere in the statement. Also, a single SQL statement can often be written in
different ways and still achieve the same result. Use this to:

– Ensure that the access path is efficient.

– Code the SQL statement such that the UDF processes the fewest rows. This reduces
the cost of the statement.

� Exploit the fact that the LE architecture makes processing subroutines more efficient than
main programs by defining the UDF program type as SUB.

� It is evident that you should make your UDF application code as efficient as possible. Two
frequently overlooked opportunities to maximize efficiency are:

– Ensure that all variable types match. This ensures that additional overhead is not
incurred within LE, performing unnecessary conversion.

– In the C programming language, ensure that pragmas are coded correctly.

� Since the cost of DB2 built-in functions is low, exploit them wherever possible.

5.5.2 Consider sourced functions
When you want to determine the most efficient way to code your function, consider whether
you can source your function based on one of the built-in DB2 functions.

For example, if you need to translate a SMALLINT data type to a CHARACTER for some
subsequent string-based manipulation, you have several options, depending on your precise
requirements:

� Write an external UDF.
Chapter 5. User-defined functions (UDF) 65

This may appear as a highly attractive option if, for example, you are converting from
another database management system to DB2. The application might extensively use a
function that has a different name in the other DBMS, or behaves slightly differently from
DB2’s version of the same function. Suppose, for example, the function used by the
application to convert SMALLINT data to a string is called CHARNSI (see Example 5-9
on page 67 for sample code). There is no function in DB2 with this name. To reduce the
need to alter application code, you could code your own external UDF in a host language.
The application can then run without any change and invoke your UDF.

The CREATE FUNCTION SQL necessary to define it to DB2 can be found in Example 5-5.

Example 5-5 External UDF to convert from SMALLINT to VARCHAR

CREATE FUNCTION SC246300.CHAR_N_SI (SMALLINT)
RETURNS VARCHAR(32)
SPECIFIC CHAR_N_SI
LANGUAGE C
DETERMINISTIC
NO SQL
EXTERNAL NAME CHARNSI
PARAMETER STYLE DB2SQL
NULL CALL
NO EXTERNAL ACTION
NO SCRATCHPAD
NO FINAL CALL
ALLOW PARALLEL
NO COLLID
ASUTIME LIMIT 5
STAY RESIDENT YES
PROGRAM TYPE SUB
WLM ENVIRONMENT V7PERF
SECURITY DB2
NO DBINFO;

SET CURRENT PATH = 'SC246300';

SELECT CHAR_N_SI(SMALLINT(4899))
 FROM SYSIBM.SYSDUMMY1;

4899 -- Result

-- To show it is a CHAR string now use a SUBSTR function on it
SELECT SUBSTR(CHAR_N_SI(SMALLINT(4899)),1,2)
 FROM SYSIBM.SYSDUMMY1 #

48 -- Result

� Create a sourced UDF.

Since a sourced UDF is based on an internal DB2 built-in function, you can expect
comparable performance. There is no call to LE, and the UDF does not need to execute
under a WLM environment. In Example 5-6, we show how you can code the sourced UDF.
It can be called CHARNSI, which would satisfy your requirement that the application could
be readily converted to DB2.

Example 5-6 Creating a sourced UDF

CREATE FUNCTION CHARNSI(DECIMAL(6,0)) RETURNS VARCHAR(32)
SOURCE SYSIBM.SMALINT(DECIMAL(6,0));
66 DB2 for z/OS Application Programming Topics

SELECT CHARNSI(4899) FORM SYSIBM.SYSDUMMY1;

489 -- Result

SELECT SUBSTR(CHARNSI(4899),1,2) FROM SYSIBM.SYSDUMMY;

48 -- Result

� Use the CAST function or use DB2 built-in functions.

The CAST function is illustrated in Example 5-7, the use of a DB2 built-in function is
shown in Example 5-8. You can expect good and comparable performance from both. The
disadvantage, if you are converting from another database management system, is that
application code needs to be changed.

If you need to change application code anyway or choose to do it for other reasons, then
we recommend switching to DB2 built-in functions.

Example 5-7 Using CAST instead of a UDF

SELECT SUBSTR(CAST(4899 AS CHAR(6)),1,2) FROM SYSIBM.SYSDUMMY1;

48 -- Result

Example 5-8 Built-in function instead of a UDF

SELECT SUBSTR(CHAR(4899),1,2) FROM SYSIBM.SYSDUMMY1;
48 -- Result

Example 5-9 CHARNSI source code

C program listing
/***
* Module name = CHARNSI *
* *
* DESCRIPTIVE NAME = Convert small integer number to a string *
* *
* *
* LICENSED MATERIALS - PROPERTY OF IBM *
* 5645-DB2 *
* (C) COPYRIGHT 1999 IBM CORP. ALL RIGHTS RESERVED. *
* *
* STATUS = VERSION 6 *
* *
* *
* Example invocations: *
* 1) EXEC SQL SET :String = CHARN(number) ; *
* ==> converts the small integer number to a string *
* Notes: *
* Dependencies: Requires IBM C/C++ for OS/390 V1R3 or higher *
* *
* Restrictions: *
* *
* Module type: C program *
* Processor: IBM C/C++ for OS/390 V1R3 or higher *
* Module size: See linkedit output *
Chapter 5. User-defined functions (UDF) 67

* Attributes: Re-entrant and re-usable *
* *
* Entry Point: CHARNSI *
* Purpose: See Function *
* Linkage: DB2SQL *
* Invoked via SQL UDF call *
* *
* *
* Input: Parameters explicitly passed to this function: *
* - *number : a pointer to a small inteher number *
* to convert to a string *
* *
* Output: Parameters explicitly passed by this function: *
* - *numString : pointer to a char[32], null-termi- *
* nated string to receive the refor- *
* matted number. *
* - *nullNumString : pointer to a short integer to re- *
* ceive the null indicator variable *
* for *numString. *
* - *sqlstate : pointer to a char[06], null-termin-*
* ated string to receive the SQLSTATE*
* - *message : pointer to a char[70], null-termin-*
* ated string to receive a diagnostic*
* message if one is generated by this*
* function. *
* *
* Normal Exit: Return Code: SQLSTATE = 00000 *
* - Message: none *
* *
* *
* Error Exit: None *
* *
* External References: *
* - Routines/Services: None *
* - Data areas : None *
* - Control blocks : None *
* *
* *
* Pseudocode: *
* CHARNSI: *
* 1) If input number is NULL, then return NULL,exit *
* 2) Translate the small integer number to a string *
* 3) Return output string *
* *
***/
/***
* Module name = CHARNSI *
* *
* DESCRIPTIVE NAME = Convert small integer number to a string *
* *
***/
/********************** C library definitions ***********************/
#pragma linkage(CHARNSI,fetchable)
#pragma runopts(POSIX(ON))
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <decimal.h>
#include <ctype.h>
/***************************** Equates ******************************/
68 DB2 for z/OS Application Programming Topics

#define NULLCHAR '\0'
/*********************** GREATN functions ***************************/
void CHARNSI /* main routine */
(
short int *p1In, /* First parameter address */
char *pOut, /* Output address */
short int *null1In, /* in: indic var for null1In */
short int *nullpOut, /* out: indic var for pOut */
char *sqlstate, /* out: SQLSTATE */
char *fnName, /* in: family name of function*/
char *specificName, /* in: specific name of func */
char *message /* out: diagnostic message */
);
/***/
/************************** main routine ***************************/
/***/
void CHARNSI /* main routine */
(
short int *p1In, /* in: timestp1 */
char *pOut, /* out: timestp */
short int *null1In, /* in: indic var for null1In */
short int *nullpOut, /* out: indic var for pOut */
char *sqlstate, /* out: SQLSTATE */
char *fnName, /* in: family name of function*/
char *specificName, /* in: specific name of func */
char *message /* out: diagnostic message */
)
{
#define DEF_OUTPUT_LENGTH 32

/************************ Local variables *************************/
char strret??(100 ??); /* string reciever */
/***
* Initialize SQLSTATE to 00000 and MESSAGE to "" *
***/
message[0] = NULLCHAR;
nullpOut = 0; / -1 if Null value returned */
memcpy(sqlstate,"00000",6);
memset(pOut, NULLCHAR, DEF_OUTPUT_LENGTH);

/***
* Return NULL if at least one input parameter is NULL *
***/
if (*null1In |= 0)
{
*nullpOut = -1;
return;
}

/***
* Convert an integer to a string *
***/

sprintf(pOut, "%-d", *p1In);

return;
} /* end of CHARNSI */
Chapter 5. User-defined functions (UDF) 69

70 DB2 for z/OS Application Programming Topics

Chapter 6. Built-in functions

In the last couple of versions, DB2 has expanded the number of built-in functions dramatically.

In this chapter, we give an overview of the built-in functions that were added to DB2 in
versions 6 and 7 and briefly describe their characteristics.

6

© Copyright IBM Corp. 2001 71

6.1 What is a built-in function?
A built-in function is a function that is supplied with DB2. The function has a name and zero,
one or more arguments, enclosed in parenthesis. The result of a built-in function is a single
value (there are no built-in table functions). Built-in functions are classified as column
functions or scalar functions. Comparison operators as well as arithmetic and string operators
can also be regarded as built-in functions.

Built-in functions are part of the SYSIBM schema.

6.2 Why use a built-in function
Built-in functions can be used as sources for user-defined functions which you need to create
for user-defined distinct types. User-defined distinct types do not automatically inherit all
functions allowed on its source data type and they have to be explicitly created.

There are a large number of DB2 built-in functions with rich functionality which perform very
well. Therefore, before you start coding your own functions, evaluate what is supplied with
DB2 and understand how to use it. This allows you to:

� Maximize the efficiency of your application. Consider here not just the cost of executing
your external function compared to DB2’s built-in functions, but also the best access path
that can be achieved with a UDF as compared to a DB2 built-in function. For instance, a
UDF can be stage 2 when compared to an equivalent stage 1 built-in function.

� Improve your productivity, as you do not need to develop and maintain your own code.

6.3 Built-in function characteristics
Built-in functions are classified as column functions or scalar functions depending on the type
of their arguments. Scalar functions (like the CHAR function) can only have single values as
arguments when column functions (like AVG for example) can have a set of like values as an
argument.

6.4 List of built-in functions before Version 6
This is a list of all the functions that were available prior to DB2 UDB for OS/390 Version 6:

Column functions
AVG, COUNT, MAX, MIN and SUM.

Scalar functions
CHAR, COALESCE, DATE, DAY, DAYS, DECIMAL, DIGITS, FLOAT, HEX, HOUR, INTEGER,
LENGTH, MICROSECOND, MINUTE, MONTH, NULLIF, SECOND, STRIP, SUBSTR, TIME,
TIMESTAMP, VALUE, VARGRAPHIC and YEAR.

Arithmetic and string operators
+, -, *,/,|| and CONCAT
72 DB2 for z/OS Application Programming Topics

6.5 New built-in functions in Version 6
Following is the list containing the new built-in functions that were introduced in DB2
Version 6. As you can see, the list is quite extensive.

Column functions
COUNT_BIG Returns the number of rows or values in a set of rows or values. It

performs the same function as COUNT, except the result can be
greater than the maximum value of an integer.

STDDEV Returns the standard deviation of a set of numbers.

VAR, VARIANCE Returns the variance of a set of numbers.

Scalar functions
ABS, ABSVAL Returns the absolute value of the argument.

ACOS Returns the arccosine of an argument as an angle, expressed in
radians.

ASIN Returns the arcsine of an argument as an angle, expressed in
radians.

ATAN Returns the arctangent of an argument as an angle, expressed in
radians.

ATANH Returns the hyperbolic arctangent of an argument as an angle,
expressed in radians.

ATAN2 Returns the arctangent of x and y coordinates as an angle,
expressed in radians.

BLOB Returns a BLOB representation of a string of any type or a ROWID
type.

CEIL, CEILING Returns the smallest integer value that is greater than or equal to
the argument.

CLOB Returns a CLOB representation of a character string or ROWID
type.

COS Returns the cosine of an argument that is expressed as an angle in
radians.

COSH Returns the hyperbolic cosine of an argument that is expressed as
an angle in radians.

DAYOFMONTH Identical to the DAY function.

DAYOFWEEK Returns an integer between 1 and 7 which represents the day of
the week where 1 is Sunday and 7 is Saturday.

DAYOFYEAR Returns an integer between 1 and 366 which represents the day of
the year where 1 is January 1.

DBCLOB Returns a DBCLOB representation of a graphic string type.

DOUBLE Returns a double precision floating-point representation of a
number or character string in the form of a numeric constant.

DOUBLE_PRECISION See description for built-in function DOUBLE.

EXP Returns the exponential function of an argument.

FLOOR Returns the largest integer value that is less than or equal to the
argument.
Chapter 6. Built-in functions 73

GRAPHIC Returns a GRAPHIC representation of a character or graphic string
value.

IDENTITY_VAL_LOCAL Returns the most recently assigned value for an identity column.

IFNULL Identical to the COALESCE and VALUE functions with two
arguments.

INSERT Returns the modified contents of a string.

JULIAN_DAY Returns an integer value representing a number of days from
January 1,4712 BC (the start of the Julian date calendar) to the
date specified in the argument.

LCASE Returns a string with the characters converted to lowercase.

LOWER Identical to LCASE.

LEFT Returns a string that consists of the specified number of leftmost
bytes of a string.

LN Returns the natural logarithm of an argument.

LOCATE Returns the starting position of the first occurrence of one string
within another string based on a specified starting position.

LOG Identical to LN.

LOG10 Returns the base 10 logarithm of an argument.

LTRIM Removes blanks from the beginning of a string.

MIDNIGHT_SECONDS Returns an integer value in the range 0 to 86400 representing the
number of seconds between midnight and the time specified in the
argument.

MOD Divides the first argument by the second argument and returns the
remainder.

POSSTR Identical to LOCATE function (except that POSSTR always starts
at position 1).

POWER Returns the value of one argument raised to the power of a second
argument.

QUARTER Returns an integer between 1 and 4 which represents the quarter
of the year in which the date resides.

RADIANS Returns the number of radians for an argument that is expressed in
degrees.

RAISE_ERROR Causes the statement that includes the function to return an error
with the specified SQLSTATE and diagnostic-string.

RAND Returns a double precision floating-point random number.

REAL Returns a single precision floating-point representation of a
number or character string in the form of a numeric constant.

REPEAT Returns a string composed of an expression repeated a specified
number of times.

REPLACE Replaces all occurrences of a string within an input string with a
new string.

RIGHT Returns a string that consists of the specified number of rightmost
bytes of a string.

ROUND Rounds a number to a specified number of decimal points.
74 DB2 for z/OS Application Programming Topics

ROWID Casts the input argument type to the ROWID type.

RTRIM Removes blanks from the end of a string.

SIGN Returns an indicator of the sign of the argument.

SIN Returns the sine of an argument that is expressed as an angle in
radians.

SINH Returns the hyperbolic sine of an argument that is expressed as an
angle in radians.

SMALLINT Returns a small integer representation of a number or character
string in the form of a numeric constant.

SPACE Returns a character string consisting of the number of SBCS
blanks specified by the argument.

SQRT Returns the square root of the argument.

TAN Returns the tangent of an argument that is expressed as an angle
in radians.

TANH Returns the hyperbolic tangent of an argument that is expressed
as an angle in radians.

TIMESTAMP_FORMAT Returns a timestamp for a character string, using a specified
format to interpret the string.

TRANSLATE Returns a string with one or more characters translated.

TRUNCATE Truncates a number to a specified number of decimal points.

UCASE Returns a string with the characters converted to uppercase.

UPPER Identical to UCASE.

VARCHAR Returns a varying length character string representation of a
character string, datetime value, integer number, decimal number,
floating-point number, or ROWID value.

VARCHAR_FORMAT Returns a varying-length character string representation of a
timestamp, with the string in a specified format.

WEEK Returns an integer between 1 and 54 which represents the week of
the year. The week starts with Sunday.

Some of these functions provide different ways of obtaining the same result. For a detailed
description of the syntax and how to use these functions, please refer to the DB2 UDB for
OS/390 Version 6 SQL Reference, SC26-9014.

6.6 New functions in Version 7
Here is list containing the new built-in functions that were added in DB2 Version 7.

Column functions
STDDEV_SAMP Returns the sample standard deviation (/n-1) of a set of numbers.

VARIANCE_SAMP Returns the sample variance of a set of numbers.

Scalar functions
ADD_MONTHS Returns a date that represents the date argument plus the number

of months argument.
Chapter 6. Built-in functions 75

CCSID_ENCODING Returns the encoding scheme of a CCSID with a value of ASCII,
EBCDIC, UNICODE, or UNKNOWN.

DAYOFWEEK_ISO Returns an integer in the range of 1 to 7, where 1 represents
Monday.

LAST_DAY Returns a date that represents the last day of the month indicated
by date-expression.

MAX(scalar) Returns the maximum value in a set of values.

MIN(scalar) Returns the minimum value in a set of values.

MULTIPLY_ALT Returns the product of the two arguments as a decimal value, used
when the sum of the argument precision exceeds 31.

NEXT_DAY Returns a timestamp that represents the first weekday, named by
the second argument, after the date argument.

ROUND _TIMESTAMP Returns a timestamp rounded to the unit specified by timestamp
format string.

TRUNC_TIMESTAMP Returns a timestamp truncated to the unit specified by the
timestamp format string.

WEEK_ISO Returns an integer that represents the week of the year with
Monday as first day of week.

For a complete list of all the functions available and for a detailed description of the syntax
and how to use these functions, please refer to DB2 UDB for OS/390 and z/OS Version 7 SQL
Reference, SC26-9944.

6.7 Built-in function restrictions
The argument of a scalar function can be a column function only if a column function is
allowed in the context in which the scalar function is used. This simply means that you may
code something like CHAR(AVG(PRICE)). It makes sense to convert the result of the column
function AVG into char. On the other hand, it does not make sense to code
WEEK_ISO(AVG(SALARY)) since the result of the AVG function is not a date data type and
you receive an SQLCODE -171.

If the argument of a scalar function is a string from a column with a field procedure, the
function is applied to the decoded form of the value.

Tip: When using the function WEEK, make sure that you understand that the weeks are
based on a starting day of SUNDAY. If you want your week to start on a Monday, then you
should use WEEK_ISO instead.
76 DB2 for z/OS Application Programming Topics

Part 2 Enhancements
that allow a more
flexible design

In this part we discuss several enhancements that allow for more flexible application design
including:

� Temporary tables

– SQL global temporary tables (created temporary tables)

– Declared temporary tables

� Savepoints

� Unique column identification

– Identity columns

– ROWID and direct row access

Part 2
© Copyright IBM Corp. 2001 77

78 DB2 for z/OS Application Programming Topics

Chapter 7. Temporary tables

When you need a table only for the life of an application process, you can create a temporary
table. There are two kinds of temporary tables:

� Created temporary tables, which you define using a CREATE GLOBAL TEMPORARY
TABLE statement (introduced in DB2 V5 as global temporary tables).

� Declared temporary tables, which you define in a program using a DECLARE GLOBAL
TEMPORARY TABLE statement.

SQL statements that use temporary tables can run faster, because:

� There is no logging for created temporary tables. Only UNDO records (required for
rollback processing) are logged for declared temporary tables.

� There is no locking for created temporary tables and only share level locks for declared
temporary table space.

7

© Copyright IBM Corp. 2001 79

7.1 Summary of differences between types of tables
The following sections provide more details on created temporary tables and declared
temporary tables. In the Table 7-1 we show the most significant differences between the three
types of tables used by DB2.

Table 7-1 Distinctions between DB2 base tables and temporary tables

7.2 Created temporary tables
In this section, we discuss SQL global temporary tables (from now on called created
temporary tables or CTTs).

Base tables Created temporary tables Declared temporary tables

Can be pre-created or created
in an application program

Can be pre-created or created
in an application program

Must be created in an
application program

CREATE TABLE statement
places definition in
SYSTABLES.

CREATE GLOBAL
TEMPORARY TABLE
statement places definition in
SYSTABLES.

DECLARE GLOBAL
TEMPORARY TABLE
statement does not place a
definition in SYSTABLES.

CREATE TABLE creates an
empty instance of the table.

CREATE GLOBAL
TEMPORARY TABLE does not
create an instance of the table.

DECLARE GLOBAL
TEMPORARY TABLE creates
an empty instance of the table
for each application process.

All references to the table from
multiple applications are to a
single “persistent” table.

References to the table in
multiple application processes
refer to the same description
but a distinct instance of the
table.

References to the table in
multiple application processes
refer to a distinct description
and instance of the table.

Locking, logging, and recovery. No locking, no logging, no
recovery.

Lock on DBD and intent lock on
table space, logging of UNDO
records, and limited recovery.

The table can be stored in a
simple, segmented, or
partitioned table space in a
user-defined database or in the
default database DSNDB04.

Logical work files are used to
store the table in the
WORKFILE database, usually
called DSNDB07.

The table is stored in a
segmented table space in the
TEMP database (a database
that is defined AS TEMP).

Can have indexes. Cannot have indexes. Can have indexes.

Can INSERT, DELETE, and
UPDATE individual rows.

Can INSERT, mass DELETE
(without WHERE clause),
cannot UPDATE rows.

Can INSERT, DELETE, and
UPDATE individual rows.

WITH DEFAULT clause
supported.

No WITH DEFAULT clause
other than null.

WITH DEFAULT clause
supported.

UDTs supported. UDTs supported. UDTs not supported.

SAVEPOINTs supported. SAVEPOINTs not supported. SAVEPOINTs supported.

Threads can be reused. Threads can be reused. Threads can be reused under
certain conditions.
80 DB2 for z/OS Application Programming Topics

7.2.1 What is a created temporary table?
Created temporary tables were introduced in DB2 V5 (as “global temporary tables”). These
tables are created once by the administrator, and then any program, thread or connection can
allocate their own instance of the table by inserting into the table. Other applications
referencing the created temporary table instantiate (materialize) a different instance of the
table in a work file for their connection. The rows in the table only exist for the duration of a
unit of work (unless the cursor is defined WITH HOLD).

The term “global” is taken from the SQL92 Full-Level standard and, as applied to DB2
temporary tables, it means global to an application process at the current server. Thus, if an
instance of a global (created) temporary table exists in an application process at the current
server, that instance can be referenced by any program in the same process at the same
server.

Note that an “application process” is a thread/connection. As long as a thread persists, any
instance of a global temporary table created within that thread persists. So when a thread is
reused, the table persists (the work file is still defined in DSNDB07), although a COMMIT
deletes all the rows of the temporary table (when no cursors WITH HOLD are open against
the table).

7.2.2 Why use created temporary tables
The main advantages of created temporary tables are:

� No log records are written when changes to a created temporary table are made (because
created temporary tables are not recoverable).

� No locks need to be taken, because every program that references the created temporary
table uses its own work file (instances of work files are not shared).

The properties of these tables are a subset of the properties of the global temporary tables of
the SQL92 Full-Level standard.

In stored procedures, temporary tables can be very useful when there is a need to return
large result sets from a stored procedure to a calling program, especially when the caller of
the stored procedure is executing on a remote system, to avoid contention on the real table.

It can also be used as a means to pass data between subroutines within a program. Instead
of returning data in working storage as a large array, a subroutine can build a temporary table
and pass back only the name of the table to the caller that can fetch data from that table at its
convenience.

Another uses for this type of temporary table is to store data that has been read from a
non-DB2 source, like IMS, VSAM or flat files, for subsequent SQL processing, like joining the
created temporary table with other DB2 tables.

Yet another example of the usage of created temporary tables can be in a data warehouse
environment. Tables in those environments are usually very large, and some joins between
several data warehouse tables might be unsuitable. Created temporary tables can be used to
select some sample data from a large table and make a join with the temporary table (for
example, for some data mining or pattern recognition processes). However, a created
temporary table is not indexable, so it should not be used, for example, as an inner table of a
nested loop join.
Chapter 7. Temporary tables 81

7.2.3 Created temporary tables characteristics
In this section we will describe the typical characteristics of created temporary tables.

No locking, no logging, no recovery
Since an instance of a temporary table exists in a work file, locking and logging do not apply.

The table work files are unique to an application, so there is no locking necessary or
desirable. Because they are temporary, there is no concept of recovery. If the application rolls
back, the work file data is lost and changes in the created temporary table are not undone.
Therefore, there is no need for logging.

The lack of locking is consistent with SQL92 temporary tables. The lack of logging is
consistent with the default for SQL92 temporary tables (ON COMMIT DELETE ROWS).

Defining a created temporary table
At least one of the following privileges is required to create created temporary tables:

� The CREATETMTAB system privilege to allow users to issue the CREATE GLOBAL
TEMPORY TABLE statement.

� The CREATETAB database privilege for any database

� DBADM, DBCTRL, DBMAINT authority for any database

� SYSADM, SYSCTRL authority

Additional privileges might be required when the data type of a column is a distinct type or the
LIKE clause is specified.

In Example 7-1, the CREATE GLOBAL TEMPORARY TABLE statement creates a definition
of a created temporary table called GLOBALITEM in the current server’s catalog.

Example 7-1 Created temporary table DDL

CREATE GLOBAL TEMPORARY TABLE SC246300.GLOBALINEITEM
(NORDERKEY INTEGER NOT NULL
,ITEMNUMBER INTEGER NOT NULL
,QUANTITY INTEGER NOT NULL)

Example 7-2 shows the information that is stored in the DB2 catalog for created temporary
tables.

Example 7-2 Created temporary table in SYSIBM.SYSTABLES

SELECT NAME, CREATOR, TYPE, DBNAME, TSNAME
FROM SYSIBM.SYSTABLES
WHERE NAME ='GLOBALINEITEM'

NAME CREATOR TYPE DBNAME TSNAME
---------+---------+---------+---------+---------+-------
GLOBALINEITEM SC246300 G DSNDB06 SYSPKAGE
82 DB2 for z/OS Application Programming Topics

In Example 7-3, the LIKE table-name or view-name specifies that the columns of the created
temporary table have exactly the same name and description as the columns from the
identified table or view. That is, the columns of SC246300.GLOBALIKE_ITEM have the same
name and description as those of SC246300.TBLINEITEM except for attributes not allowed
for created temporary tables and no default values other than NULL. The name specified
after the LIKE must identify a table, view, or created temporary table that exists at the current
server, and the privilege set must implicitly or explicitly include the SELECT privilege on the
identified table or view.

A created temporary table GLOBALIKE_ITEM, similar to TBLINEITEM can be useful, for
example, for a program that handles all the changes that a customer makes while shopping
on the internet. All items from an order can be inserted in a created temporary table work file
without locking and logging contention. When the customer confirms an order, the created
temporary rows can be inserted in TBLINEITEM before the work file data is lost at COMMIT
time. If the customer cancels the order, then entries in the GLOBALIKE_ITEM temporary
table are removed by the rollback and the TBLINEITEM table is not involved in the process
and contention is avoided.

However, created temporary tables are not updatable. So if the customer would like to
change the quantity of an item during the ordering process, he has to start the order process
from the beginning.

Example 7-3 Use of LIKE clause with created temporary tables

CREATE GLOBAL TEMPORARY TABLE SC246300.GLOBALIKE_ITEM
LIKE SC246300.TBLINEITEM

This clause is similar to the LIKE clause on CREATE TABLE with the following differences:

� If any column of the identified table or view has an attribute value that is not allowed for a
column of a created temporary table (for example, UNIQUE), that attribute value is ignored
and the corresponding column in the new created temporary table will have the default
value for that attribute unless otherwise indicated.

� If a column of the identified table or view allows a default value other than the null value,
then that default value is ignored and the corresponding column in the new created
temporary table will have no default. A default value other than null value is not allowed for
any column of a created temporary table.

You can also create a view on a created temporary table. Example 7-4 show a view on the
created temporary table SC246300.GLOBALINEITEM. Every application sees different
values returned from the view SC2463.GLOBALVIEW depending on the content of their own
created temporary table SC246300.GLOBALINEITEM. The view SC246300.GLOBALVIEW is
defined in the catalog as a normal view on a base table.

Example 7-4 View on a created temporary table

CREATE VIEW SC246300.GLOBALVIEW
AS SELECT NORDERKEY

,ITEMNUMBER

Note: All created temporary tables seem to reside in the catalog table space SYSPKAGE,
but in reality, they are instantiated (materialized) in the DSNDB07 work files. The TYPE =
’G’ denotes a created temporary table.
Chapter 7. Temporary tables 83

FROM SC246300.GLOBALINEITEM ;

Example 7-5 shows how to drop a created temporary table.

Example 7-5 Dropping a created temporary table

DROP TABLE SC246300.GLOBALINEITEM

Creating an instance of a temporary table
An empty instance of a given temporary table is instantiated (allocated or materialized) with
the first implicit or explicit reference to the named temporary table in an OPEN, SELECT,
INSERT, or DELETE operation executed by any program in the application process.

An instance of a created temporary table exists at the current server until one of the following
actions occurs:

� The remote server connection under which the instance was created terminates.

� The unit of work under which the instance was created completes.
When you execute a COMMIT statement, DB2 deletes the instance of the created
temporary table unless a cursor for accessing the created temporary table is defined
WITH HOLD and is open. When you execute a ROLLBACK statement, DB2 deletes the
instance of the created temporary table.

� The application process ends.

Suppose that you create a temporary table GLOBALINEITEM and then run an application like
the one shown in Example 7-6:

Example 7-6 Using a created temporary table in a program

EXEC SQL DECLARE C1 CURSOR
FOR SELECT * FROM SC246300.GLOBALINEITEM ;

EXEC SQL INSERT INTO SC246300.GLOBALINEITEM
SELECT NORDERKEY

,L_ITEM_NUMBER
,QUANTITY

FROM SC246300.TBLINEITEM ;

EXEC SQL OPEN C1 ;
.
application process
.
EXEC SQL COMMIT ;
.
application process
.
EXEC SQL CLOSE C1;

Note: The SQL UPDATE statement is not in the list because updates are not allowed on
created temporary tables.
84 DB2 for z/OS Application Programming Topics

When you execute the INSERT statement, DB2 creates an instance of GLOBALINEITEM and
populates that instance with rows from table TBLINEITEM. When the COMMIT statement is
executed, DB2 deletes all rows from GLOBALINEITEM.

However, if you change the declaration of cursor C1 to:

EXEC SQL DECLARE C1 CURSOR WITH HOLD
FOR SELECT * FROM SC246300.GLOBALINEITEM ;

The contents of GLOBALINEITEM is not deleted until the application ends because C1, a
cursor defined WITH HOLD, is open when the COMMIT statement is executed. In either
case, DB2 drops the instance of GLOBALINEITEM when the application ends.

Multiple instances of a temporary table
Created temporary table instances are implemented in DB2 using an existing facility called
logical work files. Each instance occupies its own logical work file exclusively. There can be
one or more logical work files per work file table space. There is only one instantiation of a
temporary table per logical work file. The user cannot select which work file table space or
which logical work file is used to contain a given temporary table. DB2 chooses the work file
table space (among those created by the administrator).

The logical work file for a temporary table is available for that temporary table name for the
life of the thread/connection which created the logical work file and is not used for any other
purpose, unless the work file is deleted at COMMIT or ROLLBACK/Abort.

COMMIT and ROLLBACK with created temporary tables
COMMIT deletes all rows from all created temporary tables that do not have WITH HOLD
cursors on them, and ROLLBACK deletes all rows from all created temporary tables,
regardless of held-cursors. If the plan or package is bound RELEASE(COMMIT), then
COMMIT or ROLLBACK also causes the logical work files to be deleted.

All rows and logical work files are deleted at thread termination.

The use of a created temporary table does not preclude thread reuse, and a logical work file
for a temporary table name remains available until de-allocation (assuming
RELEASE(DEALLOCATE)). No new logical work file is allocated for that temporary table
name when the thread is reused.

A temporary table instantiated by an SQL statement using a three-part table name via DB2
private protocol, can be accessed by another SQL statement using the same three-part name
in the same application process for as long as the DB2 thread/connection which established
the instantiation is not terminated.

Using a temporary table to return result sets
You can use a created temporary table or declared temporary table to return result sets from
a stored procedure. This capability can be used to return non-relational data to a DRDA
client.

For example, you can access IMS data from a stored procedure in the following way:

� Use the IMS ODBA interface to access IMS databases.

Note: Each application process (thread/connection) may create an instance of a created
temporary table. Each instance is unique to the thread/connection that created it.
Chapter 7. Temporary tables 85

� Insert the data into a temporary table.
� Open a cursor against the temporary table.
� End the stored procedure.
� The client can then fetch the rows from the cursor defined on the temporary table.

Considerations
Those responsible for system planning should be aware that work file and buffer pool storage
might need to be increased depending on how large a created temporary table is and the
amount of sorting activity required. Given that a logical work file will not be used for any other
purpose for as long as that instantiation of a created temporary table is active, there may be a
need to increase the size or number of physical work file table spaces, especially when there
is also a significant amount of other work (like sort activity) using the work file database
concurrently running on the system.

Those responsible for performance monitoring and tuning should be aware that for created
temporary tables, no index scans are done, only table scans are associated with created
temporary tables. In addition, a DELETE of all rows performed on a created temporary table
does not immediately reclaim the space used for the table. Space reclamation does not occur
until a COMMIT is done.

7.2.4 Created temporary tables pitfalls
Different applications can allocate different work files containing instances of a created
temporary table, which is already defined in the catalog, so the definition of the table is
common for every application but not the rows contained in it.

Created temporary tables are useful whenever some non-sharable temporary processing is
needed and the data does not have to be kept when an application issues a commit. Before
created temporary tables, they only way to avoid logging was to move the process out of
DB2. Remember that there is no locking for created temporary tables.

Be careful, you should not blindly move all batch processing that you used to do outside DB2
in order to avoid logging, into created temporary tables. Created temporary tables are not
indexable. Therefore, they may not provide the best access path if they are very large or if you
have to scan them many times.

7.2.5 Created temporary tables restrictions
Examples of implementing temporary tables and information about restrictions and
extensions of temporary tables can be found in:

� DB2 UDB for OS/390 and z/OS Version 7 Application Programming and SQL Guide,
SC26-9933

� DB2 UDB for OS/390 and z/OS Version 7 SQL Reference, SC26-9944

For information about temporary tables and their impact on DB2 resources, see:

� “Work file data sets” in the DB2 UDB for OS/390 and z/OS Version 7 Administration Guide,
SC26-9931

Here are some restrictions of created temporary tables:

� No indexes can be defined for created temporary tables.

� Their columns cannot have default values other than NULLS.

� They cannot have primary, foreign or unique key specifications.
86 DB2 for z/OS Application Programming Topics

� They cannot be defined as parents in a referential constraint.

� The columns cannot have LOB or ROWID data types (or a distinct type based on one).

� Cannot have a validproc, editproc, fieldproc or trigger.

� Cannot be referenced:

– In any DB2 utility commands (message DSNU062I is issued for this error).

– In a LOCK TABLE statement.

– As the target of an UPDATE statement, where the target is the created temporary table
or a view on the created temporary table. If you try to UPDATE a created temporary
table, you receive the following message:

DSNT408I SQLCODE = -526, ERROR: THE REQUESTED OPERATION OR USAGE DOES NOT
 APPLY TO CREATED TEMPORARY TABLE tablename
DSNT418I SQLSTATE = 42995 SQLSTATE RETURN CODE

However, the created temporary table can be referenced in the WHERE clause of an
UPDATE statement.

� A created temporary table can be referenced in the FROM clause of any subselect.
As with all tables stored in work files, query parallelism is not considered for any query
referencing a created temporary table in the FROM clause.

� DELETE FROM specifying a created temporary table is valid when the statement does not
include a WHERE or WHERE CURRENT OF clause. When a view is created on a created
temporary table, then the CREATE VIEW statement for the view cannot contain a WHERE
clause because the DELETE FROM view fails with an SQLCODE -526. However, you can
delete all rows (mass delete) from a created temporary table or a view on a created
temporary table.

� If a created temporary table is referenced in the subselect of a CREATE VIEW statement,
the WITH CHECK OPTION must not be specified for the WHERE clause of the subselect
of the CREATE VIEW statement.

� GRANT ALL PRIVILEGES ON a created temporary table is valid, but specific privileges
cannot be granted on a created temporary table. Of the ALL privileges, only the ALTER,
INSERT, DELETE, and SELECT privileges can actually be used on a created temporary
table.

� REVOKE ALL PRIVILEGES ON a created temporary table is valid, but specific privileges
cannot be revoked from a created temporary table.

� The DROP DATABASE statement cannot be used to implicitly drop a created temporary
table. You must use the DROP TABLE statement to drop a created temporary table.

� ALTER TABLE on a created temporary table is valid only when used to add a column to it
and if any column being added has a default value of NULL. When the ALTER is
performed, any plan or package that references the table is marked as “invalid” (that is,
the SYSPLAN or SYSPACKAGE column VALID is changed to ‘N’), and the next time the
plan or package is run, DB2 performs an automatic rebind (autobind) of the plan or
package. The added column is then available to the SQL statements in the plan or
package. On a successful autobind, the VALID column is changed to have a ‘Y’.

� Created temporary tables can be referenced in DROP TABLE, CREATE VIEW,
COMMENT ON, INSERT, SELECT, LABEL ON, CREATE ALIAS, CREATE SYNONYM,
CREATE TABLE LIKE, DESCRIBE TABLE, and DECLARE TABLE. There are no
restrictions or additional rules other than the ones mentioned above.
Chapter 7. Temporary tables 87

7.3 Declared temporary tables
In this section, we describe the features of declared temporary tables (DTTs) and their
characteristics.

7.3.1 What is a declared temporary table?
A declared temporary table is a type of table which is defined with the DECLARE GLOBAL
TEMPORARY TABLE statement. Declared temporary tables are created in a program and exist
only during the life of the application process. Declared temporary tables provide another
convenient way to store temporary data.

You can populate the declared temporary table using INSERT statements, modify the table
using searched or positioned UPDATE or DELETE statements, and query the table using
SELECT statements.

A temporary database and temporary table spaces must be created before you can start
using declared temporary tables.

7.3.2 Why use declared temporary tables
Some of the possible uses of declared temporary tables include:

� For business intelligence applications, when you want to process extracts of the data and
perform further result set processing. For example, in the case of joining a big table to
many others and there is not a good index for the selection criteria, you can extract the
rows needed and use the smaller temporary table for the join. You can create an index on
a declared temporary table to improve the performance.

� As a staging area for making IMS data accessible to ODBC. For example, a client
application program can call a stored procedure to access IMS data. The IMS data can be
inserted into a declared temporary table. The data in the declared temporary table may
then be processed by the client using standard SQL.

� To hold result sets in stored procedures when you are worried about remote clients
holding locks for too long on the actual table. Therefore, you can have the stored
procedure access the actual table, extract the rows that are of interest to the client
program and store them into a declared temporary table. Again, you can create an index
on the declared temporary table if table scans do not provide adequate performance.

7.3.3 Declared temporary tables characteristics
The DECLARE GLOBAL TEMPORARY TABLE statement creates a temporary table for the
current application process.

The qualifier for a declared temporary table, if specified, must be SESSION. The qualifier
need not to be specified, it is implicitly defined to be SESSION. The DECLARE statement is
successful even if a table is already defined in the DB2 catalog with the same fully-qualified
name. In Example 7-7, we show you typical DDL to declared a temporary table.

Example 7-7 Sample DDL for a declared temporary table

DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP
(EMPNO CHAR(6) NOT NULL
,SALARY DECIMAL(9,2)
,BONUS DECIMAL(9,2)
,COMM DECIMAL(9,2))
88 DB2 for z/OS Application Programming Topics

ON COMMIT PRESERVE ROWS;

ON COMMIT DELETE ROWS, which is the default definition, specifies that the rows of the
table are to be deleted following a commit operation (if no WITH HOLD cursors are open on
the table). To avoid mistakes, define the table always as ON COMMIT PRESERVE ROWS
when you want to preserve the rows at COMMIT. This way there is not need to have a cursor
WITH HOLD open to preserve the rows in the DTT across COMMITs.

7.3.4 Creating a temporary database and table space
Before you can define declared temporary tables, you must create a special database and
table spaces for them. You do that by executing the CREATE DATABASE statement with the
AS TEMP clause, and then creating several segmented table spaces in that database. A DB2
subsystem can have only one database for declared temporary tables, but that database can
contain many table spaces spread across a number of volumes. In a data sharing
environment, you must define a single temporary database for each member in a data
sharing group. A DB2 subsystem or data sharing member can only have one database
defined AS TEMP. The database is not shareable across members.

In Example 7-8, we show you how to create a database and several table spaces to be used
for the creation of declared temporary tables.

Example 7-8 Create a database and table spaces for declared temporary tables

CREATE DATABASE DBTEMP AS TEMP ;
CREATE TABLESPACE TSTEMP01 IN DBTEMP USING STOGROUP SG246300 SEGSIZE 32

PRIQTY 120000 SEQTY 120000 BUFFERPOOL BP10 ;
CREATE TABLESPACE TSTEMP02 IN DBTEMP USING STOGROUP SG246300 SEGSIZE 32

PRIQTY 120000 SEQTY 120000 BUFFERPOOL BP10 ;
CREATE TABLESPACE TSTEMP03 IN DBTEMP USING STOGROUP SG246300 SEGSIZE 32

PRIQTY 120000 SEQTY 120000 BUFFERPOOL BP10 ;
CREATE TABLESPACE TSTEMP20 IN DBTEMP USING STOGROUP SG246300 SEGSIZE 32

PRIQTY 24000 SEQTY 24000 BUFFERPOOL BP8K0 ;
CREATE TABLESPACE TSTEMP21 IN DBTEMP USING STOGROUP SG246300 SEGSIZE 32

PRIQTY 24000 SEQTY 24000 BUFFERPOOL BP8K0 ;
CREATE TABLESPACE TSTEMP30 IN DBTEMP USING STOGROUP SG246300 SEGSIZE 32

PRIQTY 48000 SEQTY 48000 BUFFERPOOL BP16K0 ;
CREATE TABLESPACE TSTEMP40 IN DBTEMP USING STOGROUP SG246300 SEGSIZE 32

PRIQTY 96000 SEQTY 96000 BUFFERPOOL BP32K ;

You should create table spaces in your TEMP database for all page sizes you use in base
tables. DB2 determines which table space in the TEMP database is used for a given declared
temporary table. If a DECLARE GLOBAL TEMPORARY TABLE statement specifies a row
size that is not supported by any of the table spaces defined in the TEMP database, the

Important: Always explicitly drop the declared temporary table when it is no longer
needed. If you use the ON COMMIT PRESERVE ROWS option, the thread cannot be
inactivated or reused unless the program explicitly drops the table before the commit. If
you do not explicitly drop the table, it is possible to run out of usable threads.

Tip: All table spaces in a TEMP database should be created with the same segment size
and with the same primary space allocation values. DB2 chooses which table space to
place your created temporary table.
Chapter 7. Temporary tables 89

statement fails. DB2 determines the buffer pool based on the page size that is required for the
declared temporary table and assigns DTT to a table space in the TEMP database that can
handle this page size. An INSERT statement fails if there is insufficient space in the table
space used for the declared temporary table. Allocate enough space for all concurrently
executing threads to create their declared temporary tables. You may want to have several
smaller table spaces rather than a few large ones, to limit the space one declared temporary
table can use, since a declared temporary table cannot span multiple physical TEMP table
spaces.

An encoding scheme (CCSID ASCII, EBCDIC or UNICODE) cannot be specified for a
TEMP database or for a table space defined within a TEMP database. However, an
encoding scheme can be specified for a declared temporary table USING CCSID. This
means that a table space defined within a TEMP database can hold temporary tables with
different encoding schemes.

You should bear in mind that the TEMP database could become quite large if the usage of
declared temporary tables is high. You may also need to increase the size of the EDM pool to
account for this extra database.

START, STOP and DISPLAY DB are the only supported commands against the TEMP
database. The standard command syntax should be used but please note the following:

� You cannot start a TEMP database as RO (read only).
� You cannot use the AT COMMIT option of the STOP DB command.
� You cannot stop and start any index spaces that the applications have created.

7.3.5 Creating a declared temporary table
You create an instance of a declared temporary table using the SQL statement DECLARE
GLOBAL TEMPORARY TABLE. That instance is known only to the application process in
which the table is declared, so you can declare temporary tables with the same name, with
the same or different columns, in different applications.

You can define a declared temporary table in any of the following three ways:

� Specify all the columns in the table. Unlike columns of created temporary tables, columns
of declared temporary tables can include the WITH DEFAULT clause.

� Use a LIKE clause to copy the definition of a base table, created temporary table, or view,
alias or synonym that exist at the current server. The implicit definition includes all
attributes of the columns as they are described in SYSIBM.SYSCOLUMNS.

� Use the AS clause and a fullselect to choose specific columns from a base table, created
temporary table or view.

If you want the declared temporary table columns to inherit the defaults of the columns from
the table or view that is named in the select, specify the INCLUDING COLUMN DEFAULTS
clause. If you want the declared temporary table columns to have default values that
correspond to their data types, specify the USING TYPE DEFAULTS clause.

Tip: You may want to isolate declared temporary tables to their own set of buffer pools.

Tip: Do not specify the following clauses of the CREATE TABLESPACE statement when
defining a table space in a TEMP database: CCSID, LARGE, MEMBER CLUSTER,
COMPRESS, LOB, NUMPARTS, DSSIZE, LOCKSIZE, PCTFREE, FREEPAGE,
LOCKPART, TRACKMOD, GBPCACHE, LOG.
90 DB2 for z/OS Application Programming Topics

If the base table, created temporary table, or view from which you select columns has identity
columns, you can specify that the corresponding columns in the declared temporary table are
also identity columns. Do that by specifying the INCLUDING IDENTITY COLUMN
ATTRIBUTES clause when you define the declared temporary table.

In Example 7-9, the statement defines a declared temporary table called TEMPPROD by
explicitly specifying the columns.

Example 7-9 Explicitly specify columns of declared temporary table

DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMPPROD
(SERIAL CHAR(8) NOT NULL WITH DEFAULT '99999999'
,DESCRIPTION VARCHAR(60) NOT NULL
,PRODCOUNT INTEGER GENERATED ALWAYS AS IDENTITY
,MFGCOST DECIMAL(8,2)
,MFGDEPT CHAR(3)
,MARKUP SMALLINT
,SALESDEPT CHAR(3)
,CURDATE DATE NOT NULL);

In Example 7-10, the statement defines a declared temporary table called TEMPPROD by
copying the definition of a base table. The base table has an identity column that the declared
temporary table also uses as an identity column.

Example 7-10 Implicit define declared temporary table and identity column

DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMPPROD LIKE BASEPROD
INCLUDING IDENTITY COLUMN ATTRIBUTES;

In Example 7-11, the statement defines a declared temporary table called TEMPPROD by
selecting columns from a view. The view has an identity column that the declared temporary
table also uses as an identity column. The declared temporary table inherits the default
defined columns from the view definition. Notice also the DEFINITION ONLY clause. This is
to make clear that the SELECT is not copying data from the original table but merely its
definition.

Example 7-11 Define declared temporary table from a view

DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMPPROD
AS (SELECT * FROM PRODVIEW)

DEFINITION ONLY
INCLUDING IDENTITY COLUMN ATTRIBUTES
INCLUDING COLUMN DEFAULTS;

Example 7-12 show how to drop the definition of a declared temporary table.

Example 7-12 Dropping a declared temporary table

DROP TABLE SESSION.TEMPPROD ;
Chapter 7. Temporary tables 91

7.3.6 Using declared temporary tables in a program
To refer to a declared temporary table in an SQL statement, you must qualify the table-name
with SESSION. You can specify SESSION explicitly in the table-name reference in an SQL
statement. You can also specify it using the QUALIFIER bind option to specify SESSION as
the qualifier for all unqualified table references in the plan or package. This means that you
either need to specify qualifier (owner) in all base tables or you specify the SESSION for all
temporary tables. The later may be easier to implement, since the qualifier does not change
depending on the DB2 subsystem where the program is run.

If you use SESSION as the qualifier for a table name in DML but the application process has
not yet declared a temporary table with the same name, DB2 assumes that you are not
referring to a declared temporary table and looks to see if the table can be found in the
catalog. If you have used SESSION as the owner for non-declared temporary tables, you
may have a release-to-release incompatibility problem. A called program may assume that a
declared temporary table has been declared by its calling program, if a new calling program
does not declare the temporary table, the called program may end up using a base table
instead of the intended declared temporary table. Of course this assumes that the intended
declared temporary table has the same name as an existing base table with an owner of
SESSION.

When a plan or package is bound, any static SQL statement that references any table
qualified by SESSION, is not completely bound. However, the bind of the plan or package
succeeds if there are no errors. These static SQL statements which reference a table-name
qualified by SESSION are incrementally bound at run time if they are executed by the
application process. DB2 handles the SQL statements this way because the definition of a
declared temporary table does not exist until the DECLARE GLOBAL TEMPORARY TABLE
statement is executed and, therefore, DB2 must wait until the plan or package is run to
determine if SESSION.tablename refers to a base table or a declared temporary table.

When a program in an application process 'P' executes a DECLARE GLOBAL TEMPORARY
TABLE statement, an empty instance of the declared temporary table is created. Any
program in process 'P' can reference the declared temporary table and any of these
references is a reference to the same instance of the declared temporary table.

A declared temporary table is automatically dropped when the application process that
declared it terminates. It is advisable, though, to explicitly drop all declared temporary tables,
when they are no longer needed. The DB2 thread used by an application process that
declares one or more temporary tables with the ON COMMIT PRESERVE ROWS attribute,
only qualifies for reuse or to become an inactive thread, if the application process explicitly
drops all such declared temporary tables before it issues its last explicit COMMIT request.
This action is not required for temporary tables declared with the ON COMMIT DELETE
ROWS attribute for thread reuse in a local environment (IMS or CICS) but is always required
for a remote connection to be eligible for reuse (or become inactive).

Suppose you execute the statements from Example 7-13 in an application program:

Example 7-13 Declared temporary tables in a program

EXEC SQL
DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMPPROD

AS (SELECT * FROM BASEPROD)
DEFINITION ONLY
INCLUDING IDENTITY COLUMN ATTRIBUTES

Tip: Use a fully qualified name for your declared temporary tables inside your programs
92 DB2 for z/OS Application Programming Topics

INCLUDING COLUMN DEFAULTS
ON COMMIT PRESERVE ROWS

END-EXEC
.
.
.
EXEC SQL INSERT INTO SESSION.TEMPPROD SELECT * FROM BASEPROD END-EXEC
.
.
.
EXEC SQL COMMIT END-EXEC
.
.
EXEC SQL DROP TABLE SESSION.TEMPPROD END-EXEC

When the DECLARE GLOBAL TEMPORARY TABLE statement is executed, DB2 creates an
empty instance of TEMPPROD. The INSERT statement populates that instance with rows
from table BASEPROD. The qualifier, SESSION, must be specified in any statement that
references TEMPPROD. When the application issues the COMMIT statement, DB2 keeps all
rows in TEMPPROD because TEMPPROD is defined with ON COMMIT PRESERVE ROWS.
In that case you need to drop the table before the program ends to avoid problems with
thread reuse and inactive threads.

7.3.7 Creating declared temporary tables for scrollable cursors
DB2 uses declared temporary tables for processing scrollable cursors. Therefore, before you
can use a scrollable cursor, your database administrator needs to create a TEMP database
and TEMP table spaces for those declared temporary tables. If there is more than one TEMP
table space in the subsystem, DB2 chooses the table spaces to use for scrollable cursors.

The page size of the TEMP table space must be large enough to hold the longest row in the
declared temporary table. See the DB2 UDB for OS/390 and z/OS Version 7 Installation
Guide, GC26-9936 for information on calculating the page size for TEMP table spaces that
are used for scrollable cursors.

7.3.8 Remote declared temporary tables
Where remote servers are involved, a reference to a declared temporary table must use the
same server connection that was used to declare the temporary table, and that server
connection must have never been terminated after the temporary table was declared there.
When the connection to the application server at which the temporary table was declared
terminates, the temporary table is dropped and its rows are destroyed.

Accessing declared temporary tables using three-part names
You can access a remote declared temporary table using a three-part name only if you use
DRDA access. However, if you combine explicit CONNECT statements and three-part names
in your application, a reference to a remote declared temporary table must be a forward
reference. The Example 7-14 shows how you can perform the series of actions, which
includes a forward reference to a declared temporary table:

Example 7-14 Three-part name of declared temporary table

EXEC SQL CONNECT TO CHICAGO ; /* Connect to the remote site */

EXEC SQL
Chapter 7. Temporary tables 93

DECLARE GLOBAL TEMPORARY TABLE TEMPPROD /* Define the temporary table */
(CHARCOL CHAR(6) NOT NULL) ; /* at the remote site */

EXEC SQL CONNECT RESET ; /* Connect back to local site */

EXEC SQL
INSERT INTO CHICAGO.SESSION.TEMPPROD /* Access the temporary table */

(VALUES 'ABCDEF') ; /* at the remote site (forward */
/* reference) */

7.3.9 Creating indexes
You can also create indexes on a declared temporary table. Creating an index on a declared
temporary table should only be done in cases where it has a significant positive impact on
performance. If you specify a qualifier on the CREATE INDEX statement for the index-name,
you must specify SESSION. If you omit the qualifier, DB2 uses SESSION as the implicit
qualifier. In the ON table-name clause you must specify SESSION as the qualifier for
table-name. Otherwise, table-name does not refer to a declared temporary table.

Do not specify the following clauses of the CREATE INDEX statement when defining an index
on a declared temporary table: COPY, FREEPAGE, PART (on CLUSTER), DEFER,
PCTFREE, USING VCAT, GBPCACHE, DEFINE NO. Index spaces are created in the TEMP
database. An index on a declared temporary table is implicitly dropped when the declared
temporary table on which it was defined is explicitly or implicitly dropped.

You can specify the following clauses: Column names ASC/DESC, CLUSTER, PIECESIZE,
UNIQUE with or without WHERE NOT NULL, and USING STOGROUP.

In order to assist DB2’s access path selection for declared temporary tables, some basic
statistics are collected by DB2 but not stored in the catalog. These statistics are maintained
and used dynamically for optimizing the access path as rows are processed. If you are
concerned about access path selection, you should use EXPLAIN for SQL executed against
declared temporary tables, analyze the output in your PLAN_TABLE as you would for any
other SQL and review your indexing strategy. You cannot run RUNSTATS against a declared
temporary table or its indexes. Since there is no catalog definition for the temporary objects,
there are no statistics available for the utility or you to modify.

When considering whether to create an index on a declared temporary table, bear in mind the
overhead of creating it. A large number of create index statements can have an impact on
system performance. You see more logging occurring. In addition, large scale creation,
opening and deletion of VSAM data sets for the indexes can increase global resource
serialization (GRS) activity. In some cases it may be quicker to simply scan the table, than for
DB2 to create an index and use it to access the data. Remember that you probably only insert
the required rows into the table, so with index access you merely avoid a sort or improve joins
rather than minimize the number of rows read.

7.3.10 Usage considerations
Since rollback and savepoints are supported for declared temporary tables, you may see an
increase in the amount of logging activity compared to that expected for created temporary
tables. The same number of log records are written as for activity against a base table.
However, the individual records are shorter as only UNDO information is recorded rather than
UNDO/REDO information.
94 DB2 for z/OS Application Programming Topics

7.3.11 Converting from created temporary tables
If you are using created temporary tables as they were introduced in DB2 Version 5 and you
wish to create indexes on the tables or do positioned/searched updates and deletes, you may
want to convert them to declared temporary tables. Here are some considerations:

� You can see an increase in logging. UNDO records are written to support rollback when
using declared temporary tables.

� There is a difference in the way in which space is managed. A single declared temporary
table is limited to the space available within the TEMP table space in which DB2 has
placed it (or a max of 64GB). Created temporary tables are stored in the work files
(typically DSNDB07) and can span multiple work files.

� Since declared temporary tables are stored in their own database, you have the option of
preventing impact to other work using the work files. Actions might include isolation of
buffer pools for TEMP table spaces, allocating them on separate I/O devices and
prevention of out-of-space conditions with other sort processes.

7.3.12 Authorization
No authority is required to declare a temporary table unless you use the LIKE clause. In this
case, SELECT access is required on the base table or view specified.

PUBLIC implicitly has authority to create tables in the TEMP database and USE authority on
the table spaces in that database. PUBLIC also has all table privileges (declare, access, and
drop) on declared temporary tables implicitly. The PUBLIC privileges are not recorded in the
catalog nor are they revokable.

Despite PUBLIC authority, there is no security exposure, as the table can only be referenced
by the application process that declared it.

7.3.13 Declared temporary table restrictions
Please note the following restrictions when using declared temporary tables:

� LOBs, ROWID, and user-defined data types (UDT) columns are not allowed.

� They cannot be specified in referential constraints.

� They cannot be specified in a TABLE LIKE parameter to a user defined function (UDF) or
stored procedure.

� They cannot be referenced using private protocol when BIND option
DBPROTOCOL(PRIVATE) is in effect.

� Multi-CEC parallelism is disabled for any query containing a declared temporary table.

� Dynamic statement caching is not supported for any statement containing a declared
temporary table.

� ODBC and JDBC functions such as SQLTables and SQLColumns cannot be used, as the
information required does not exist in the catalog.

� Thread reuse with declared temporary tables is allowed for CICS and IMS when the rows
are implicitly deleted at commit time (ON COMMIT DELETE ROWS) or the declared
temporary table is dropped before the COMMIT. Thread reuse is also possible for DDF
pool threads but only if the table is explicitly dropped before committing (irrespective of the
ON COMMIT PRESERVE/DELETE ROWS option.

� Triggers cannot be defined on declared temporary tables.
Chapter 7. Temporary tables 95

� Currently, declared temporary tables cannot be used within the body of a trigger. However,
a trigger can call a stored procedure or UDF that refers to a declared temporary table.

The following statements are not allowed against a declared temporary table:

� CREATE VIEW
� ALTER TABLE
� ALTER INDEX
� RENAME TABLE
� LOCK TABLE
� GRANT/REVOKE table privileges
� CREATE ALIAS
� CREATE SYNONYM
� CREATE TRIGGER
� LABEL ON/COMMENT ON
96 DB2 for z/OS Application Programming Topics

Chapter 8. Savepoints

In this chapter, we discuss how savepoints can be used to create points of consistency within
a logical unit of work.

8

© Copyright IBM Corp. 2001 97

8.1 What is a savepoint?
A savepoint is a named entity that represents the state of data at a particular point in time
within a logical unit of work. Savepoints can be set and released. It is possible to roll back the
data to the state that the named savepoint represents. A rollback resets all savepoints which
were taken after the savepoint we rolled back to.

Data (DML) and schema (DDL) changes made by the transaction after a savepoint is set can
be rolled back to the savepoint, as application logic requires, without affecting the overall
outcome of the transaction. There is no limit to the number of savepoints that can be set. The
scope of a savepoint is the DBMS on which it was set.

8.2 Why to use savepoints
Savepoints enable the coding of contingency or what-if logic and can be useful for programs
with sophisticated error recovery or to undo stored procedure updates when an error is
detected and only the work done in stored procedure should be rolled back. The overhead of
maintaining a savepoint is small (the measurements performed show that the cost of taking a
savepoint is equivalent to a simple fetch). Release a savepoint after it is no longer feasible
from an application logic perspective to roll back to that savepoint.

A good example for using savepoints is when making flight reservations. John Davenport
from Australia is going on vacation in Denmark. He asks a travel agent to book the flights with
maximum 4 legs (3 stops) both ways. He leaves from Alice Springs, Australia. He has to fly to
Melbourne. From Melbourne he can either fly to Singapore and from there to Copenhagen, or
he can fly via Kuala Lumpur and Amsterdam to Copenhagen. Figure 8-1shows the possible
flying routes from Alice Springs to Copenhagen.

Figure 8-1 Travel reservation savepoint sample itinerary

CopenhagenAmsterdam Singapore

Kuala Lumpur

Melbourne

Alice Springs
98 DB2 for z/OS Application Programming Topics

� First we make the flight reservation to Melbourne and take a savepoint called
FIRSTSTOP.

� Then we make the flight reservation to Singapore and take a savepoint called
SECONDSTOP.

� Then we find out that there are no seats from Singapore to Copenhagen.

� We ROLLBACK TO SAVEPOINT FIRSTSTOP, since we do not want to loose the reservation to
Melbourne.

� Then we make the reservation to Kuala Lumpur and take a savepoint called
SECONDSTOP.

� And to Amsterdam with savepoint THIRDSTOP.

� And to Copenhagen with savepoint DESTINATION. Now that we are at our destination
and have not used more than 3 stops, we can release all savepoints except
DESTINATION.

� Then we make the return reservation to Singapore with a savepoint called FIRSTSTOP.

� There is no seats from Singapore to Melbourne and we need to ROLLBACK TO SAVEPOINT
DESTINATION that is Copenhagen. Rolling back also releases the FIRSTSTOP savepoint.

� Then we make the reservation from Copenhagen to Amsterdam with a savepoint called
FIRSTSTOP

� And to Kuala Lumpur with savepoint SECONDSTOP.

� And to Melbourne with savepoint THIRDSTOP.

� If the reservation from Melbourne to Alice Springs fails we want to ROLLBACK the whole
reservation, that is to the beginning of the logical unit of work. If we can find a seat to Alice
Springs and the number of stops is no more than 3 (as in our case), we can COMMIT the
UOW.

This example shows that there is sometimes a need to additional points in time to roll back to.
They do not change the behavior - nor the need - to COMMIT.

8.3 Savepoint characteristics
The SAVEPOINT statement is used to set a savepoint. After executing such a statement, you
should check the SQL return code to verify that the savepoint was set. It is also a good
practice to choose a meaningful name (maximum length 128 bytes) for the savepoint.

The SAVEPOINT related statements (SAVEPOINT, ROLLBACK TO SAVEPOINT and RELEASE
SAVEPOINT) can be issued from an application program or from a stored procedure that is
defined as MODIFIES SQL DATA. These statements cannot be issued while executing under
an external user-defined function or trigger, for example, a stored procedure that was invoked
by a trigger. If you try, an SQLCODE -20111 (cannot issue savepoint, release savepoint,
rollback to savepoint from a trigger or from a user-defined function or from a global
transaction) is returned to the application.

For the complete syntax of the SAVEPOINT statement, refer to the DB2 UDB for OS/390
Version 7 SQL Reference, SC26-9944. When you issue the SAVEPOINT statement, DB2
writes an external savepoint log record.

Important: Savepoints are not a substitute for COMMITs.
Chapter 8. Savepoints 99

The UNIQUE clause is optional and specifies that the application program cannot activate a
savepoint with the same name as an already active savepoint with the unit of recovery. If you
plan to use a UNIQUE savepoint in a loop, and you do not release or rollback that savepoint
in the loop prior to its reuse, you get an error:

SQLCODE -881: A SAVEPOINT WITH NAME savepoint-name ALREADY EXISTS, BUT THIS
SAVEPOINT NAME CANNOT BE REUSED

SQLSTATE: 3B501

Omitting UNIQUE indicates that the application can reuse this savepoint name within the unit
of recovery. If a savepoint with the same name already exists within the unit of recovery and
the savepoint was not created with the UNIQUE option, the old (existing) savepoint is
destroyed and a new savepoint is created. This is different than using the RELEASE SAVEPOINT
statement, which releases the named savepoint and all subsequently established savepoints.
Rollback to released savepoints is not possible.

Application logic determines whether the savepoint name needs to be or can be reused as
the application progresses, or whether the savepoint name needs to denote a unique
milestone. Specify the optional UNIQUE clause on the SAVEPOINT statement when you do
not intend to reuse the name without first releasing the savepoint. This prevents an invoked
program from accidentally reusing the name.

The ON ROLLBACK RETAIN CURSORS clause is mandatory and specifies that any cursors that are
opened after the savepoint is set are not tracked, and thus, are not closed upon rollback to
the savepoint. Although these cursors remain open after rollback to the savepoint, they might
not be usable. For example, if rolling back to the savepoint causes the insertion of a row upon
which the cursor is positioned to be rolled back, using the cursor to update or delete the row
results in an error:

SQLCODE -508: THE CURSOR IDENTIFIED IN THE UPDATE OR DELETE STATEMENT IS NOT
POSITIONED ON A ROW

SQLSTATE: 24504

With scrollable cursors (see “Update and delete holes” on page 170 for more details), you
would get a different error:

SQLCODE -222: AN UPDATE OR DELETE WAS ATTEMPTED AGAINST A HOLE USING cursor-name
SQLSTATE: 24510

The ON ROLLBACK RETAIN LOCKS clause specifies that any locks that are acquired after the
savepoint is set are not tracked and are not released upon rollback to the savepoint. If you do
not specify this clause, it is implied (this is the default and at the present time, there is no
other option for locks).

In Example 8-1, we show how to set a unique savepoint named START_OVER.

Example 8-1 Setting up a savepoint

EXEC SQL SAVEPOINT START_OVER
UNIQUE
ON ROLLBACK RETAIN CURSORS
ON ROLLBACK RETAIN LOCKS ;

Tip: You can reuse a savepoint that has been specified as UNIQUE as long as the prior
savepoint with the same name has been released (through the use of a ROLLBACK or a
RELEASE SAVEPOINT) prior to attempting to reuse it.
100 DB2 for z/OS Application Programming Topics

The ROLLBACK statement with the TO SAVEPOINT clause is used to restore to a savepoint, that
is, undo data and schema changes (excluding changes to created temporary tables) made
after the savepoint was set. Changes made to created temporary tables are not logged and
are not backed out; a warning is issued instead. The same warning is also issued when a
created temporary table is changed and there is an active savepoint. The warning issued is:

SQLCODE +883: ROLLBACK TO SAVEPOINT OCCURED WHEN THERE WERE OPERATIONS THAT CANNOT
BE UNDONE, OR AN OPERATION THAT CANNOT BE UNDONE OCCURRED WHEN THERE WAS
A SAVEPOINT OUTSTANDING

SQLSTATE: 01640

Any updates outside the local DBMS, such as remote DB2s, VSAM, CICS, and IMS, are not
backed out upon rollback to the savepoint, not even when under the control of RRS. Any
cursors that are opened after the savepoint is set are not closed when a rollback to the
savepoint is issued. Changes in cursor positioning are not backed out upon rollback to the
savepoint. Any locks that are acquired after the savepoint is set are not released upon
rollback to the savepoint. Any savepoints that are set after the one to which you roll back to,
are released. The savepoint to which the rollback is performed is not released. If a savepoint
name is not specified, the rollback is to the last active savepoint. If no savepoint is active, an
error occurs:

SQLCODE -880: SAVEPOINT savepoint-name DOES NOT EXIST OR IS INVALID IN THIS CONTEXT
SQLSTATE: 3B001
or
SQLCODE -882: SAVEPOINT DOES NOT EXIST
SQLSTATE: 3B502

Rolling back a savepoint has no effects on created temporary tables because there is no
logging for CTTs. Changes to declared temporary tables on the other hand, can be
‘safeguarded’ or undone by rolling back to a savepoint. For more information on declared
temporary tables, see 7.3, “Declared temporary tables” on page 88.

The ROLLBACK statement without the TO SAVEPOINT clause (this is the normal SQL ROLLBACK
statement) rolls back the entire unit of recovery. All savepoints set within the unit of recovery
are released.

The RELEASE SAVEPOINT statement is used to release a savepoint and any subsequently
established savepoints.The syntax of the COMMIT statement is unchanged. COMMIT
releases all savepoints that were set within the unit of recovery.

8.4 Remote connections
While there are outstanding savepoints, access to a remote DBMS with DB2 private protocol
access or with DRDA access using aliases or three-part names is not allowed. For example,
if there is a savepoint set at location A, location A cannot connect to location B by either of
these two ways to access data. This is due to the consideration that the programmer using
three-part names or aliases is normally unaware of the remote sites involved. However, you
can access a remote DBMS with DB2 private protocol access or with DRDA access using
aliases or three-part names when there are no savepoints outstanding at the current location.
Once at the remote site, you may set savepoints but the local site is not aware of them.

DRDA access using a CONNECT statement is allowed; however, the savepoints are local to
their site and do not cross an explicit CONNECT. For example, location A can connect to
location B, but the savepoint set at A is unknown to location B and does not cover any
operations performed at location B. A savepoint set prior to a CONNECT is known only at the
local site, and a savepoint set after a connect is known only at the remote site. Consequently,
application-directed connections are expected to manage the processing at the alternate site.
Chapter 8. Savepoints 101

We recommend that you code the RELEASE SAVEPOINT svptname statement to release
savepoints that are no longer required for clarity, and to re-enable the use of three part name
remote connections.

8.5 Savepoint restrictions
The following are the restriction when using savepoints:

� You cannot use savepoints in global transactions.
� You cannot use savepoints in triggers.
� You cannot use savepoints in user-defined functions.
� You cannot use savepoints in a stored procedure that is called from a trigger or UDF.
� Rolling back to a savepoint does not undo changes to created temporary tables.
� Rolling back to a savepoint does not release any locks.
� Cursor position does not change when you roll back to a savepoint.
� Savepoint names cannot be specified with host variables.
102 DB2 for z/OS Application Programming Topics

Chapter 9. Unique column identification

Since day one, in order to guarantee a unique value for a column in DB2 for z/OS, you had to
create a unique index on that column. Although the index can also be used to get a good
performing query, it still was a burden on the system having to maintain it (changes to the
indexed column have to be made to the index as well).

Recently DB2 has introduced two new concepts that can guarantee unique column values
without having to create an index. In addition, you can eliminate the application coding that
was implemented to assign unique column values for those columns.

In this chapter we introduce:

� IDENTITY columns
� ROWIDs

We evaluate their characteristics, usability and especially their ability to really replace a
unique index and application generated unique numbers.

9

© Copyright IBM Corp. 2001 103

9.1 Identity columns
In this section, we describe identity columns and several ways to use them when designing
databases. Identity columns offer us a new possibility to guarantee uniqueness of a column
and to be able to automatically generate the value. We also discuss identity columns in the
context of declared temporary tables in “Creating a declared temporary table” on page 90.

9.1.1 What is an identity column?
An identity column is a numeric column, either SMALLINT, INTEGER, or DECIMAL with a
scale of zero, or a user defined distinct type based on any of these data types, which is
UNIQUE and NOT NULL by definition. The support for identity columns provides a way to
have DB2 automatically generate unique, sequential, and recoverable values for the column
defined as the identity column for each row in the table.
A table can have only one column defined AS IDENTITY.

9.1.2 When to use identity columns
Normally, logical database design should find good unique keys for all tables during the
design process. However, during physical design you may need to add tables to satisfy
additional requirements (like tables to log certain actions, intermediate results tables, and so
on) and resolve issues of long multi-column keys as primary keys. In some of these cases,
there may not be a good natural key to be used, therefore people often resort to using an
artificial key.

When you have a multi-column primary key and the table has several dependent tables, you
have to ‘copy’ many columns to the dependent tables to build the foreign keys. This makes
the keys very long and you have to code many predicates when joining the tables. Having too
many predicates can increase the chance that you make a mistake and sometimes forget a
join predicate. Having many columns in the index also makes the index grow quite large.
Instead of using the long key as the primary and foreign key, you can use an artificial unique
identifier for the parent table and use that generated value as a primary key and foreign key
for the dependent table.

Another use for identity columns is when you just need a generated unique column for a
table. If we do not need to reference the rows by this column, then there is no need to even
create an index for it, and uniqueness is guaranteed by the system for generated values
(when you use GENERATED ALWAYS, when you define the column as an IDENTITY
column).

Another reason to use identity columns is so you don’t have to keep track of ever increasing
numbers used as unique keys, for example, order number, employee number, and so on in
your applications. DB2 takes over the responsibility of keeping track of the last number used
so this complexity can be removed from your application.

9.1.3 Identity column characteristics
When you define an identity column, you can specify the start value of the identify column
and the increment to specify the interval between two consecutive values. Both numbers can
be negative or positive, default is one. Naturally, the increment cannot be zero.

Important: Please note that it is possible to have duplicate values for an identity column if
you specify the CYCLE option (introduced in V7) as one of the keywords when you define
the identity column.
104 DB2 for z/OS Application Programming Topics

For better performance, DB2 can keep some preallocated numbers in memory. The default is
to cache 20 numbers, but can be defined in the CACHE integer clause. The minimum value is
2. If you do not want or need caching, specify NO CACHE. If DB2 fails, you lose the numbers
which are cached but not used yet. So the values may have some gaps for this reason. Other
reasons to end up with gaps can be found in 9.1.9, “Application design considerations” on
page 111.

9.1.4 Creating a table with an identity column
In Example 9-1, we show the DDL to create the table TBMEMBERS using an identity column.
We want DB2 to always generate the values for the member number (MEMBNO identity)
column. The default for the starting value is +1. We chose a different number to start with. In
this case we want to start with the number 1000. We can have DB2 increase or decrease the
generated values from the starting point, by an increment we define. The default for the
increment is +1, we have chosen to increment by +2. We just started this club and there is a
lot of interest in it and at this point in time we have a lot of members joining, so to help with
insert performance, we chose to pre-allocate 40 values instead of the default of 20. We
specified a MAXVALUE of 9999 and this is the largest member number we wish to assign.
We specified MINVALUE of 1007. MINVALUE is not necessarily the smallest member
number you wish to assign, it is the minimum value to start using once you have cycled to the
end of the allowable numbers. Cycling means that we have reached the MAXVALUE and we
start assigning numbers again from MINVALUE. We also wanted the founding members of
the club, the first 4 member numbers, to be the lowest member numbers and to always be
unique numbers, that is why we specified a START WITH amount smaller than MINVALUE.
Let’s take a look at how the MEMBNO values are assigned:

1. The first number assigned is 1000 (START WITH number), and the increment is +2 so the
next number is 1002, 1004, 1006, and so on. So we assign all the even numbers.

2. MEMBNO is incremented by +2 until we reach our MAXVALUE of 9999. The last even
number that is generated is 9998.

At this point we have assigned nothing but even numbered member numbers.

3. When we reached MAXVALUE and because CYCLE was also specified, the system
continues assigning numbers starting from our MINVALUE of 1007. Now the odd numbers
(1007, 1009, 1011, 1013, 1015, and so on) are assigned since our increment is still +2.
Note that the odd numbers between 1000 and 1006 were not assigned.

(If we had not specified CYCLE and reached MAXVALUE, our inserts would start
receiving an SQLCODE -359, no new numbers would be assigned, and our inserts would
fail.)

4. When we reach our MAXVALUE of 9999 again, DB2 continues to cycle starting from
MINVALUE of 1007 and the odd numbers are assigned again causing us to have duplicate
member numbers in our database.

In this case, only after we reach MAXVALUE 9999 the second time, we start to duplicate
the odd member numbers.

Example 9-1 IDENTITY column for member number

CREATE TABLE TBMEMBERS
(MEMBNO DECIMAL(5, 0) GENERATED ALWAYS AS IDENTITY

(START WITH 1000,
 INCREMENT BY +2,
 CACHE 40
 CYCLE,
 MAXVALUE 9999,
 MINVALUE 1007)
Chapter 9. Unique column identification 105

,NAME CHAR(30) NOT NULL WITH DEFAULT
,INCOME DECIMAL(15,2) NOT NULL WITH DEFAULT
,DONATION SMALLINT NOT NULL WITH DEFAULT ;

This is the order in which member numbers get assigned:
1000
1002
1004
1006
...
9994
9996
9998
1007 <----
1009 |
1011 |
1013 | once we reach MAXVALUE 9999, we CYCLE back to MINVALUE
... | and begin assigning numbers from there
9995 |
9997 |
9999 -----

The fact that you can create a table with an IDENTITY column as specified in Example 9-1,
does not mean that you should. More often than not, it is very important that you avoid
duplicates, so you do not specify the CYCLE keyword. Also, you should take into account
how large the number may get over a long period of time and provide for a much larger
MAXVALUE. If you reach MAXVALUE and you don’t have CYCLE specified, you are not able
to insert additional rows, you have to drop the table and recreate it with a larger MAXVALUE
and reload the rows.

The GENERATED ALWAYS attribute of the identity column definition is treated in more detail
in section 9.1.5, “How to populate an identity column” .

When a table is being created LIKE another table that contains an identity column, a new
option on the LIKE clause, INCLUDING IDENTITY COLUMN ATTRIBUTES, can be used to
specify that all the identity column attributes are to be inherited by the new table. If
INCLUDING IDENTITY COLUMN ATTRIBUTES is omitted, the new table only inherits the
data type of the identity column and none of the other column attributes. You cannot create a
table LIKE a view and specify the INCLUDING IDENTITY COLUMN ATTRIBUTES keywords.

In Example 9-2, we specify that T2 should inherit all of the identity column attributes from T1
by specifying the INCLUDING IDENTITY COLUMN ATTRIBUTES clause.

Example 9-2 Copying identity column attributes with the LIKE clause

CREATE TABLE T2 LIKE T1
INCLUDING IDENTITY COLUMN ATTRIBUTES

9.1.5 How to populate an identity column
Identity columns come in two flavours and they behave in quite differently. So before deciding
which type you will use, you should thoroughly consider the implications of the two options.

Let’s discuss the various ways that an identity column is populated.
106 DB2 for z/OS Application Programming Topics

When inserting or updating
The way an identity column is populated using an INSERT or UPDATE statement depends on
the column definition. The column can be define as GENERATED BY DEFAULT or
GENERATED ALWAYS:

GENERATED BY DEFAULT

When inserting a row you can either provide the value for the identity column or let DB2
generate the value for you (by not specifying a value or using the DEFAULT keyword in
the VALUES clause).

Values can be changed using an UPDATE statement.

DB2 does not guarantee the uniqueness of a ‘GENERATED BY DEFAULT’ identity column
value among all the column values, but only among the set of values it previously
generated. To guarantee uniqueness, you have to create a unique index on the identity
column.

You must code re-try logic in your application in order to handle the possibility of
duplicates.

GENERATED ALWAYS

DB2 always generates a value for the column when a row is inserted into the table, and
DB2 guarantees that all column values are unique unless you use the CYCLE keyword at
column definition time.

If an INSERT or UPDATE statement is issued in an attempt to provide an explicit value for
the identity column, DB2 returns an error and the statement fails. However, the keyword
DEFAULT can be used in the VALUES clause of the insert statement in order to have DB2
generate the value. Using the DEFAULT keyword is especially useful in dynamic SQL,
since it eliminates the need to name all the columns of a table in an INSERT statement
because there is a column we are not allowed to provide a value for. In statically bound
programs, you should always name the columns in order to avoid a table change from
impacting your program. Therefore, it is also a good idea to use the DEFAULT in the
values list of static programs.

When adding an identity column to an existing table
An identity column can be added to a table using the ALTER TABLE statement. When you
add an identity column to a table that is not empty, the table space that contains the table is
placed in REORP (reorg pending) status. When the REORG utility is subsequently run, DB2
generates a unique identity column value for each row and then removes the REORP status.

When loading a table
An identity column that is defined as GENERATED ALWAYS, cannot be included in a LOAD
utility control statement field-specification list or be implied by a LOAD FORMAT UNLOAD, a
LOAD with no field-specification list. Such a request is rejected by the LOAD utility with an
error.

However, if the (un)load file contains identity column information, you can use the
DSN_IDENTITY for the identity column in the LOAD control cards and specify the
IGNOREFIELDS keyword. The values in the (un)load file are ignored and a new value is
generated by the LOAD utility for the identity column.

Note: If you add an identity column to a table and run a point in time recovery for that table
space to an RBA prior to the time the REORG on the table populated the column, the table
space is again placed to REORP status.
Chapter 9. Unique column identification 107

Identity columns defined as GENERATED BY DEFAULT can be loaded like any other column.
That is, you can load data into the identity column. To do this, you specify the column name of
the identity column in your load control cards just like the rest of the columns.

Even when the identity column is defined as GENERATED BY DEFAULT and the (un)load file
contains identity column values, if you prefer to have DB2 generate (or re-generate) values for
the column, then you can use the name of DSN_IDENTITY for the identity column in the load
control cards and specify the IGNOREFIELDS keyword.

For more information on this, refer to DB2 UDB for OS/390 and z/OS Utility Guide and
Reference, SC26-9945.

When inserting with a select from another table
Example 9-3 shows how to insert with a select from another table. Column C1 is defined as
an identity column in both tables T1 and T2. The OVERRIDING USER VALUE clause means
that we override the identity column values coming from T1 with new identity column values
that DB2 generates for the T2 table. The OVERRIDING USER VALUE clause can only be
specified if the target table identity column (in this case the identity column for T2) is defined
as GENERATED ALWAYS. Otherwise you receive an SQLCODE -109 (OVERRIDING USER
VALUE CLAUSE IS NOT PERMITTED).

Another way to accomplish the same thing, no matter how the column is defined, is to
explicitly specify all the columns, except for the identity column (C1), from T1 and T2.

We recommend that you do not use the OVERRIDING USER VALUE clause because if you
ever have to change the identity column definition from GENERATED ALWAYS to
GENERATED BY DEFAULT, then the BIND to pick up the new table would fail and it would
require application changes in order to correct the problem.

The OVERRIDING USER VALUE clause can be used in a single row INSERT statement.

Example 9-3 Insert with select from another table

INSERT INTO T2
OVERRIDING USER VALUE
SELECT * FROM T1

A better (safer) way to code this is:

INSERT INTO T2
(C2, C3, C4, C5, C6)

SELECT C2, C3, C4, C5, C6 FROM T1 -- In this case, C1 is the identity
-- column and C2, C3, C4, C5, C6
-- are all the other columns of the
-- table, note that C1 is not coded
-- in either column list

Important: There is no means by which you can load existing values into an identity
column that is GENERATED ALWAYS. If you are reloading data to a table with such a
column, you must first drop and recreate the table and make the identity column
GENERATED BY DEFAULT. There is no way to convert from GENERATED ALWAYS to
GENERATED BY DEFAULT or visa versa.
108 DB2 for z/OS Application Programming Topics

9.1.6 How to retrieve an identity column value
It is often very interesting to know what number DB2 has assigned to an identity column; for
example, when the identity column is the primary key in a parent table (TBORDERS) and you
want on insert rows into a child table (TBORDERITEMS) that refer, via a foreign key, back to
the parent. In order to insert the child rows, you have to know the generated identity column
value for the parent table. For this purpose you can use the new built-in scalar function
IDENTITY_VAL_LOCAL().

This function returns the most recently assigned value for an identity column at the same
nesting level. (A new nesting level is initiated any time a trigger, external UDF, or stored
procedure is invoked.) The data type for the result of the IDENTITY_VAL_LOCAL() value
function is always DECIMAL(31,0), regardless of the actual data type of the identity column
whose value is being returned.

The function has no input parameters. It is a non-deterministic function and belongs to
schema SYSIBM. If the identity column is defined with a user-defined distinct type, this
function must be casted for the UDT. See 4.5, “Using CAST functions” on page 48 for more
details.

The IDENTITY_VAL_LOCAL function returns a null value in two cases. The first case is when
you run the function before inserting any rows with identity columns at the current nesting
level. The second case is when a COMMIT or ROLLBACK has been issued since the most
recent INSERT statement that assigned a value.

You always get the last identity column value inserted at the current nesting level. So if you
are inserting to many tables with identity columns, call the IDENTITY_VAL_LOCAL function
immediately after each insert if you want to know the value of each identity column inserted.
The result of the function is not affected if you insert to other tables which do not have identity
columns or process other SQL that does not insert.

In Example 9-4, we show how to set host variable :ID-MEMBNO to the value that was
assigned to the identity column MEMBNO when the first row was inserted into the table
TBMEMBER (see Example 9-1). In this case, since it is our first insert into the TBMEMBER
table, the value returned by the function is 1000.

Example 9-4 Retrieving an identity column value

INSERT INTO TBMEMBER
(NAME, INCOME, DONATION)
VALUES ('Kate', 120000.00, 500);

SET :ID-MEMBNO = IDENTITY_VAL_LOCAL()
or

VALUES IDENTITY_VAL_LOCAL() INTO :ID-MEMBNO;

Note: the insert could also have been coded like this:
INSERT INTO TBMEMBER

(MEMBNO, NAME, INCOME, DONATION)
VALUES (DEFAULT, 'Kate', 120000.00, 500) ;

or like this:
INSERT INTO TBMEMBER

VALUES (DEFAULT,'Kate', 120000.00, 500) ;
Chapter 9. Unique column identification 109

9.1.7 Identity columns in a data sharing environment
The values generated by DB2 for a given identity column are unique across a data sharing
group. When CACHE integer is specified in a data sharing environment, each member gets
its own range of consecutive values to assign.

In Figure 9-1, we assume CACHE 20 (the default) is used for an identity column and member
DB2A has cached values 1-20 and member DB2B has cached values 21-40. If the application
that inserts the first row into the table runs on member DB2B, the identity column value
assigned to that row is 21. If the application that inserts the second row into the table runs on
member DB2A, the identity column value assigned to that row is 1.

In a data sharing environment, there is a synchronous forced log write each time the counter
is updated. If you do this once every 20 times instead of every insert (when NO CACHE is
used), the overhead is significantly reduced.

Figure 9-1 Identity column value assignment in a data sharing environment

9.1.8 Trying to overcome the identity column deficiencies
To overcome some of the problems associated with identity columns, you can try to combine
the old ‘highest key assigned table’ technique and using identity column values generated by
DB2 to provide you that unique number.

Every data table that you want to ‘equip’ with this technique uses two tables; A table with that
contains the actual data and a table that has the identity column but no data. You use the
table with the identity column to obtain the unique number and use that number to insert the
real row in the actual data table. This way you separate the actual data from the (single row)
table with the identity column.

This technique has the following advantages:

� The table with the actual data does not contain an identity column, so it does not suffer
from all restrictions associated with them.

Tip: Increasing the CACHE value above the default of 20 probably gives negligible
benefits.

Identity Column Column 2 Column 3

21

1

Member DB2A

values 1-20
cached in
memory

inserts
row at
time T2

Member DB2B

values 21-40
cached in
memory

inserts
row at
time T1
110 DB2 for z/OS Application Programming Topics

� If you ever have to reset the value of the identity column, you just drop the table with the
identity column and recreate it. You might have to do this after loading additional data in a
partition. (LOAD PART x is not allowed on a table with an identity column).

� By cutting the link between the actual ’sequence’ number used in the data table and the
table with the identity column that generates the ’sequence’ number, you are in control of
the numbers that will be assigned (at least you will be able to (re)set starting values).
When both the data and the identity column are in the same table, DB2 is in control of the
numbers that are assigned and this irrespective of the actual data in the table. Even if you
for example, delete all rows from a table with an identity column, DB2 will not reset the
MAXASSIGNEDVAL (highest value used so far).

In order to hide the complexity of using two tables instead of one, you can mask the process
with a stored procedure or a UDF. The stored procedure or UDF can be implemented as
follows:

1. Insert a row into the identity column table.

2. Retrieve its value back using the IDENTITY_VAL_LOCAL() function.

3. Delete that row from the identity column table since we no longer need it.

4. Insert the actual row using the retrieved value as a unique identifier.

The major advantage of this approach over the old style ‘highest key assigned table’ is that
there is no locking problem. The row(s) in the identity column table are never updated. We
only INSERT and DELETE rows. In case of a very high volume transaction workload, you
might want to avoid deleting the row from the identity column table in the stored procedure or
UDF because it is an extra SQL call. Instead you can have an asynchronous process running
in the background that cleans up rows at a regular intervals. This does not cause any locking
contention either, since INSERTS take a new page in case the candidate page is locked.

9.1.9 Application design considerations
Be aware that DB2’s identity column implementation allows for gaps to be created in the
assignment of identity column values. Gaps can occur due to the following reasons:

� If an inserting agent rolls back while other agents are also inserting to the table with the
identity column.

� When the DB2 subsystem terminates abnormally before all the cached values have been
assigned.

� When the increment amount is greater than 1 or less than -1.

� When you specify GENERATED BY DEFAULT and you specify values.

We recommend that you use the default caching value (CACHE 20) in a data sharing
environment to reduce serialization overhead. Be aware that in a data sharing environment
with cached identity column values, it is possible for identity column values to be assigned out
of sequence.

Tip: If your application cannot tolerate gaps for the unique keys, then identity columns may
not be a viable solution for you.

Tip: If you are in a data sharing environment, and your application does not tolerate for
identity column values to be assigned out of sequence, then you should use the NO
CACHE option. Be aware that this can have negative performance implications on your
application and can reduce the throughput of insert transactions.
Chapter 9. Unique column identification 111

Be aware of running out of values. If you created an identity column as SMALLINT, the
maximum value that can be inserted is 32767. When you reach this value (depending on the
parameters you used to define your identity column) you may either start getting duplicate
values assigned (if you specified CYCLE) or your inserts fail. If you unload, drop, recreate
and (re)load the table, you may end up having different identity column values than you had
before. This is very dangerous, especially if you have RI or if you saved the identity column
values in other tables.

This is also very important when you have to change the table design, like eliminating a
column. A lot of these design changes require the table to be dropped and recreated. You
probably want the same identity column values to be used after the drop/create operation
than before, for example, because of RI relationships with other tables. This forces you to
define the identity column as GENERATED BY DEFAULT. In order to guarantee uniqueness
of the values, which is probably why you wanted the identity column in the first place, a
unique index is required.

Be aware that when you specify the keyword CYCLE, once you reach MAXVALUE, you start
the numbering from the MINVALUE again. DB2 does not warn you when reaching the
MAXVALUE. When using CYCLE, to be sure that the values are unique, you should create a
unique index on the identity column, even when the identity column is defined as
GENERATED ALWAYS.

When the identity column is defined as GENERATED ALWAYS and is the primary key in an
RI structure, loading data into the RI structure is extremely complicated. Since the values for
the identity column are not known until they are loaded (because of the GENERATED
ALWAYS attribute) you have to generate the foreign keys in the dependent tables based on
these values since they have to match the primary key. This can be another reason for not
using GENERATED ALWAYS.

9.1.10 Identity column restrictions
In addition to not providing a gapless series of values and the fact that the identity column
attributes are non-alterable, identity columns have some other restrictions.

An identity column cannot be defined with the FIELDPROC clause or the WITH DEFAULT
clause. Nor can an EDITPROC be specified for a table that has an identity column.

Also you cannot load a partition (LOAD INTO PART x) when an identity column is part of the
partitioning index.

9.2 ROWID and direct row access
In this section, we describe and discuss how to use ROWIDs and where not to use them. If
your tables have LOBs, then DB2 uses ROWIDs to access the LOB data stored in the
auxiliary table. If your table do not have LOBS, you can still use ROWIDs.

There are two aspects to ROWIDs besides its use to retrieve LOB data:

� The first one is the fact that a ROWID can be a unique random number generated by the
DBMS. This can look like a very appealing option to solve many design issues.

Important: You cannot alter any of the definitions for an identity column. Be sure you
consider every possible situation of how the data is or may be used before adding an
identity column to a table.
112 DB2 for z/OS Application Programming Topics

� The second aspect of using ROWID columns is that they can be used for a special type of
access path to the data called direct row access.

We try to explain that there are some advantages when using ROWIDs, but there is also a
maintenance cost (REORGs cause the external representation of the ROWIDs to change)
associated with using ROWIDs and it is easy to use them the wrong way in application
programs.

9.2.1 What is a ROWID?
A ROWID is a new data type. A column or a host variable can have a ROWID data type. A
ROWID is a value that uniquely identifies a row in the table. When a row is inserted into the
table, DB2 generates a value for the ROWID column unless one is supplied. If a value is
supplied, it must be a valid row ID value that was previously generated by DB2 and the
column must be defined as GENERATED BY DEFAULT.

You must use have a column with a ROWID data type in a table that contains a LOB column.
The ROWID column is stored in the base table and is used to lookup the actual LOB data in
the LOB table space. However, a ROWID is not the same as a RID.

Although ROWIDs were designed to be used with LOBs, they can also be used in ‘regular’
tables that don’t contain LOB columns. In that case, a ROWID column can be used in a
WHERE predicate to enable queries to navigate directly to a row in the table.

Normally, DB2 generates the value (as indicated by GENERATED ALWAYS clause) for the
ROWID column. ROWIDs are random and unique, therefore at first glance they look like ideal
candidates to be used as a partitioning key of a partitioned table space if you need to spread
rows randomly across the partitions.

9.2.2 ROWID implementation and maintenance
A ROWID column must exist in the base table before a LOB column can be defined. If you
forget the ROWID column, you receive the following error:

SQLCODE = -770, ERROR: TABLE TEST CANNOT HAVE A LOB COLUMN UNLESS IT
ALSO HAS A ROWID COLUMN

There is one ROWID column per base table, so, all LOB columns in a row have the same
ROWID. The ROWID column is a unique identifier for each row of the table and the basis of
the key for indexing the auxiliary table(s).

Example 9-5 shows a table that contains LOB columns, and therefore, a ROWID column is
required. Column IDCOL is defined with the ROWID data type. Notice that in order to be able
to work with the table that contains a LOB column, you also need to create the LOB table
space, the auxiliary table and the auxiliary index.

Example 9-5 ROWID column

CREATE TABLESPACE TSLITERA IN DB246300 #
CREATE TABLE SC246300.LITERATURE
 (TITLE CHAR(25)
 ,IDCOL ROWID NOT NULL GENERATED ALWAYS
 ,MOVLENGTH INTEGER
 ,LOBMOVIE BLOB(2K)
 ,LOBBOOK CLOB(10K))
 IN DB246300.TSLITERA #
CREATE LOB TABLESPACE TSLOB1 IN DB246300 #
CREATE AUX TABLE SC246300.LOBMOVIE_ATAB
Chapter 9. Unique column identification 113

 IN DB246300.TSLOB1
 STORES SC246300.LITERATURE
 COLUMN LOBMOVIE#
CREATE INDEX DB246300.AXLOB1
 ON SC246300.LOBMOVIE_ATAB #
CREATE LOB TABLESPACE TSLOB2 IN DB246300 #
CREATE AUX TABLE SC246300.LOBBOOK_ATAB
 IN DB246300.TSLOB2
 STORES SC246300.LITERATURE
 COLUMN LOBBOOK#
CREATE INDEX DB246300.AXLOB2
 ON SC246300.LOBBOOK_ATAB #

INSERT INTO SC246300.LITERATURE (TITLE) VALUES ('DON QUIJOTE DE LA MANCHA')#
INSERT INTO SC246300.LITERATURE (TITLE) VALUES ('MACBETH') ;

SELECT TITLE, IDCOL FROM SC246300.LITERATURE #

TITLE IDCOL
--
MACBETH CDC8A0A420E6D44F260401D370180100000000000203
DON QUIJOTE DE LA MANCHA 7B80A0A420E6D64F260401D370180100000000000204
--

As mentioned in the introduction of this section, the use of a ROWID column is not restricted
to tables that have LOB columns defined. You can have a ROWID column in a table that does
not have any LOB columns defined.

Selecting a ROWID results in 22 logical bytes, but it is stored physically as 17 bytes.
Example 9-6 shows how to code a ROWID function in an SQL statement.

Example 9-6 SELECTing based on ROWIDs

SELECT TITLE,IDCOL
FROM SC246300.LITERATURE
WHERE IDCOL=ROWID(X'7B80A0A420E6D64F260401D370180100000000000204')

---------+---------+---------+---------+---------+---------+---------+-------
TITLE IDCOL
---------+---------+---------+---------+---------+---------+---------+-------
DON QUIJOTE DE LA MANCHA 7B80A0A420E6D64F260401D370180100000000000204

The value generated by DB2 is essentially a random number. If data is being propagated or
copied from one table to another, the ROWID value is allowed to appear in the VALUES
clause of an INSERT statement. In this case, the ROWID column has to be defined as
GENERATED BY DEFAULT and to ensure uniqueness, a unique index on the ROWID
column must be created.

Note: Applications are not permitted to UPDATE the ROWID column.
114 DB2 for z/OS Application Programming Topics

9.2.3 How ROWIDs are generated
There are two ways to specify how to generate ROWIDs:

GENERATED ALWAYS

� Use this option unless copying data containing a ROWID column from another table.

� ROWID column values cannot appear in the VALUES clause of an INSERT statement.

� No index is required to guarantee uniqueness of the values.

GENERATED BY DEFAULT (usually you do not want this option)

� DB2 generates a ROWID value if none is specified in the VALUES clause.

� Intended only for copying data from tables containing ROWID columns. DB2 performs
validity checking at INSERT time to verify whether the supplied value meets the criteria to
qualify for a ROWID column.

� Requires a unique index on the ROWID column to guarantee uniqueness of the ROWID
values.

In Example 9-7, we show how you can copy data from one table to another. If you have
defined the ROWID as GENERATED ALWAYS, then DB2 generates a new ROWID for each
INSERTed row (the ROWID columns cannot be copied or propagated).

Note that the LITERATURE_GA table does no longer contain the LOB columns; this shows
that you can also create a table with a ROWID column without any LOB columns. Note also
that in that case you no longer need the LOB table space, auxiliary table and index (they are
only present when you have LOB columns defined).

Example 9-7 Copying data to a table with GENERATED ALWAYS ROWID via subselect

CREATE TABLE SC246300.LITERATURE_GA
(TITLE CHAR(30)
,IDCOL ROWID NOT NULL GENERATED ALWAYS
,MOVLENGTH INTEGER
)

IN DB246300.TS246300 ;

INSERT INTO SC246300.LITERATURE_GA
(TITLE
,MOVLENGTH
)

SELECT
 TITLE
,MOVLENGTH
FROM SC246300.LITERATURE;

-- The ROWID column (IDCOL) is not specified because you can not insert
-- values in a GENERATED ALWAYS column.

SELECT TITLE, IDCOL
FROM SC246300.LITERATURE

---------+---------+---------+---------+---------+---------+---------+-------
TITLE IDCOL
---------+---------+---------+---------+---------+---------+---------+-------

Note: Users should never try to generate ROWID values.
Chapter 9. Unique column identification 115

MACBETH CDC8A0A420E6D44F260401D370180100000000000203
DON QUIJOTE DE LA MANCHA 7B80A0A420E6D64F260401D370180100000000000204

SELECT TITLE, IDCOL
FROM SC246300.LITERATURE_GA;

---------+---------+---------+---------+---------+---------+---------+-------
TITLE IDCOL
---------+---------+---------+---------+---------+---------+---------+-------
MACBETH 88DDF53DA0E6D808260401D370100100000000000207
DON QUIJOTE DE LA MANCHA D1DDF53DA0E6D818260401D370100100000000000208

Notice that when copying data to a table with a GENERATED ALWAYS ROWID column via a
subselect, the ROWIDs are completely different. New values are generated when the rows
are inserted into the LITERATURE_GA table. The ROWID column is not selected because
you cannot insert values in a GENERATED ALWAYS column.

If GENERATED BY DEFAULT was specified, you can supply a ROWID value for the
INSERTed rows.

Example 9-8 Copying data to a table with GENERATED BY DEFAULT ROWID via subselect

CREATE TABLE SC246300.LITERATURE_GDEF
 (TITLE CHAR(30)
 ,IDCOL ROWID NOT NULL GENERATED BY DEFAULT
 ,MOVLENGTH INTEGER

)
 IN DB246300.TS246300 ;

 CREATE UNIQUE INDEX DD ON SC246300.LITERATURE_GDEF (IDCOL) ;
-- This index is required for tables with GENERATED BY DEFAULT ROWID
-- columns in order to guarantee uniqueness. You receive an
-- SQLCODE -540 if the index does not exist.

 INSERT INTO SC246300.LITERATURE_GDEF
(TITLE
,IDCOL)

SELECT
 TITLE
,IDCOL
FROM SC246300.LITERATURE;

SELECT TITLE, IDCOL
FROM SC246300.LITERATURE

---------+---------+---------+---------+---------+---------+---------+-------
TITLE IDCOL
---------+---------+---------+---------+---------+---------+---------+-------
MACBETH CDC8A0A420E6D44F260401D370180100000000000203
DON QUIJOTE DE LA MANCHA 7B80A0A420E6D64F260401D370180100000000000204

SELECT TITLE, IDCOL
FROM SC246300.LITERATURE_GDEF

---------+---------+---------+---------+---------+---------+---------+-------
TITLE IDCOL
---------+---------+---------+---------+---------+---------+---------+-------
MACBETH CDC8A0A420E6D44F260401D370180100000000000209
DON QUIJOTE DE LA MANCHA 7B80A0A420E6D64F260401D37018010000000000020A
116 DB2 for z/OS Application Programming Topics

Notice that the ROWID values in the output (external representation) are similar when
copying data on a table with GENERATED BY DEFAULT ROWID via subselect. The only
difference is the last bytes that include the row’s physical location. Actually the ROWID values
that are stored physically on DASD (internal representation-highlighted part in the example)
are the same in both tables.

9.2.4 Casting to a ROWID data type
You can cast from a CHAR expression, VARCHAR expression or HEX literal string to a
ROWID data type using the CAST function or the ROWID function.

The only column function that allows the ROWID data type is COUNT. The ROWID data type
column is allowed in the BLOB, CAST, CHAR, CLOB, HEX, IFNULL, LENGTH, NULLIF,
VALUE, and VARCHAR scalar functions.

You can create an index on a ROWID column. DECLARE CURSOR, FETCH, DECLARE
TABLE, DESCRIBE, PREPARE INTO and EXECUTE also support ROWID columns.

The output that DCLGEN generates for a ROWID is shown in Example 9-9.

Example 9-9 DCLGEN output for a ROWID column

PL/I: DCL 1 LITERATURE
..
01 IDCOL SQL TYPE IS ROWID,
..

COBOL: 01 LITERATURE.
..
10 IDCOL USAGE SQL TYPE IS ROWID.
..

C/C++: struct
{ ..

SQL TYPE IS ROWID IDCOL;
..

} LITERATURE;

The precompiler will turn ’SQLTYPE IS ROWID’ into normal host language variable definitions
as shown in Example 9-10 in case of a Cobol program. The variable that will contain the
ROWID column is defined as a 40 byte character field and a 2 byte length field. The length
field will contain the actual length of the ROWID value (normally 22 bytes when the ROWID
column has not been added to the table after the table was created).

Example 9-10 Coding a ROWID host variable in Cobol

 *01 IDCOL USAGE SQL TYPE IS ROWID. <-- What you code in Cobol
(’*’ is the comment placed by precompiler)

 01 IDCOL. <-- Precompiler replacement
 49 IDCOL-LEN PIC S9(4) USAGE COMP.
 49 IDCOL-TEXT PIC X(40).
Chapter 9. Unique column identification 117

9.2.5 ROWIDs and partitioning keys
Since a ROWID column contains a semi-random and unique value, they may appear to be a
good candidate for a partitioning key.

Although the random nature of the ROWID column eliminates insert hot-spots from the table
space, you usually have to define additional non-partitioning indexes to retrieve the data
afterwards, since the partitioning key, the ROWID column, is not a meaningful ‘natural’ key.
Especially on very large table spaces, having several non-partitioning indexes can introduce
some challenges for ’sequential’ batch runs and utilities.

There are better techniques to spread rows to be inserted randomly across the partitions of a
partitioned table space when there is no column that can serve as a good partitioning key.
You can, for example, create a hashing fieldproc.

Example 9-11 shows that you need a non-partitioning index if you choose a ROWID column
as partitioning key.

Example 9-11 Why not to use a ROWID column as a partitioning key

CREATE TABLESPACE TS246399 IN DB246300 NUMPARTS 4 #

CREATE TABLE SC246300.LITERATURE_PART
(TITLE CHAR(25)
,IDCOL ROWID NOT NULL GENERATED ALWAYS
,SEQNO INTEGER
,BOOKTEXT LONG VARCHAR)

IN DB246300.TS246399 #

CREATE INDEX SC246300.IDCOLIX_PART
 ON SC246300.LITERATURE_PART (IDCOL)
 CLUSTER (PART 1 VALUES(X'3F'),

PART 2 VALUES(X'7F'),
PART 3 VALUES(X'BF'),
PART 4 VALUES(X'FF')) #

-- However you still need a non-partitioning index to find the rows (for the first
-- time) so you need another index.

CREATE UNIQUE INDEX SC246300.TITLEIX
ON SC246300.LITERATURE_PART (TITLE,SEQNO) #

INSERT INTO SC246300.LITERATURE_PART
(TITLE,SEQNO,BOOKTEXT)

VALUES ('MY MASTERPIECE', 1 , 'IT WAS THE BEST OF TIMES,') #

SELECT * FROM SC246300.LITERATURE_PART
WHERE TITLE = 'MY MASTERPIECE'#

Note: External ROWID format is variable length (up to 40 bytes).
118 DB2 for z/OS Application Programming Topics

9.2.6 ROWID and direct row access
If an application selects a row from a table that contains a ROWID column, the ROWID value
implicitly contains the location of the row. If you use that ROWID value in the search condition
of subsequent SELECTs, UPDATEs or DELETEs, DB2 can choose to navigate directly to that
row without using an index. This access method is called direct row access, and is a very
efficient access path. However, if you expect direct row access to be used, but for some
reason (like a REORG has happened in the meantime), DB2 decides not to use direct row
access at execution time, it may lead to serious performance problems.

Therefore, use direct row access with great caution.

Application programs that want to implement using direct row access have to be carefully
designed. It is very easy to code it wrong, especially when using pseudo conversational
transaction managers. If not used correctly, it can lead to serious performance problems
when the row accessed changed location in the meantime. There is no integrity exposure,
like trying to update the wrong row. The system detects that the ROWID value is no longer
‘valid’ and uses an alternate access path to access the data.

When explaining SQL statements that might qualify for direct row access, a new
PLAN_TABLE column, PRIMARY_ACCESSTYPE indicates whether (value D) or not (blank)
direct row access is attempted.

From a performance point of view, using direct row access may save some index accesses
(getpages and possibly I/Os as well), but, there is always the ‘risk’ that DB2 has to revert to
an alternate access path if direct row access cannot be used for some reason at execution
time. That alternate access path can mean degrading to a table space scan (see “Falling back
from direct row access to another access path” on page 120.

Direct row access can be used on any table that has a ROWID column. Example 9-12 show
an example of direct row access.

Example 9-12 ROWID direct row access

SELECT IDCOL INTO :bookid FROM SC246300.LITERATURE WHERE ...

SELECT TITLE, SUBSTR(LOBBOOK, 1, 1000) INTO ...
FROM SC246300.LITERATURE

WHERE IDCOL = :bookid

Direct row access can be very fast, but should only be used if extremely high performance is
needed. In order for an application to be able to benefit from direct row access the application
logic must first retrieve the row with data and at a later stage update or delete it.

Important: LOAD PART x is not allowed for a table whose partitioning key contains a
ROWID. This is because ROWIDs are pseudo-random generated and may point to any
partition of the table, whereas LOAD PART x can only insert rows into partition x.

Note: ROWIDs were originally conceived to be used with LOBs. However, direct row
access has nothing to do with LOBs whatsoever. Direct row access is used to locate rows
in a table that have a ROWID column defined. Accessing LOBs in the LOB table space is
done using the index on the auxiliary table.
Chapter 9. Unique column identification 119

If the application can use a cursor that is defined as ‘for update of’, then it should use this type
of cursor instead of direct row access. The ‘update where current of cursor’ also does a
‘direct’ update to the row as it does not have to search the row before updating it. The cursor
is already positioned on the row that you are about to update. Using a cursor that is defined
with ‘for update of’ does not have to consider a fallback access path as is the case with direct
row access.

A lot of applications cannot use a ‘for update of’ cursor. For example, an on-line IMS
transaction cannot use this type of cursor since selecting the data and displaying it on the
screen, and updating the data are separate executions of a transaction. The cursor is no
longer there when the transaction returns to do the update. Another reason for not using a ‘for
update of’ cursor by many applications is the type of locking that is involved with this type of
cursor. The UPDATE or DELETE operation takes place immediately after the row has been
fetched because of the usage of the WHERE CURRENT OF clause (that is what makes it a
positioned UPDATE or DELETE). Therefore, the X-lock on the page/row is usually held longer
than is the case when using a non-cursor update, that you usually perform as close to the
COMMIT as possible (to reduce the amount of time the X-lock is held). Therefore, using a
positioned UPDATE or DELETE may have an impact on concurrency.

Therefore, in order to be considered as a candidate for direct row access, your application:

� Needs to read the data first and update/delete it later
� Is unable to use a ‘for update of’ cursor

If the application does not have to read the row, you cannot use direct row access. You must
retrieve the ROWID column first and use it later on to read/update/delete the same data
again.

A good use may be if for some reason you have to update the same row several times.

Even though direct row access can be a great access path (avoiding index access and
scanning needs), storing ROWID values in a table is usually a bad idea, especially when
storing a large number of rows for a longer period of time as is explained in the next section.

Falling back from direct row access to another access path
Although DB2 might plan to use direct row access, circumstances can cause DB2 not to use
direct row access at run time. DB2 remembers the location of the row as of the time it is
accessed. However, that row can change location (such as after a REORG) before it is
accessed again, which means that DB2 can no longer use direct row access to find the row.
Instead of using direct row access, DB2 uses the ‘alternate ‘access path. The ‘alternate’
access path is shown in the ACCESSTYPE column of the PLAN_TABLE when explaining the
SQL statement or binding with the EXPLAIN(YES) option.

This can have a profound impact on the performance of applications that count on direct row
access. So it is important that applications handle this situation. Some options are:

� Ensure that your application does not try to remember ROWID values across
reorganizations of the table space or other processes that could move the row. (A
not-in-place update, either within the page or even to a different page does not invalidate
the ROWID, as such.)

– If an application variable stores a ROWID column value longer than it holds a claim on
the table space, a REORG can occur and move the row, disabling direct row access.
Remember that claims are released at commit if the cursor is not defined WITH HOLD.
Therefore, a recommended practice is to select the ROWID just prior to using it in
another SQL statement, without intermediate COMMITS, that could allow a REORG to
occur. So plan your commit processing accordingly or you could have unexpected
results, as it could happen if you code Example 9-13.
120 DB2 for z/OS Application Programming Topics

– If you are storing ROWID columns from another table (as VARCHARs, not as
ROWIDs), you should somehow update those values after the table with the ROWID
columns is reorganized. Therefore, storing ROWIDs of a table in another table is not
recommended.

� Supplement the ROWID column predicate with another boolean term predicate that
enables DB2 to use an existing index on the table or a good alternate access path.

� Create an index on the ROWID column, so that DB2 can use the index if direct row access
is disabled.

Example 9-13 Inappropriate coding for direct row access.

--Do NOT attempt the following:

SELECT IDCOL INTO :bookid FROM SC246300.LITERATURE WHERE ... ;

COMMIT ;

DELETE FROM SC246300.LITERATURE -- This results in a table space scan
WHERE IDCOL = :bookid -- if the ROWID is no longer valid and

-- no index exists on IDCOL

One of the checks that is performed to see if a ROWID value is valid is verifying the EPOCH
number. The EPOCH number can be found in SYSIBM.SYSTABLEPART. When a table
space is created, the initial value of EPOCH is zero, and it is incremented whenever an
operation resets the page set or partition (such as REORG or LOAD REPLACE).

9.2.7 ROWID and direct row access restrictions
Some ROWID restrictions are as follows:

� A table can have only one ROWID column.
� A ROWID column cannot be updated.
� A ROWID column cannot be defined as nullable.
� LOAD PART is not allowed if the partitioning key contains a ROWID column.
� No editproc is allowed on tables containing a ROWID column.
� No fieldproc is allowed on a ROWID column.
� No check constraints can be defined on a ROWID column.
� A ROWID column cannot be used in a temporary table.
� A ROWID column cannot be part of a primary or foreign key.

If the unique index defined on a ROWID column with the GENERATE BY DEFAULT attribute
is dropped, the table is marked incomplete, and access to the table is not allowed until the
index is created.

Direct row access can be used to navigate directly to a row if:

� The ROWID is used in an equal (=) or IN predicate
� The predicate is a Boolean Term predicate (can only be ANDed with other predicates)
� If it is used in an IN predicate, an index on ROWID must exists.
� Direct row access and parallelism are mutually exclusive (its use disables parallelism).
� Direct row access and RID list processing are mutually exclusive.
� Direct row access is not used for join processing (this may be changed in the future).

Important: If you use non-IBM utilities that reset the page set or partition (like REORG or
LOAD REPLACE) and you use direct row access, make sure that these utilities update the
EPOCH column in SYSTABLEPART when they reset the page set or partition.
Chapter 9. Unique column identification 121

� The DB2 predictive governor estimates the cost of the query with the assumption that the
direct access is successful. It does not report the estimated cost of the alternative access
path.

9.3 Identity column and ROWID usage and comparison
At first glance they both seem good alternatives to having the application code to generate
unique values for certain columns.

Although both identity columns and ROWIDs guarantee a unique number the nature of the
number is quite different. A ROWID value is a random hex string whereas an identity column
is an ever increasing or decreasing (when cycling is not allowed) numeric number.

Both have some similar restrictions concerning the usage of GENERATED ALWAYS and
GENERATED BY DEFAULT columns. GENERATED ALWAYS seems the more attractive as it
does not require you to have a unique index to guarantee uniqueness. However, in the case of
a GENERATED ALWAYS ROWID column it might be wise to create a unique index on the
ROWID column in case DB2 cannot use direct row access and DB2 has to revert to the
‘alternate’ access path.

A lot of installations copy (LOAD) their production data into a development and/or quality
assurance (QA) environment. This can cause problems when using GENERATED ALWAYS
columns (for both identity and ROWID columns). The LOAD will replace the values in those
columns by new values. This can pose a problem if tables are related to each other based on
such a column because the value in the ’GENERATED ALWAYS’ column will have changed
but the value in the other table has not. As an alternative you might choose to define those
columns as GENERATED BY DEFAULT in your development and/or quality assurance
environment. This will allow the LOAD utility to preserve the values from the production
environment (where the column is defined as GENERATED ALWAYS). However, you should
be aware that this can cause other problems. Programs will be allowed to specify a
’GENERATED BY DEFAULT’ column in an INSERT statement for example. This will work fine
in development and QA, but will fail once the program is moved into production. Programmers
should be made aware of this potential problem to avoid production outages.

Identity and ROWID columns pose some complications when having to add data to a
partitioned table space using the LOAD utility (for example, when GENERATED ALWAYS is
used for an identity column or to load a partition when a ROWID column is part of the
partitioning key).

The ROWID data type has no built-in function that is comparable to IDENTITY_VAL_LOCAL()
that can be used to retrieve the most recently used value for an identity column.

The use of identity columns can be a replacement for application code that generates ever
increasing or decreasing values. Identity columns do not have the locking considerations that
you need to deal with when implementing this with application logic. However, applications
that use identity columns have to tolerate gaps in the numbers that are assigned. Another
consideration is that loading data becomes more complex when using the GENERATED
ALWAYS attribute. Also all considerations associated with inserting rows at the end of a table
still apply when using identity columns.

So the truth of the matter is that although very promising at first glance, both identity columns
and ROWID columns (outside of LOBs) need to be examined very closely before you decide
to use them. Although they can serve specific needs they probably will not be that widely
used.
122 DB2 for z/OS Application Programming Topics

Part 3 More powerful SQL

This part discusses the following topics:

� SQL CASE expressions

� Union everywhere

� Scrollable cursors

� Extensions to the ON clause

� Row expressions

� ORDER BY improvements

� INSERT, UPDATE and SELECT INTO enhancements

Part 3
© Copyright IBM Corp. 2001 123

124 DB2 for z/OS Application Programming Topics

Chapter 10. SQL CASE expressions

In this chapter, we discuss CASE expressions. They can increase programmer productivity,
portability and query performance by replacing multiple SQL statements with a single CASE
expression. The CASE expression allows you to write conditional logic based on the
evaluation of one or more conditions.

You can write CASE expressions in:

� SELECT lists
� Predicates (WHERE clauses)
� User-defined functions
� Triggers
� SET clauses in UPDATE statements

10
© Copyright IBM Corp. 2001 125

10.1 What is an SQL CASE expression?
A case expression allows an expression to be selected based on the evaluation of one or
more conditions. The value of the case expression is the value of the first result expression
that evaluates to true. If no expression in the case evaluates to true, then the result is the
result expression of the ELSE, or Null when the ELSE keyword is not present.

CASE expression characteristics
The keyword CASE begins a case expression

The data type of the expression prior to the first WHEN keyword must be comparable to the
data types of each expression that follows the WHEN keywords.

The WHEN clause comes in two flavors:

� Simple-when-clause
� Searched-when-clause

Simple-when-clause specifies that the value of the expression prior to the first WHEN
keyword is tested for equality with the value of each expression that follows the WHEN
keywords. Specifies the result for each WHEN keyword when the expressions are equal.

expression WHEN expression THEN result-expression / NULL
DEPTNO WHEN ‘C’ THEN ‘SYSTEMS’

In the Example 10-1 we select the employee number, last name and division from the
TBEMPLOYEE table. The first character of the work department number represents the
division within the organization. By using a CASE expression with a simple-when-clause, it is
possible to translate the codes and list the full name of the division to which each employee
belongs.

Example 10-1 SELECT with CASE expression and simple WHEN clause

SELECT
 EMPNO
,LASTNAME
,CASE SUBSTR(WORKDEPT,1,1)

WHEN 'A' THEN 'ADMINISTRATION'
WHEN 'B' THEN 'HUMAN RESOURCES'
WHEN 'C' THEN 'DESIGN'
WHEN 'D' THEN 'OPERATIONS'
ELSE 'UNKNOWN DEPARTMENT'

 END AS DIVISION
FROM SC246300.TBEMPLOYEE ;

Searched-when-clause specifies a search condition to be applied to each row or group of
table data presented for evaluation, and the result when that condition is true.

WHEN search-condition THEN result-expression / NULL
WHEN ORDERDATE > CURRENT DATE + 60 DAYS THEN '2'

Example 10-2 gives an example of using a CASE expression with a searched-when-clause to
update the salary of our employees depending on their job. As shown in the example, CASE
expressions are not limited to SELECT statements.

Example 10-2 Update with CASE expression and searched WHEN clause

UPDATE SC246300.TBEMPLOYEE
126 DB2 for z/OS Application Programming Topics

SET SALARY = CASE
WHEN JOB IN (‘MANAGER’ , ‘SUPRVSR’) THEN SALARY * 1.10
WHEN JOB IN (‘DBA’ , ‘SYS PROG’) THEN SALARY * 1.08
WHEN JOB = ‘PRGRMR’ THEN SALARY * 1.05
ELSE SALARY * 1.035

END ;

Result-expression specifies an expression that follows the THEN and ELSE keywords. It
specifies the result of a searched-when-clause or a simple-when-clause that is true, or a
result if no case is true.

WHEN 'D' THEN 'OPERATIONS'
ELSE 'UNKNOWN DEPARTMENT'

All result-expressions must be compatible. There must be at least one result-expression in the
CASE expression with a defined data type. NULL cannot be specified for every data type.
RAISE_ERROR cannot be specified for every CASE result-expression. For an example of
using CASE expressions in a trigger see Example 3-10 on page 24.

Search-condition specifies a condition that is true, false or unknown about a row, or group of
table data.

The ELSE clause is either followed by a result-expression or NULL.

The keyword END ends a case-expression

10.2 Why use an SQL CASE expression
There are many areas where CASE expressions can be used successfully. The best way to
get some feeling for their capabilities is by looking at some examples.

CASE expressions can be used to replace decision logic implemented with UNION, UNION
ALL or complicated OR-clauses. These methods temporarily divide result sets based on
multiple returned values which may cause DB2 to repeatedly scan the same data pages. In
contrast, with the CASE expression it is possible to accomplish the same with one pass of the
data. For this reason, CASE expressions may significantly reduce the elapsed time of
queries.

Looking at Example 10-3 and Example 10-4, you can see how to avoid coding several update
statements by coding a single update with a CASE expressions. The examples show two
different ways to process a salary increase. The salary raise is dependent on the job class.
Certain classes get 10%, others 8%, others 5%, and yet others a 3.5% raise. You can code
several update statements, one for each job class, and scan the TBEMPLOYEE table once
for each update (assuming no index is present) as shown in Example 10-3, or you can use a
CASE expression, shown in Example 10-4, and write one SQL statement to do all the
updates with one pass through the data.

Example 10-3 Three updates vs. one update with a CASE expression

UPDATE SC246300.TBEMPLOYEE
SET SALARY = SALARY * 1.10
WHERE JOB IN (‘MANAGER’ , ‘SUPRVSR’) ;

UPDATE SC246300.TBEMPLOYEE
SET SALARY = SALARY * 1.08
WHERE JOB IN (‘DBA’ , ‘SYS PROG’) ;
Chapter 10. SQL CASE expressions 127

UPDATE SC246300.TBEMPLOYEE
SET SALARY = SALARY * 1.05
WHERE JOB = ‘PRGRMR’ ;

UPDATE SC246300.TBEMPLOYEE
SET SALARY = SALARY * 1.035
WHERE JOB NOT IN (‘MANAGER’ , ‘SUPRVSR’, ‘DBA’ , ‘SYS PROG’, ‘PRGRMR’) ;

Example 10-4 One update with the CASE expression and only one pass of the data

UPDATE SC246300.TBEMPLOYEE
SET SALARY = CASE

WHEN JOB IN (‘MANAGER’ , ‘SUPRVSR’) THEN SALARY * 1.10
WHEN JOB IN (‘DBA’ , ‘SYS PROG’) THEN SALARY * 1.08
WHEN JOB = ‘PRGRMR’ THEN SALARY * 1.05
ELSE SALARY * 1.035

END ;

In the following examples we update ORDERSTATUS on table TBORDER depending on the
value of ORDERDATE. We can accomplish this with three SQL statements and three passes
of the data (see Example 10-5) or with one SQL statement using a CASE expression and one
pass of the data (see Example 10-6). Additionally, since the CASE expression stops
evaluating once the first WHEN clause evaluates true, we can also simplify the logic (see
Example 10-7).

Example 10-5 Three updates vs. one update with a CASE expression

UPDATE SC246300.TBORDER
SET ORDERSTATUS = '0'
WHERE ORDERDATE <= CURRENT DATE + 30 DAYS ;

UPDATE SC246300.TBORDER
SET ORDERSTATUS = '1'
WHERE ORDERDATE > CURRENT DATE + 30 DAYS

 AND ORDERDATE <= CURRENT DATE + 60 DAYS ;

UPDATE SC246300.TBORDER
SET ORDERSTATUS = '2'
WHERE ORDERDATE > CURRENT DATE + 60 DAYS ;

Example 10-6 Same update implemented with CASE expression and only one pass of the data

UPDATE SC246300.TBORDER
SET ORDERSTATUS = CASE

WHEN ORDERDATE <= CURRENT DATE + 30 DAYS THEN ‘0’
 WHEN (ORDERDATE > CURRENT DATE + 30 DAYS AND

 ORDERDATE <= CURRENT DATE + 60 DAYS) THEN '1'
WHEN ORDERDATE > CURRENT DATE + 60 DAYS THEN '2'

END ;
128 DB2 for z/OS Application Programming Topics

Example 10-7 Same update with simplified logic

UPDATE SC246300.TBORDER
SET ORDERSTATUS = CASE

WHEN ORDERDATE <= CURRENT DATE + 30 DAYS THEN ‘0’
 WHEN ORDERDATE <= CURRENT DATE + 60 DAYS THEN '1'

ELSE ‘2’
END ;

Example 10-8 uses a CASE expression to avoid ‘division by zero’ errors. The following
queries show an accumulation or summing operation. In the first query, it is possible to get an
error because PAYMT_PAST_DUE_CT can be zero and division by zero is not allowed.
Notice that in the second part of the example, the CASE statement first checks to see if the
value of PAYMT_PAST_DUE_CT is zero, if it is we return a zero, otherwise we perform the
division and return the result to the SUM operation.

Example 10-8 Avoiding division by zero

SELECT REF_ID
,PAYMT_PAST_DUE_CT
,SUM (BAL_AMT / PAYMT_PAST_DUE_CT)

FROM PAY_TABLE
GROUP BY REF_ID

,PAYMT_PAST_DUE_CT; --This statement can get a division by zero error
versus

SELECT REF_ID
,PAYMT_PAST_DUE_CT
,SUM (CASE

WHEN PAYMT_PAST_DUE_CT = 0 THEN 0
WHEN PAYMT_PAST_DUE_CT > 0 THEN BAL_AMT / PAYMT_PAST_DUE_CT

 END)
FROM PAY_TABLE
GROUP BY REF_ID

,PAYMT_PAST_DUE_CT; --This statement avoids division by zero errors

Following is another example (Example 10-9) that also shows how to use a CASE expression
to avoid division by zero errors. From the TBEMPLOYEE table, find all employees who earn
more than 25 percent of their income from commission, but who are not fully paid on
commission.

Example 10-9 Avoid division by zero, second example

SELECT
 EMPNO
,WORKDEPT
,SALARY + COMM

FROM SC246300.TBEMPLOYEE
WHERE

(CASE WHEN SALARY = 0 THEN 0
ELSE COMM/(SALARY + COMM)

END) > 0.25 ;

SALARY COMM SALARY+COMM COMM/(SALARY+COMM)
90000 10000 100000 0.10

100000 0 100000 0.00
Chapter 10. SQL CASE expressions 129

0 100000 100000 1.00
0 0 0 error, division by zero

Example 10-10 shows how to replace many UNION ALL clauses with one CASE expression.
In this example, if the table is not clustered by the column STATUS, DB2 probably does not
use an index to access the data and scan the entire table once for each SELECT. By using
the CASE expression we scan the data only once. This could be a significant performance
improvement depending on the size of the table and the number of rows that are accessed by
the query.

Example 10-10 Replacing several UNION ALL clauses with one CASE expression

SELECT
 CLERK
,CUSTKEY
,'CURRENT' AS STATUS
,ORDERPRIORITY

FROM SC246300.TBORDER
WHERE ORDERSTATUS = '0'

UNION ALL
SELECT

 CLERK
,CUSTKEY
,'OVER 30' AS STATUS
,ORDERPRIORITY

FROM SC246300.TBORDER
WHERE ORDERSTATUS = '1'

UNION ALL
SELECT

 CLERK
,CUSTKEY
,'OVER 60' AS STATUS
,ORDERPRIORITY

FROM SC246300.TBORDER
WHERE ORDERSTATUS = '2' ;

versus

SELECT CLERK
,CUSTKEY
,CASE

WHEN ORDERSTATUS = '0' THEN 'CURRENT'
WHEN ORDERSTATUS = '1' THEN 'OVER 30'
WHEN ORDERSTATUS = '2' THEN 'OVER 60'

 END AS STATUS
,ORDERPRIORITY

FROM SC246300.TBORDER ; -- this statement is equivalent to the above
-- UNION ALL but requires only one pass through
-- the data.

CASE expressions can also be used in before triggers to edit and validate input data and
raise an error if the input is not correct. This can simplify programming by taking application
logic out of programs and placing it into the data base management system, reducing the
number of lines of code needed since the code is only in one place. See the trigger example
in Example 3-10 on page 24.
130 DB2 for z/OS Application Programming Topics

CASE expressions also provide additional DB2 Family consistency and thereby enhance
application portability in a client/server environment.

10.3 Alternative solutions
There are two scalar functions, NULLIF and COALESCE, that can be used to perform a
subset of the functionality provided by the CASE statement. Table 10-1 shows the equivalent
expressions using CASE expressions or these functions. As you can see, the CASE
expression is more self documenting and it is easier to see what operation it is performing.

Table 10-1 Functions equivalent to CASE expressions

10.4 Other uses of CASE expressions
Example 10-11 lists the employee number and education level from the employee table. List
the education level as ‘post graduate’, ‘graduate’ and ‘diploma’ instead of the integer code
that is stored in the table. If an education level is greater than 20, raise an error ('70001') with
a detailed error message.

Example 10-11 Raise an error in CASE statement

SELECT
 EMPNO
 , CASE WHEN EDLEVEL < 16 THEN 'DIPLOMA'
 WHEN EDLEVEL < 18 THEN 'GRADUATE'
 WHEN EDLEVEL < 20 THEN 'POST GRADUATE'
 ELSE
 RAISE_ERROR ('70001', 'EDUCLVEL HAS VALUE GREATER THAN 20')
 END AS EDUCLEVEL
 FROM SC246300.TBEMPLOYEE ;

Note: These CASE expressions are stage 2 if coded in a WHERE clause while the
NULLIF and COALESCE are stage 1 predicates.

CASE expression Equivalent expression

CASE
WHEN e1=e2 THEN NULL
ELSE e1

END

NULLIF(e1,e2)

CASE
WHEN e1 IS NOT NULL THEN e1
ELSE e2

END

COALESCE(e1,e2)
or
VALUE(e1,e2)

CASE
WHEN e1 IS NOT NULL THEN e1
WHEN e2 IS NOT NULL THEN e2
WHEN ...
ELSE eN

END

COALESCE(e1,e2,...,eN)
or
VALUE(e1,e2,...,eN)
Chapter 10. SQL CASE expressions 131

Example 10-12 shows how a CASE statement can be used to ‘pivot’ a table. Sometimes it is
convenient to pivot the results of a query in order to simplify program logic to display the data
on a screen or simplify the generation of a report.

Example 10-12 Pivoting tables

SELECT CUSTKEY
 , SUM(CASE
 WHEN TOTALPRICE BETWEEN 0 AND 99 THEN 1
 ELSE 0
 END) AS SMALL
 , SUM(CASE
 WHEN TOTALPRICE BETWEEN 100 AND 250 THEN 1
 ELSE 0
 END) AS MEDIUM
 , SUM(CASE
 WHEN TOTALPRICE > 250 THEN 1
 ELSE 0
 END) AS LARGE
 FROM SC246300.TBORDER
 GROUP BY CUSTKEY #

Assume that table TBORDER contains the following rows:

---------+---------+----
CUSTKEY TOTPRICE
---------+---------+----
03 224.
05 30.
03 560.
05 150.
01 50.
03 550.
01 40.
04 40.
02 438.
03 75.

The result of the above query is:

---------+---------+---------+---------+---------+---------+----
CUSTKEY SMALL MEDIUM LARGE
---------+---------+---------+---------+---------+---------+----
01 2 0 0
02 0 0 1
03 1 1 2
04 1 0 0
05 1 1 0

Example 10-13 shows how a CASE statement can be used to group the results of a query
without having to re-type the expression. Using the employee table, find the maximum,
minimum, and average salary. Instead of finding these values for each department, assume
that we want to combine some departments into the same group. Combine departments A00
and E21, and combine departments D11 and E11.

Example 10-13 Use CASE expression for grouping

SELECT CASE_DEPT
132 DB2 for z/OS Application Programming Topics

,MAX(SALARY) AS MAX_SALARY
,MIN(SALARY) AS MIN_SALARY
,AVG(SALARY) AS AVG_SALARY

FROM (SELECT
 SALARY
,CASE WORKDEPT WHEN ‘A00’ THEN ‘A00_E21’

WHEN ‘E21’ THEN ‘A00_E21’
WHEN ‘D11’ THEN ‘D11_E11’
WHEN ‘E11’ THEN ‘D11_E11’
ELSE WORKDEPT

 END AS CASE_DEPT
FROM SC246300.TBEMPLOYEE) AS X

GROUP BY CASE_DEPT ;

Assume that table TBEMPLOYEE contains the following rows:

SALARY WORKDEPT
70000 A00
60000 A00
50000 A00
36000 B20
40000 B20
44000 B20
42000 D11
54000 D11
45000 E11
30000 E21
40000 F20
51200 F20
80100 F20
40250 J11
50800 J11

The result of the above query is:

CASE_DEPT MAX_SALARY MIN_SALARY AVG_SALARY
------------+-----------+------------+-----------
A00_E21 70000 30000 52500
B20 44000 36000 40000
D11_E11 54000 42000 47000
F20 80100 40000 57100
J11 50800 40250 30350

10.5 SQL CASE expression restrictions
The search-condition of a CASE expression cannot contain a subselect. If the CASE
expression is in a select list, an IN predicate, or a SET clause of an UPDATE statements, the
search-condition cannot be a quantified (ANY, SUM, ALL) predicate, an IN predicate, or an
EXISTS predicate. Otherwise you receive an SQLCODE -582.

In a CASE expression, if a column with a field procedure is used as the result-expression in a
THEN or ELSE clause, all other columns that are used as result-expressions must have the
same field procedure. Otherwise, no column used in a result-expression may name a field
procedure.

CASE expressions cannot be used in CHECK CONSTRAINTS.
Chapter 10. SQL CASE expressions 133

CASE expressions in the WHERE clause are stage 2 predicates.

The result-expressions of a CASE statement (expressions following the THEN and ELSE
keywords) cannot be coded so that all of them are NULL. If you attempt to code a CASE
expression that always returns a NULL result, you receive an SQLCODE -580.

The data type of every result-expressions must be compatible. If the CASE condition result
data types are not compatible (either all character, graphic, numeric, date, time or timestamp)
you receive an SQLCODE -581.

Columns of data types VARCHAR (greater than 255 bytes), VARGRAPHIC (greater than 127
bytes), and LOBs (CLOB, DBCLOB or BLOB) cannot be used anywhere within a CASE
expression. In addition, the only type of user defined function that is allowed in the expression
prior to the first WHEN keyword must be a deterministic UDF and it cannot contain external
actions.

Tip: If the best possible access path is not a table space scan and you have CASE
expressions in the WHERE clause, make sure that you also code other indexable and
filtering predicates in the WHERE clause whenever possible.
134 DB2 for z/OS Application Programming Topics

Chapter 11. Union everywhere

In this chapter we discuss UNIONs and the many new places where they can now be used.

Starting with DB2 Version 7, UNIONs may now be used in:

� Views

� Table expressions

� Predicates (subqueries)

� Inserts

� Updates

Because a UNION can now be coded everywhere that you could previously code a subselect,
this feature is also called ‘union everywhere’.

We also discuss some ways ‘union everywhere’ can be applied in the physical design of
extremely large tables.

11
© Copyright IBM Corp. 2001 135

11.1 What is a union everywhere?
A subselect is that portion of a query containing no more than SELECT, FROM, WHERE,
GROUP BY, and HAVING clauses, but not including ORDER BY clause, UPDATE clause, or
UNION operators. By definition, a fullselect is a SELECT statement that contains a UNION or
UNION ALL, but not ORDER BY.

In DB2 V7, the SQL syntax has been enhanced so that you may use a fullselect (a portion of
a select statement that contains a UNION or UNION ALL between subselects) anywhere a
subselect was previously allowed.
Prior to DB2 V7, UNIONs could not be used in a CREATE VIEW, in nested table expressions,
in subqueries, or in INSERT and UPDATE statements. Beginning with DB2 V7, the syntax of
the view definition, nested table expressions, subqueries, inserts and updates has been
enhanced to allow a fullselect clause instead of only a subselect.

11.2 Why union everywhere
Union everywhere increases SQL usability by allowing logical tables that are split into multiple
physical tables to be viewed by the end users as a logical table without the user having to
understand the nuances of coding a UNION.

Performance has also been recognized as being an integral part of the making of this change.
DB2 avoids materializing a view with unions as much as possible by using query rewrite.
Other performance benefits have been included to exploit this enhancement.

The union everywhere implementations enhances the compatibility with other members
within the DB2 UDB family and complies with the SQL99 standard.

11.3 Unions in nested table expressions
This enhancement is of benefit when there is a need to use functions across similar data
which is stored in multiple tables. In this example, the data that has been merged, is grouped.
Prior versions of DB2 would have required a temporary table to be created with a separate
SQL statement to implement this statement. Now this can be achieved with a single SQL
statement.

The query in Example 11-1 finds the number of male and female customers and employees
in city 1010 and their average age.

Example 11-1 Unions in nested table expressions

SELECT SEX
,AVG(AGE)
,COUNT(*)
,CITYKEY

FROM TABLE (SELECT
 SEX
,YEAR(DATE(DAYS(CURRENT DATE)-DAYS(BIRTHDATE))) AS AGE

Note: Subselect is no longer specified as a component of any statement syntax since the
only difference between a subselect and a fullselect was the ability to use UNION and
UNION ALL, and now you can use a fullselect everywhere only a subselect was previously
allowed.
136 DB2 for z/OS Application Programming Topics

,CITYKEY
FROM SC246300.TBEMPLOYEE

 UNION ALL
 SELECT

SEX
,YEAR(DATE(DAYS(CURRENT DATE)-DAYS(BIRTHDATE))) AS AGE
,CITYKEY

FROM SC246300.TBCUSTOMER
) AS EMPCUST

WHERE AGE > 21
GROUP BY SEX, CITYKEY

11.4 Unions in subqueries
A subquery is a subselect or a fullselect used within a search condition of any statement.

Unions can now be coded within basic, quantified (ANY, SOME,ALL), EXISTS, and IN
(subquery) predicates. This gives us the ability to merge data from multiple tables and
compare to single column values within a single SQL statement.

11.4.1 Unions in basic predicates
In Example 11-2, we find the customer city for a given phone number. The customers are
spread across 2 tables. The ones that have not placed an order are moved to an archive
table. However, for this query, we want to look through the entire set of customers including
the archive. Be careful if more than one customer exists with the same phone number. If this
is the case, you would receive an SQLCODE -811, since a basic operation (=, <>, <, >, >=,
<=, ¬=, ¬<, ¬>) against a fullselect is only allowed if the fullselect returns a single row. Having
a customer with the same phone number in both the active table and the archive is not a
problem since the UNION eliminates those duplicates.

Example 11-2 Using UNION in basic predicates

SELECT CITYKEY
,CITYNAME

FROM SC246300.TBCITIES
WHERE CITYKEY =

(SELECT CITYKEY
FROM SC246300.TBCUSTOMER

WHERE PHONENO = :PHONENUM
UNION
SELECT CITYKEY

FROM SC246300.TBCUSTOMER_ARCH
WHERE PHONENO = :PHONENUM

) ;

11.4.2 Unions in quantified predicates
Example 11-3 produces a list of all the cities where we have customers or employees.

Example 11-3 Using UNION with quantified predicates

--Prior to DB2 V7
Chapter 11. Union everywhere 137

SELECT CITYKEY
,CITYNAME

FROM SC246300.TBCITIES A
WHERE CITYKEY = SOME

(SELECT CITYKEY
FROM SC246300.TBCUSTOMER)

OR CITYKEY = SOME
(SELECT CITYKEY

FROM SC246300.TBEMPLOYEE) ;

--In DB2 V7
SELECT CITYKEY

,CITYNAME
FROM SC246300.TBCITIES A

WHERE CITYKEY = SOME
(SELECT CITYKEY

FROM SC246300.TBCUSTOMER
UNION
SELECT CITYKEY

FROM SC246300.TBEMPLOYEE) ;

11.4.3 Unions in EXISTS predicates
In Example 11-4 we show the use of the UNION with the EXISTS predicate. In many, but not
all cases, you may be able to write these queries in a different way and achieve a better
access path. In this example we are merely showing you the new syntax. This example
returns the same results as Example 11-3 (select all the cities where we have customers or
employees).

Example 11-4 Using UNION in the EXISTS predicate

--Prior to DB2 V7
SELECT CITYKEY

,CITYNAME
FROM SC246300.TBCITIES A

WHERE EXISTS
(SELECT ‘DUMMY’

FROM SC246300.TBCUSTOMER
WHERE CITYKEY=A.CITYKEY)

OR EXISTS
(SELECT ‘DUMMY’

FROM SC246300.TBEMPLOYEE
WHERE CITYKEY=A.CITYKEY) ;

--In DB2 V7
SELECT CITYKEY

,CITYNAME
FROM SC246300.TBCITIES A

WHERE EXISTS
(SELECT ‘DUMMY’

FROM SC246300.TBCUSTOMER

Note: The V7 query is coded with a UNION and not a UNION ALL. In this case, because of
the =SOME predicate, DB2 converts the UNION into a UNION ALL. This shows up in the
explain output. There is no sorting of the result of the UNION operation.
138 DB2 for z/OS Application Programming Topics

WHERE CITYKEY=A.CITYKEY
UNION ALL
SELECT ‘DUMMY’

FROM SC246300.TBEMPLOYEE
WHERE CITYKEY=A.CITYKEY) ;

11.4.4 Unions in IN predicates
In Example 11-5 we show the usage of the UNION in an IN predicate. This query returns the
same result as Example 11-3 and Example 11-4. The first part of this example shows how
this query could have been written prior to DB2 V7; the second part show the query as it can
be written in DB2 V7. Note that prior to DB2 V7, you were required to code two IN predicates
(subqueries in this case) ORed together.

Example 11-5 Using UNION in an IN predicate

--Prior to DB2 V7
SELECT CITYKEY

,CITYNAME
FROM SC246300.TBCITIES A

WHERE CITYKEY IN (SELECT CITYKEY
FROM SC246300.TBCUSTOMER)

OR CITYKEY IN (SELECT CITYKEY
FROM SC246300.TBEMPLOYEE) ;

--In DB2 V7
SELECT CITYKEY

,CITYNAME
FROM SC246300.TBCITIES A

WHERE CITYKEY IN
(SELECT CITYKEY

FROM SC246300.TBCUSTOMER
UNION ALL
SELECT CITYKEY

FROM SC246300.TBEMPLOYEE) ;

11.4.5 Unions in selects of INSERT statements
Example 11-6 shows how the UNION keyword can now be used in INSERT statements. In
this example we build an invitation list to invite all our employees and customers who where
born after 1968 to attend a customer and employee appreciation Rock-n-Roll concert.

Example 11-6 Using UNION in an INSERT statement

INSERT INTO SC246300.INVITATION_CARDS
(PHONENO,STATUS,SEX,BIRTHDATE,CITYKEY,FIRSTNAME,LASTNAME ,ADDRESS)

SELECT
 PHONENO
,'U'
,SEX
,BIRTHDATE
,CITYKEY
,FIRSTNME
,LASTNAME
Chapter 11. Union everywhere 139

,ADDRESS
FROM SC246300.TBEMPLOYEE

WHERE YEAR(BIRTHDATE) > 1968
UNION
SELECT

 PHONENO
,'U'
,SEX
,BIRTHDATE
,CITYKEY
,FIRSTNAME
,LASTNAME
,ADDRESS

FROM SC246300.TBCUSTOMER
WHERE YEAR(BIRTHDATE) > 1968 #

11.4.6 Unions in UPDATE
Example 11-7 shows how the UNION keyword can now also be used in the UPDATE
statement. Here we set the STATUS column on the INVITATION table to ‘L’ when we find a
match on employee or customer based on phone number and birth date for those customers
and employees in city 22 (assuming that a match in phone number and birth date indicates it
is the same person). (City 22 is where the concert will be and these people are considered
local (STATUS=’L’) so we don’t have to organize transportation for them). In case there is no
row that qualifies in the subquery, STATUS is set to NULL.

Example 11-7 Using UNION in an UPDATE statement

UPDATE SC246300.INVITATION_CARDS X
SET STATUS = (

SELECT 'L'
FROM SC246300.TBEMPLOYEE Y
WHERE

CITYKEY = 22 AND
Y.PHONENO = X.PHONENO AND
Y.BIRTHDATE = X.BIRTHDATE

UNION ALL
SELECT 'L'

FROM SC246300.TBCUSTOMER Z
WHERE
CITYKEY = 22 AND
Z.PHONENO = X.PHONENO AND
Z.BIRTHDATE = X.BIRTHDATE

) ;

11.5 Unions in views
Starting with DB2 V7, you can now use the UNION or UNION ALL keywords as part of the
CREATE VIEW syntax. However, it is important to note that following the standard SQL rules
for views, if the UNION or UNION ALL keywords are used in the creation of a view, the view is
read-only.
140 DB2 for z/OS Application Programming Topics

Before UNIONs were allowed in views, there were only two options to perform the equivalent
function:

� The first option was to create a physical table containing the merged data from the
multiple tables. This required some work, you needed to unload the multiple tables and
load into the single table periodically. This meant that there was the potential for the data
to be inaccurate, since the actual tables were not directly used for the user’s queries.

� The second option was for the user code UNIONs without the use of a view. However,
coding the union is a bit more complex, and had to be coded again for every query
wanting to work with the same data. Additionally, functions (such as AVERAGE, COUNT,
and SUM) could not range across the union, further complicating the process. These
functions could be accomplished through additional steps, for example, by creating a
temporary table containing the output of the SELECT statement with the union clause, and
then run another SELECT to perform the column function against the temporary table.

DB2 V7 provides a simple answer for this problem. Data from the base tables can be merged
dynamically by creating a view using unions. Once coded, the user only has to refer to the
view to have access to data across several tables and can now easily use the full suite of
functions, such as COUNT, AVG, and SUM across all the data.

To get a combined list of employees and customers, we can create a view described in
Example 11-8.

Example 11-8 Create view with UNION ALL

CREATE VIEW SC246300.CUSTOMRANDEMPLOYEE
AS

 SELECT
 FIRSTNME AS FIRSTNAME
,LASTNAME
,PHONENO
,BIRTHDATE
,SEX
,YEAR(DATE(DAYS(CURRENT DATE)-DAYS(BIRTHDATE))) AS AGE
,ADDRESS
,CITYKEY

FROM SC246300.TBEMPLOYEE
 UNION ALL
 SELECT

 FIRSTNAME
,LASTNAME
,PHONENO
,BIRTHDATE
,SEX
,YEAR(DATE(DAYS(CURRENT DATE)-DAYS(BIRTHDATE))) AS AGE
,ADDRESS
,CITYKEY

FROM SC246300.TBCUSTOMER
;

Example 11-9 shows a query to get the average age of employees and customers under 35
years old and how many of them there are.

Important: No updates are allowed on views containing the UNION ALL or UNION
keyword.
Chapter 11. Union everywhere 141

Example 11-9 Use view containing UNION ALL

SELECT AVG(AGE),COUNT(*)
FROM SC246300.CUSTOMRANDEMPLOYEE
WHERE AGE < 35

As you can see, the addition of unions in the CREATE VIEW statement simplifies the merging
of data from tables for end user queries and allows the use of the full suite of DB2 functions
against the data without the need of temporary tables or complex SQL.

11.6 Explain and unions
As part of the enhancement support for UNION and UNION ALL operators, two new columns
have been added to the PLAN_TABLE. The new columns are TABLE_TYPE and
PARENT_QBLOCKNO. New values have been added to the existing QBLOCK_TYPE
column, which shows the type of operation performed by the query block. Table 11-1 show
these changes.

Table 11-1 PLAN_TABLE changes for UNION everywhere

In Example 11-10 we show the partial output from the PLAN_TABLE for the explain of the
query in Example 11-6 on page 139. This EXPLAIN output shows that query block 3 and 4
(QBLOCKNO 3 and 4) have a parent query block 2 (PARENT_QBLOCKNO 2). If you see the
the query processing as a tree, the outer select is the root (PARENT_QBLOCKNO 0). At the
next level you find a union (PARENT_QBLOCKNO 1) which has 2 fullselects and each of
them has PARENT_QBLOCKNO 2.

Example 11-10 PLAN_TABLE output

---------+---------+---------+---------+---------+---------+---------+---------+-----
QBLOCKNO TNAME ACCESSTYPE QBLOCK_TYPE PARENT_QBLOCKNO TABLE_TYPE
---------+---------+---------+---------+---------+---------+---------+---------+-----
 1 INVITATION_CARDS INSERT 0 T

Column Value Description

TABLE_TYPE F Table function

Q Table queue (not materialized). Temporary intermediate
result table (used by STAR JOIN, not UNION)

T Table

W Workfile

QBLOCK_TYPE TABLEX Table expression

UNION UNION

UNIONA UNION ALL

PARENT_QBLOCKNO Contains the query block numbers of the parent operation.

Note: Examining the QBLOCKNO and PARENT_QBLOCKNO sequence is the only
means of figuring out if query rewrite has taken place. DB2 does not provide specific
information on the outcome of a query rewrite.
142 DB2 for z/OS Application Programming Topics

 2 UNION 1 ----------
 3 TBEMPLOYEE R NCOSUB 2 T
 4 TBCUSTOMER R NCOSUB 2 T

11.7 Technical design and new frontiers
In some cases during the technical design it can be necessary to split up some tables. A
reason for considering to split a table can be a requirement for high availability on a very large
table. Even storing the table space in multiple physical partitions does not solve the problem
of maintaining very large multi-data set non-partitioning indexes (NPIs). Recovering or
reorganizing large NPIs may induce longer service downtime than the availability agreement
allows for, or maintaining the NPIs may require too much resources and result in many
sleepless nights.

Splitting a table horizontally into multiple tables is never an easy decision. Dividing is always
more or less visible for applications. Using union in view, you can hide part of the change from
the applications. This way the programs do not see any changes.

Impact on response times depends on the way the view is coded as well as the queries that
are written against the view.

If the WHERE predicates reference the columns that were used for dividing up the tables, and
these columns are compared with a constant(s) or host variables, only the table(s) having
qualifying rows are accessed, and response time should be more or less the same as with a
single large table. (This technique of limiting the number of tables that are accessed is called
subquery pruning.)

When host variables are used for those columns, DB2, at bind time, cannot know which
table(s) have to be accessed to fetch the rows from. Therefore, at bind time, the optimizer has
to choose an access path that accesses every table. However, at execution time when the
actual host variables are known, DB2 can do subquery pruning and accesses only the tables
that can have qualifying rows. The subquery pruning for host variables always takes place
and is not dependent on the use of the REOPT(VARS) bind option.

For more information about how the access path is determined and the different ways DB2
tries to optimize the execution of queries referencing views containing unions, like the
distribution of predicates, joins, and aggregations, as well as the pruning of subqueries, table
elimination and predicate distribution, see DB2 for z/OS and OS/390 Performance Topics,
SG24-6129.

Sometimes a better access path can be obtained using CASE expressions. See Chapter 10,
“SQL CASE expressions” on page 125 for more details. With CASE expressions you may
save excessive access to tables with no qualifying rows.

Because views containing a UNION operator are read only, inserting, updating and deleting
cannot be hidden from the programs by using a view.

Note: Each individual query block that is part of the union everywhere query can run in
parallel. However, multiple query blocks of the same query cannot run in parallel.
Chapter 11. Union everywhere 143

However, the number of inserting, deleting and updating programs is usually limited. Writing
an insert, a delete and an update (or few) modules to take care of the manipulation of data
from these tables is usually sufficient. To prevent inserting rows into the wrong table, you
should either define check constraint on the tables reflecting the same criteria that were used
to divide the tables, or do these updates to views on each individual table using a WITH
CHECK OPTION. (Views referencing a single table can be updatable.)

This way you can be sure that although DB2 cannot verify the data integrity by design, there
is a way to guarantee that rows are only inserted or changed in the correct tables. Anyhow,
programs still have to know in which table to insert, update or delete. Special processing is
also required in case the value in the column that was used to assign rows to different tables
is changed and the row now has to move to a different table. This type of manipulation
requires a delete from the original table and an insert into the new table, operations similar to
updating a column that is part of the partitioning key, before the introduction of the partitioning
key update feature.

Because of the complexity of handling inserts, updates and deletes correctly, this type of
design is probably most beneficial in a (mostly) read only environment, like data warehouses.

Loading the data is not a problem. DB2 can load many tables in one run. You only need to
specify the exact rules how to select the correct table to which the data belongs. (That rule is
our splitting criteria.)

Splitting tables is not relevant just because we can do it. Partitioning a table must always be
the first choice for large tables. Usually partitioning the data is sufficient to solve most
availability and manageability issues. DB2 offers more possibilities (more partitions, more
parallelism, more flexibility) for partitioned tables in each new release. Dividing tables should
be a last resort when nothing else is good enough. Note also that the ‘divided tables’ can
themselves be partitioned as well.

Let’s try to explain the concept using an example. Assume that our TBORDER table is getting
to large and we decide to go for the UNION in view design. Suppose that the application logic
uses some sort of randomizing formula to assign ORDERKEYs randomly taking into account
that ORDERKEY is an integer column. We decide to split the TBORDER table into 3 separate
tables, TBORDER_1, TBORDER_2 and TBORDER_3. Because of the randomizer, each
table receive more or less the same number of rows. Sample DDL is shown in
Example 11-11.

Example 11-11 DDL to create split tables

SET CURRENT PATH = 'SC246300' # -- to make sure we find the UDT

CREATE TABLESPACE TS246331 IN DB246300 #

CREATE TABLE SC246300.TBORDER_1
 (
 ORDERKEY INTEGER NOT NULL ,
 CUSTKEY CUSTOMER NOT NULL ,
 ORDERSTATUS CHAR (1) NOT NULL WITH DEFAULT,
 TOTALPRICE FLOAT NOT NULL ,
 ORDERDATE DATE NOT NULL WITH DEFAULT,
 ORDERPRIORITY CHAR (15) NOT NULL WITH DEFAULT,
 CLERK CHAR (6) NOT NULL WITH DEFAULT,
 SHIPPRIORITY INTEGER NOT NULL WITH DEFAULT,
 STATE CHAR (2) NOT NULL WITH DEFAULT,
 REGION_CODE INTEGER,
 INVOICE_DATE DATE NOT NULL WITH DEFAULT,
 COMMENT VARCHAR (79),
144 DB2 for z/OS Application Programming Topics

 PRIMARY KEY (ORDERKEY),
 FOREIGN KEY (CUSTKEY) REFERENCES SC246300.TBCUSTOMER,
 FOREIGN KEY (REGION_CODE) REFERENCES SC246300.TBREGION
)
 IN DB246300.TS246331
 WITH RESTRICT ON DROP #

-- Create unique index on primary key
CREATE UNIQUE INDEX SC246300.X1TBORDER_1

ON SC246300.TBORDER_1(ORDERKEY ASC) #

-- Create indexes on foreign keys
CREATE INDEX SC246300.X2TBORDER_1

ON SC246300.TBORDER_1(CUSTKEY ASC) #

CREATE INDEX SC246300.X3TBORDER_1
ON SC246300.TBORDER_1(REGION_CODE ASC) #

CREATE TABLESPACE TS246332 IN DB246300 #

CREATE TABLE SC246300.TBORDER_2
(

ORDERKEY INTEGER NOT NULL ,
CUSTKEY CUSTOMER NOT NULL ,
ORDERSTATUS CHAR (1) NOT NULL WITH DEFAULT,
TOTALPRICE FLOAT NOT NULL ,
ORDERDATE DATE NOT NULL WITH DEFAULT,
ORDERPRIORITY CHAR (15) NOT NULL WITH DEFAULT,
CLERK CHAR (6) NOT NULL WITH DEFAULT,
SHIPPRIORITY INTEGER NOT NULL WITH DEFAULT,
STATE CHAR (2) NOT NULL WITH DEFAULT,
REGION_CODE INTEGER,
INVOICE_DATE DATE NOT NULL WITH DEFAULT,
COMMENT VARCHAR (79),

 PRIMARY KEY (ORDERKEY),
 FOREIGN KEY (CUSTKEY) REFERENCES SC246300.TBCUSTOMER,
 FOREIGN KEY (REGION_CODE) REFERENCES SC246300.TBREGION
)

IN DB246300.TS246332
WITH RESTRICT ON DROP#

CREATE UNIQUE INDEX SC246300.X1TBORDER_2
ON SC246300.TBORDER_2(ORDERKEY ASC) #

CREATE INDEX SC246300.X2TBORDER_2
ON SC246300.TBORDER_2(CUSTKEY ASC) #

CREATE INDEX SC246300.X3TBORDER_2
ON SC246300.TBORDER_2(REGION_CODE ASC) #

CREATE TABLESPACE TS246333 IN DB246300 #

CREATE TABLE SC246300.TBORDER_3
(

ORDERKEY INTEGER NOT NULL ,
CUSTKEY CUSTOMER NOT NULL ,
ORDERSTATUS CHAR (1) NOT NULL WITH DEFAULT,
TOTALPRICE FLOAT NOT NULL ,
Chapter 11. Union everywhere 145

ORDERDATE DATE NOT NULL WITH DEFAULT,
ORDERPRIORITY CHAR (15) NOT NULL WITH DEFAULT,
CLERK CHAR (6) NOT NULL WITH DEFAULT,
SHIPPRIORITY INTEGER NOT NULL WITH DEFAULT,
STATE CHAR (2) NOT NULL WITH DEFAULT,
REGION_CODE INTEGER,
INVOICE_DATE DATE NOT NULL WITH DEFAULT,
COMMENT VARCHAR (79),

 PRIMARY KEY (ORDERKEY),
 FOREIGN KEY (CUSTKEY) REFERENCES SC246300.TBCUSTOMER,
 FOREIGN KEY (REGION_CODE) REFERENCES SC246300.TBREGION

)
IN DB246300.TS246332
WITH RESTRICT ON DROP #

CREATE UNIQUE INDEX SC246300.X1TBORDER_3
ON SC246300.TBORDER_3(ORDERKEY ASC) #

CREATE INDEX SC246300.X2TBORDER_3
ON SC246300.TBORDER_3(CUSTKEY ASC) #

CREATE INDEX SC246300.X3TBORDER_3
ON SC246300.TBORDER_3(REGION_CODE ASC) #

Create a view, as shown in Example 11-12, that is used to retrieve rows from any of the 3
tables. This way it is transparent to the user in which physical table the data is stored. The
user only uses this view to retrieve the data. the WHERE clauses are extremely important
and don’t serve just as documentation to show the ORDERKEY range of each table. This
information is used by the optimizer to eliminate the scanning of certain partitions.

Example 11-12 DDL to create UNION in view

CREATE VIEW SC246300.VWORDER
AS

SELECT *
FROM SC246300.TBORDER_1
WHERE ORDERKEY BETWEEN 1 AND 700000000

UNION ALL
SELECT *

FROM SC246300.TBORDER_2
WHERE ORDERKEY BETWEEN 700000001 AND 1400000000

UNION ALL
SELECT *

FROM SC246300.TBORDER_3
WHERE ORDERKEY BETWEEN 1400000001 AND 2147483647 #

When the user executes the query in Example 11-13, DB2 is smart enough, based on the
information in your query and the information in the view definition, to determine that the data
can only come from TBORDER_1 and there is no need to look at any row in TBORDER_2
and TBORDER_3.

However, keep in mind that DB2, although the individual subqueries against each table can
run in parallel, the first subquery has to complete before the next one starts. (DB2 has to
finish selecting from TBORDER_1 before he starts working on TBORDER_2.)
146 DB2 for z/OS Application Programming Topics

Example 11-13 Sample SELECT from view to mask the underlying tables

SELECT *
FROM SC246300.VWORDER
WHERE ORDERKEY = 123456
 AND CUSTKEY = CUSTOMER('000006') # -- CUSTKEY IS USING A UDT

-- called CUSTOMER. Therefor a
-- CAST function is required

When doing an insert, update or delete against the set of tables, you should use one of the
following views shown in Example 11-14. The use of the WITH CHECK OPTION prevents you
from inserting in the wrong table. An example of an insert using a wrong view is shown in
Example 11-15. This is very important because the view that is used to retrieve rows, restricts
the data that can be retrieved from each table. If, by accident, a row with an ORDERKEY of
555 would end up into table TBORDER_2, you would not be able to retrieve it using the
VWORDER view. The WHERE clause associated with TBORDER_2 in the VWORDER view
eliminates ORDERKEY from the result set.

Example 11-14 Views to use for UPDATE and DELETE

CREATE VIEW SC246300.VWORDER_1UPD
AS

SELECT *
FROM SC246300.TBORDER_1
WHERE ORDERKEY BETWEEN 1 AND 700000000

WITH CHECK OPTION

CREATE VIEW SC246300.VWORDER_2UPD
AS

SELECT *
FROM SC246300.TBORDER_2
WHERE ORDERKEY BETWEEN 700000001 AND 1400000000

WITH CHECK OPTION

UNION ALL

CREATE VIEW SC246300.VWORDER_3UPD
AS

SELECT *
FROM SC246300.TBORDER_3
WHERE ORDERKEY BETWEEN 1400000001 AND 2147483647

WITH CHECK OPTION

Example 11-15 WITH CHECK OTPION preventing INSERT

INSERT INTO SC246300.VWORDER_1UPD
VALUES (

 700000001 -- ORDERKEY INTEGER NOT NULL
,'01' -- CUSTKEY CUSTOMER NOT NULL
,'N' -- ORDERSTATUS CHAR (1) NOT NULL WITH DEFAULT
, 123.45 -- TOTALPRICE FLOAT NOT NULL
,CURRENT DATE -- ORDERDATE DATE NOT NULL WITH DEFAULT
,'LOW' -- ORDERPRIORITY CHAR (15) NOT NULL WITH DEFAULT
,'BART' -- CLERK CHAR (6) NOT NULL WITH DEFAULT
,5 -- SHIPPRIORITY INTEGER NOT NULL WITH DEFAULT
,'NW' -- STATE CHAR (2) NOT NULL WITH DEFAULT
,55 -- REGION_CODE INTEGER
Chapter 11. Union everywhere 147

,CURRENT DATE -- INVOICE_DATE DATE NOT NULL WITH DEFAULT
,'MY ORDER' -- COMMENT VARCHAR (79)
) #

DSNT408I SQLCODE = -161, ERROR: THE INSERT OR UPDATE IS NOT ALLOWED BECAUSE A
 RESULTING ROW DOES NOT SATISFY THE VIEW DEFINITION
DSNT418I SQLSTATE = 44000 SQLSTATE RETURN CODE

This type of view is not all that helpful when updating or deleting rows. However, you receive
an SQLCODE +100 when you try to run the statement using the wrong view. This should be a
signal that you might be using the wrong table, but is of course no guarantee that this is
actually the case. It is also possible that the row you are trying to update or delete does not
exist in the table. In trying also to close this loophole, at some extra cost, you could select the
row first using the VWORDER view before trying to update or delete it using the correct
VWORDER_xUPD view.

Note also that when your TBORDER tables need to be the parent table in an RI relationship,
this construct cannot be used. A foreign key cannot point to a set of tables (our TBORDER_x
tables).

In summary, although splitting very large tables into several smaller ones and using the union
in view concept to make it transparent to the application has some attractive features, there
are also several drawbacks that have to be carefully considered before implementing this
design.
148 DB2 for z/OS Application Programming Topics

Chapter 12. Scrollable cursors

The ability to be able to scroll backwards as well as forwards is a requirement of many
screen-based applications. DB2 V7 introduces facilities not only to allow scrolling forwards
and backwards, but also the ability to jump around and directly retrieve a row that is located at
any position within the cursor result table.

DB2 also can, if desired, maintain the relationship between the rows in the result set and the
data in the base table. That is, the scrollable cursor function allows the changes made outside
the opened cursor, to be reflected. For example, if the currently fetched row has been
updated while being processed by the user, and an update is attempted, a warning is
returned by DB2 to reflect this. When another user has deleted the row currently fetched, DB2
returns an SQLCODE if an attempt is made to update the deleted row.

12
© Copyright IBM Corp. 2001 149

12.1 What is a scrollable cursor?
Scrollable cursors are cursors that allow scrolling in any direction. New keywords have been
added to both the DECLARE CURSOR and FETCH statements to support scrollable cursors.

Cursors can be scrolled:

� Backward
� Forward
� To an absolute position within the result set
� To a position relative to the current cursor position
� Before/after the beginning/end of result set

12.2 Why use a scrollable cursor
Before DB2 V7, cursors could only be scrolled in a forward direction. Cursors were opened
and would be positioned before the first row of the result set. To move through the cursor, a
FETCH would be executed, and the cursor would move forward one row. A given row could
only be fetched once. The application program had to rely on different techniques to get
around this limitation.

With non-scrollable cursors, if we want to move backwards through a result set, we have a
number of options. One option is to declare 2 cursors, one which uses an ascending index,
and one which uses a descending index. This requires additional program logic and
complexity since two cursors are needed. Also additional resources are consumed since a
second index is needed.

Another option is to CLOSE and reopen the current cursor to start at the beginning, then
repeat the FETCH until the desired row is reached. This can have a large negative impacted
on response times for large result sets. Many rows may be read unnecessarily on the way to
the target row. Also, if another process inserts or deletes rows, the relative position of the row
can change and may cause the wrong row to be accessed. Program logic has to be built to
either ignore or somehow handle the changes in row positions.

Yet another alternative is to cache the results in working storage. The result set can be
opened and an arbitrary number of the rows can be read into an array. The program may,
then move backward and forward within this array. This option needs to be carefully planned,
as it often wastes memory through low utilization of the space, or it restricts the number of
rows returned to an arbitrary number. If other processes are changing the data, the program
is insensitive to the changes.

With scrollable cursors, DB2 provides the ability to scroll in any direction and even the ability
to skip around within the result table. This can greatly reduce program complexity by
simplifying logic. Another benefit of scrollable cursors (compared to the case where you need
to have multiple indexes or sort the result table in order to scroll backward) is that they can
avoid some sorts and reduce the need for extra indexes on your tables. Also, since a
scrollable cursor always materializes the result table, an insensitive scrollable cursor may be
a good way to build a point in time result table that your program can process without having
to lock the base table. Scrollable cursors are also ideal for remote applications that build
screens and allow end users to scroll or skip around through the data being displayed.
150 DB2 for z/OS Application Programming Topics

12.3 Scrollable cursors characteristics
In this section, we discuss the characteristics of scrollable cursors.

12.3.1 Types of cursors
To understand scrollable cursors characteristics, let us compare the different kinds of cursors:

Non-scrollable cursor
� Used by an application program to retrieve a set of rows or retrieve a result set from a

stored procedure.

� The rows must be processed one at a time.

� The rows are fetched sequentially.

� Result sets may be stored in a workfile.

Scrollable cursor
� Used by an application program to retrieve a set of rows or retrieve a result set from a

stored procedure.

� The rows can be fetched in random order.

� The rows can be fetched forward or backward.

� The rows can be fetched relative to the current position or from the top of the result table
or result set.

� The result set is fixed at OPEN CURSOR time.

� Result sets are stored in declared temporary tables.

� Result sets go away at CLOSE CURSOR time.

Insensitive scrollable cursor
� Always static.

� Fixed number of rows.

� Results stored in declared temporary tables.

Sensitive static scrollable cursor
� Always static.

� Fixed number of rows.

� Results stored in declared temporary tables.

� Sensitive to changes, but not to inserts.

Sensitive dynamic scrollable cursor (not currently supported)
� Direct table access.

� Sensitive to changes and inserts.
Chapter 12. Scrollable cursors 151

12.3.2 Scrollable cursors in depth
A significant problem with previous methods of cursor management was in maintaining the
relationship between the data being updated by the cursor and the actual data in the base
table.

DB2 V7 introduces new keywords INSENSITIVE and SENSITIVE STATIC for the DECLARE
CURSOR statement to control whether the data in the result set is validated against the data
in the base table. DB2 now ensures that only the current values of the base table are updated
and recognizes where rows have been deleted from the result set. It can, if required, refresh
the rows in the result set at fetch time to ensure that the data under the cursor is current.

Basically, INSENSITIVE means that the cursor is read-only and is not interested in changes
made to the base data once the cursor is opened. With SENSITIVE, the cursor is interested
in changes which may be made after the cursor is opened. The levels of this awareness are
dictated by the combination of SENSITIVE STATIC in the DECLARE CURSOR statement and
whether INSENSITIVE or SENSITIVE is defined in the FETCH statement.

When creating a scrolling cursor the INSENSITIVE or SENSITIVE STATIC, keywords must be
used in the DECLARE CURSOR statement. This sets the default behavior of the cursor.

Insensitive
If an attempt is made to code the FOR UPDATE OF clause in a cursor defined as
INSENSITIVE, then the bind returns an SQLCODE:

-228 FOR UPDATE CLAUSE SPECIFIED FOR READ-ONLY SCROLLABE CURSOR USING
cursor-name.

The characteristics of an insensitive scrollable cursor are:

– The cursor cannot be used to issue positioned updates and deletes.

– FETCH processing on the result table is insensitive to changes made to the base table
after the result table is built (even if changes are made by the current agent outside the
cursor).

– The number and content of the rows stored in the result table is fixed at OPEN
CURSOR time and does not change.

Sensitive
Fundamentally, the SENSITIVE STATIC cursor is updatable. As such, the FOR UPDATE
OF clause can be coded for a SENSITIVE cursor.

If the SELECT statement connected to a cursor declared as SENSITIVE STATIC uses any
keywords that forces the cursor to be read-only, the bind rejects the cursor declaration. In
this case the bind returns an SQLCODE:

Note: DB2 Version 7 supports a subset of the SQL99 standard for scrollable cursors.
Sensitive DYNAMIC scrollable cursors are not supported by DB2 Version 7. To allow for
possible support for sensitive dynamic cursors in a future release of DB2, the keyword
STATIC must be explicitly specified for a sensitive scrollable cursor.

Tip: INSENSITIVE cursors are strictly read-only. SELECT statements using with FOR
UPDATE OF must use SENSITIVE STATIC cursors in order to be updatable scrollable
cursors.
152 DB2 for z/OS Application Programming Topics

-243 SENSITIVE CURSOR cursor-name CANNOT BE DEFINED FOR THE SPECIFIED SELECT
STATEMENT.

A SENSITIVE cursor can be made explicitly read-only by including FOR FETCH ONLY in
the DECLARE CURSOR statement. Even if a SENSITIVE cursor is read-only, it is still
aware of all changes made to the base table data through updates and deletes.

The characteristics of a sensitive scrollable cursor are:

– The cursor can be used to issue positioned updates and deletes

– FETCH processing on the result table is sensitive (to varying degrees) to changes
made to the base table after the result table has been built

– The number of rows in the result table does not change but the row content can
change

– STATIC cursors are insensitive to inserts.

Sensitive but read-only
A read-only cursor is one which cannot be used to issue positioned updates and deletes.
A cursor can be made read-only in 3 ways:

– The DECLARE CURSOR statement specifies FOR FETCH ONLY or FOR READ
ONLY.

– The DECLARE CURSOR statement specifies INSENSITIVE SCROLL CURSOR.

– The SELECT statement of the DECLARE CURSOR statement can implicitly make the
cursor read-only. DB2 cannot make changes visible to the cursor when the cursor
implicitly becomes read-only. For example, a cursor is read-only if the SELECT
column-list contains a column function. The current list of conditions that result in an
implicit read-only cursor can be found in the DECLARE CURSOR section of the DB2
UDB for OS/390 and z/OS Version 7 SQL Reference, SC26-9944.

If a cursor is implicitly made read-only, the cursor cannot be declared as a sensitive
scrollable cursor. If you attempt to declare such a cursor, you get an SQLCODE -243.

An ORDER BY clause does not make a sensitive scrollable cursor read-only. However,
the order of the rows in the result table remains constant after the cursor has been
opened, that is, if a value of an ordering column is updated, the row in the result table is
not moved to a new position. Note that this is different from a non-scrollable cursor. A
non-scrollable cursor is NOT updatable when an ORDER BY clause is present.

12.4 How to choose the right type of cursor
Having the ability to scroll backward and forward also means that you must decide whether
changes to previously fetched data need to be seen or not. Specifically, does your application
need to detect updated and deleted rows. This decision to be sensitive to changes is
significant because a result table defines a set of rows that meet a certain criteria. However,
while the application is scrolling in the result table, previously fetched rows may be excluded
or new rows may be included if the table is updated.

Important: Use of column functions, such as MAX and AVG, and table joins forces a
scrollable cursor into implicit read-only mode and therefore are not valid for a SENSITIVE
cursor. In contrast with non-scrollable cursors, the usage of the ORDER BY clause in a
scrollable cursor does not make it read-only.
Chapter 12. Scrollable cursors 153

Some applications may require that a result table remains constant (STATIC) as the
application scrolls through it. For example, some accounting applications require data to be
constant. On the other hand, other applications, like airline reservations, may require to see
the latest flight availability no matter how much they scroll through the data (DYNAMIC).

Furthermore, sensitivity can be limited to visibility of changes made by the same cursor and
process that is fetching rows or the sensitivity can be extended to also see updates made
outside the cursor and process by refreshing the row explicitly.

Table 12-1 can be used to help you decide which type of cursor to use. If you just want to blast
through your data then choose a forward-only cursor. If you want to scroll through a constant
copy of your data you may want to use an INSENSITIVE CURSOR instead of making a
regular cursor materialize the result table. If you want to control the cursor's position, scroll
back and forth, choose a scrollable cursor. If you don't care about the freshness of data,
choose an INSENSITIVE CURSOR. If you want fresh data some times, choose a SENSITIVE
on DECLARE CURSOR and SENSITIVE or INSENSITIVE on FETCH. If you want fresh data
all the time, choose a SENSITIVE CURSOR and SENSITIVE on FETCH or non specific
FETCH.

Table 12-1 Cursor type comparison

12.5 Using a scrollable cursor
Scrollable cursors can be used in static and dynamic SQL compiled programs, compiled
stored procedures (including SQL stored procedures). Scrollable cursors cannot be used in
SPUFI, QMF, REXX programs and Java programs. Client programs using DB2 Connect V7.1
with Fixpack 2 can use scrollable cursors.

Scrollable cursors can be used in CICS conversational programs and batch processing using
TSO, batch, CAF, RRSAF, a background CICS task, DL/1 batch, and IMS BMP. They do not
apply to CICS pseudo-conversational and IMS/TM transactions because resources are freed
after displaying a screen (including declared temporary tables that scrollable cursors use
under the cover).

Cursor type Result table Visibility of
own cursor’s
changes

Visibility of
other
cursors’
changes

Updatability

Non-scrollable
Materialized

Fixed, workfile No No No

Non-Scrollable
Not Materialized

No workfile, base table
access

Yes Yes Yes

INSENSITIVE
SCROLL

Fixed, declared temp table No No No

SENSITIVE
STATIC SCROLL

Fixed, declared temp table Yes
(Inserts not
allowed)

Yes
(Not to
inserts)

Yes

SENSITIVE **
DYNAMIC SCROLL

No declared temp tables,
base table access

Yes Yes Yes

**Note: Sensitive Dynamic scrollable cursors are not available as of DB2 V7 and are only
shown here for comparison purposes.
154 DB2 for z/OS Application Programming Topics

In this section we discuss how to use a scrollable cursor. We discuss the following topics:

� Declaring a scrollable cursor
� Opening a scrollable cursor
� Fetching rows from a scrollable cursor
� Moving the cursor
� Using functions in a scrollable cursor

12.5.1 Declaring a scrollable cursor
To declare a scrollable cursor, you use the SCROLL keyword in the DECLARE CURSOR
statement. The FETCH statements for this cursor can now be used to move in any direction in
the result set defined by the OPEN CURSOR statement.

The new keywords INSENSITIVE and SENSITIVE STATIC of the DECLARE CURSOR
statement deal with the sensitivity of the cursor to changes made to the underlying table.

The STATIC keyword in the context of this clause does not refer to static and dynamic SQL,
as scrollable cursors can be used in both these types of SQL. Here, STATIC refers to the size
of the result table, once the OPEN CURSOR is completed, the number of rows remains
constant.

In Example 12-1, we show you how to DECLARE two scrollable cursors, one INSENSITIVE
and the other SENSITIVE STATIC

Example 12-1 Sample DECLARE for scrollable cursors

DECLARE C1 INSENSITIVE SCROLL CURSOR
FOR SELECT FROM

WHERE ;

DECLARE C2 SENSITIVE STATIC SCROLL CURSOR
FOR SELECT FROM

WHERE
FOR UPDATE OF ;

12.5.2 Opening a scrollable cursor
When a scrollable cursor is opened, that is the DECLARE cursor-name...SCROLL and OPEN
CURSOR statements are executed (see Example 12-2), the qualifying rows are copied to a
declared temporary table which is automatically created by DB2 in the DB2 TEMP database.
Therefore, before scrollable cursors can be used, you must make sure the TEMP database
has been defined and that adequate space has been allocated in this database.
User-declared temporary tables and system-declared temporary tables (used by scrollable
cursors) share the set of table spaces that are defined in the TEMP database. Example 7-8
on page 89 shows how to create the TEMP database and several tables paces.

The temporary table that is created is only accessible by the agent that created it. For each
user and for each scrollable cursor a temporary table is created at OPEN CURSOR time. The
temporary table is dropped when you close the cursor or at the completion of the program
that invoked it. For more information on declared temporary tables, see “Declared temporary
tables” on page 88.
Chapter 12. Scrollable cursors 155

The record identifier (RID) of the row is also retrieved and stored with the rows in the
temporary table. If the cursor is declared as SENSITIVE STATIC, the RID’s are used to
maintain changes between the result set row and the base table row.

It is important to note that, for a cursor which is declared as INSENSITIVE or SENSITIVE
STATIC, the number of rows of the result set table does not change once the rows are
retrieved from the base table and stored. This means that all subsequent inserts which are
made by other users or by the current process into the base table and which would fit the
selection criteria of the cursor’s SELECT statement are not visible to the cursor. Only updates
and deletes to data within the result set may be seen by the cursor.

Once the result set has been retrieved, it is only visible to the current cursor process and
remains available until a CLOSE CURSOR is executed or the process itself completes. For
programs, the result set is dropped on exit of the current program; for stored procedures, the
cursors defined are allocated from the calling program, and the result set is dropped when the
calling program concludes.

Example 12-2 Opening a scrollable cursor

DECLARE CUR1 SENSITIVE STATIC SCROLL CURSOR
WITH HOLD
FOR SELECT ACCOUNT

,ACCOUNT_NAME,
,CREDIT_LIMIT
,TYPE

INTO :ACCOUNT
,:ACCOUNT_NAME,
,:CREDIT_LIMIT
,:TYPE

FROM ACCOUNT
WHERE CREDIT_LIMIT > 20000 ;

...
OPEN CUR1
...

If a LOB column is selected in the DECLARE CURSOR statement, the LOB column is
represented by a LOB descriptor column in the result table. The LOB descriptor column is
120 bytes and holds information which enables DB2 to quickly retrieve the associated LOB
column value from the auxiliary table when the application fetches a row from the result table.
DB2 has to retrieve the LOB column value (from the auxiliary table) when it processes either
a sensitive or an insensitive FETCH request.

Suppose an application issues a ROLLBACK TO SAVEPOINT S1, and savepoint S1 was set
before scrollable cursor C1 was opened. Once the rollback has completed, the result table
for C1 contains the same data as it did on completion of the open cursor statement for C1. In
addition, the rollback does not change the position of cursor C1.

The OPEN CURSOR and ALLOCATE CURSOR statement return the following information in
the SQLCA for scrollable cursors regarding the sensitivity of the cursor even though the
SQLCODE and SQLSTATE are zero:

Note: DECLARE CURSOR statements that do not use the new keyword SCROLL do not
create the temporary table and are only able to scroll in a forward direction.
156 DB2 for z/OS Application Programming Topics

� Whether the cursor is scrollable or not

This information is provided in the SQLWARN1 field. It is set to:

– S = scrollable and
– N = non-scrollable cursor

� Effective sensitivity of the cursor (that is, insensitive versus sensitive):

This information is returned in SQLWARN4. SQLWARN4 is not set for non-scrollable
cursors.

– I = insensitive
– S = sensitive

� Effective capability of the cursor (that is, whether the scrollable cursor is updatable,
deletable or read-only):

This information is returned in SQLWARN5. SQLWARN5 is not set for non-scrollable
cursors.

– 1 = Read-only, the result table of the query is read-only either because the content of
the SELECT statement (implicitly read-only), or for READ/FETCH ONLY was explicitly
specified.

– 2 = Read and Delete allowed, the result table of the query is deletable, but not
updatable.

– 4 = Read, Delete and Update allowed, the result table of the query is deletable and
updatable.

When SQLWARN1, SQLWARN4 and SQLWARN5 are set, then SQLWARN0 (the summary
flag) is NOT set for these cases.

12.5.3 Fetching rows
The FETCH statement positions a cursor on a row of the result table. It can return zero or one
row and assign the values of the row returned to host variables.

Figure 12-1 shows the syntax diagram for the FETCH statement. The syntax has been
expanded (items in bold) to allow this statement to control cursor movement both forwards
and backwards. It also has keywords to position the cursor in specific positions within the
result set returned by the OPEN CURSOR statement.

Note: If the size of the result table exceeds the DB2 established limit of declared
temporary tables, a resource unavailable message, DSNT501I, is generated with the
appropriate resource reason code at OPEN CURSOR time.

Tip: The BEFORE and AFTER clauses are positioning orientation, which means that no
data is returned and an SQLCODE = 0 is returned to the application.
Chapter 12. Scrollable cursors 157

Figure 12-1 Fetch syntax changes to support scrollable cursors

Below is a complete list of the new keywords which have been added to the FETCH
statement syntax for moving the cursor.

FETCH
INSENSITIVE NEXT
SENSITIVE PRIOR

FIRST
LAST
CURRENT
BEFORE
AFTER
ABSOLUTE host-variable

integer-constant
RELATIVE host-variable

integer-constant

FROM
cursor-name

single-fetch-clause

,
INTO host-variable
USING DESCRIPTOR descriptor-name

single-fetch-clause

NEXT Positions the cursor on the next row of the result table relative to the
current cursor position and fetches the row - This is the default.

PRIOR Positions the cursor on the previous row of the result table relative to the
current position and fetches the row.

FIRST Positions the cursor on the first row of the result table and fetches the
row.

LAST Positions the cursor on the last row of the result table and fetches the
row.

CURRENT Fetches the current row without changing position within the result
table.
If CURRENT is specified and the cursor is not positioned at a valid row
(for example, BEFORE the beginning of the result table) a warning
SQLCODE +231, SQLSTATE 02000 is returned.

BEFORE Positions the cursor before the first row of the result table.
No output host variables can be coded with this keyword as no data can
be returned

AFTER Positions the cursor after the last row of the result table
No output host variables can be coded with this keyword, as no data can
be returned.
158 DB2 for z/OS Application Programming Topics

In Figure 12-2 on page 167, we show you the results of various fetches when the cursor is
currently positioned on the 10th row. In Figure 12-3 on page 168, we show you a matrix of the
possible SQLCODEs returned after a FETCH from a scrollable cursor.

Sensitive and insensitive FETCH
There is also the facility within the related FETCH statements to further specify the way in
which the cursor interacts with data in the base table. This is done by specifying
INSENSITIVE or SENSITIVE in the FETCH statement itself. If these keywords are not used
in the FETCH statement, then the sensitivity attributes of the DECLARE CURSOR statement
are used. For example, suppose the DECLARE CURSOR is coded as:

DECLARE CUR1 SENSITIVE STATIC SCROLL CURSOR
FOR SELECT ACCOUNT

,ACCOUNT_NAME
FROM SC246300.TBACCOUNT

FOR UPDATE OF ACCOUNT_NAME ;

And, the FETCH statement is defined as:

FETCH CUR1 INTO :hvaccount, :hvacct_name;

In this case, the cursor uses the SENSITIVE characteristics.

ABSOLUTE Used with either a host-variable or integer-constant. This keyword
evaluates the host-variable or integer-constant and fetches the data at
the row number specified.

If the value of the host-variable or integer-constant is 0, then the cursor
is positioned at the position before the first row and the warning
SQLCODE +100, SQLSTATE 02000 is returned.

If the value of the host-variable or integer-constant is greater than the
count of rows in the result table, the cursor is positioned after the last
row in the result table, and the warning SQLCODE +100, SQLSTATE
02000 is returned.

RELATIVE Used with either a host-variable or integer-constant. This keyword
evaluates the host-variable or integer-constant and fetches the data in
the row which is that value away from the current cursor position.

If the value in the host-variable or integer-constant is equal to 0, then
the current cursor position is maintained and the data fetched.

If the value in the host-variable or integer-constant is less than 0, then
the cursor is positioned the number of rows specified in the
host-variable or integer-constant from the cursor position towards the
beginning of the result table and the row is fetched.

If the value in the host-variable or integer-constant is greater than 0,
then the cursor is positioned the number of rows specified in the
host-variable or integer-constant from the cursor position towards the
end of the result table and the row is fetched.

If a relative position is specified that is before the first row or after the
last row, a warning SQLCODE +100, SQLSTATE 02000 is returned, and
the cursor is positioned either before the first row or after the last row
and no data is returned.
Chapter 12. Scrollable cursors 159

A FETCH INSENSITIVE request retrieves the row data from the result table. A FETCH
SENSITIVE request retrieves the row data from the base table.

In SENSITIVE STATIC scrollable cursors, the number of rows in the result table is fixed but
deletes and updates to the underlying table can create delete holes or update holes. In
“Update and delete holes” on page 170 we discuss in detail how these holes are created.

Allowable combinations of CURSOR and FETCH sensitivity
The sensitivity to changes made to the base table (see Table 12-2) is specified at two levels:

� On the DECLARE CURSOR statement (discussed in topic “Scrollable cursors in depth” on
page 152).

� On the FETCH statement (discussed in the previous topic).

Let’s take a closer look at the allowable combinations that can be used and the
characteristics of their attributes.

CURSOR INSENSITIVE and FETCH INSENSITIVE

A DB2 temporary table is created at OPEN CURSOR time and filled with rows which
match the selection criteria. Once the result table is built, reads never reference the rows
in the base table.

Once the cursor has been opened, if an update is made to a row in the base table that
would create an update or delete hole in the cursor’s result set, this cursor does not
recognize it. A fetch against a row in the result set whose matching base table row has
been deleted or updated still returns an SQLCODE of 0 and return the row values to the
host variables as they were set at OPEN CURSOR time.

The resultant cursor is read-only. If a FOR UPDATE OF clause is coded in the DECLARE
CURSOR SELECT statement, then the following SQL code is returned at bind time:

-228 FOR UPDATE CLAUSE SPECIFIED FOR READ-ONLY SCROLLABE CURSOR USING
cursor-name

If the cursor has been defined as INSENSITIVE and the FOR UPDATE OF CURSOR
clause is coded in the FETCH statement, then the following SQL code is returned at bind
time and the bind fails:

-510 THE TABLE DESIGNATED BY THE CURSOR OF THE UPDATE OR DELETE STATEMENT CANNOT
BE MODIFIED

CURSOR INSENSITVE and FETCH SENSITIVE

This is not a valid combination. If a FETCH SENSITIVE statement is coded following for an
INSENSITIVE cursor, then the following SQL code is returned at runtime:

-224 SENSITIVITY sensitivity SPECIFIED ON THE FETCH IS NOT VALID FOR CURSOR
cursor-name

CURSOR SENSITIVE STATIC and FETCH INSENSITIVE

A temporary table is created at OPEN CURSOR time with all rows that match the select
criteria.

Tip: You want to specify FETCH SENSITIVE when you want DB2 to check if the
underlying data has changed since you last retrieved it from the base table and you intend
to update or delete the row or you simply need the latest data. See “Maintaining updates”
on page 174 for more details.
160 DB2 for z/OS Application Programming Topics

Updates and deletes can be made in a SENSITIVE STATIC cursor using the clause
WHERE CURRENT OF in UPDATE and DELETE statements. However, when the
INSENSITIVE keyword is used in the FETCH statement, we are saying that we do not
want the cursor to reflect updates or deletes of the cursors rows made by statements
outside the cursor. In this case, the FETCH statement shows holes made by updates and
deletes from within the current cursor, but does not show any holes created by any update
and deletes outside the cursor.

If the application issues a FETCH INSENSITIVE request it sees the positioned updates
and deletes it has made via the current scrollable cursor. These changes are visible to
the application because DB2 updates both the base table and the result table when a
positioned update or delete is issued by the application owning the cursor. Changes made
by agents outside the cursor is not visible to data returned by the FETCH INSENSITIVE.

CURSOR SENSITIVE STATIC and FETCH SENSITIVE

A temporary table is created at open cursor time to hold all rows returned by the SELECT
statement.

Updates and deletes can be made using the WHERE CURRENT OF CURSOR clause. If
an update is to be made against the cursor, the FOR UPDATE OF must be coded in the
DECLARE CURSOR statement.

The FETCH statement returns all updates or deletes made by the cursor, all updates and
deletes made outside the cursor and within the current process, and all committed
updates and deletes made to the rows within the cursor’s result set by all other processes.

As you would expect, the application sees the uncommitted changes as well as the
committed changes it has made to the base table. However, it does not see uncommitted
changes made by other agents unless isolation level UR is in effect for the scrollable
cursor.

Table 12-2 Sensitivity of FETCH to changes made to the base table

Specification on
DECLARE CURSOR

Specification
on FETCH

Comment Sensitivity to changes made to
the base table

INSENSITIVE INSENSITIVE Default for FETCH
is INSENSITIVE

None

INSENSITIVE SENSITIVE Invalid combination Not applicable

SENSITIVE INSENSITIVE Valid combination Application sees the changes it
has made using positioned
UPDATEs and DELETEs

SENSITIVE SENSITIVE Default for FETCH
is SENSITIVE

Application sees:
1. Changes it has made using
 positioned and searched
 UPDATEs and DELETEs
2. Changes it has made
 outside the cursor (using
 searched UPDATEs and
 DELETEs)
3. Committed UPDATEs and
 DELETEs made by other
 applications
Chapter 12. Scrollable cursors 161

How FETCH SENSITIVE request are processed
Each row in the result table of a sensitive scrollable cursor contains the RID value of the
corresponding row in the base table. DB2 uses the RID value to retrieve the base table row
when a FETCH SENSITIVE, positioned update or positioned delete request are processed.

DB2 does not allow RIDs to be re-used in the base table space when a sensitive cursor is
open. If DB2 allowed RIDs to be re-used, then it would be possible for the following
sequence of events to occur:

1. Another application could delete a base table row and then insert a new row at the same
RID location.

2. A FETCH SENSITIVE request would retrieve the new row but this new row would not
correspond to the result table row established at open cursor time.

Suppose you have defined and opened the following scrollable cursor:

DECLARE C1 SENSITIVE STATIC SCROLL CURSOR
FOR SELECT

FROM BASE_TABLE
WHERE

FOR UPDATE OF

When you issue the following fetch:

FETCH SENSITIVE ABSOLUTE 4
FROM C1 INTO :hv1, :hv2, :hv3, :hv4

DB2 attempts to retrieve the corresponding row from the base table. If the row is not found,
DB2 marks the result table row as a delete hole and returns SQLCODE +222. If row is found,
DB2 checks to see if the base table row still satisfies the search condition specified in the
DECLARE CURSOR statement. If the row no longer satisfies the search condition, DB2
marks the result table row as an update hole and returns SQLCODE +222. If the row still
satisfies the search condition, DB2 refreshes the result table row with the column values from
the base table row and returns the result table row to the application.

When a FETCH request encounters a hole in the result table
Here is what happens when a FETCH request encounter a hole in the result table:

� If a FETCH INSENSITIVE or FETCH SENSITIVE request encounters a delete hole, DB2
returns SQLCODE +222.

� If a FETCH INSENSITIVE request encounters an update hole, DB2 returns SQLCODE
+222. This situation can only occur if you have a sensitive cursor with and insensitive
FETCH and you create an update hole with an UPDATE WHERE CURRENT OF on this
scrollable cursor.

� If a FETCH SENSITIVE request encounters an update hole, DB2 checks to see if the
corresponding row in the base table now satisfies the search condition that was specified
in the original DECLARE CURSOR statement.

– If it does, the row in the result table is marked as valid and DB2 refreshes the result
table row with the column values from the base table row and returns the result table
row to the application.

– If it does not, the result table row remains an update hole and DB2 returns SQLCODE
+222.

Tip: A FETCH request never sees new rows which have been INSERTed into the base table after
the result table has been built.
162 DB2 for z/OS Application Programming Topics

A delete or update hole is counted as a row by DB2 when a FETCH request is processed,
that is, holes are never skipped over.

An application cannot distinguish between a delete hole and an update hole.

Once a row in the result table is marked as a delete hole, then that row remains a delete hole.

In Example 12-3, we show a FETCH SENSITIVE request which creates an update hole in the
result table. The update hole is created because the base table row no longer satisfies the
search condition WHERE TXNID = 'SMITH'.

Example 12-3 Example of a FETCH SENSITIVE request which creates an update hole

DECLARE CURSOR C1 SENSITIVE STATIC SCROLL
FOR SELECT TXNDATE

,AMT
FROM TBTRAN

WHERE TXNID = 'SMITH'
ORDER BY TXNDATE

Sequence of events:
1. Cursor C1 is opened and the result table is built.
2. Another application updates the column value of TXNID of the row with

RID A0D to “SMYTHE”.
3. A FETCH SENSITIVE is invoked that positions the cursor on the row

with RID A0D.
4. DB2 checks the base table row (using its RID), since the row no longer

satisfies the search condition WHERE TXNID = 'SMITH', DB2 changes
the current row in the result table to an update hole, and returns
an SQLCODE +222.

Before update hole is created:
BASE TABLE TBTRAN RESULT TABLE

TXNID TXNDATE DESC AMT RID TXNDATE AMT
RID ------+--------+------+----- ----+---------+------
902 Brown 080200 CR +500 903 071200 +500
903 Smith 071200 CR +500 A0F 080100 +200
A04 Brown 080900 DB -20 A0C 080200 +500
A05 Doe 081000 CR +500 A07 080300 -40
A07 Smith 080300 DB -40 A0D 080400 +100
A08 George 080800 DB -100 A09 081600 +800
A09 Smith 081600 CR +800
A0A Black 081700 CR +200
A0B White 071100 DB -50
A0C Smith 080200 CR +500
A0D Smith 080400 CR +100
A0E Black 080500 DB -500
A0F Smith 080100 CR +200

After update hole is created:
BASE TABLE TBTRAN RESULT TABLE

TXNID TXNDATE DESC AMT RID TXNDATE AMT
RID ------+--------+------+----- ----+---------+------
902 Brown 080200 CR +500 903 071200 +500
903 Smith 071200 CR +500 A0F 080100 +200
A04 Brown 080900 DB -20 A0C 080200 +500
A05 Doe 081000 CR +500 A07 080300 -40
A07 Smith 080300 DB -40 A0D
A08 George 080800 DB -100 A09 081600 +800
A09 Smith 081600 CR +800
Chapter 12. Scrollable cursors 163

A0A Black 081700 CR +200
A0B White 071100 DB -50
A0C Smith 080200 CR +500
A0D Smythe 080400 CR +100
A0E Black 080500 DB -500
A0F Smith 080100 CR +200

12.5.4 Moving the cursor
To achieve moving the cursor both backwards and forwards within a result set, two types of
commands have been provided for cursor movement.

� The first category allows for positioning on specific rows within the result set, based on the
first row being row number 1. These are called absolute moves.

� The second type allows for movement relative to the current cursor position, such as
moving five rows back from the current cursor position. These are known as relative
moves.

Cursor movement
The RELATIVE and ABSOLUTE keywords can be followed by either an integer constant or a
host variable which contains the value to be used.

The INTO clause specifies the host variable(s) into which the row data should be fetched.
This clause must be specified for all FETCH requests except for a FETCH BEFORE and a
FETCH AFTER request. An alternative to the INTO clause is the INTO DESCRIPTOR clause.

If the RELATIVE or ABSOLUTE keyword is followed by the name of a host variable, then the
named host variable must be declared with a data type of INTEGER or DECIMAL(n,0). Data
type DECIMAL(n,0) only has to be used if a number specified is beyond the range of an
integer (-2147483648 to +2147483647). If the number of the row to be fetched is specified via
a constant, then the constant must be an integer. For example, 7 is valid, 7.0 is not valid.

Absolute moves
An absolute move is one where the cursor position is moved to an absolute position within the
result table. For example, if a program wants to retrieve the fourth row of a table, the FETCH
statement would be coded as:

EXEC SQL
FETCH ... ABSOLUTE +4 FROM CUR1 INTO ...

END-EXEC.

or

01 CURSOR-POSITION PIC S9(9) USAGE BINARY.
..
MOVE 4 TO CURSOR-POSITION.
EXEC SQL

FETCH ... ABSOLUTE :CURSOR-POSITION FROM CUR1 INTO ...
END-EXEC.

Here, :CURSOR-POSITION is a host-variable of type INTEGER.

Another form of the absolute move is through the use of keywords which represent fixed
positions within the result set. For example, to move to the first row of a result set, the
following FETCH statement can be coded:
164 DB2 for z/OS Application Programming Topics

FETCH ... FIRST FROM CUR1

This statement can also be coded as:

FETCH ... ABSOLUTE +1 FROM CUR1

There are also two special absolute keywords which allow for the cursor to be positioned
outside the result set. The keyword BEFORE is used to move the cursor before the first row of
the result set and AFTER is used to move to the position after the last row in the result set.
Host variables cannot be coded with these keywords as they can never return values.

A FETCH ABSOLUTE 0 request and a FETCH BEFORE request both position the cursor
before the first row in the result table. DB2 returns SQLCODE +100 for FETCH ABSOLUTE
0 requests (that is, no data is returned) and SQLCODE 0 for FETCH BEFORE requests.

A FETCH ABSOLUTE -1 request is equivalent to a FETCH LAST request, that is, both
requests fetch the last row in the result table. DB2 returns SQLCODE 0 for both of these
requests.

Relative moves
A relative move is one made with reference to the current cursor position. To code a
statement which moves three rows back from the current cursor, the statement would be:

FETCH ... RELATIVE -3 FROM CUR1 INTO ...;
or
MOVE -3 TO CURSOR-MOVE.
FETCH ... RELATIVE :CURSOR-MOVE FROM CUR1 INTO ... ;

Here, CURSOR-MOVE is a host-variable of INTEGER type.

If you attempt to make a relative jump which positions you either before the first row or after
the last row of the result set, an SQLCODE of +100 is returned. In this case the cursor is
positioned just before the first row, if the jump was backwards through the result set; or just
after the last row, if the jump was forward within the result set.

The keywords CURRENT, NEXT, and PRIOR make fixed moves relative to the current cursor
position. For example, to move to the next row, the FETCH statement would be coded as:

FETCH ... NEXT FROM CUR1 ;
or
FETCH ... FROM CUR1 ;

Please refer to the DB2 UDB for OS/390 and z/OS Version 7 SQL Reference, SC26-9944, for
a complete list of synonymous scroll specifications for ABSOLUTE and RELATIVE moves
inside a scrollable cursor.

In Example 12-4 we show you sample program logic to display the last five rows from a table.

Example 12-4 Scrolling through the last five rows of a table

DECLARE CURSOR CUR1 SENSITIVE STATIC SCROLL
FOR SELECT TXNID

,TXSTATUS
,TXNDATE
,AMT

Tip: A FETCH BEFORE and a FETCH AFTER request only position the cursor, DB2
does not return any row data. The SENSITIVE and INSENSITIVE keywords cannot be
used if BEFORE or AFTER are specified on the FETCH statement.
Chapter 12. Scrollable cursors 165

FROM TBTRAN
WHERE TXNID = 'SMITH'
 AND TXSTATUS = ‘LATE’

ORDER BY TXNDATE ;

OPEN CURSOR CUR1 ;

FETCH INSENSITIVE ABSOLUTE -6 -- Position us on the 6th row from the bottom
FROM CUR1 INTO :HV1 -- of the result table

,:HV2 ;

DO I = 1 TO 5
FETCH NEXT FROM CUR1 INTO :HV1

,:HV2 ;

application logic to process the rows

END

CLOSE CURSOR CUR1 ;

Some examples of the full syntax are shown in Example 12-5. In this example, first we fetch
the 20th row from the result table. Then we position the cursor to the beginning of the result
table (no data is returned). Then we scroll down to the “NEXT” row (in this case the first row in
the result table). Then we scroll forward 10 rows. After that we scroll forward an additional
:rownumhv rows. Then we position the cursor at the end of the result table (no data is
returned). Then we scroll backwards 4 rows from the bottom of the result table, and finally we
scroll forward to the next row from there.

Example 12-5 Several FETCH SENSITIVE statements

FETCH ABSOLUTE 20 FROM C1 INTO :hv1, :hv2 ;
FETCH BEFORE FROM C1 ;
FETCH NEXT FROM C1 INTO :hv1, :hv2 ;
FETCH SENSITIVE RELATIVE 10 FROM C1 INTO :hv1, :hv2 ;
FETCH SENSITIVE RELATIVE :rownumhv FROM C1 INTO :hv1, :hv2 ;
FETCH AFTER FROM C1 ;
FETCH INSENSITIVE PRIOR FROM C1 INTO :Hv1, :hv2 ;
FETCH SENSITIVE RELATIVE -4 USING DESCRIPTOR :sqldahv ;
FETCH FROM C1 INTO :hv1, :hv2 ;

In Figure 12-2 we show the effects of different FETCH requests when the cursor is currently
positioned on row number 10. NEXT is the default for a FETCH request.
166 DB2 for z/OS Application Programming Topics

Figure 12-2 How to scroll within the result table

Refer to Figure 12-3 for a list of cursor positioning values and the possible SQLCODEs that
may be returned.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0

R e s u lt t a b le

F E T C H C U R R E N T
F E T C H o r F E T C H N E X T

F E T C H P R I O R

F E T C H A B S O L U T E 4

F E T C H R E L A T I V E - 3

F E T C H F I R S T

F E T C H L A S T

F E T C H B E F O R E

F E T C H A F T E R

F E T C H R E L A T I V E 3

F E T C H A B S O L U T E - 4
Chapter 12. Scrollable cursors 167

Figure 12-3 SQLCODEs and cursor position

12.5.5 Using functions in a scrollable cursor
There are two types of built-in functions used in DB2; scalar functions like SUBSTR, or
column functions like AVG. For more information on this topic, see “User-defined functions
(UDF)” on page 57 and “Built-in functions” on page 71.

Column functions such as MAX and AVG causes a scrollable cursor into implicit read-only
mode and are not valid for a SENSITIVE STATIC cursor.

The basic rule for using column functions in a scrollable cursor is that if the column function is
part of the predicate, you can use it in an insensitive cursor, as the one shown in
Example 12-6.

Example 12-6 Using functions in a scrollable cursor

DECLARE C1 INSENSITIVE SCROLL
CURSOR FOR

SELECT ITEM_NUMBER, PRICE
FROM SC246300.TBITEMS
WHERE PRICE >

 (SELECT AVG(PRICE)
 FROM SC246300.TBITEMS)

Then the value is frozen at the OPEN CURSOR.

Current
Position

before first
row

Current
Position
on first

row

Current
Postion on

last row

Current
Position

After Last
row

Resulting
Position
on Delete

Hole

Resulting
Position

on Update
hole

Resulting
Postion on

normal
Row

Resulting
Position
Before

First row

Resulting
Position

After Last
Row

NEXT OK OK +100 +100 +222 +222 IF OK IF +100
FROM
FIRST
ROW

IF +100
FROM

LAST ROW

PRIOR +100 +100 OK OK +222 +222 IF OK IF+100
FROM

LAST ROW

IF +100
FROM
FIRST
ROW

FIRST OK OK OK OK +222 +222 IF OK N/A N/A
LAST OK OK OK OK N/A N/A IFOK N/A N/A

BEFORE,
ABSOLUTE

0

OK OK OK OK N/A N/A N/A IF OK N/A

AFTER OK OK OK OK +222 +222 N/A N/A IF OK
CURRENT
RELATIVE

0

+231 OK OK +231 +222 +222 IF OK N/A N/A

ABSOLUTE
+n

OK OK OK OK +222 +222 IF OK N/A IF +100
AND n

OUT OF
RANGE

ABSOLUTE
-n

OK OK OK OK +222 +222 IF OK IF +100
AND n

OUT OF
RANGE

N/A

RELATIVE
+n

OK OK +100 +100 +222 +222 IF OK N/A IF +100
AND n

OUT OF
RANGE

RELATIVE
-n

+100 +100 OK OK +222 +222 IF OK IF +100
AND n

OUT OF
RANGE

N/A
168 DB2 for z/OS Application Programming Topics

However, with a scalar function, DB2 can maintain the relationship between the temporary
result set and the rows in the base table, and therefore allows these functions to be used in
both INSENSITIVE and SENSITIVE cursors. If used in an INSENSITIVE cursor, the function
is evaluated once at OPEN CURSOR time. For SENSITIVE cursors and where a FETCH
SENSITIVE is used, this function is evaluated at FETCH time. For SENSITIVE cursors with
an INSENSITIVE FETCH the function is evaluated at FETCH time only against the result set
for the cursor, the function is not evaluated against the base table.

In Example 12-7, we can see an expression (COMM + BONUS) and a column function
(AVG(SALARY)) being used in an insensitive scrollable cursor. Here, the column function and
the expression are evaluated when the cursor is opened and the results are saved by DB2.

Example 12-7 Using functions in an insensitive scrollable cursor

EXEC SQL DECLARE C1 INSENSITIVE SCROLL
CURSOR FOR

SELECT EMPNO
,FIRSTNME
,SALARY
,COMM
,BONUS
,COMM + BONUS AS ADDITIONAL_MONEY

FROM SC246300.TBEMPLOYEE
WHERE SALARY >

 (SELECT AVG(SALARY)
 FROM SC246300.TBEMPLOYEE)

Scalar functions, UDFs, and expressions are re-evaluated using the base table row when a
FETCH SENSITIVE request is processed. A positioned update or delete compares the
column value in the result table with the re-evaluated value for the base table row.

External UDFs are executed for each qualifying row when a scrollable cursor is opened.
Therefore, if an external UDF sends an e-mail then an e-mail is sent for each qualifying row.

UDFs are not re-executed when an insensitive fetch is issued.

Resolving functions during scrolling
Lets take a look at a few examples of how functions are resolved when used in a scrollable
cursor.

In Example 12-8, we show a non-deterministic column function. You cannot declare a
sensitive cursor with an AVG function because the result of the column function may change if
the column is updated.

Example 12-8 Aggregate function in a SENSITIVE cursor

DECLARE C1 SENSITIVE STATIC SCROLL CURSOR
WITH HOLD FOR

SELECT NORDERKEY, AVG(TAX)
FROM SC246300.TBLINEITEM

GROUP BY NORDERKEY

The BIND returns
-243 SENSITIVE CURSOR C1 CANNOT BE DEFINED FOR THE SPECIFIED SELECT STATEMENT
Chapter 12. Scrollable cursors 169

In Example 12-9 we show how the same cursor defined in Example 12-8 is valid if it is
INSENSITIVE. Since the AVG function is only processed at OPEN CURSOR time, the data
does not change and thus the values for the AVG does not change.

Example 12-9 Aggregate function in an INSENSITIVE cursor

DECLARE C1 INSENSITIVE SCROLL CURSOR
WITH HOLD FOR

SELECT NORDERKEY, AVG(TAX)
FROM SC246300.TBLINEITEM

GROUP BY NORDERKEY

In Example 12-10 we show the scalar function SUBSTR. If the cursor is SENSITIVE, the
function is evaluated at FETCH time. If the cursor is INSENSITIVE, the function is evaluated
at OPEN CURSOR time.

Example 12-10 Scalar functions in a cursor

DECLARE C1 SENSITIVE STATIC SCROLL CURSOR
WITH HOLD FOR

SELECT CUSTKEY, LASTNAME, SUBSTR(COMMENT,1,20)
FROM SC246300.TBCUSTOMER

In Example 12-11 shows that you can also use an expression in a scrollable cursor. In this
example we use a sensitive scrollable cursor. Therefore, the expression will be re-evaluated
against the base table at each FETCH operation to make sure the rows still qualifies.

Example 12-11 Expression in a sensitive scrollable cursor

DECLARE TELETEST SENSITIVE STATIC SCROLL
CURSOR FOR
 SELECT EMPNO

 ,FIRSTNME
 ,SALARY
 ,COMM
 ,BONUS
 ,COMM + BONUS AS ADDITIONAL_MONEY
 FROM SC246300.TBEMPLOYEE
 WHERE COMM + BONUS > 200
 FOR UPDATE OF BONUS

12.6 Update and delete holes
Update and delete holes are only created for SENSITIVE STATIC scrollable cursors. An
update hole occurs when the corresponding row of the underlying table has been updated
such that the updated row no longer satisfies the search condition specified in the SELECT
statement of the cursor. A delete hole occurs when the corresponding row of the underlying
table has been deleted.
170 DB2 for z/OS Application Programming Topics

12.6.1 Delete hole
Delete holes can be created in three ways:

� When a row has been deleted from the base table by another agent.

� When the cursor itself has deleted a row that was part of the result set returned at OPEN
CURSOR time.

� When the current process deletes a row outside of the scrollable cursor, and the row is
part of the cursor’s result set.

An example of the occurrence of a delete hole is:

DECLARE C1 SENSITIVE STATIC SCROLL CURSOR
FOR SELECT ACCOUNT

,ACCOUNT_NAME
FROM TBACCOUNT

WHERE TYPE = 'P'
FOR UPDATE OF ACCOUNT_NAME;

The OPEN CURSOR is executed and the DB2 temporary table is built with two rows. See
Example 12-12 for the results of the OPEN CURSOR.

Another user executes the statement:

DELETE FROM TBACCOUNT
WHERE TYPE = ‘P’
 AND ACCOUNT = ‘MNP230’ ;

COMMIT ;

The row is deleted from the base table.

The process executes its first FETCH:

FETCH SENSITIVE FROM C1 INTO :hv_account, hv_account_name ;

DB2 attempts to fetch the row from the base table but the row is not found, DB2 marks the
row in the result table as a delete hole.

DB2 returns the SQLCODE +222 to highlight the fact that the current cursor position is
over a hole.

+222: HOLE DETECTED USING cursor-name

At this stage, the host variables are empty; however, it is important for your application
program to recognize the hole, as DB2 does not reset the host variables if a hole is
encountered.

If the FETCH is executed again, the cursor is positioned on the next row, which in the
example is for account ‘ULP231’. The host variables now contain ‘ULP231’ and ‘MS S
FLYNN’.

It is important to note that if an INSENSITIVE fetch is used, then only update and delete holes
created under the current open cursor are recognized. Updates and deletes made by other
processes or outside the cursor are not recognized by the INSENSITIVE fetch.

Note: An application program is not able to distinguish between a delete hole and an
update hole, only that there is a hole.
Chapter 12. Scrollable cursors 171

If the above SENSITIVE fetch was replaced with an INSENSITIVE fetch, the fetch would
return a zero SQLCODE, since the delete to the base row was made by another process. The
column values would be set to those at the time of the OPEN CURSOR statement execution.

Example 12-12 Delete holes

Base Table
ACCOUNT ACCOUNT_NAME TYPE
ABC010 BIG PETROLEUM C
BWH450 RUTH & DAUGHTERS C
ZXY930 MIGHTY DUCKS PLC C
MNP230 BASEL FERRARI P
BMP291 MR R GARCIA C
XPM673 SCREAM SAVER LTD C
ULP231 MS S FLYNN P
XPM961 MR CJ MUNSON C

Result table
RID ACCOUNT ACCOUNT_NAME
A04 MNP230 MR BASEL FERRARI
A07 ULP231 MS S FLYNN

Base Table after DELETE
ACCOUNT ACCOUNT_NAME TYPE
ABC010 BIG PETROLEUM C
BWH450 RUTH & DAUGHTERS C
ZXY930 MIGHTY DUCKS PLC C

<-------deleted row from base table
BMP291 MR R GARCIA C
XPM673 SCREAM SAVER LTD C
ULP231 MS S FLYNN P
XPM961 MR CJ MUNSON C

Result table after FETCH
RID ACCOUNT ACCOUNT_NAME
A04
A07 ULP231 MS S FLYNN

12.6.2 Update hole
An update hole can be created when a row that was returned in the initial result set is updated
in such a way as to make it no longer qualify by the WHERE conditions of the SELECT
statement of a SENSITIVE STATIC cursor. An example of the occurrence of an update hole
is:

DECLARE C1 SENSITIVE STATIC SCROLL CURSOR
FOR SELECT ACCOUNT

,ACCOUNT_NAME
FROM TBACCOUNT

WHERE TYPE = 'P'
FOR UPDATE OF ACCOUNT_NAME;

The OPEN CURSOR is executed and the DB2 temporary table is built with two rows. See
Example 12-13 for the results of the OPEN CURSOR.

Another user executes the statement:

UPDATE TBACCOUNT
172 DB2 for z/OS Application Programming Topics

SET TYPE = ‘P
WHERE ACCOUNT = ‘MNP230’ ;

COMMIT ;

Here, it can be seen that the row for account ‘MNP230’ no longer qualifies the
requirements of the WHERE clause of the DECLARE CURSOR statement.

The process executes its first FETCH:

FETCH SENSITIVE FROM C1 INTO :hv_account, hv_account_name ;

DB2 verifies that the row is valid by executing a SELECT with the WHERE values used in
the initial open against the base table. If the row now falls outside the SELECT, DB2
returns the SQLCODE +222 to highlight the fact that the current cursor position is over an
update hole.

+222: HOLE DETECTED USING cursor-name

At this stage, the host variables are empty; however, it is important for your application
program to recognize the hole, as DB2 does not reset the host variables if a hole is
encountered.

If the FETCH is executed again, the cursor is positioned on the next row, which in the
example is for account ‘ULP231’. The host variables now contain ‘ULP231’ and ‘MS S
FLYNN’.

It is important to note that if an INSENSITIVE fetch is used, then only update and delete holes
created under the current open cursor are recognized. Updates and deletes made by other
processes are not recognized by the INSENSITIVE fetch.

If the above SENSITIVE fetch was replaced with an INSENSITIVE fetch, the fetch would
return a zero SQLCODE, as the update to the base row was made by another process. The
column values would be set to those at the time of the OPEN CURSOR statement execution.

Example 12-13 Update holes

Base Table
ACCOUNT ACCOUNT_NAME TYPE
ABC010 BIG PETROLEUM C
BWH450 RUTH & DAUGHTERS C
ZXY930 MIGHTY DUCKS PLC C
MNP230 BASEL FERRARI P
BMP291 MR R GARCIA C
XPM673 SCREAM SAVER LTD C
ULP231 MS S FLYNN P
XPM961 MR CJ MUNSON C

Result table
RID ACCOUNT ACCOUNT_NAME
A04 MNP230 BASEL FERRARI
A07 ULP231 MS S FLYNN

Base Table after UPDATE
ACCOUNT ACCOUNT_NAME TYPE
ABC010 BIG PETROLEUM C
BWH450 RUTH & DAUGHTERS C
ZXY930 MIGHTY DUCKS PLC C
MNP230 BASEL FERRARI C
BMP291 MR R GARCIA C
XPM673 SCREAM SAVER LTD C
ULP231 MS S FLYNN P
XPM961 MR CJ MUNSON C
Chapter 12. Scrollable cursors 173

Result table after FETCH
RID ACCOUNT ACCOUNT_NAME
A04
A07 ULP231 MS S FLYNN

12.7 Maintaining updates
Prior to DB2 V7, programs had to provide a means to ensure that the values in the currently
fetched row were still current when performing an update or delete of the row. Normally, this
involved executing a SELECT (using the primary key of the table to be updated) and checking
each column to ensure that the values had not changed since the last time the row was
retrieved. Another way of performing the validation is by maintaining a “last updated”
timestamp on each row and verifying that the timestamp did not change since the row was
last retrieved. Yet another way was to use the FOR UPDATE OF in a cursor to maintain the
lock on the row (this method could negatively impact concurrency).

DB2 now maintains a relationship between the rows returned by a SENSITIVE STATIC
scrolling cursor and those in the base table. If an attempt is made to UPDATE or DELETE the
currently fetched row, DB2 goes to the base table, using the RID, and verifies that the
columns match by value. If columns are found to have been updated, then DB2 returns the
SQL code:

-224: THE RESULT TABLE DOES NOT AGREE WITH THE BASE TABLE USING cursor-name.

When you receive this return code, you can choose to fetch the new data again by using the
FETCH CURRENT to retrieve the new values. The program can then choose to reapply the
changes or not.

How DB2 validates a positioned UPDATE and DELETE
With SENSITIVE STATIC scrollable cursors, DB2 always validates a positioned update
before allowing it to proceed. The technique used by DB2 is referred to as optimistic locking
concur by value.

Let's assume isolation level CS or UR is in effect for the SENSITIVE STATIC scrollable
cursor. The application issues a FETCH SENSITIVE request which positions the cursor on a
row. Once the FETCH has completed, DB2 releases the lock (if held) on the base table row.
DB2 does this to improve concurrency. The application now decides to update the current
row. However, the base table row could have been updated or deleted by another
application between the time it was fetched and the time the positioned update is requested.
Therefore, DB2 must validate the base table row before allowing the update to proceed.

Important: DB2 only validates the columns listed in the select clause of the cursor against
the base table. Other changed columns do not cause the SQLCODE -224 to be issued.

Note: A scrollable cursor never sees rows that have been inserted to the base table nor
rows that are updated and now (after open cursor time) fit the selection criteria of the
DECLARE CURSOR statement.
174 DB2 for z/OS Application Programming Topics

Now let's assume isolation level RR or RS is in effect for the sensitive scrollable cursor. The
application issues a FETCH SENSITIVE request which positions the cursor on a row. DB2
does not release the lock on the base table row. The application now decides to update the
current row. DB2 must still validate the positioned update. This is because the same
application might have updated or deleted the base table row (by issuing a searched update
or delete) between the time it was fetched and the time the positioned update is requested.

Validation of a positioned UPDATE:

The Optimistic Locking Concur By Value technique is used by DB2 to validate a positioned
UPDATE. Lets take a look at how this process works. Suppose that we have executed the
following statements:

DECLARE C1 SENSITIVE STATIC SCROLL CURSOR
FOR SELECT

FROM BASE_TABLE
WHERE

FOR UPDATE OF

OPEN CURSOR C1

FETCH SENSITIVE

UPDATE BASE_TABLE
 SET ... = ...,
 ... = ...
WHERE CURRENT OF C1

The flow chart in Figure 12-4 shows the sequence of events that occurs.
Chapter 12. Scrollable cursors 175

Figure 12-4 How DB2 validates a positioned UPDATE

Validation of a positioned DELETE:

The optimistic locking concur by value technique is also used by DB2 to validate a positioned
delete. Lets take a look at how this process works. Suppose that we have executed the
following statements:

DECLARE C1 SENSITIVE STATIC SCROLL CURSOR
FOR SELECT

FROM BASE_TABLE
WHERE

OPEN CURSOR C1

FETCH SENSITIVE

DELETE FROM BASE_TABLE
WHERE CURRENT OF C1

The flow chart in Figure 12-5 shows the sequence of events that occurs.

DB2 updates the row
and refreshes the results
table with new column values
Returns SQLCODE 0

Was row
found in

base table?

Does row
still satisfy

search
condition of

declare
cursor?

DB2 attempts to lock and
retrieve the corresponding
row in the base table

Delete hole detected
Returns SQLCODE - 222

No

Update hole detected
Returns SQLCODE - 222

No

Yes

Yes

Intervening update detected
Returns SQLCODE - 224

No
Are column

values of
base table
and result

table equal?

Yes
176 DB2 for z/OS Application Programming Topics

Figure 12-5 How DB2 validates a positioned DELETE

12.8 Locking and scrollable cursors
Scrollable cursors behave just like non-scrollable cursors in terms of locking. The existing
locking mechanism apply, as usual, as defined by lock size and isolation level. The RR, RS,
CS, UR parameters have the same implications as always.

For example, during open of a cursor that requires a temporary result table:

� A scrollable cursor bound with isolation level RR (Repeatable Read) keeps the lock on
every page or row it reads whether or not the row is qualified for the select.

� A scrollable cursor bound with isolation level RS (Read Stability) keeps the lock on every
page or row that is qualified based on the stage 1 predicates.

� A scrollable cursor bound with isolation level CS (Cursor Stability):

– When reading rows during execution of the OPEN CURSOR statement with the
CURRENTDATA setting of YES, takes a lock on the last page or row read.

– If CURRENTDATA is set to NO, does not take locks except where the cursor has been
declared with the FOR UPDATE OF clause or lock avoidance was not able to avoid

Was row
found in

base table?

Are column
values of

base table
and result

table equal?

Does row
still satisfy

search
condition of

declare
cursor?

DB2 deletes the base row
and marks the results
table row as a delete hole
Returns SQLCODE 0

DB2 attempts to lock and
retrieve the corresponding
row in the base table

Delete hole detected
Returns SQLCODE - 222

No

Update hole detected
Returns SQLCODE - 222

No

Intervening update detected
Returns SQLCODE - 224

No

Yes

Yes

Yes
Chapter 12. Scrollable cursors 177

taking the lock. When FOR UPDATE OF is specified, a lock is taken for the last page or
row read.

– Keeps locks on the last page or row read if the cursor was declared FOR UPDATE OF.

– Releases all locks on completion of the OPEN CURSOR.

� A cursor that has been bound with uncommitted read (UR) does not take any page or row
locks, and does not check whether a row has been committed when selecting it for
inclusion in the temporary result set.

Application programs can leverage the use of SENSITIVE STATIC scrollable cursors in
combination with the Isolation level CS and the SENSITIVE option of FETCH to minimize
concurrency problems and assure currency of data when required. The STATIC cursor does
give the application a constant result table to scroll on, thus perhaps eliminating the need for
isolation level RR and RS. The SENSITIVE option of FETCH statement provides the
application a means of re-fetching any preselected row requesting the most current data
when desired. For example, when the application is ready to update a row.

Duration of locks
Locks acquired for positioned updates, positioned deletes, or to provide isolation level RR or
isolation level RS are held until commit. If the cursor is defined WITH HOLD, then the locks
are held until the first commit after the close of the cursor.

12.9 Stored procedures and scrollable cursors
A scrollable cursor can be opened by a stored procedure and the result table can be returned
as a stored procedure result set. The following rules must be followed:

� A stored procedure can open multiple scrollable cursors but it must leave each cursor
positioned before the first row in the result table before returning to the calling program.
This is different from non-scrollable cursors. If you don’t stick to this rule you will receive a
SQLCODE -20123 (call to stored procedure mrsbms failed because the result set returned
for cursor teste-cursor is scrollable, but the cursor is not positioned before the first row).

� On return, the calling program then allocates the cursor and can then scroll through the
result table.

� All stored procedure defined cursors are read-only from the client (caller’s) side, as is the
case for non-scrollable cursors. However, these cursors can still make use of both
INSENSITIVE and SENSITIVE style cursors. (You can do a positioned update through the
scrollable cursor in the stored procedure itself, as long as you reposition before the result
set before returning to the calling program.)

Figure 12-6 shows an example of how to use a scrollable cursor in a stored procedure using
result sets. A full listing is available in the additional material. See Appendix C, “Additional
material” on page 251 for more details.
178 DB2 for z/OS Application Programming Topics

Figure 12-6 Stored procedures and scrollable cursors

12.10 Scrollable cursors recommendations
If you don't need the cursor to be updatable, use a stored procedure to open the cursor in a
distributed environment.

Choose the appropriate isolation level, CS with CURRENTDATA(NO) is usually sufficient.
Remember that isolation level RR and RS greatly reduce concurrency.

Provide sufficient TEMP database table space storage to hold the result tables for all
scrollable cursors that might be open concurrently and all user-declared temporary tables that
might be in use concurrently.

Commit as often as is practical and specify WITH HOLD if you want the cursor to remain if the
application issues a commit. At commit, a scrollable cursor is closed and the result table
deleted if WITH HOLD is not specified on the DECLARE CURSOR statement.

Note: If a stored procedure issues FETCH statements for a scrollable cursor, then before
ending, it must issue a FETCH BEFORE statement to position the cursor before the first
row in the result table before returning to the calling program.

Stored procedures and scrollable cursors

..
01 LOC-TBEMPLOYEE USAGE SQL TYPE IS

RESULT-SET-LOCATOR VARYING.
..
PROCEDURE DIVISION.
..

EXEC SQL CALL MRSBMS END-EXEC.
..

EXEC SQL ALLOCATE TESTE-CURSOR CURSOR
FOR RESULT SET :LOC-TBEMPLOYEE

END-EXEC.
..

PERFORM GET-ROWS-E VARYING I FROM 1 BY 1 UNTIL
SQLCODE = +100.

EXEC SQL CLOSE TESTE-CURSOR END-EXEC.
..

GOBACK.
..
GET-ROWS-E.

EXEC SQL FETCH TESTE-CURSOR INTO :EMPNO ,
:FIRSTNME

END-EXEC.
IF SQLCODE = 0 THEN

DISPLAY I ' ' EMPNO ' ' FIRSTNME-TEXT
END-IF.

Program

.

.
PROCEDURE DIVISION.
.
.

EXEC SQL DECLARE TESTE-CURSOR
SENSITIVE STATIC SCROLL
CURSOR WITH RETURN FOR

SELECT EMPNO, FIRSTNME
FROM SC246300.TBEMPLOYEE

END-EXEC.
.
.

EXEC SQL
OPEN TESTE-CURSOR

END-EXEC.
.
.

GOBACK.

Stored procedure
Chapter 12. Scrollable cursors 179

180 DB2 for z/OS Application Programming Topics

Chapter 13. More SQL enhancements

In this chapter, we discuss a set of various smaller SQL enhancements like:

� ON clause extensions

� Row expressions

� ORDER BY improvements

� INSERT

� UPDATE

� SELECT INTO enhancements

� FETCH FIRST n ROWS ONLY

� Changes to the usage of host variables

� Full predicate support by IN predicates

� Partitioning key update support

13
© Copyright IBM Corp. 2001 181

13.1 The ON clause extensions
The ON clause syntax has been extended for left, right and inner joins.

You can now include boolean predicates (ANDed, ORed, and NOT) in the ON clause of a
join. These predicates, coded in the ON clause, are applied to the join and are called during
join predicates. The join result is built while all the predicates in the ON clause are being
applied.

13.1.1 Classifying predicates
There are different types of predicates. To better understand where the ON clause extensions
fit in, we give a short overview of the different predicate types.

Table access predicates These predicates are also called before join predicates. These
predicates are applied to the table before the join, at the time
rows are retrieved from the table.

During join predicates This type of predicate was introduced in DB2 Version 6. They are
coded in the ON clause and processed during the join and
influence the join result. This is what we discuss in the section,
During join predicates.

After join step predicates This predicate type is also ne in V6. They are coded in the
WHERE clause, but are processed before processing the next
join step for performance reasons.

Totally after join predicates After all join processing is done these predicates are evaluated.

For more information on predicate classification, see DB2 UDB for OS/390 Version 6
Performance Topics, SG24-5351.

13.1.2 During join predicates
The ON clause syntax has been extended (in DB2 Version 6) to allow more expressions for
left, right and inner joins. Now you can include any search condition just like a WHERE
clause, except coding a subquery. These predicates are called during join predicates.

The conditions of the ON clause are join conditions; they specify conditions for the rows to be
joined. The cartesian product is performed with the rows that satisfy the enhanced ON
condition predicate, which is not necessarily only about equality of different columns, but also
connected with predicates on single columns and expressions. You can now include any
search condition just like a WHERE clause, with one exception. Coding a subquery in the ON
clause is not allowed.

To understand this concept, let’s look at some examples.

Example 13-1 shows the tables and rows that is used in the examples in this section.

Example 13-1 Sample tables and rows

SC246300.TBEMPLOYEE SC246300.TBDEPARTMENT

FIRSTNME WORKDEPT DEPTNO DEPTNAME ...

Note: The ON clause extensions are not implemented for full outer joins. You receive an
SQLCODE -338.
182 DB2 for z/OS Application Programming Topics

------------+---------+-- --------+------------------+
MIRIAM A01 A01 SALES
JUKKA A02 A02 MARKETING
GLADYS -- B01 DB2
ABI B01 C01 MVS
TONI --
EVA A01

Example 13-2 shows an inner join with a predicate E.WORKDEPT=’A01’ in the ON clause.
Before this enhancement these predicate could not be coded in the ON clause. Only join
predicates were allowed.

In this particular case, because it is an INNER JOIN and the additional predicate in the ON
clause was ANDed, the query behaves the same way as if the ‘AND E.WORKDEPT = ‘A01’
predicate was coded in the WHERE clause. However, this is not always the case.

Example 13-2 Inner join and ON clause with AND

SELECT E.FIRSTNME,E.WORKDEPT, D.DEPTNO,D.DEPTNAME
FROM SC246300.TBEMPLOYEE E

INNER JOIN SC246300.TBDEPARTMENT D
ON E.WORKDEPT = D.DEPTNO
AND E.WORKDEPT = 'A01' #

---------+---------+---------+---------+---------+---------+---------+
FIRSTNME WORKDEPT DEPTNO DEPTNAME
---------+---------+---------+---------+---------+---------+---------+
MIRIAM A01 A01 SALES
EVA A01 A01 SALES

Example 13-3 show a left outer join with AND in the ON clause on the DEPTNO column. Now
you notice the difference between ANDing the predicate E.WORKDEPT = 'A01' in the ON
clause, and coding the sample predicate in the WHERE clause, as shown in Example 13-4.

Example 13-3 LEFT OUTER JOIN with ANDed predicate on WORKDEPT field in the ON clause

SELECT E.FIRSTNME,E.WORKDEPT, D.DEPTNO,D.DEPTNAME
FROM SC246300.TBEMPLOYEE E

LEFT OUTER JOIN SC246300.TBDEPARTMENT D
ON E.WORKDEPT = D.DEPTNO
AND E.WORKDEPT = 'A01' #

---------+---------+---------+---------+---------+---------+----
FIRSTNME WORKDEPT DEPTNO DEPTNAME
---------+---------+---------+---------+---------+---------+----
EVA A01 A01 SALES
MIRIAM A01 A01 SALES
JUKKA A02 ------ -----------------------------
ABI B01 ------ -----------------------------
GLADYS -------- ------ -----------------------------
TONI -------- ------ -----------------------------

In Example 13-3, in order for the join condition to be satisfied, both conditions have to be true.
If this is not the case, the columns from the right hand table (TBDEPARTMENT) are set to
null.
Chapter 13. More SQL enhancements 183

Example 13-4 LEFT OUTER JOIN with ON clause and WHERE clause

SELECT E.FIRSTNME,E.WORKDEPT, D.DEPTNO,D.DEPTNAME
FROM SC246300.TBEMPLOYEE E

LEFT OUTER JOIN SC246300.TBDEPARTMENT D
ON E.WORKDEPT = D.DEPTNO

WHERE E.WORKDEPT = 'A01' #
---------+---------+---------+---------+---------+--
FIRSTNME WORKDEPT DEPTNO DEPTNAME
---------+---------+---------+---------+---------+--
EVA A01 A01 SALES
MIRIAM A01 A01 SALES

This is totally different from the case where you code the E.WORKDEPT = ‘A01’ condition in
the WHERE clause, as in Example 13-4. The WHERE clause is not evaluated at the time the
join is performed. According to the semantics of the SQL language It must be evaluated after
the result from the join is built (to eliminate all rows where E.WORKDEPT is not equal to
‘A01’. (Actually this is not entirely true. Version 6 introduced a lot of performance
enhancements related to outer join and in this case, the predicate that is coded in the
WHERE clause can and is evaluated when the data is retrieved from the TBEMPLOYEE
table. The system only moves the evaluation of the predicate to an earlier stage during the
processing, if it is sure the result is not influenced by this transformation. In our example this
is the case because the WHERE predicate is not on the ‘null supplying’ table. For more
information on the outer join performance enhancements, see DB2 UDB for OS/390 Version 6
Performance Topics, SG24-5351.)

Example 13-5 shows another flavour of the ON clause extensions using an OR condition in
the ON clause. MIRIAM and EVA (rows satisfying WORKDEPT = 'A01') are joined with every
row of the TBDEPARTMENT table. The predicates on the ON clause determine whether we
have a match for the join. So in this example, If either E.WORKDEPT = D.DEPTNO or
E.WORKDEPT = ‘A01’ is true, the rows of both tables are matched up.

Example 13-5 Inner join and ON clause with OR in the WORKDEPT column

SELECT E.FIRSTNME,E.WORKDEPT, D.DEPTNO,D.DEPTNAME
FROM SC246300.TBEMPLOYEE E

INNER JOIN SC246300.TBDEPARTMENT D
ON E.WORKDEPT = D.DEPTNO
OR E.WORKDEPT = 'A01' #

---------+---------+---------+---------+---------+---------+---------+
FIRSTNME WORKDEPT DEPTNO DEPTNAME
---------+---------+---------+---------+---------+---------+---------+
MIRIAM A01 B01 DB2
MIRIAM A01 A01 SALES
MIRIAM A01 C01 MVS
MIRIAM A01 A02 MARKETING
JUKKA A02 A02 MARKETING
EVA A01 B01 DB2
EVA A01 A01 SALES
EVA A01 C01 MVS
EVA A01 A02 MARKETING
ABI B01 B01 DB2
184 DB2 for z/OS Application Programming Topics

13.2 Row expressions
In this section, we discuss row expressions. Row expressions can simplify WHERE clauses.
They enable us to compare multiple columns simultaneously using equal and not equal
expressions and compare multiple columns against the results of a subquery using IN and
NOT IN operators.

This is primarily a usability enhancement, but row expressions can impact performance.
Rewriting a query to use row expressions can change the access path used.

13.2.1 What is a row expression?
Prior to DB2 V7, the SQL syntax only allowed a single column on one side to be used in a
comparison operation with equal and not equal operators. DB2 V7 extends the syntax to
allow the use of multiple expressions to be specified in the IN and NOT IN subquery
predicates, some quantified predicates (=SOME, =ANY, <>ALL), as well as with equal and
not equal operators (= , <>).

The performance impact may be significant if the access path changes when you rewrite the
query to use row expressions. The size of the result set of the outer table may not have much
impact, but the size of the result set of the inner table may have impact performance. If a
large number of rows qualify from the inner table, the increase of response time may be
significant. When the access path does not change with and without row expression, then
there is no performance impact either.

13.2.2 Types of row expressions
There are three basic types of row value expressions:

� Equal and not equal operator (=, <>)
� Quantified predicates (= ANY, = SOME, <> ALL)
� IN and NOT IN with a subquery

Equal and unequal operators ‘=’ and ‘<>’
Multiple expression can be used to compare against multiple expressions in a single
predicate. These multiple expressions are called row-value-expressions. If a subselect is
used, it must return the same number of columns in the result set as the
row-value-expression it is compared to. Matching is done by comparing expressions on one
side of the operator with the expressions in same position on the other side of the operator. If
the operator is =, the result is true if all the pairs of expressions evaluate to true, and false
otherwise. If the operator is <>, the result is true if any pair of expressions evaluate to true,
and false otherwise.

For example, prior to DB2 V7, you would code COL1 = :HV1 AND COL2 = :HV2; now you can
code (COL1,COL2) = (:HV1, :HV2). Both conditions have to be fulfilled for the statement to be
true. You may now code (COL1, COL2) <> (:HV1, :HV2) instead of COL1 <> :HV1 OR COL2
<> :HV2. In this case, at least one condition has to evaluate true for the predicate to be true.
In these simple cases the access path is the same with and without row expression and has
no impact on performance.

Example 13-6 shows how to use a row-value-expression containing two column and compare
(=) it to a row-value-expression that contains a constant value and a host variable. It finds all
employees in city “1” and country “34” (in this case country is a host variable :nationkey).

Example 13-6 Row expressions with equal operation

SELECT FIRSTNME
Chapter 13. More SQL enhancements 185

,JOB
,WORKDEPT
,SEX
,EDLEVEL

FROM SC246300.TBEMPLOYEE
WHERE (CITYKEY, NATIONKEY) = (1, :nationkey) ;

---------+---------+---------+---------+---------+-
FIRSTNME JOB WORKDEPT SEX EDLEVEL
---------+---------+---------+---------+---------+-
MIRIAM DBA A01 F 4

Quantified predicates (=ANY, =SOME, <>ALL)
The =ANY and =SOME operators are synonyms of each other. All value expressions on the
left had side of the comparison must match at least one row value expression on the right
side of the comparison in order for the comparison to be evaluated to true.

Example 13-7 uses a row expression with an = ANY operator against a subquery. This
example lists the employees that live in the same city and country as any of our customers.

Example 13-7 Row expressions with = ANY operation

SELECT FIRSTNME
,JOB
,WORKDEPT
,SEX
,EDLEVEL

FROM SC246300.TBEMPLOYEE
WHERE (CITYKEY,NATIONKEY) = ANY

(SELECT CITYKEY,NATIONKEY
FROM SC246300.TBCUSTOMER) ;

---------+---------+---------+---------+---------+--
FIRSTNME JOB WORKDEPT SEX EDLEVEL
---------+---------+---------+---------+---------+--
EVA SYSADM A01 F 0

In order for the <>ALL comparison to evaluate to true, there must not be any row on the right
hand side of the comparison that matches the values specified on the left hand side.

Example 13-8 uses a row expression with a <> ALL operator against a subquery. This
example lists the employees that do not live in the same city and country as any of our
customers.

Example 13-8 Row expression with <> ALL operator

SELECT FIRSTNME
,JOB
,WORKDEPT
,SEX
,EDLEVEL

FROM SC246300.TBEMPLOYEE

Note: Row expressions with equal and not equal operators are not allowed to be
compared against fullselect.
186 DB2 for z/OS Application Programming Topics

WHERE (CITYKEY,NATIONKEY) <> ALL
(SELECT CITYKEY,NATIONKEY

FROM SC246300.TBCUSTOMER) ;

---------+---------+---------+---------+---------+--
FIRSTNME JOB WORKDEPT SEX EDLEVEL
---------+---------+---------+---------+---------+--
MIRIAM DBA A01 F 4
JUKKA SALESMAN A02 M 7
TONI -------- M 0
GLADYS -------- F 0
ABI TEACHER B01 F 9

IN and NOT IN with a subquery
Example 13-9 is equivalent to Example 13-7 and evaluates in the same way.

Example 13-9 IN row expression

SELECT FIRSTNME
,JOB
,WORKDEPT
,SEX
,EDLEVEL

FROM SC246300.TBEMPLOYEE
WHERE (CITYKEY,NATIONKEY) IN

(SELECT CITYKEY,NATIONKEY
FROM SC246300.TBCUSTOMER) ;

---------+---------+---------+---------+---------+--
FIRSTNME JOB WORKDEPT SEX EDLEVEL
---------+---------+---------+---------+---------+--
EVA SYSADM A01 F 0

Example 13-10 is equivalent to Example 13-8 and evaluates in the same way.

Example 13-10 NOT IN row expression

SELECT FIRSTNME
,JOB
,WORKDEPT
,SEX
,EDLEVEL

FROM SC246300.TBEMPLOYEE
WHERE (CITYKEY,NATIONKEY) NOT IN

(SELECT CITYKEY,NATIONKEY
FROM SC246300.TBCUSTOMER) ;

---------+---------+---------+---------+---------+--
FIRSTNME JOB WORKDEPT SEX EDLEVEL
---------+---------+---------+---------+---------+--
MIRIAM DBA A01 F 4
JUKKA SALESMAN A02 M 7

Note: The use of row value expressions on the left-hand side of a predicate with = SOME
or = ANY operators is the same as using the IN keyword. The <> ALL operator is the same
as using the NOT IN keywords.
Chapter 13. More SQL enhancements 187

TONI -------- M 0
GLADYS -------- F 0
ABI TEACHER B01 F 9

13.2.3 Row expression restrictions
Row expressions are not supported for ‘IN lists’. The following syntax is not valid for finding all
employees in city 1 or 2 in country 34.

Example 13-11 Row expression restrictions

SELECT FIRSTNME,JOB,WORKDEPT,SEX,EDLEVEL
FROM SC246300.TBEMPLOYEE
WHERE (CITYKEY,NATIONKEY) IN ((1, 34), (2, 34));

-- SQLCODE = -104

If the number of expressions and the number of columns returned do not match, then an SQL
error is returned:

SQLCODE -216 THE NUMBER OF ELEMENTS ON EACH SIDE OF A PREDICATE OPERATOR DOES
NOT MATCH. PREDICATE OPERATOR IS IN.

SQLSTATE: 428C4

13.3 ORDER BY
The order of the selected rows depends on the sort keys that you identify in the ORDER BY
clause. A sort key can be a column name, an integer that represents the number of a column
in the result table, or an expression. DB2 sorts the rows by the first sort key, followed by the
second sort key, and so on.

You can list the rows in ascending or descending order. Null values appear last in an
ascending sort and first in a descending sort. The ordering can be different for each column in
the ORDER BY clause.

13.3.1 ORDER BY columns no longer have to be in select list (V5)
Before DB2 V5 the columns in the ORDER BY clause had to be in the SELECT list. Now we
can specify a column in the ORDER BY clause that is NOT in the SELECT list. DB2 sorts
strings in the collating sequence associated with the encoding scheme of the table, before the
projection phase (selecting the columns to return) of the select.

Example 13-12 shows a SELECT that lists all employees in department ‘A00’ sorted by birth
date in ascending order. Notice that the BIRTHDATE column is not in the select list.

Example 13-12 ORDER BY column not in the select list

SELECT EMPNO
,LASTNAME
,HIREDATE

FROM SC246300.TBEMPLOYEE
WHERE WORKDEPT = 'A00'

ORDER BY BIRTHDATE ASC;
188 DB2 for z/OS Application Programming Topics

Prior to this enhancement the query above would have returned an SQLCODE -208.

The following restrictions apply:

� There is no UNION or UNION ALL (SQLCODE -208).
� There is no GROUP BY clause (SQLCODE -122).
� There is no DISTINCT clause in the select list (new SQLCODE -214).

13.3.2 ORDER BY expression in SELECT (V7)
In DB2 V7 we can include expressions in the ORDER BY clause. Prior to DB2 V7, in order to
be able to sort by an expression, you must explicitly include the expression in the SELECT list
and then reference the number of the column (the expression) of the result table in the
ORDER BY clause.

In Example 13-13, we have a query to retrieve the employee number, total compensation
(salary plus commission), salary, commission, for employees with a total compensation
greater than $40000. Prior to V7 we would have to code ORDER BY 2 to produce the same
result.

Example 13-13 ORDER BY expression in SELECT

-- Prior to DB2 V7
SELECT EMPNO

,SALARY+COMM AS "TOTAL COMP" -- Note: this is the second column in the list
,SALARY
,COMM

FROM SC246300.TBEMPLOYEE
WHERE SALARY+COMM > 40000

ORDER BY 2;

-- DB2 V7
SELECT EMPNO

,SALARY+COMM AS "TOTAL COMP"
,SALARY
,COMM

FROM SC246300.TBEMPLOYEE
WHERE SALARY+COMM > 40000

ORDER BY SALARY+COMM ;

-- Or even better
SELECT EMPNO
 ,SALARY+COMM AS "TOTAL COMP"
 ,SALARY
 ,COMM
 FROM SC246300.TBEMPLOYEE
 WHERE SALARY+COMM > 1000
 ORDER BY "TOTAL COMP" ;

Some vendor applications generate SQL statements which contain ORDER BY expressions.
In such cases, it is often not feasible to re-write the generated SQL.

Tip: When calculating the amount of sort space required for the query, all columns,
including the ones being sorted on should be included in the sort data length as well as in
the sort key length.
Chapter 13. More SQL enhancements 189

13.3.3 ORDER BY sort avoidance (V7)
DB2 can now logically remove columns from an ORDER BY clause and an index key if their
values are constant. This enables DB2 to recognize more situations in which a sort
operation can be avoided.

This enhancement is based on the assertion that any constant value included as part of an
ordering key can be logically removed from the ordering key without changing the order. An
ordering key can be the columns listed in an ORDER BY clause or the columns of an index
key.

In Figure 13-1, the predicates for columns C2, C4 and C5 specify a constant value. Therefore,
DB2 can logically remove these columns from the ORDER BY clause without changing the
order requested by the user. DB2 can also logically remove these columns from the index key
without changing the ordering capability of the index.

Figure 13-1 Improved sort avoidance for ORDER BY clause

In Example 13-14, we show how this works. The ORDER BY in Figure 13-1 is equivalent to
an ORDER BY C1, C3. Note that index on C2, C1, C5, C4, C3 can be used and is equivalent
to an index on C1, C3 and thus avoiding a sort or the need for an additional index.

Example 13-14 Data showing improved sort avoidance for the ORDER BY clause

C2 C1 C5 C4 C3
-------+------+------+------+------

1 8 7 7 3
1 9 5 4 8
2 4 1 3 2
2 4 2 8 5
3 2 6 9 7
3 4 3 1 3
3 4 4 0 6
4 1 2 3 9
4 7 4 8 0
5 2 2 7 8 -- This row qualifies
5 2 3 8 1
5 3 2 7 5 -- This row qualifies
5 5 3 7 3
5 6 2 5 8
5 6 2 7 7 -- This row qualifies
5 8 2 7 4 -- This row qualifies
5 9 3 7 3
5 9 4 7 1

logically equivalent to
ORDER BY C1,C3

logically equivalent to a key
of (C1,C3) with respect to
ordering

SELECT C1, C2, C3, C4
FROM T1

WHERE C2 = 5
AND C4 = 7
AND C5 = 2

ORDER BY C1, C2, C3, C4

INDEX on (C2, C1, C5, C4, C3)

DB2 is now able to recognize that the index supports the ORDER BY clause
190 DB2 for z/OS Application Programming Topics

6 3 2 4 3

Qualified rows:
5 2 2 7 8
5 3 2 7 5
5 6 2 7 7
5 8 2 7 4

13.4 INSERT
In this section, we discuss enhancements made to the INSERT statement.

The new enhancements are:

� Inserting with DEFAULT keyword
� Inserting with any expression
� Inserting with self-referencing select
� Inserting with UNION

13.4.1 Using the DEFAULT keyword in VALUES clause of an INSERT
Using the DEFAULT keyword in the VALUES clause of an INSERT statement can be very
practical when inserting using dynamic SQL. All the columns the end user does not provide a
value for, can be inserted using DEFAULT. The default value used is the values defined on
the table or the system default for each data type if one is not specified in the table definition.
However, the column must be defined with WITH DEFAULT.

The last column in the definition of the table SC246300.TBITEMS is:

COMMENT VARCHAR (100) WITH DEFAULT 'NONE'.

In Example 13-15, we show how we can code an INSERT to take advantage of this keyword.

Example 13-15 Inserting with the DEFAULT keyword

INSERT INTO SC246300.TBITEMS
VALUES (440

,'HAMMER'
,50
,1.25
,DEFAULT) ;

Inserts the following row:
---------+---------+---------+---------+---------+---------+---------+---------+
ITEM_NUMBER PRODUCT_NAME STOCK PRICE COMMENT
---------+---------+---------+---------+---------+---------+---------+---------+

440 HAMMER 50 1.25 NONE

Note: Logically removing columns from an index key has no effect on the filtering
capability of the index.
Chapter 13. More SQL enhancements 191

13.4.2 Inserting using expressions
You can specify any expression in the list of values of an INSERT statement. This can be very
useful with user defined functions, cast functions on user-defined distinct data types, values
based on arithmetic, and new datetime functions.

Example 13-16 Inserting using an expression

INSERT INTO SC246300.TBITEMS
VALUES (445

,'TELEVISION'
,30
,SC246300.PES2EUR(15000)
,DEFAULT);

---------+---------+---------+---------+---------+---------+---------+---------+
ITEM_NUMBER PRODUCT_NAME STOCK PRICE COMMENT
---------+---------+---------+---------+---------+---------+---------+---------+

445 TELEVISION 30 90.00 NONE

13.4.3 Inserting with self-referencing SELECT
Before DB2 V6, if you wanted to INSERT rows into a table, based on a selection of rows from
that same table, you had to implemented views on that table, to give DB2 the impression you
were using two different tables in the statement. Now this is no longer needed. The fullselect
(in V7, see 13.4.4, “Inserting with UNION or UNION ALL” on page 193) that you specify in the
INSERT statement can now be a SELECT from the same table that returns more than a
single row. This is a very practical way to create more rows based on the rows you already
have in the table, varying values with arithmetic expressions as well as with functions.

Example 13-17 Inserting with a self-referencing SELECT

-- Before Version 6 this was the only self-referencing INSERT allowed

INSERT INTO SC246300.TBEMPLOYEE (EMPNO
,SALARY
,SEX)

SELECT 'AVG',AVG(SALARY),'F'
FROM SC246300.TBEMPLOYEE;

-- one row is inserted

-- Full self-referencing support in Version 7

SET CURRENT PATH ='SC246300';

INSERT INTO SC246300.TBCONTRACT (BUYER
,SELLER
,RECNO
,EUROFEE)

 SELECT BUYER
,SELLER
,SUBSTR(RECNO,1,5)||'COPY'
, PES2EUR(DECIMAL(PESETAFEE))

FROM SC246300.TBCONTRACT
-- many rows are inserted
192 DB2 for z/OS Application Programming Topics

13.4.4 Inserting with UNION or UNION ALL
We can now (V7) insert rows into a table by using UNION or UNION ALL in the SELECT
statement. This enhancement can be very useful, especially when populating temporary
tables in a data warehouse environment.

See Example 11-6 on page 139 for more details.

13.5 Subselect UPDATE/DELETE self-referencing
This enhancement to SQL in DB2 V7 allows searched UPDATE and DELETE statements to
use the target tables within the subselect in the WHERE clause. Before DB2 V7, if you
attempted to do this, DB2 returned an SQLCODE -118.

Example 13-18 shows how we can give a 10% salary increase to all employees with a salary
lower than the average salary.

Example 13-18 UPDATE with a self referencing non-correlated subquery

UPDATE SC246300.TBEMPLOYEE
SET SALARY = SALARY * 1.10
WHERE SALARY < (SELECT AVG(SALARY)

FROM SC246300.TBEMPLOYEE)

A non-correlated subquery is executed only once before update and delete.

Example 13-19 shows how we can give a 10% salary increase to all employes whose salary
is lower than the average salary of their department.

Example 13-19 UPDATE with a self referencing non-correlated subquery

UPDATE SC246300.TBEMPLOYEE X
SET SALARY = SALARY * 1.10
WHERE SALARY < (SELECT AVG(SALARY)

FROM SC246300.TBEMPLOYEE Y
WHERE X.WORKDEPT = Y.WORKDEPT) ;

DB2 processes the query in Example 13-19 as follows:

1. The correlated subquery is executed for each row in the outer (TBEMPLOYEE X) table.
DB2 creates a record, in a work file, for each row that satisfies the subquery. For the
UPDATE statement, DB2 stores the RID of the row and the updated SALARY column
value. For the DELETE statement, DB2 stores the RID of the row.

2. Once all the qualifying rows have been determined, DB2 reads the work file, and for each
record, updates or deletes the corresponding row in the TBEMPLOYEE table.

Note: This feature requires the subquery to be completely evaluated before any rows are
updated or deleted.
Chapter 13. More SQL enhancements 193

This two-step processing is not shown in the EXPLAIN output. Two-step processing is used
for an UPDATE whenever a column that is being updated is also referenced in the WHERE
clause of the UPDATE or is used in the correlation predicate of the subquery as shown in
Example 13-19. For a DELETE statement, two-step processing is always used for a
correlated subquery.

Example 13-20 shows a new way to delete the department with the lowest budget in just one
SQL sentence. However, be careful when coding such a statement because even though only
one value is returned by the self-referencing subselect, more than one row may have a
budget equal to the minimum and thus would be deleted.

Example 13-20 DELETE with self referencing non-correlated subquery

DELETE FROM SC246300.TBDEPARTMENT
WHERE BUDGET = (SELECT MIN(BUDGET)

FROM SC246300.TBDEPARTMENT)

Example 13-21 shows how we can delete the employees with the highest salary for each
department. To perform this DELETE in our sample environment, we have to drop the self
referencing foreign key of the TBEMPLOYEE table since it is defined with the delete rule ON
DELETE NO ACTION.

Example 13-21 DELETE with self referencing non-correlated subquery

DELETE FROM SC246300.TBEMPLOYEE X
WHERE SALARY = (SELECT MAX(SALARY)

FROM SC246300.TBEMPLOYEE Y
WHERE X.WORKDEPT= Y.WORKDEPT)

The enhanced support for the UPDATE and DELETE statements also improves DB2 family
compatibility.

Restrictions on usage
This enhancement does not extend to a positioned UPDATE or DELETE statement, that is,
an UPDATE or DELETE statement which uses the WHERE CURRENT OF cursor-name
clause.

DB2 positioned updates and deletes continue to return the SQLCODE -118 if a subquery in
the WHERE clause references the table being updated or which contains rows to be deleted.

For example, the positioned update in Example 13-22 is still invalid.

Example 13-22 Invalid positioned update

EXEC SQL DECLARE CURSOR C1 CURSOR FOR
SELECT T1.ACCOUNT, T1.ACCOUNT_NAME, T1.CREDIT_LIMIT

FROM ACCOUNT T1
WHERE T1.CREDIT_LIMIT < (SELECT AVG(T2.CREDIT_LIMT)

FROM ACCOUNT T2)
FOR UPDATE OF T1.CREDIT_LIMIT;

.
EXEC SQL OPEN C1;
...
EXEC SQL FETCH C1 INTO :hv_account, :hv_acctname, :hv_crdlmt;
...
194 DB2 for z/OS Application Programming Topics

EXEC SQL UPDATE ACCOUNT
SET CREDIT_LIMIT = CREDIT_LIMIT * 1.1
WHERE CURRENT OF C1;

An SQLCODE -118 is returned at bind time.

13.6 Scalar subquery in the SET clause of an UPDATE
Beginning with DB2 V6, a scalar subselect can now be specified on the SET clause of both a
searched and positioned UPDATE statement. A scalar subselect is a subselect that returns a
single row. The number of columns in the row must match the number of columns that are
specified to be updated.

Example 13-23 shows how to use a subquery that returns a single row in the SET clause of
an update. Before V6 you had to use two SQL statements.

Example 13-23 Non-correlated subquery in the SET clause of an UPDATE

UPDATE SC246300.TBEMPLOYEE
SET DEPTSIZE = (SELECT COUNT(*)

FROM SC246300.TBDEPARTMENT
WHERE DEPTNO = ‘A01’)

WHERE WORKDEPT = ‘A01’

The columns of the target table or view of the UPDATE can be used in the search condition of
the subselect. Using correlation names to refer to these columns is only allowed in a
searched UPDATE.

In Example 13-24 we update the manager of all employees with the manager assigned to
their department. It is up to the user to make sure only a single row is returned in the
subselect. Otherwise you receive an SQLCODE -811.

Example 13-24 Correlated subquery in the SET clause of an UPDATE

 UPDATE SC246300.TBEMPLOYEE X
 SET MANAGER = (SELECT MGRNO
 FROM SC246300.TBDEPARTMENT Y
 WHERE X.WORKDEPT = Y.DEPTNO
) #

In Example 13-25 we update the number of orders (NUMORDERS column) for all employees
with a NATIONKEY of 34.

Example 13-25 Correlated subquery in the SET clause of an UPDATE with a column function

UPDATE SC246300.TBEMPLOYEE X
SET NUMORDERS = (SELECT COUNT(*)

FROM SC246300.TBORDER
WHERE CLERK = X.EMPNO)

Note: If the subselect returns no rows, the null value is assigned to the column to be
updated, if the column cannot be null, an error occurs.
Chapter 13. More SQL enhancements 195

WHERE NATIONKEY = 34

Example 13-26 shows how the update in Example 13-23 can be changed to provide
DEPTSIZE for employees of all departments. This is done by using an UPDATE with a
correlated subquery in the SET clause.

Example 13-26 Correlated subquery in the SET clause of an UPDATE using the same table

UPDATE SC246300.TBEMPLOYEE X
SET DEPTSIZE = (SELECT COUNT(*)

FROM SC246300.TBEMPLOYEE Y
WHERE X.WORKDEPT = X.WORKDEPT) ;

Example 13-27 shows how to move employees Mark and Ivan to department number ‘A01’
using a row expression in the SET clause of an UPDATE.

Example 13-27 Row expression in the SET clause of an UPDATE

UPDATE SC246300.TBEMPLOYEE
SET (MANAGER,WORKDEPT) = (SELECT MGRNO,DEPTNO

FROM SC246300.TBDEPARTMENT
WHERE DEPTNO = 'A01')

WHERE FIRSTNME IN ('MARK','IVAN')

The SET assignment statement assigns the value of one or more expressions or a NULL
value to one or more host-variables or transition-variables and replaces the SET
host-variable statement documented in previous releases of DB2.

The statement can be embedded in an application program or can be contained in the body
of a trigger. If the statement is a triggered SQL statement, then it must be part of a trigger
whose action is BEFORE and whose granularity is FOR EACH ROW. In this context, a
host-variable cannot be specified.

This enhancement also improves DB2 family compatibility.

13.6.1 Conditions for usage
The subselect can reference a table, view, synonym or alias or a join of any of these. You
must make sure the number of columns selected is equal to the number of columns to be
updated and the data types must be compatible.

You need to ensure that the subselect does not return more than one value (row), as the
statement would then fail with SQLCODE -811. Since only one row must be returned from the
subselect, you cannot use the GROUP BY and HAVING clause, if you do, you get an
SQLCODE -815. You should also consider whether it is possible for the statement to return
no rows. In this case, the null value is assigned to the column(s) to be updated. If a column
does not accept null values an SQLCODE -407 is returned. Consequently, this function is
ideally suited when you want to update a column to the result of functions such as COUNT,
MAX, SUM or where the subselect is accessing data by its primary key.
196 DB2 for z/OS Application Programming Topics

13.6.2 Self-referencing considerations
When using a subselect in the SET clause of an UPDATE the object of the update and the
subselect must not be the same table.

However, for a searched update, you may reference a column in the table to be updated
within the subselect.

13.7 FETCH FIRST n ROWS ONLY
DB2 V7 introduces the FETCH FIRST n ROWS ONLY clause, which allows you to specify a
limit on the number of rows returned into the result set. This clause has been introduced to
support ERP vendor products, many of which require only the first row to be returned. This
enhancement is of particular value for distributed applications, but it is also applicable to local
SQL.

Performance is improved with DRDA applications, since the client application can specify
limits to the amount of data returned and DRDA closes the cursor implicitly when the limit is
met.

Example 13-28 gives a simple example of the usage of the FETCH FIRST n ROWS ONLY
clause. In this case the cursor receives an SQLCODE +100 at the sixth FETCH operations
(after 5 ROWS have been returned), even though there are more rows that qualify the
predicates.

Example 13-28 FETCH FIRST n ROWS ONLY

SELECT T1.CREATOR
,T1.NAME

FROM SYSIBM.SYSTABLES T1
WHERE T1.CREATOR = 'SYSIBM'
 AND T1.NAME LIKE 'SYS%'

ORDER BY T1.CREATOR
,T1.NAME

FETCH FIRST 5 ROWS ONLY;

CREATOR NAME
---------+---------+---------+---------+---------+---------
SYSIBM SYSAUXRELS
SYSIBM SYSCHECKDEP
SYSIBM SYSCHECKS
SYSIBM SYSCHECKS2
SYSIBM SYSCOLAUTH
DSNE610I NUMBER OF ROWS DISPLAYED IS 5
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

The FETCH FIRST clause can also be used for scrollable cursors.

The OPTIMIZE FOR clause is another that you can specify in the SELECT statement.
Table 13-1 describes the effect of specifying the FETCH FIRST clause with and without the
OPTIMIZE FOR clause.
Chapter 13. More SQL enhancements 197

Table 13-1 How the FETCH FIRST clause and the OPTIMIZE FOR clause interact

When both options are specified, only the OPTIMIZE FOR clause is used during access path
selection and determining how to do blocking in a DRDA environment.

By using the new FETCH FIRST n ONLY clause, you can:

� Limit the number of rows in a result table
� Use a SELECT INTO statement to retrieve the first row of a result table
� Limit the number of rows returned by a DB2 for z/OS and OS/390 DRDA server

13.8 Limiting rows for SELECT INTO
In previous versions of DB2, using the SELECT...INTO required the program to ensure that
only a single row was returned. This was normally done by using the primary key or any other
unique key that existed on the table. To guarantee that only a single row was returned was
more complicated if the SELECT statement contained a join to another table which could
have any number of rows matching the join criteria.

If the SELECT...INTO statement is coded and returns more than one row, DB2 returns an
SQLCODE -811, and the statement would be rejected. You can use this statement for
existence checking (to see if one or more rows qualify) when you don’t actually need the data
itself. However, in order to be sure there is only one row that qualifies, DB2 has to continue
looking through the data and applying predicates to make sure there is no second row. This
does take up unnecessary resources when you want to find out if a row exists. You don’t need
to know there is that there is more than one.

Because of the SQLCODE -811, there is no guarantee that the host variables are actually
filled with the values returned from the query.

Therefore, if you needed to see the data itself, and if there was no way to ensure that only a
single row was returned, then a cursor had to be opened and the program itself would have to
read in the first row that matches the selection and join criteria and throw away all other rows
by closing the cursor.

The FETCH FIRST 1 ROWS ONLY clause can now be added to the SELECT ... INTO
statement to specify that only one row is returned to the program, even if multiple rows match
the WHERE criteria. Wherever uniqueness is not significant, this clause can be very powerful.
In case of the existence checking, DB2 does not look for a second row and not return an
SQLCODE -811.

Note: The behavior described in the following table only applies when the PTF for APAR
PQ49458 (still open at the time of writing) is applied to your system.

Clauses specified on the SELECT statement OPTIMIZE value used by DB2

FETCH FIRST n ROWS ONLY
(OPTIMIZE FOR clause not specified)

DB2 optimizes for n rows

FETCH FIRST n ROWS ONLY
OPTIMIZE FOR m ROWS (where m>n)

DB2 optimizes for m rows

FETCH FIRST n ROWS ONLY
OPTIMIZE FOR m ROWS (where m<n)

DB2 optimizes for m rows
198 DB2 for z/OS Application Programming Topics

Example 13-29 shows how to use a SELECT INTO statement that could return several rows.
By adding the FOR FETCH ONLY we can avoid having to open a cursor.

Example 13-29 Limiting rows for SELECT INTO

SELECT ACCOUNT
,ACCOUNT_NAME
,TYPE
,CREDIT_LIMIT

INTO :hv_account
,hv_acctname
,:hv_type
,:hv_crdlmt

FROM ACCOUNT
WHERE ACOCUNT_NAME = :hv_in_acctname

FETCH FIRST 1 ROW ONLY ;

As you can choose to pick up only a row, the SELECT INTO statement support also the
GROUP BY and HAVING clauses.

13.9 Host variables
In this section we discuss some topics related to host variables, including:

� The new VALUES INTO statement and
� The fact that host variables must now be preceded by a colon ‘:’

13.9.1 VALUES INTO statement
The VALUES INTO statement assigns the values of one or more expressions to one or more
host variables. This statement can only be embedded in an application program as shown in
Example 13-30.

Example 13-30 Use of VALUES INTO

EXEC SQL VALUES(CURRENT DATE)
 INTO :HV1;

The SET assignment statement is an alternative to assign the value of one or more
expressions or a NULL value to one or more host-variables or transition-variables. In
Example 13-31, we show several ways to use the SET.

The implementation of VALUES INTO is another enhancement to increase DB2 family
compatibility.

Example 13-31 Some uses of the SET assignment statement

SET :hv = CUSTOMER(‘01’)
This is equivalent to VALUES(CUSTOMER(‘01’)) INTO :hv
The SET assignment statement is recommended

Note: Be cautious when using this feature, make sure that logically (within your
application) it is appropriate to ignore multiple rows.
Chapter 13. More SQL enhancements 199

SET :hv = NULL
SET :hv = udf1(:hv2,1,1+2)
SET :hv = udf2(:hv2,1)
SET :lastmon = MONTH(CURRENT DATE - 30 DAYS)

13.9.2 Host variables must be preceded by a colon
DB2 Version 6 enforces the standard that requires all host variables to be proceeded by a
colon ":". All host variable references must have the leading colon. If you neglect to use a
colon to designate a host variable, the precompiler issues a DSNH104I message or interprets
the host variable as an unqualified column name, which might lead to unintended results.

Background information
The colon was an option in DB2 V1 code and documentation. It was not an option for some
other products, and the optional colon did not get accepted into the SQL standard. With DB2
V2, the manuals were changed to indicate that the colon should always be specified, and a
warning message, DSNH315I, was implemented. Most customers noticed the warnings and
corrected their applications to comply with the standard.

DB2 V3, V4, and V5, continued to allow the optional colons with the warning messages. With
DB2 V6 the level of complexity of SQL was such that it was decided not to allow the colons to
remain optional: when DB2 V6 was announced in 1998, this incompatible change was
included in the announcement, and in the documentation.

Impact of the DB2 V6 restriction
Applications that contain a host variable reference that do not have the leading colon fail with
an error instead of the informational message DSNH315I. In order to anticipate any problem
and find out if you have host variables that are not preceded with a colon, you can just
precompile your programs again before migrating to DB2 V6 and check for the warning
message DSNH315I.

With the DB2 V6 precompiler an error message is produced, generally DSNH104I. The only
way to correct the problem is to correct the source and precompile again. This assumes that
the source is available.

If you cannot change the source to put in the colons to fix the problem, then you can use a
precompiler from DB2 V4 or V5.

BIND and REBIND on DB2 V6 can also fail for DBRMs that were created prior to DB2 Version
2 Release 3. For example, if you drop an index that is used in a package or plan, then the
package or plan must be rebound, either by explicit command or automatic BIND. If the
DBRM was produced on DB2 Version 2 Release 2 or earlier, then the BIND or REBIND fails.

DBRMs produced by the DB2 Version 2 Release 3 or later precompiler have a colon in the
DBRM, even if the source code does not.

If you still have a host variable without a preceding colon and you have migrated to DB2 V6,
the error that you receive depends on when the application was originally precompiled. If it
was precompiled with the Version 2 Release 2 precompiler (or earlier), you get an error when
you try to rebind or when an automatic rebind occurs. If you do a second bind using the
DBRM from the Version 2 Release 2 precompiler, you get a failure as well. If you
re-precompile at V6, you receive a syntax error from the precompiler or a bind error. If the
application was bound on Version 2 release 3 or later, you should have no problems with
rebind, automatic rebind, or a second bind using the same DBRM.
200 DB2 for z/OS Application Programming Topics

For cases where you have the source code, the best resolution is running the precompiler
and then binding the new DBRM.

The best practice is to set an application programming standard and to add the colon in all
DB2 applications. If the return code from the precompiler is not zero, then the warning could
cause problems in production.

If you do not have the source code, the options are very limited. APAR II12100 may provide
some help. APARs PQ26922 and PQ30390 may be applicable in some cases.

Detecting the problem
You can detect the problem in source code by precompiling. If the source code is not readily
available, and you only want to detect the problems which would occur on a BIND or
REBIND, then the following technique may be useful.

A sample REXX procedure, which analyzes all Format 1 DBRMs (pre V2.3) to check whether
all host variables are preceded with a colon, is available from the Internet. The REXX/DB2
interface is used, and therefore DB2 V5 or V6 is required. The procedure creates temporary
EXEC libraries, copies the REXX EXEC, executes DSNTIAUL using PARM(‘SQL’) to extract
data from the catalog, extracts DBRM listings from the catalog, executes the REXX to
analyze the output looking for missing colons preceding host variables ":hv", and produces a
report.

You need to examine the exceptions identified by the REXX program. It should be obvious
where you need to amend the source SQL and re-precompile.

The program is a sample only and is provided without any implied warranty or support. We
have not checked all eventualities, so we cannot guarantee that every invalid DBRM is found,
but it can assist you with the migration.

The procedure is called DBRM Colon Finder and it is available from the URL:

http://www.ibm.com/software/db2/os390/downloads.html

13.10 The IN predicate supports any expression
The IN predicate has been enhanced to allow any expression in the list of values.
Example 13-32 shows the use of a scalar cast function in an IN list.

Example 13-32 IN predicate supports any expression

SET CURRENT PATH = 'SC246300' ;

SELECT BUYER
,SELLER
,RECNO
,PESETAFEE

FROM SC246300.TBCONTRACT
WHERE BUYER IN (CUSTOMER('01'),CUSTOMER('03'))

DB2 now also supports multiple expressions (row expressions) on the left-hand side of the IN
and NOT IN predicate when a fullselect is specified on the right-hand side. Example 13-10 on
page 187 shows a row expression and a fullselect into a NOT IN list.
Chapter 13. More SQL enhancements 201

13.11 Partitioning key update
DB2 V6 (retrofitted into V5 with PQ16946 offers the possibility to update a partitioned key,
instead of deleting and inserting the row.

If your partitioned table is created before V6 and you want the partitioning key to be
updatable, remember that when you drop and create the table, plans and packages must be
rebound, authorizations on the dropped table re-granted, synonyms, views, and referential
constraints re-created.

If an update moves a row from one partition to another, partitions are drained and the
application may deadlock or time out, because of the same restrictions on claim/drain
processing.

DB2 administrators should not allow a partitioned key to be updatable in systems with high
concurrency requirements and long running transactions. This can be controlled via a new
ZPARM (PARTKEYU). This parameter gives you the option to either disable the partitioning
key update feature, allow the update to move the key to a different partition, or limit the update
to stay in the same partition.

Note: This feature is available only for tables created under V6 (or V5 with APAR
PQ16946).

Tip: Applications that use UPDATEs on the partitioning key (instead of DELETEs and
INSERTs) could be tested successfully in a test environment, but they may not run
successfully in a production environment if the production table was created prior to DB2
V6.
202 DB2 for z/OS Application Programming Topics

Part 4 Utilities versus
applications

In this part we look at some of the enhancements that were made to the DB2 utilities, that
enable them to do things that you could only do in an application program before. Therefore, it
might be a good time to re-evaluate some of the choices that were made in the past and look
for a new balance between what to do in an application program and what functions can be
done by a DB2 utility.

Part 4
© Copyright IBM Corp. 2001 203

204 DB2 for z/OS Application Programming Topics

Chapter 14. Utilities versus application
programs

Existing DB2 utilities have been enhanced and new utilities have been introduced that can
take over some of the work that was previously done by application programs.

In this chapter we describe some ideas where these enhancements can be used and
compare them to implementing the same processes using application code, such as:

� Online LOAD RESUME versus program insert

� REORG DISCARD versus deleting rows via a program followed by a REORG

� Using REORG UNLOAD EXTERNAL and UNLOAD instead of a home grown program or
the DSNTIAUL sample program

� Using SQL statements in the utility input stream

14
© Copyright IBM Corp. 2001 205

14.1 Online LOAD RESUME
Availability requirements differ depending on the installation. For data warehouse
environments, where queries can run for many hours, availability means something different
than for a 24/24 internet application. For many installations the ability to load new rows into
tables without interfering with other users is crucial and they are willing to trade off utility
performance for availability and easy maintenance. Now it is possible to run an online LOAD
RESUME instead of coding and maintaining an INSERT program or having a service
interruption to load new rows.

In this section, we discuss the LOAD RESUME SHRLEVEL CHANGE that was introduced in
V7. This ‘online version’ of the LOAD utility allows other users access to the table(s) while the
data is being loaded. With this type of LOAD utility, installations should have another look
whether they still have to develop (and maintain) their own batch SQL INSERT programs.

14.1.1 What is online LOAD RESUME?
SHRLEVEL is a new keyword for the LOAD utility in V7 and it specifies the extent to which
applications can concurrently access the table space or partition(s) being loaded.

SHRLEVEL NONE (default) specifies that applications have no concurrent access to the
table space or partition(s) being loaded, that is, the LOAD utility operates the same as prior to
version 7. This type of LOAD is also referred to as classic LOAD throughout this chapter.

The term ‘online’ refers to the mode of operation of the LOAD utility when SHRLEVEL
CHANGE is specified. When using online LOAD RESUME, other applications can
concurrently issue SQL SELECT, UPDATE, INSERT and DELETE statements against
table(s) in the table space or partition(s) being loaded.

In brief, by using online LOAD RESUME, you can load data with minimal impact on SQL
applications and without writing and maintaining INSERT programs.

14.1.2 Why use Online LOAD RESUME
The classic LOAD drains all access to the table space or partitions (including the associated
indexes or index partitions). Therefore, the data is not available to SQL applications. If
end-users require access to a table while new rows are being loaded because of availability
reasons, prior to V7 a SQL batch program was needed to INSERT the new rows.

Online LOAD RESUME behaves externally like a classic LOAD, but it works internally like a
mass INSERT.

Online LOAD RESUME uses a data manager INSERT process to load rows into the table
space or partition(s). Online load resume behaves like a normal insert program using up free
space, taking locks, logging the inserts and trying to maintain clustering order of the data.
Although online LOAD RESUME takes locks like a normal program, the utility monitors the
lock situation constantly and dynamically adapts the commit interval to avoid impacting other
programs.

Data integrity cannot be always assured by only using foreign keys and check constraints. In
some cases, triggers are additionally used to ensure the correctness of the data. The classic
LOAD does not activate triggers, which may result in a data integrity exposure after loading
new data. The new online LOAD RESUME utility operates like SQL INSERTs, therefore,
triggers are activated, check constraints are checked as well as referential integrity
relationships. Therefore, data integrity is guaranteed at all times. The cost is that, compared
206 DB2 for z/OS Application Programming Topics

to the classic LOAD, online LOAD RESUME runs longer. But on other hand, all tables are
available to other users all the time. Also when you compare online LOAD RESUME to a
program doing massive SQL INSERTs, online LOAD RESUME is faster and consumes less
CPU. For more details, see DB2 for z/OS and OS/390 Version 7 Performance Topics,
SG24-6129.

14.1.3 Online LOAD RESUME versus classic LOAD
These are some of the consequences of online LOAD RESUME processing.

Claiming, draining and locking
Whereas the classic LOAD drains the table space, thus inhibiting any SQL access, online
LOAD RESUME acts like a normal INSERT program by using claims when accessing an
object. That is, it behaves like any other SQL application and can run concurrently with other,
even updating, SQL programs.
Online LOAD RESUME also takes locks the same way normal SQL applications do. In order
to avoid locking out other applications, the online LOAD RESUME utility constantly monitors
the lock situation and dynamically adapts the commit interval to avoid impacting other
programs.
When an online LOAD RESUME utility has to wait for a lock, it behaves like a normal utility,
using the utility time-out multiplier zparm (UTIMOUT) to determine the amount of time to wait
for a lock.

Logging
Only LOG YES is allowed. Therefore, no COPY is required afterwards. If you are thinking
about converting from classic LOAD to online LOAD RESUME for large tables, you may want
to check your DB2 logging environment, like the number of active logs, their placement on the
disk volumes and fast devices, consider striping and increasing DB2 log output buffer size.

RI
Referential integrity is enforced when loading a table with online LOAD RESUME.

When you use online LOAD RESUME on a self-referencing table, it forces you to sort the
input in such a way that referential integrity rules are met, rather than sorting the input in
clustering sequence, which you used to do for classic LOAD.

Duplicate keys
The handling of duplicate keys is somewhat different when using online LOAD RESUME
compared to the classic LOAD utility. When using online LOAD RESUME and a unique index
is defined, INSERTs (done by the online LOAD) are accepted as long as they provide
different values for this column (or set of columns). This is different from the classic LOAD
procedure, which discards all rows that you try to load having the same value for a unique
key.
You may have setup a procedure (manual or automated) to handle the rows classic LOAD
discards. When you move over to online LOAD RESUME, you have to change handling the
discarded rows accordingly.

Clustering
Whereas the classic LOAD RESUME stores the new records (in the sequence of the input) at
the end of the already existing records, online LOAD RESUME tries to insert the records into
the available free space respecting the clustering order as much as possible. When you have
to LOAD (insert) a lot of rows, make sure there is enough free space available. Otherwise
these rows are likely to be stored out of the clustering order and you might end up having to
run a REORG to restore proper clustering (which can be run online as well).
Chapter 14. Utilities versus application programs 207

So, a REORG may be needed after the classic LOAD, as the clustering may not be
preserved, but also after an online LOAD RESUME if no sufficient free space is available.

Free space
As mentioned before, the available free space, PCTFREE or FREEPAGE, is used by online
LOAD RESUME, in contrast to the classic LOAD.

As a consequence, a REORG may be needed after an online LOAD RESUME to ensure
sufficient free space (PCTFREE and FREEPAGE) is available for subsequent inserts.

Figure 14-1 shows an example of the online LOAD RESUME syntax and the inserts that it
performs. Some differences with the classic LOAD are listed.

Figure 14-1 Online LOAD RESUME

14.1.4 Online LOAD RESUME versus INSERT programs
When comparing online LOAD RESUME with coding a mass INSERT program, there are a
number of reasons to favour the LOAD utility over a normal application program.

Commit frequency
Online LOAD RESUME dynamically monitors the current locking situation for the table
spaces or partitions being loaded. This enables online LOAD RESUME to choose the commit
frequency and avoid lock contention with other SQL. This kind of commit frequency flexibility
is not possible to code at batch insert programs, though the frequency can be changed while
program is running.

Restart
During RELOAD, internal commit points are set, therefore, RESTART(CURRENT) is possible
as with the classic LOAD. When using an INSERT program, application repositioning
techniques are needed to be able to restart, which is not all that easy when sequential files
are involved, especially when writing them (for example, records that could not be inserted for
some reason).

P ro c e s s in g

O n lin e L O A D R E S U M E

L O A D D A T A

R E S U M E Y E S
S H R L E V E L C H A N G E
I N T O T A B L E S C 2 4 6 3 0 0 . T B E M P L O Y E E

(E M P N O P O S I T I O N (1 : 6) C H A R
, P H O N E N O P O S I T I O N (9 : 2 4) C H A R
, W O R K D E P T P O S I T I O N (2 5 : 2 8) C H A R
. . .

0 0 0 0 0 1 4 0 8 2 6 5 1 5 9 0 A 0 5
0 0 0 0 0 2 4 0 8 2 6 5 1 5 9 6 C 0 2
0 0 0 0 0 3 4 0 8 2 6 5 1 5 9 8 B 1 0
. . .

I N S E R T I N T O S C 2 4 6 3 0 0 . T B E M P L O Y E E
V A L U E S (' 0 0 0 0 0 1 '

, ' 4 0 8 2 6 5 1 5 9 0 '
, ' A 0 5 ') ;

I N S E R T I N T O S C 2 4 6 3 0 0 . T B E M P L O Y E E
V A L U E S (' 0 0 0 0 0 2 '

, ' 4 0 8 2 6 5 1 5 9 6 '
, ' C 0 2 ') ;

I N S E R T I N T O S C 2 4 6 3 0 0 . T B E M P L O Y E E
V A L U E S (' 0 0 0 0 0 3 '

, ' 4 0 8 2 6 5 1 5 9 8 '
, ' B 1 0 ') ;

. . .

S e c u r ity :
L O A D (n o t IN S E R T) p r iv i le g e

T im e o u t o f th e L O A D :
L ik e u t i l i ty (n o t l ik e S Q L a p p l.)

S y n ta x

C la im s (n o t d ra in s)
L O G Y E S o n ly
F ire T r ig g e rs
D a ta In te g r ity e n fo rc e d : R I , c h e c k
c o n tra in ts a n d u n iq u e k e y s .
F re e s p a c e d u s e d (c lu s te r in g m a y
b e p re s e rv e d)
208 DB2 for z/OS Application Programming Topics

Phases
Some utility phases are obviously not included in the online LOAD RESUME, as this kind of
LOAD operates like SQL INSERTs. But the DISCARD and REPORT phase are still
performed. Input records which fail the insert are written to the discard data set and error
information is stored in the error data set. Batch INSERT programs have to take care of
records which were not inserted. Application programs allow more refined handling of errors,
than just finding duplicates and data type violations that the LOAD utility does. On the other
hand, if that type of checking is required, you can write a checking routine to validate input
before you start loading the data into the tables.

Data Manager rather than RDS INSERT
Online LOAD RESUME uses a ‘cheaper’ interface (Data Manager) to INSERT (load) rows
into a table. Normal SQL INSERTs use the Relational Data System (RDS) interface. Both
Data Manager and RDS are DB2 subcomponents.

Some reasons for still using batch INSERT program
� In some cases you need to be able to control the time at which you commit, for example, to

force a commit after a logical unit of work completes. When mass inserting orders, after
inserting an order (or several orders) in the TBORDER table and its dependent line items
in the TBLINEITEMS table we need to force a commit point in our application. When the
online LOAD RESUME utility is in control, you cannot be sure that the internal commit
takes place when a complete unit of work (and order and its dependent line items) has
been handled. Since online LOAD RESUME runs concurrently with other processes,
another program might pick up an incomplete order. It this type of processing is required,
you may want to code your own mass insert program to have this extra level of control.

� Another reason for using or continuing to use home grown applications is when the
program does not only insert data, but also does other processing, for example, updating
summary tables.

If the additional processing that is done is fairly limited, for example, just keeping a
summary record up to date with a grand total, you might be able to implement this by
defining a trigger on the table to handle this summary update.

14.1.5 Online LOAD RESUME pitfalls
Load parent rows before dependent rows to avoid referential constraint violations.

Be careful not to produce inconsistent data for other applications. Remember that other
transactions and programs are running while you are loading data. This was not the case with
the classic LOAD. All other access was drained. No-one wants to see orders without line
items.

After running online LOAD resume, it is recommended to run RUNSTATS and depending on
the result, run a REORG to restore clustering sequence and free space.

14.1.6 Online LOAD RESUME restrictions
If LOAD SHRLEVEL CHANGE is specified, then some other LOAD options cannot be used.
Running LOAD SHRLEVEL CHANGE can also cause conflicts with other utilities when they
run concurrently on the same object.

� RESUME NO. RESUME YES must be specified at the table space level, or for all INTO
TABLE PART specifications.

� REPLACE. That is to comply with the RESUME YES keyword.
Chapter 14. Utilities versus application programs 209

� LOG NO. Online LOAD RESUME always writes to the DB2 log.

� ENFORCE NO. Inserts done by online LOAD RESUME always enforce RI and Check
constraints.

� STATISTICS. Online LOAD does not gather inline statistics.

� COPYDDN/RECOVERYDDN. Online LOAD does not create inline image copies

� PART integer REPLACE

� INCURSOR. You cannot use the cross-loader functionality with online LOAD.

� Online LOAD RESUME and REORG (including online REORG) cannot concurrently
process the same target object.

For a complete list of options and other utilities that are incompatible with LOAD SHRLEVEL
CHANGE, see DB2 UDB for OS/390 and z/OS Version 7 Utility Guide and Reference,
SC26-9945.

14.2 REORG DISCARD
In this section, we describe and discuss the REORG DISCARD option that was introduced in
DB2 V6 and retrofitted back to V5 with PQ19897 and PQ23219.

14.2.1 What is REORG DISCARD?
The REORG DISCARD enhancement allows you to discard unwanted rows during a normal
REORG. This capability is mutually exclusive with UNLOAD EXTERNAL, but shares much of
the same implementation.

14.2.2 When to use a REORG DISCARD
A REORG DISCARD can be used successfully in table spaces that require periodic mass
DELETEs. Very often after the mass delete, the table space is disorganized and needs to be
reorganized afterwards. Now you can combine the delete operation with running REORG in a
single operation. Having REORG discard rows is much cheaper than application DELETEs.
You can have REORG send the discarded rows to a file, because very often you don’t just
want to delete rows from a table, what you actually want is to archive them (for example, for
legal reasons). It is possible even to LOAD the discarded rows if they are needed again in the
future.

Some pages might need more free space than others. For example, the table is clustered by
customer and you have some very active customers, who have a lot of transactions. You can
then run the REORG first while discarding rows from less active customers and delete the
rows for the active customers afterwards with an SQL DELETE operation to gain that extra
space near the ‘hot’ pages. This is one case where you can consider to continue using a
batch programs to do the deletes or rethink your free space strategy.

14.2.3 Implementation and maintenance
The output of the discarded records is similar to the output of running a REORG UNLOAD
EXTERNAL against the table. That is, the data is in external format and LOAD utility
statements can be generated. Similarly, the criteria for discard are specified in a WHEN
clause. A sample REORG DISCARD utility statement is shown in Example 14-1.
210 DB2 for z/OS Application Programming Topics

Example 14-1 REORG DISCARD utility statement

REORG TABLESPACE DB246300.TS246304
DISCARD
 FROM TABLE SC246300.TBEMPLOYEE
 WHEN (EMPNO = '000001')

The WHEN conditions that you can specify are a simple subset of what can be coded on a
WHERE clause. WHEN conditions allow AND-ing, OR-ing of selection conditions and
predicates. Comparison operators are =, >, <, <>, <=, >=, IS (NOT) NULL, (NOT) LIKE,(NOT)
BETWEEN and (NOT) IN. The predicates that are allowed are only comparisons between a
column and a constant or a labeled-duration-expression (like CURRENT DATE + 30 DAYS).

Discarded rows are written to a SYSDISC data set or a DD-name specified with DISCARDDN
keyword.

Either UNLOAD EXTERNAL or REORG DISCARD can generate the same LOAD control
statements, based on the data being processed. A sample LOAD statement generated by
REORG DISCARD is shown in Figure 14-2.

Figure 14-2 Generated LOAD statements

14.2.4 REORG DISCARD restrictions
Some of the restrictions that apply to REORG DISCARD are:

� No column to column comparisons are allowed
� No LIKE on columns with FIELDPROCS
� Literal values for ASCII data must be in hex
� DISCARD not allowed with SHRLEVEL CHANGE
� Difficulty correlating discards with pointers

Important: If no discard data set is specified, the discarded records are lost.

LOAD DATA LOG NO INDDN SYSREC
EBCDIC CCSID (500,0,0)
INTO TABLE "SC246300"."TBEMPLOYEE"
WHEN (00004:00005 = X'0012')
("EMPNO " POSITION(00007:00012) CHAR(006)
, "PHONENO " POSITION(00013:00027) CHAR(015)
, "WORKDEPT " POSITION(00028:00030) CHAR(003)
, ...
, ...
, ...
, "SALARY " POSITION(00091:00095) DECIMAL NULLIF(00090)=X'FF'
, ...
)

maybeASCII
unloadedinsameCCSIDasstored

this identifiesthetable
Chapter 14. Utilities versus application programs 211

14.3 REORG UNLOAD EXTERNAL and UNLOAD
In this section, we describe and discuss REORG UNLOAD EXTERNAL, made available in
DB2 V6 and retrofitted back to V5 with PQ19897 and PQ23219, and the UNLOAD utility that
was introduced in DB2 V7.

14.3.1 What are REORG UNLOAD EXTERNAL and UNLOAD?
Many installations want to be able to unload data into a user friendly format, and to do it
quickly (several times faster than DSNTIAUL, for example).

REORG UNLOAD ONLY is fast, but places the data in a internal format that is distinctly not
user friendly. Its only use is to be used as input for a LOAD FORMAT UNLOAD utility, and it
must be loaded back into the same table it was unloaded from.

A new option, REORG UNLOAD EXTERNAL, provides the required capability to unload data
in an external format. Like DSNTIAUL, this function also generates standard LOAD utility
statements as part of the process. The unloaded data can be loaded into another table.

The UNLOAD utility is a new member of the DB2 Utilities Suite that was introduced in V7. The
UNLOAD utility unloads the data from one or more source objects to one or more sequential
data sets in external format. The source objects can be DB2 table spaces or DB2 image copy
data sets.

14.3.2 REORG UNLOAD EXTERNAL
REORG UNLOAD EXTERNAL also uses the FROM TABLE ... WHEN clause (just like
REORG DISCARD) to determine which rows are to be unloaded.

Example 14-2 show a REORG UNLOAD EXTERNAL utility statement on table space
TS246304 to unload the employees from the table SC246300.TBEMPLOYEE working in
department ‘A01’.

The selection criteria that can be used to unload rows using REORG UNLOAD EXTERNAL
are identical those that are available for REORG DISCARD.

As with REORG DISCARD, REORG UNLOAD EXTERNAL does not provide you with
formatting options for data that is unloaded. This can be problematic for numeric data when
the information needs to be transported to another platform. Numeric data is unloaded in a
host based format (binary and packed decimal). Using the UNLOAD utility can provide a
solution here.

Example 14-2 REORG UNLOAD EXTERNAL

REORG TABLESPACE DB246300.TS246304
 UNLOAD EXTERNAL
 FROM TABLE SC246300.TBEMPLOYEE
 WHEN (WORKDEPT = 'A01')
212 DB2 for z/OS Application Programming Topics

14.3.3 UNLOAD
The UNLOAD utility can unload data from one or more source objects to one or more BSAM
sequential data sets in external format. The source objects can be DB2 table spaces or DB2
image copy data sets.The UNLOAD utility does not use indexes to access the source table(s).
The utility scans the table space or partition(s) directly.

In addition to the functions that are also supported by REORG UNLOAD EXTERNAL, the
UNLOAD utility also supports the ability to:

� Unload data from an image copy data set(s), including full, incremental, DSN1COPY and
inline copies.

� Select columns (specifying an order of the fields in the output record).

� Sample and limit the number of rows unloaded (by table).

� Specify the start position, length and data type of output fields.

� Format output fields.

� Translate output character-type data to EBCDIC, ASCII or UNICODE.

� Specify SHRLEVEL and ISOLATION level.

� Unload table space partitions in parallel.

14.3.4 UNLOAD implementation
Figure 14-3 gives an example of an UNLOAD statement and shows some of the possibilities
of the UNLOAD utility.

Figure 14-3 Sample UNLOAD utility statement

Important: If there are multiple tables in the table space, those not subject to the WHEN
clause are unloaded in their entirety.

U N L O A D T A B L E S P A C E D B 2 4 6 3 0 0 . T S 2 4 6 3 0 4 A S C I I N O P A D
F R O M T A B L E S C 2 4 6 3 0 0 . T B E M P L O Y E E
H E A D E R C O N S T ' E M P '
S A M P L E 5 0
L I M I T 4 0 0 0
(E M P N O , L A S T N A M E , S A L A R Y D E C I M A L E X T E R N A L)
W H E N (W O R K D E P T = ' D 1 1 ' A N D S A L A R Y > 2 5 0 0 0)

T h e c o lu m n o rd e r s p e c if ie s
th e fie ld o rd e r in th e o u tp u t
re c o rd s

M a x im u m n u m b e r o f ro w s
w h ic h w ill b e u n lo a d e d fro m
ta b le E M P

V a r ia b le le n g th d a ta w ill n o t b e
p a d d e d in th e o u tp u t re c o rd s

H e a d e r fie ld w h ic h w ill
p re f ix th e o u tp u t re c o rd s

D a ta w ill b e u n lo a d e d
in A S C II
Chapter 14. Utilities versus application programs 213

The figure shows some of the options that can be used by the UNLOAD utility. Here we use
the HEADER keyword to give a more meaningful identifier to an output record (instead of the
OBID). The data are unloaded in ASCII format and variable length data are not padded. We
are not unloading the entire table, but only unloading every 50th row (that qualifies the WHEN
conditions) up to a maximum of 4000 rows. We only unload the columns specified in the order
specified and the SALARY column is unloaded in ‘readable’ format instead of ‘normal’ packed
decimal.

For more detailed information on how to use the UNLOAD utility refer to:

� DB2 UDB for OS/390 and z/OS Version 7 Utility Guide and Reference, SC26-9945
� DB2 for z/OS and OS/390 Version 7: Using the Utilities Suite, SG24-6289

14.3.5 UNLOAD restrictions
The UNLOAD utility does not support:

� Unloading DB2 directory table spaces (DSNDB01) and DSNDB07. However, you can use
the UNLOAD utility to UNLOAD your catalog tables (in DSNDB06).

� LOB table spaces cannot be directly unloaded. However, you can unload LOB columns by
implicitly or explicitly selecting them from the base table instead of the LOB table space.
Then the LOB data is expanded (materialized) in the output records. (However, remember
that the output is a sequential file with a maximum record length of 32K).

� The UNLOAD utility does not support the selection of LOB columns from an image copy
data set. When unloading from an image copy data set, unloading rows from a table
containing LOB columns is only supported if the LOB columns are not included in the
column list of the FROM TABLE specification.

� Unloading from index spaces.

� The UNLOAD utility does not support the specification of a view name in the FROM
TABLE clause.

� Concurrent image copies cannot be used as input to the UNLOAD utility.

� The maximum length of an output record is limited to 32KB. This limit includes the record
header field, the NULL indicator bytes, the length fields for variable length fields, the
padding if applied to variable length fields, and the gaps, if any, between output fields.

� Specify an ORDER BY in the FROM TABLE specification.

� Specify a delimiter for the output fields (for example, a comma); However, you can add a
delimiter to the output file by including a dummy-field-name CONSTANT ',' clause after
every column in the selection list. But even with this ‘trick’ you still cannot create
something like a delimited ASCII file that you can import into your spreadsheet.
VARCHAR columns still have their length field and converting them to CHAR fields results
in spaces that you might not want (and the STRIP keyword only works on variable length
columns).

� UNLOAD does not allow you to unload a set of RI related rows. Unload from multiple
tables does not choose RI related rows. For example, sampling the orders while
unloading, does not unload the line items belonging to the sampled orders, even when the
tables are unloaded at the same time.

14.3.6 UNLOAD highlights
Performance wise it is recommended to use the DB2 UNLOAD utility. It performs better that
REORG UNLOAD EXTERNAL and several times better than DSNTIAUL.
214 DB2 for z/OS Application Programming Topics

On top, it has a lot of additional capabilities that have been described earlier in this section
like field output selection, ordering of the columns in the output, position, data type, length
and format specification, sampling and limiting the number of rows, unloading table space
partitions in parallel, and so on.

Another major advantage of UNLOAD is the possibility to unload data from an image copy
data set, avoiding access to the base table and interfering with other processes. Even though
the UNLOAD utility can run with an isolation level of UR, it still access data through the buffer
pool which might still cause response time degradation for other processes when pages get
pushed out of the buffer pool by the full scan of the UNLOAD utility.

If it is necessary to access the base table to unload the latest version of the table, you could
use the SHRLEVEL and ISOLATION clauses as you do for other utilities. Otherwise unload
from an image copy.

Because the DB2 UNLOAD utility uses the DB2 buffer pools to retrieve the data, no
QUIESCE WRITE YES is required before starting the unload process.

14.3.7 UNLOAD pitfalls
If you unload from an inline COPY, it is possible that you get duplicate rows from the duplicate
pages which may be present in the inline COPY data set. However, you should receive a
warning message that multiple pages with the same page number have been read.

If there are multiple tables in the table space, those not subject to the WHEN clause are
unloaded in their entirety.

14.3.8 Comparing DSNTIAUL, REORG UNLOAD EXTERNAL and UNLOAD
Since the DSNTIAUL sample unload program has been around for ages, we are not going
into the details of its functionality. If you want to read more about this sample program, see
Appendix D in the DB2 UDB for OS/390 and z/OS Version 7 Utility Guide and Reference,
SC26-9945.

The following table, Table 14-1, gives an overview of the major functions and differences
between the three alternatives. Since DSNTIAUL is a normal application program using
normal SQL requests, most of the comparison criteria also apply to home grown application
programs that might have been developed in your installation.

Note: It is possible to unload from an image copy that is no longer present in
SYSIBM.SYSCOPY. However, the table space and table from which you want to unload
still has to exist in the DB2 catalog.
Chapter 14. Utilities versus application programs 215

Table 14-1 Comparing different means to unload data

If you are looking for a fast way to unload data either directly from the table space or from an
image copy and your requirements for the format in which the data needs to be unloaded are
not to stringent, the UNLOAD utility is an excellent choice.

Once you migrated to Version 7 there is probably no reason to continue using REORG
UNLOAD EXTERNAL. The UNLOAD utility is a complete functional replacement (even
adding a lot of extra capabilities) and its performance is slightly better.

Home grown unload applications can still be useful in some cases, for instance when you
have very specific output format requirements or when you need to unload data that is
somehow related (like a parent record with all its dependent rows) in a single unload
operation.

DSNTIAUL REORG
UNLOAD
EXTERNAL

UNLOAD

Unloading rows through full SQL SELECTs (including
joins from multiple tables)

Yes No No

Unloading rows in a specific order Yes No No

Performance Slow Fast Even faster

Unloading from image copies No No Yes

Unavailability of data while running (1) UR Complete UR

Formatting possibilities (2) Limited None More

Parallelism (3) Optimizer No Part level

Can connect to remote systems to unload data Yes No No

Support for TEMPLATE and LISTDEF No Yes Yes

Unload against the catalog (4) Yes No Yes

Restart capabilities No Yes Yes

Unloading RI related data No No No

Notes:
(1) You can change DSNTIAUL to run with ISOLATION level UR or add the WITH UR clause to your
unload SQL statement. REORG UNLOAD EXTERNAL can only use SHRLEVEL NONE. UNLOAD
can use ISOLATION CS or UR (SHRLEVEL REFERENCE) or SHRLEVEL CHANGE.
(2) Although DSNTIAUL has limited formatting capabilities (only what you can do in an SQL
statement), if you write your own program you have of course full control. Even though the UNLOAD
utility has a lot more formatting options that REORG UNLOAD EXTERNAL, there is some room for
improvement, like standard support for common PC formats.
(3) When executing plain SQL statements, the optimizer decides whether or not to use parallelism for
a certain query (if the plan is bound with DEGREE(ANY)).
(4) Although you can unload data from the catalog, some catalog tables that contain LOB columns
might pose a problem, mostly because of the 32K record length restriction on output files.
216 DB2 for z/OS Application Programming Topics

Normal application programs that unload data can also perform quite well depending on the
circumstances. When unloading an entire table space, DB2 utilities easily outperform home
grown programs. However, when you are unloading a selective number of rows and a good
index can be used to retrieve the data, normal SQL applications can outperform the UNLOAD
utility that always scans the entire table space or partition.

14.4 Using SQL statements in the utility input stream
DB2 V7 gives you the ability to execute dynamic SQL statements within the utility input
stream. This is done via the new EXEC SQL utility control statement.

14.4.1 EXEC SQL utility control statement
EXEC SQL is a new utility statement placed anywhere in the utility input stream. It can be
used for two purposes:

� Executing a non-select dynamic SQL statement before, between or after the actual utility
statements.

� Declaring a cursor with a SQL select statement for use with the LOAD utility (Cross
Loader). The declare cursor produces a result table.

The EXEC SQL statement requires no extra privileges other than the ones required by the
SQL statements itself.

Executing a non-select dynamic SQL statement
Executing a non-select dynamic SQL statement is done by putting it between the EXEC SQL
and ENDEXEC keywords in the utility input stream:

EXEC SQL non-select dynamic SQL statement ENDEXEC

You can only put one SQL statement between the EXEC SQL and ENDEXEC keywords. The
SQL statement can be any dynamic SQL statement that can be used as input for the
EXECUTE IMMEDIATE statement, as listed in Example 14-3.

Example 14-3 List of dynamic SQL statements

CREATE,ALTER,DROP a DB2 object
RENAME a DB2 table
COMMENT ON,LABEL ON a DB2 table, view, or column
GRANT,REVOKE a DB2 authority

DELETE,INSERT,UPDATE SQL operation
LOCK TABLE operation

EXPLAIN a SQL statement

SET CURRENT register

COMMIT,ROLLBACK operation

In Example 14-4 we create a new table in the default database DSNDB04 with the same
layout as SYSIBM.SYSTABLES.

Example 14-4 Create a new table with the same layout as SYSIBM.SYSTABLES

EXEC SQL
 CREATE TABLE PAOLOR3.SYSTABLES LIKE SYSIBM.SYSTABLES
Chapter 14. Utilities versus application programs 217

ENDEXEC

In the same way, we are able to create indexes on this table, create views on it, and so on. All
this is done in the utility input stream.

14.4.2 Possible usage of the EXEC SQL utility statement
The primary use of the EXEC SQL utility statement is meant for declaring cursors for use with
the LOAD utility (Cross Loader). But it can also be used to execute any non-select dynamic
SQL statement before, between or after regular utility statements. Examples are:

� DDL creation of the target table for the LOAD utility (and its related objects like database,
table space, indexes, views)

� DDL creation of the mapping table and index before a REORG table space SHRLEVEL
CHANGE

� Dropping of the mapping table after a successful REORG table space SHRLEVEL
CHANGE

� DDL alter of space related values like PRIQTY, SECQTY, FREEPAGE and PCTFREE
values before a REORG or LOAD utility

� DDL alter of INDEX partitions before REORG (for partitioning key changes)

� GRANT statements (for example: grant select authorities after successful LOAD)

� SQL delete of “old” records before LOAD RESUME YES

� SQL update of an application related control table or SQL insert into an application related
control table after successful LOAD (with the current timestamp)

EXEC SQL eliminates additional job steps in a job to execute dynamic SQL statements
before, between or after the regular utility steps. It can simplify the JCL coding by eliminating
these dynamic SQL applications, like DSNTIAD or DSNTEP2 from the JCL stream, and it
enables to merge different utility steps, separated by dynamic SQL applications, into one
single utility step. But be aware of the restrictions imposed by the EXEC SQL statement.
218 DB2 for z/OS Application Programming Topics

For a more detailed description, see DB2 for z/OS and OS/390 Version 7: Using the Utilities
Suite, SG24-6289.

Benefits of EXEC SQL:

� You can execute any non-select dynamically preparable SQL statement within the utility
input stream.

� You can declare cursors for use with the LOAD utility, including joins, unions,
conversions, aggregations, and remote DRDA access.

� Successfully executed SQL statements are skipped during restart of the utility.

� In many cases, the need for extra dynamic SQL programs in the utility job stream is
eliminated.

� Considerable simplification of JCL is possible.

Restrictions of EXEC SQL:

� There are no select statements.
� There is no control after error: the whole utility step stops after the first SQL error.
� There is no concept of unit-of-work consisting of multiple SQL statements.
� There are no comments possible between SQL statements.
Chapter 14. Utilities versus application programs 219

220 DB2 for z/OS Application Programming Topics

Part 5 Appendixes

Part 5
© Copyright IBM Corp. 2001 221

222 DB2 for z/OS Application Programming Topics

Appendix A. DDL of the DB2 objects used in
the examples

This appendix provides the DDL to create the following DB2 objects used on the examples.
This information is also provided on the Internet in downloadable format. For instructions, see
“Additional material” on page 251.

� E/R-diagram of the tables used at examples

� JCL for the SC246300 schema definition

� Creation of a database, table spaces, UDTs and UDFs

� Creation of tables used in the examples

� Creation of triggers

� Sample table content

� DDL to clean up the examples environment

A

© Copyright IBM Corp. 2001 223

E/R-diagram of the tables used by the examples
Figure A-1 shows graphically the relations of most of the tables that are used in the examples.

Figure A-1 Relations of tables used in the examples

JCL for the SC246300 schema definition
Example A-1 shows an example of a JCL to create the schema SC246300 using the schema
processor (DSNHSP). A sample JCL to create schema is provided in member DSNTEJ1S of
the SDSNSAMP library.

Example: A-1 Schema creation

//BARTR2A JOB (999,POK),REGION=5M,MSGCLASS=X,CLASS=A,
// MSGLEVEL=(1,1),NOTIFY=&SYSUID
//**
//* NAME = DSNTEJ1S *
//* *
//* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION *

ITEM_NUMBER INTEGER
PRODUCT_NAME CHAR(10)

STOCK INTEGER
PRICE DECIMAL(8,2)

COMMENT VARCHAR(100)

CUSTKEY CUSTOMER
MKTSEGMENT CHAR(10)

ACCTBALL FLOAT
PHONENO CHAR(15)

NATIONKEY INTEGER
CITYKEY INTEGER

BIRTHDATE DATE
SEX CHAR(1)

STATE CHAR(2)
ZIPCODE INTEGER

FIRSTNAME VARCHAR(12)
LASTNAME VARCHAR(15)
ADDRESS VARCHAR(40)
COMMENT VARCHAR(117)

NORDERKEY INTEGER
L_ITEM_NUMBER INTEGER

DISCOUNT FLOAT
QUANTITY INTEGER
SUPPKEY INTEGER

LINENUMBER INTEGER
TAX FLOAT

RETURNFLAG CHAR(1)
LINESTATUS CHAR(1)
SHIPDATE DATE

COMMITDATE DATE
RECEIPTDATE DATE
SHIPINSTRUCT CHAR(25)

SHIPMODE CHAR(10)
COMMENT VARCHAR(44)

ORDERKEY INTEGER
CUSTKEY CUSTOMER

ORDERSTATUS CHAR(1)
TOTALPRICE FLOAT
ORDERDATE DATE

ORDERPRIORITY CHAR(15)
CLERK CHAR(6)

SHIPPRIORITY INTEGER
STATE CHAR(2)

REGION_CODE INTEGER
INVOICE_DATE DATE

COMMENT VARCHAR(79)

EMPNO CHAR(6)
PHONENO CHAR(15)

WORKDEPT CHAR(3)
HIREDATE DATE

JOB CHAR(8)
EDLEVEL INTEGER

SEX CHAR(1)
BIRTHDATE DATE

SALARY DECIMAL(9)
BONUS DECIMAL(9)
COMM DECIMAL(9, 2)

DEPTSIZE INT
MANAGER CHAR6

NUMORDERS INTEGER
CITYKEY INTEGER

NATIONKEY INTEGER
STATE CHAR(2)

ZIPCODE INTEGER
FIRSTNME VARCHAR(12)
LASTNAME VARCHAR(15)
ADDRESS VARCHAR(40)

DEPTNO CHAR(3)
MGRNO CHAR(6)

ADMRDEPT CHAR(3)
LOCATION CHAR(16)
BUDGET INTEGER

DEPTNAME VARCHAR(29)

REGION_CODE INTEGER
REGION_NAME CHAR(25)
NUM_ORDERS INTEGER
NUM_ITEMS INTEGER

DOLLAR_AMOUNT DOLLAR

BUYER CUSTOMER
SELLER CHAR(6)
RECNO CHAR(15)

PESETAFEE PESETA
PESETACOMM PESETA

EUROFEE EURO
EUROCOMM EURO
CONTRDATE DATE

CLAUSE VARCHAR(500)

CITYKEY INTEGER
REGION_CODE INTEGER

STATE CHAR(2)
CITYNAME VARCHAR(20)
COUNTRY VARCHAR(20)

TBITEMS

TBLINEITEM

TBCUSTOMERTBORDER

TBEMPLOYEE

TBDEPARTMENT

TBCONTRACT

TBCITIES

TBREGIONca
sc

ad
e

224 DB2 for z/OS Application Programming Topics

//* *
//* STATUS = VERSION 7 *
//* *
//* FUNCTION = THIS JCL BINDS AND RUNS THE SCHEMA PROCESSOR. *
//* *
//**
//JOBLIB DD DSN=DB2G7.SDSNLOAD,DISP=SHR
//*
//*
//* STEP 1 : BIND AND RUN PROGRAM DSNHSP
//PH01SS01 EXEC PGM=IKJEFT01,DYNAMNBR=20
//DBRMLIB DD DSN=DB2G7.SDSNDBRM,
// DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DB2G)
 BIND PLAN(DSNHSP71) -
 MEMBER(DSNHSPMN) ACTION(REP) ISO(CS) ENCODING(EBCDIC)
 RUN PROGRAM(DSNHSP) PLAN(DSNHSP71) -
 LIB('DB2G7.SDSNLOAD')
 END
//*
//SYSIN DD *

CREATE SCHEMA AUTHORIZATION SC246300

CREATE INDEX
CREATE DISTINCT TYPE
CREATE TABLE
CREATE TABLESPACE
GRANT
CREATE TABLE
CREATE INDEX
CREATE DISTINCT TYPE
GRANT
CREATE FUNCTION
CREATE DATABASE ...
CREATE UNIQUE INDEX
CREATE INDEX
CREATE TRIGGER

GRANT ALTERIN SC236300 TO PUBLIC
GRANT CREATEIN SC236300 TO PUBLIC
GRANT DROPIN SC236300 TO PUBLIC
//*

Creation of a database, table spaces, UDTs and UDFs
Example A-2 and Example A-3 show the DDL to create the stogroup, database, table spaces,
UDTs and UDFs that are used in the examples throughout the book.
Appendix A. DDL of the DB2 objects used in the examples 225

Example: A-2 DDL for the stogroup, database, table space creation

 --
 -- DDL TO CREATE THE DATABASE AND TS (OPTIONALLY STOGROUP)
 -- OBJECTS ARE VERY SMALL (SO WE CAN AFFORD TO USE DEFAULT SPACE)
 --
 -- CREATE STOGROUP SG246300 VOLUMES(SBOX24) VCAT DB2V710G#
 --
 CREATE DATABASE DB246300
 BUFFERPOOL BP1
 INDEXBP BP2
 STOGROUP SG246300
 CCSID EBCDIC #
 --
 CREATE TABLESPACE TS246300
 IN DB246300#
 --
 CREATE TABLESPACE TS246301
 IN DB246300#
 --
 CREATE TABLESPACE TS246302
 IN DB246300#
 --
 CREATE TABLESPACE TS246303
 IN DB246300#
 --
 CREATE TABLESPACE TS246304
 IN DB246300#
 --
 CREATE TABLESPACE TS246305
 IN DB246300#
 --
 CREATE TABLESPACE TS246306
 IN DB246300#
 --
 CREATE TABLESPACE TS246307
 IN DB246300#
 --
 CREATE TABLESPACE TS246308
 IN DB246300#
 --
 CREATE TABLESPACE TS246309
 IN DB246300#
 --
 CREATE TABLESPACE TS246310
 IN DB246300#
 --
 CREATE TABLESPACE TS246311
 IN DB246300#
 --
 CREATE TABLESPACE TS246331
 IN DB246300#
 --
 CREATE TABLESPACE TS246332
 IN DB246300#
 --
 CREATE TABLESPACE TS246333
 IN DB246300#
 --
 CREATE TABLESPACE TSLITERA
226 DB2 for z/OS Application Programming Topics

 IN DB246300#
 --
 CREATE LOB TABLESPACE TSLOB1
 IN DB246300#
 --
 CREATE LOB TABLESPACE TSLOB2
 IN DB246300#
 --
 CREATE TABLESPACE TS246399
 IN DB246300
 NUMPARTS 4 #

Example: A-3 DDL for UDT and UDF creation

--
CREATE DISTINCT TYPE SC246300.DOLLAR
AS DECIMAL(17,2)
WITH COMPARISONS#
--
CREATE DISTINCT TYPE SC246300.PESETA
AS DECIMAL(18,0)
WITH COMPARISONS #
--
CREATE DISTINCT TYPE SC246300.EURO
AS DECIMAL(17,2)
WITH COMPARISONS#
--
CREATE DISTINCT TYPE SC246300.CUSTOMER
AS CHAR(11)
WITH COMPARISONS#
--
GRANT USAGE ON DISTINCT TYPE SC246300.EURO TO PUBLIC#

GRANT EXECUTE ON FUNCTION SC246300.EURO(DECIMAL) TO PUBLIC#

GRANT EXECUTE ON FUNCTION SC246300.DECIMAL(EURO) TO PUBLIC#
--
CREATE FUNCTION SC246300."+" (EURO,EURO)
 RETURNS EURO
 SOURCE SYSIBM."+" (DECIMAL(17,2),DECIMAL(17,2)) #

GRANT EXECUTE ON FUNCTION SC246300."+"(EURO,EURO) TO PUBLIC#
--
CREATE FUNCTION SC246300."+" (PESETA,PESETA)
 RETURNS PESETA
 SOURCE SYSIBM."+" (DECIMAL(18,0),DECIMAL(18,0)) #

GRANT EXECUTE ON FUNCTION SC246300."+"(PESETA,PESETA) TO PUBLIC#
--
SET CURRENT PATH = 'SC246300'#
--
CREATE FUNCTION SC246300.PES2EUR (X DECIMAL)
 RETURNS DECIMAL
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 NOT DETERMINISTIC
Appendix A. DDL of the DB2 objects used in the examples 227

 RETURN X/166 #
--
CREATE FUNCTION SC246300.EUR2PES (X DECIMAL)
 RETURNS DECIMAL
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 NOT DETERMINISTIC
 RETURN X*166 #
--
CREATE FUNCTION SC246300.SUM(PESETA)
 RETURNS PESETA
 SOURCE SYSIBM.SUM(DECIMAL(18,0)) #
--
CREATE FUNCTION SC246300.SUM(EURO)
 RETURNS EURO
 SOURCE SYSIBM.SUM(DECIMAL(17,2)) #
--
CREATE FUNCTION SC246300.AVG(EURO)
 RETURNS SC246300.EURO
 SOURCE SYSIBM.SUM(DECIMAL(17,2)) #
--
CREATE FUNCTION SC246300.AVG(PESETA)
 RETURNS SC246300.PESETA
 SOURCE SYSIBM.AVG(DECIMAL(18,0)) #
--
-- JUST DUMMY DEFINITION TO MAKE SAMPLES WORK
--
CREATE FUNCTION SC246300.LARGE_ORDER_ALERT
 (CUSTKEY CUSTOMER, TOTALPRICE FLOAT, ORDERDATE DATE)
 RETURNS CHAR(2)
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 NOT DETERMINISTIC
 RETURN 'OK' #

Creation of tables used in the examples
Example A-4 shows the DDL to create the tables used in the examples.

Example: A-4 DDL for the table creation

 SET CURRENT PATH = 'SC246300' #
 --CURRENT PATH IS NEEDED TO FIND THE USER DEFINED DATA TYPES
 --
 CREATE TABLE SC246300.TBITEMS
 (
 ITEM_NUMBER INTEGER NOT NULL,
 PRODUCT_NAME CHAR(10) NOT NULL WITH DEFAULT,
 STOCK INTEGER NOT NULL WITH DEFAULT,
 PRICE DECIMAL (8, 2),
 COMMENT VARCHAR (100) WITH DEFAULT 'NONE',
 PRIMARY KEY (ITEM_NUMBER)
)
 IN DB246300.TS246300
228 DB2 for z/OS Application Programming Topics

 WITH RESTRICT ON DROP#
 --
 CREATE UNIQUE INDEX SC246300.ITEMIX
 ON SC246300.TBITEMS (ITEM_NUMBER)#
 --
 CREATE TABLE SC246300.TBCITIES
 (
 CITYKEY INTEGER NOT NULL ,
 REGION_CODE INTEGER ,
 STATE CHAR (2) NOT NULL WITH DEFAULT ,
 CITYNAME VARCHAR(20) NOT NULL WITH DEFAULT,
 COUNTRY VARCHAR(20) NOT NULL WITH DEFAULT,
 PRIMARY KEY (CITYKEY)
)
 IN DB246300.TS246309
 WITH RESTRICT ON DROP#
 --
 CREATE UNIQUE INDEX SC246300.CITYIX
 ON SC246300.TBCITIES (CITYKEY)#
 --
 CREATE TABLE SC246300.TBCUSTOMER
 (
 CUSTKEY CUSTOMER NOT NULL,
 MKTSEGMENT CHAR(10) NOT NULL WITH DEFAULT,
 ACCTBAL FLOAT,
 PHONENO CHAR(15) NOT NULL WITH DEFAULT,
 NATIONKEY INTEGER NOT NULL WITH DEFAULT,
 CITYKEY INTEGER ,
 BIRTHDATE DATE,
 SEX CHAR(1) NOT NULL,
 STATE CHAR (2) NOT NULL WITH DEFAULT ,
 ZIPCODE INTEGER NOT NULL WITH DEFAULT ,
 FIRSTNAME VARCHAR(12) NOT NULL WITH DEFAULT,
 LASTNAME VARCHAR(15) NOT NULL WITH DEFAULT,
 ADDRESS VARCHAR (40) NOT NULL WITH DEFAULT,
 COMMENT VARCHAR(117),
 PRIMARY KEY (CUSTKEY),
 CONSTRAINT SEXCUST CHECK (SEX IN ('M','F')),
 FOREIGN KEY (CITYKEY) REFERENCES SC246300.TBCITIES
)
 IN DB246300.TS246301
 WITH RESTRICT ON DROP#
 --
 CREATE UNIQUE INDEX SC246300.CUSTIX
 ON SC246300.TBCUSTOMER (CUSTKEY)#
 --
 CREATE TABLE SC246300.TBCUSTOMER_ARCH
 (
 CUSTKEY CUSTOMER NOT NULL,
 MKTSEGMENT CHAR(10) NOT NULL WITH DEFAULT,
 ACCTBAL FLOAT,
 PHONENO CHAR(15) NOT NULL WITH DEFAULT,
 NATIONKEY INTEGER NOT NULL WITH DEFAULT,
 CITYKEY INTEGER ,
 BIRTHDATE DATE,
 SEX CHAR(1) NOT NULL,
 STATE CHAR (2) NOT NULL WITH DEFAULT ,
 ZIPCODE INTEGER NOT NULL WITH DEFAULT ,
 FIRSTNAME VARCHAR(12) NOT NULL WITH DEFAULT,
 LASTNAME VARCHAR(15) NOT NULL WITH DEFAULT,
Appendix A. DDL of the DB2 objects used in the examples 229

 ADDRESS VARCHAR (40) NOT NULL WITH DEFAULT,
 COMMENT VARCHAR(117),
 PRIMARY KEY (CUSTKEY),
 CONSTRAINT SEXCUST CHECK (SEX IN ('M','F'))
)
 IN DB246300.TS246311
 WITH RESTRICT ON DROP#
 --
 CREATE UNIQUE INDEX SC246300.CUST_ARCHIX
 ON SC246300.TBCUSTOMER_ARCH (CUSTKEY)#
 --
 CREATE TABLE SC246300.TBREGION
 (
 REGION_CODE INTEGER NOT NULL,
 REGION_NAME CHAR (25) NOT NULL ,
 NUM_ORDERS INTEGER ,
 NUM_ITEMS INTEGER ,
 DOLLAR_AMOUNT DOLLAR NOT NULL WITH DEFAULT,
 PRIMARY KEY (REGION_CODE)
)
 IN DB246300.TS246306
 WITH RESTRICT ON DROP#
 --
 CREATE UNIQUE INDEX SC246300.REGX
 ON SC246300.TBREGION (REGION_CODE)#
 --
 CREATE TABLE SC246300.TBORDER
 (
 ORDERKEY INTEGER NOT NULL ,
 CUSTKEY CUSTOMER NOT NULL ,
 ORDERSTATUS CHAR (1) NOT NULL WITH DEFAULT,
 TOTALPRICE FLOAT NOT NULL ,
 ORDERDATE DATE NOT NULL WITH DEFAULT,
 ORDERPRIORITY CHAR (15) NOT NULL WITH DEFAULT,
 CLERK CHAR (6) NOT NULL WITH DEFAULT,
 SHIPPRIORITY INTEGER NOT NULL WITH DEFAULT,
 STATE CHAR (2) NOT NULL WITH DEFAULT,
 REGION_CODE INTEGER,
 INVOICE_DATE DATE NOT NULL WITH DEFAULT,
 COMMENT VARCHAR (79),
 PRIMARY KEY (ORDERKEY),
 FOREIGN KEY (CUSTKEY) REFERENCES SC246300.TBCUSTOMER,
 FOREIGN KEY (REGION_CODE) REFERENCES SC246300.TBREGION
)
 IN DB246300.TS246303
 WITH RESTRICT ON DROP#
 --
 CREATE UNIQUE INDEX SC246300.ORDERIX
 ON SC246300.TBORDER(ORDERKEY)#
 --
 CREATE TABLE SC246300.TBLINEITEM
 (
 NORDERKEY INTEGER NOT NULL ,
 L_ITEM_NUMBER INTEGER NOT NULL ,
 DISCOUNT FLOAT NOT NULL WITH DEFAULT,
 QUANTITY INTEGER NOT NULL ,
 SUPPKEY INTEGER NOT NULL WITH DEFAULT,
 LINENUMBER INTEGER NOT NULL ,
 TAX FLOAT NOT NULL WITH DEFAULT,
 RETURNFLAG CHAR (1) NOT NULL WITH DEFAULT,
230 DB2 for z/OS Application Programming Topics

 LINESTATUS CHAR(1) NOT NULL WITH DEFAULT,
 SHIPDATE DATE NOT NULL WITH DEFAULT,
 COMMITDATE DATE NOT NULL WITH DEFAULT,
 RECEIPTDATE DATE NOT NULL WITH DEFAULT,
 SHIPINSTRUCT CHAR (25) NOT NULL WITH DEFAULT,
 SHIPMODE CHAR (10) NOT NULL WITH DEFAULT,
 COMMENT VARCHAR (44),
 PRIMARY KEY (NORDERKEY,LINENUMBER),
 FOREIGN KEY (NORDERKEY) REFERENCES SC246300.TBORDER
 ON DELETE CASCADE,
 FOREIGN KEY (L_ITEM_NUMBER) REFERENCES SC246300.TBITEMS
)
 IN DB246300.TS246302
 WITH RESTRICT ON DROP#
 --
 CREATE UNIQUE INDEX SC246300.LINEITEMIX
 ON SC246300.TBLINEITEM (NORDERKEY,LINENUMBER)#
 --
 CREATE TABLE SC246300.TBDEPARTMENT
 (
 DEPTNO CHAR (3) NOT NULL ,
 MGRNO CHAR (6) ,
 ADMRDEPT CHAR (3) NOT NULL WITH DEFAULT,
 LOCATION CHAR (16) NOT NULL WITH DEFAULT,
 BUDGET INTEGER ,
 DEPTNAME VARCHAR (29) NOT NULL WITH DEFAULT,
 PRIMARY KEY (DEPTNO)
)
 IN DB246300.TS246305
 WITH RESTRICT ON DROP#
 --
 CREATE UNIQUE INDEX SC246300.DEPTIX
 ON SC246300.TBDEPARTMENT (DEPTNO)#
 --
 CREATE TABLE SC246300.TBEMPLOYEE
 (
 EMPNO CHAR (6) NOT NULL ,
 PHONENO CHAR (15) NOT NULL WITH DEFAULT,
 WORKDEPT CHAR (3) ,
 HIREDATE DATE NOT NULL WITH DEFAULT,
 JOB CHAR (8) NOT NULL WITH DEFAULT,
 EDLEVEL INTEGER NOT NULL WITH DEFAULT,
 SEX CHAR (1) NOT NULL ,
 BIRTHDATE DATE ,
 SALARY DECIMAL (9) ,
 BONUS DECIMAL (9) ,
 COMM DECIMAL (9, 2) ,
 DEPTSIZE INT NOT NULL WITH DEFAULT,
 MANAGER CHAR(6),
 NUMORDERS INTEGER ,
 CITYKEY INTEGER NOT NULL WITH DEFAULT,
 NATIONKEY INTEGER NOT NULL WITH DEFAULT,
 STATE CHAR (2) NOT NULL WITH DEFAULT,
 ZIPCODE INTEGER NOT NULL WITH DEFAULT,
 FIRSTNME VARCHAR (12) NOT NULL WITH DEFAULT,
 LASTNAME VARCHAR (15) NOT NULL WITH DEFAULT,
 ADDRESS VARCHAR(40),
 CONSTRAINT SEXEMPL CHECK (SEX IN ('M','F')),
 PRIMARY KEY (EMPNO),
 FOREIGN KEY (WORKDEPT) REFERENCES SC246300.TBDEPARTMENT
Appendix A. DDL of the DB2 objects used in the examples 231

)
 IN DB246300.TS246304
 WITH RESTRICT ON DROP#
 --
 CREATE UNIQUE INDEX SC246300.EMPLIX
 ON SC246300.TBEMPLOYEE (EMPNO)#
 --
 CREATE INDEX SC246300.EMPNMEIX
 ON SC246300.TBEMPLOYEE (LASTNAME,FIRSTNME)#
 --
 ALTER TABLE SC246300.TBEMPLOYEE
 FOREIGN KEY (MANAGER) REFERENCES SC246300.TBEMPLOYEE
 ON DELETE NO ACTION #
 --
 ALTER TABLE SC246300.TBDEPARTMENT
 FOREIGN KEY (MGRNO) REFERENCES SC246300.TBEMPLOYEE
 ON DELETE NO ACTION #
 --
 CREATE TABLE SC246300.TBCONTRACT
 (
 SELLER CHAR (6) NOT NULL ,
 BUYER CUSTOMER NOT NULL ,
 RECNO CHAR(15) NOT NULL ,
 PESETAFEE SC246300.PESETA ,
 PESETACOMM PESETA ,
 EUROFEE SC246300.EURO ,
 EUROCOMM EURO ,
 CONTRDATE DATE,
 CLAUSE VARCHAR(500) NOT NULL WITH DEFAULT,
 FOREIGN KEY (BUYER) REFERENCES SC246300.TBCUSTOMER,
 FOREIGN KEY (SELLER) REFERENCES SC246300.TBEMPLOYEE
 ON DELETE CASCADE
)
 IN DB246300.TS246308
 WITH RESTRICT ON DROP#
 --
 CREATE TABLE SC246300.TBSTATE
 (
 STATE CHAR (2) NOT NULL ,
 NUM_ORDERS INTEGER ,
 NUM_ITEMS INTEGER ,
 DOLLAR_AMOUNT DOLLAR
)
 IN DB246300.TS246307
 WITH RESTRICT ON DROP#
 --
 CREATE TABLE SC246300.INVITATION_CARDS
 (
 PHONENO CHAR(15) NOT NULL WITH DEFAULT,
 STATUS CHAR(1) ,
 SEX CHAR(1) NOT NULL WITH DEFAULT,
 BIRTHDATE DATE,
 CITYKEY INTEGER NOT NULL WITH DEFAULT,
 FIRSTNAME VARCHAR(12) NOT NULL WITH DEFAULT,
 LASTNAME VARCHAR(15) NOT NULL WITH DEFAULT,
 ADDRESS VARCHAR (40)
)
 IN DB246300.TS246310 #
 --
232 DB2 for z/OS Application Programming Topics

CREATE TABLE SC246300.TBORDER_1
 (
 ORDERKEY INTEGER NOT NULL ,
 CUSTKEY CUSTOMER NOT NULL ,
 ORDERSTATUS CHAR (1) NOT NULL WITH DEFAULT,
 TOTALPRICE FLOAT NOT NULL ,
 ORDERDATE DATE NOT NULL WITH DEFAULT,
 ORDERPRIORITY CHAR (15) NOT NULL WITH DEFAULT,
 CLERK CHAR (6) NOT NULL WITH DEFAULT,
 SHIPPRIORITY INTEGER NOT NULL WITH DEFAULT,
 STATE CHAR (2) NOT NULL WITH DEFAULT,
 REGION_CODE INTEGER,
 INVOICE_DATE DATE NOT NULL WITH DEFAULT,
 COMMENT VARCHAR (79),
 PRIMARY KEY (ORDERKEY),
 FOREIGN KEY (CUSTKEY) REFERENCES SC246300.TBCUSTOMER,
 FOREIGN KEY (REGION_CODE) REFERENCES SC246300.TBREGION
)
 IN DB246300.TS246331
 WITH RESTRICT ON DROP #

-- Create unique index on primary key
CREATE UNIQUE INDEX SC246300.X1TBORDER_1
 ON SC246300.TBORDER_1(ORDERKEY ASC) #

-- Create indexes on foreign keys
CREATE INDEX SC246300.X2TBORDER_1
 ON SC246300.TBORDER_1(CUSTKEY ASC) #

CREATE INDEX SC246300.X3TBORDER_1
 ON SC246300.TBORDER_1(REGION_CODE ASC) #

CREATE TABLE SC246300.TBORDER_2
 (
 ORDERKEY INTEGER NOT NULL ,
 CUSTKEY CUSTOMER NOT NULL ,
 ORDERSTATUS CHAR (1) NOT NULL WITH DEFAULT,
 TOTALPRICE FLOAT NOT NULL ,
 ORDERDATE DATE NOT NULL WITH DEFAULT,
 ORDERPRIORITY CHAR (15) NOT NULL WITH DEFAULT,
 CLERK CHAR (6) NOT NULL WITH DEFAULT,
 SHIPPRIORITY INTEGER NOT NULL WITH DEFAULT,
 STATE CHAR (2) NOT NULL WITH DEFAULT,
 REGION_CODE INTEGER,
 INVOICE_DATE DATE NOT NULL WITH DEFAULT,
 COMMENT VARCHAR (79),
 PRIMARY KEY (ORDERKEY),
 FOREIGN KEY (CUSTKEY) REFERENCES SC246300.TBCUSTOMER,
 FOREIGN KEY (REGION_CODE) REFERENCES SC246300.TBREGION
)
 IN DB246300.TS246332
 WITH RESTRICT ON DROP#

CREATE UNIQUE INDEX SC246300.X1TBORDER_2
 ON SC246300.TBORDER_2(ORDERKEY ASC) #

CREATE INDEX SC246300.X2TBORDER_2
 ON SC246300.TBORDER_2(CUSTKEY ASC) #

CREATE INDEX SC246300.X3TBORDER_2
Appendix A. DDL of the DB2 objects used in the examples 233

 ON SC246300.TBORDER_2(REGION_CODE ASC) #

CREATE TABLE SC246300.TBORDER_3
 (
 ORDERKEY INTEGER NOT NULL ,
 CUSTKEY CUSTOMER NOT NULL ,
 ORDERSTATUS CHAR (1) NOT NULL WITH DEFAULT,
 TOTALPRICE FLOAT NOT NULL ,
 ORDERDATE DATE NOT NULL WITH DEFAULT,
 ORDERPRIORITY CHAR (15) NOT NULL WITH DEFAULT,
 CLERK CHAR (6) NOT NULL WITH DEFAULT,
 SHIPPRIORITY INTEGER NOT NULL WITH DEFAULT,
 STATE CHAR (2) NOT NULL WITH DEFAULT,
 REGION_CODE INTEGER,
 INVOICE_DATE DATE NOT NULL WITH DEFAULT,
 COMMENT VARCHAR (79),
 PRIMARY KEY (ORDERKEY),
 FOREIGN KEY (CUSTKEY) REFERENCES SC246300.TBCUSTOMER,
 FOREIGN KEY (REGION_CODE) REFERENCES SC246300.TBREGION
)
 IN DB246300.TS246332
 WITH RESTRICT ON DROP #

CREATE UNIQUE INDEX SC246300.X1TBORDER_3
 ON SC246300.TBORDER_3(ORDERKEY ASC) #

CREATE INDEX SC246300.X2TBORDER_3
 ON SC246300.TBORDER_3(CUSTKEY ASC) #

CREATE INDEX SC246300.X3TBORDER_3
 ON SC246300.TBORDER_3(REGION_CODE ASC) #

CREATE VIEW SC246300.VWORDER
 AS
 SELECT *
 FROM SC246300.TBORDER_1
 WHERE ORDERKEY BETWEEN 1 AND 700000000
 UNION ALL
 SELECT *
 FROM SC246300.TBORDER_2
 WHERE ORDERKEY BETWEEN 700000001 AND 1400000000
 UNION ALL
 SELECT *
 FROM SC246300.TBORDER_3
 WHERE ORDERKEY BETWEEN 1400000001 AND 2147483647 #

CREATE VIEW SC246300.VWORDER_1UPD
 AS
 SELECT *
 FROM SC246300.TBORDER_1
 WHERE ORDERKEY BETWEEN 1 AND 700000000
 WITH CHECK OPTION #

CREATE VIEW SC246300.VWORDER_2UPD
 AS
 SELECT *
 FROM SC246300.TBORDER_2
 WHERE ORDERKEY BETWEEN 700000001 AND 1400000000
 WITH CHECK OPTION #
234 DB2 for z/OS Application Programming Topics

CREATE VIEW SC246300.VWORDER_3UPD
 AS
 SELECT *
 FROM SC246300.TBORDER_3
 WHERE ORDERKEY BETWEEN 1400000001 AND 2147483647
 WITH CHECK OPTION #

-- ROWID USAGE

CREATE TABLE SC246300.LITERATURE
 (TITLE CHAR(25)
 ,IDCOL ROWID NOT NULL GENERATED ALWAYS
 ,MOVLENGTH INTEGER
 ,LOBMOVIE BLOB(2K)
 ,LOBBOOK CLOB(10K))
 IN DB246300.TSLITERA #

CREATE AUX TABLE SC246300.LOBMOVIE_ATAB
 IN DB246300.TSLOB1
 STORES SC246300.LITERATURE
 COLUMN LOBMOVIE#

CREATE INDEX DB246300.AXLOB1
 ON SC246300.LOBMOVIE_ATAB #

CREATE AUX TABLE SC246300.LOBBOOK_ATAB
 IN DB246300.TSLOB2
 STORES SC246300.LITERATURE
 COLUMN LOBBOOK#

CREATE INDEX DB246300.AXLOB2
 ON SC246300.LOBBOOK_ATAB #

CREATE TABLE SC246300.LITERATURE_GA
 (TITLE CHAR(30)
 ,IDCOL ROWID NOT NULL GENERATED ALWAYS
 ,MOVLENGTH INTEGER
)
IN DB246300.TS246300 #

CREATE TABLE SC246300.LITERATURE_GDEF
 (TITLE CHAR(30)
 ,IDCOL ROWID NOT NULL GENERATED BY DEFAULT
 ,MOVLENGTH INTEGER
)
 IN DB246300.TS246300 #

 CREATE UNIQUE INDEX DD ON SC246300.LITERATURE_GDEF (IDCOL) #
 -- This index is required for tables with GENERATED BY DEFAULT ROWID
 -- columns in order to guarantee uniqueness. You receive an
 -- SQLCODE -540 if the index does not exist.

CREATE TABLE SC246300.LITERATURE_PART
 (TITLE CHAR(25)
 ,IDCOL ROWID NOT NULL GENERATED ALWAYS
 ,SEQNO INTEGER
 ,BOOKTEXT LONG VARCHAR)
 IN DB246300.TS246399 #

CREATE INDEX SC246300.IDCOLIX_PART
Appendix A. DDL of the DB2 objects used in the examples 235

 ON SC246300.LITERATURE_PART (IDCOL)
 CLUSTER (PART 1 VALUES(X'3F'),
 PART 2 VALUES(X'7F'),
 PART 3 VALUES(X'BF'),
 PART 4 VALUES(X'FF')) #

CREATE UNIQUE INDEX SC246300.TITLEIX
 ON SC246300.LITERATURE_PART (TITLE,SEQNO) #

CREATE VIEW SC246300.CUSTOMRANDEMPLOYEE
 AS
 SELECT
 FIRSTNME AS FIRSTNAME
 ,LASTNAME
 ,PHONENO
 ,BIRTHDATE
 ,SEX
 ,YEAR(DATE(DAYS(CURRENT DATE)-DAYS(BIRTHDATE))) AS AGE
 ,ADDRESS
 ,CITYKEY
 FROM SC246300.TBEMPLOYEE
 UNION ALL
 SELECT
 FIRSTNAME
 ,LASTNAME
 ,PHONENO
 ,BIRTHDATE
 ,SEX
 ,YEAR(DATE(DAYS(CURRENT DATE)-DAYS(BIRTHDATE))) AS AGE
 ,ADDRESS
 ,CITYKEY
 FROM SC246300.TBCUSTOMER #

Creation of sample triggers
Example A-5 shows the DDL used for the creation of the triggers used in the examples.

Example: A-5 DDL for triggers

----- REMEMBER TO CHANGE THE SQL TERMINATOR TO '#'
--
 SET CURRENT PATH = 'SC246300' #
--
CREATE TRIGGER SC246300.TGSUMORD
 AFTER
 INSERT
 ON SC246300.TBORDER
 FOR EACH ROW
 MODE DB2SQL
 BEGIN ATOMIC
 UPDATE SC246300.TBREGION
 SET NUM_ORDERS = NUM_ORDERS + 1;
 UPDATE SC246300.TBSTATE
 SET NUM_ORDERS = NUM_ORDERS + 1
 END #
--
CREATE TRIGGER SC246300.TGBEFOR7
236 DB2 for z/OS Application Programming Topics

 NO CASCADE BEFORE INSERT
 ON SC246300.TBCUSTOMER
 REFERENCING NEW AS N
 FOR EACH ROW
 MODE DB2SQL
 WHEN (NOT EXISTS (SELECT CITYKEY
 FROM SC246300.TBCITIES
 WHERE CITYKEY = N.CITYKEY))
 SIGNAL SQLSTATE 'ERR10' ('NOT A VALID CITY') #
--
CREATE TRIGGER SC246300.BUDG_ADJ
 AFTER UPDATE OF SALARY ON SC246300.TBEMPLOYEE
 REFERENCING OLD AS OLD_EMP
 NEW AS NEW_EMP
 FOR EACH ROW MODE DB2SQL
 UPDATE SC246300.TBDEPARTMENT
 SET BUDGET = BUDGET + (NEW_EMP.SALARY - OLD_EMP.SALARY)
 WHERE DEPTNO = NEW_EMP.WORKDEPT #
--
CREATE TRIGGER SC246300.CHK_SAL
 NO CASCADE BEFORE UPDATE OF SALARY ON SC246300.TBEMPLOYEE
 REFERENCING OLD AS OLD_EMP
 NEW AS NEW_EMP
 FOR EACH ROW MODE DB2SQL
 WHEN (NEW_EMP.SALARY > OLD_EMP.SALARY * 1.20)
 SIGNAL SQLSTATE '75001'('INVALID SALARY INCREASE - EXCEEDS 20%')#
--
CREATE TRIGGER SC246300.CHK_HDAT
 NO CASCADE BEFORE INSERT ON SC246300.TBEMPLOYEE
 REFERENCING NEW AS NEW_EMP
 FOR EACH ROW MODE DB2SQL
 VALUES (CASE
 WHEN NEW_EMP.HIREDATE < CURRENT DATE
 THEN RAISE_ERROR('75001','HIREDATE HAS PASSED')
 WHEN NEW_EMP.HIREDATE - CURRENT DATE > 365
 THEN RAISE_ERROR ('85002','HIREDATE TOO FAR IN FUTURE')
 ELSE 0
 END) #
 --
 -- SECURITY: TO PREVENT UPDATING SALARY ACCIDENTALLY
 -- WILL PREVENT SAMPLE SQL TO WORK SO NOT IMPLEMENTED HERE
 --
 -- CREATE TRIGGER SC246300.UPDSALAR
 -- NO CASCADE BEFORE
 -- UPDATE OF SALARY
 -- ON SC246300.TBEMPLOYEE
 -- FOR EACH STATEMENT MODE DB2SQL
 -- VALUES (
 -- RAISE_ERROR('90001','YOU MUST DROP THE TRIGGER UPDSALAR'))#
 --
 CREATE TRIGGER SC246300.SEXCNST
 NO CASCADE BEFORE
 INSERT
 ON SC246300.TBEMPLOYEE
 REFERENCING NEW AS N
 FOR EACH ROW
 MODE DB2SQL
 WHEN (N.SEX NOT IN('M','F'))
 SIGNAL SQLSTATE 'ERRSX'
 ('SEX MUST BE EITHER M OR F') #
Appendix A. DDL of the DB2 objects used in the examples 237

--
-- STATIC VERSION -- VALUES HARD CODED; THEREFORE NOT IMPLEMENTED
--

-- CREATE TRIGGER SC246300.ITEMNMBR
-- NO CASCADE BEFORE
-- INSERT
-- ON SC246300.TBLINEITEM
-- REFERENCING NEW AS N
-- FOR EACH ROW
-- MODE DB2SQL
-- WHEN (N.L_ITEM_NUMBER NOT IN
-- (1, 5, 6,
-- 9996,9998,10000))
-- SIGNAL SQLSTATE 'ERR30'
-- ('ITEM NUMBER DOES NOT EXIST') #
--
-- MORE DYNAMIC VERSION OF PREVIOUS TRIGGER
--
CREATE TRIGGER SC246300.ITEMNMB2
 NO CASCADE
 BEFORE INSERT
 ON SC246300.TBLINEITEM
 REFERENCING NEW AS N
 FOR EACH ROW MODE DB2SQL
 WHEN (N.L_ITEM_NUMBER NOT IN
 (SELECT ITEM_NUMBER
 FROM SC246300.TBITEMS
 WHERE N.L_ITEM_NUMBER = ITEM_NUMBER)
)
 SIGNAL SQLSTATE 'ERR30' ('ITEM NUMBER DOES NOT EXIST') #
--
CREATE TRIGGER SC246300.TGEURMOD
 NO CASCADE BEFORE
 INSERT ON SC246300.TBCONTRACT
 REFERENCING NEW AS N
 FOR EACH ROW MODE DB2SQL
 SET N.EUROFEE = EURO(DECIMAL(N.PESETAFEE)/166) #
--
CREATE TRIGGER SC246300.LARG_ORD
 AFTER INSERT ON SC246300.TBORDER
 REFERENCING NEW_TABLE AS N_TABLE
 FOR EACH STATEMENT MODE DB2SQL
 SELECT LARGE_ORDER_ALERT(CUSTKEY, TOTALPRICE, ORDERDATE)
 FROM N_TABLE WHERE TOTALPRICE > 10000 #

Populated tables used in the examples
Example A-6 shows some of the columns of the populated tables we use in the examples.

Example: A-6 Populated tables used in the examples

SC246300.TBEMPLOYEE
---------+---------+---------+---------+---------+---------+---------+-----
FIRSTNME BIRTHDATE WORKDEPT SEX BIRTHDATE JOB EDLEVEL
---------+---------+---------+---------+---------+---------+---------+-----
238 DB2 for z/OS Application Programming Topics

MIRIAM 1968-12-22 A01 F 1968-12-22 DBA 4
JUKKA 1964-06-23 A02 M 1964-06-23 SALESMAN 7
TONI ---------- -------- M ---------- 0
EVA ---------- A01 F ---------- SYSADM 0
GLADYS ---------- -------- F ---------- 0
ABI 1971-06-12 B01 F 1971-06-12 TEACHER 9

SC246300.TBDEPARTMENT
---------+---------+---------+---------+---------+---------+---------+
DEPTNO MGRNO ADMRDEPT LOCATION BUDGET DEPTNAME
---------+---------+---------+---------+---------+---------+---------+
B01 ------ KHI SAN JOSE 100000 DB2
A01 000001 EKV MADRID 40000 SALES
C01 ------ DAH FLORIDA 35000 MVS
A02 000001 ERG SAN FRANCISCO 32000 MARKETING

SC246300.TBCUSTOMER
---------+---------+---------+---------+---------+---------+---------+--
CUSTKEY FIRSTNAME LASTNAME SEX CITYKEY
---------+---------+---------+---------+---------+---------+---------+--
01 ADELA SALVADOR F 1
02 MIRIAM ANTOLIN F 2
03 MARK SMITH M 3
04 SILVIA YOUNG F 3
05 IVAN KENT M 3

SC246300.TBCITIES
--------+---------+---------+---------+---------+---------+---------+
 CITYKEY REGION_CODE STATE CITYNAME COUNTRY
--------+---------+---------+---------+---------+---------+---------+
 1 28010 MADRID SPAIN
 2 15 AMSTERDAM HOLLAND
 3 55 SAN FRANCISCO USA
 4 42 NOKIA FINLAND
 5 33076 CORAL SPRINGS USA
 6 97 TOKIO JAPAN

SC246300.TBCONTRACT
---------+---------+---------+---------+---------+---------+
SELLER BUYER RECNO PESETAFEE
---------+---------+---------+---------+---------+---------+
000006 02 333 90000.
000001 03 222 10000.
000003 01 111 50000.

SC246300.TBREGION
---------+---------+---------+---------+
REGION_CODE REGION_NAME
---------+---------+---------+---------+
 28010 PROVINCE OF MADRID
 55 SILICON VALLEY
 15 THE NETHERLANDS

SC246300.TBORDER
--------+---------+---------+---------+---------+---------+---------+---------+--
 ORDERKEY CUSTKEY ORDERSTATUS ORDERPRIORITY SHIPPRIORITY REGION_CODE
--------+---------+---------+---------+---------+---------+---------+---------+--
 10 03 O URGENT 1 5
 1 05 M NORMAL 3 2801
 2 03 M VERY URGENT 0 1
Appendix A. DDL of the DB2 objects used in the examples 239

 3 05 O NORMAL 3 1
 4 01 M NORMAL 3 5
 5 03 O URGENT 1 5
 6 01 O NORMAL 2 2801
 7 04 O NORMAL 2 2801
 8 02 M NORMAL 2 5
 9 03 O VERY URGENT 0 1

SC246300.TBLINEITEM
---------+---------+---------+---------+---------+---------+---------+
 NORDERKEY LINENUMBER L_ITEM_NUMBER QUANTITY TAX
---------+---------+---------+---------+---------+---------+---------+

1 1 100 3 5
 1 2 120 1 5
 2 1 440 2 10
 3 1 660 3 5
 4 1 505 4 10
 4 2 440 1 10
 4 3 660 1 5
 5 1 133 1 5
 6 1 100 8 5
 7 1 120 1 5
 8 1 440 1 10
 9 1 660 1 5
 10 1 440 1 10
 10 2 100 1 5

SC246300.TBITEMS
---------+---------+---------+---------+---------+---------+---------+---------+
ITEM_NUMBER PRODUCT_NAME STOCK PRICE COMMENT
---------+---------+---------+---------+---------+---------+---------+---------+
 100 WIDGET 50 1.25 INCOMPATIBLE WITH HAMMER
 120 NUT 50 1.25 FOR TYPE 20 NUT ONLY
 133 WASHER 50 1.25 BRONZE
 440 HAMMER 50 1.25 NONE
 505 NAIL 50 1.25 GALVANIZED
 660 SCREW 50 1.25 WOOD

DDL to clean up the environment
To clean up the environment, you can use the DDL in Example A-7.

Example: A-7 DDL to clean up the examples environment

-- DROP STOGROUP SG246300;
-- SET CURRENT SQLID = 'SYS1';
--
 SET CURRENT PATH = 'SC246300'#
--
 ALTER TABLE SC246300.TBITEMS DROP RESTRICT ON DROP#
 ALTER TABLE SC246300.TBORDER DROP RESTRICT ON DROP#
 ALTER TABLE SC246300.TBLINEITEM DROP RESTRICT ON DROP#
 ALTER TABLE SC246300.TBCUSTOMER DROP RESTRICT ON DROP#
 ALTER TABLE SC246300.TBEMPLOYEE DROP RESTRICT ON DROP#
 ALTER TABLE SC246300.TBCONTRACT DROP RESTRICT ON DROP#
 ALTER TABLE SC246300.TBREGION DROP RESTRICT ON DROP#
 ALTER TABLE SC246300.TBCITIES DROP RESTRICT ON DROP#
240 DB2 for z/OS Application Programming Topics

 ALTER TABLE SC246300.TBDEPARTMENT DROP RESTRICT ON DROP#
 ALTER TABLE SC246300.TBSTATE DROP RESTRICT ON DROP#
 ALTER TABLE SC246300.TBORDER_1 DROP RESTRICT ON DROP#
 ALTER TABLE SC246300.TBORDER_2 DROP RESTRICT ON DROP#
 ALTER TABLE SC246300.TBORDER_3 DROP RESTRICT ON DROP#
--
 DROP DATABASE DB246300#
--

 DROP FUNCTION SC246300.PES2EUR RESTRICT#
 DROP FUNCTION SC246300.EUR2PES RESTRICT#
 DROP FUNCTION SC246300.EUR22PES RESTRICT#
 DROP FUNCTION SC246300.SUM(PESETA) RESTRICT#
 DROP FUNCTION SC246300.SUM(EURO) RESTRICT#
 DROP FUNCTION SC246300.LARGE_ORDER_ALERT RESTRICT #
 DROP DISTINCT TYPE SC246300.CUSTOMER RESTRICT #
 DROP DISTINCT TYPE SC246300.PESETA RESTRICT #
 DROP DISTINCT TYPE SC246300.EURO RESTRICT #
 DROP DISTINCT TYPE SC246300.DOLLAR RESTRICT #

-- DROP STOGROUP SG246300;
Appendix A. DDL of the DB2 objects used in the examples 241

242 DB2 for z/OS Application Programming Topics

Appendix B. Sample programs

A selected set of sample programs is shown in this appendix. The rest are available from the
additional material on the Internet.

� Returning SQLSTATE from a stored procedure to a trigger

� Passing a transition table from a trigger to a SP

B

© Copyright IBM Corp. 2001 243

Returning SQLSTATE from a stored procedure to a trigger
The full program including the JCL and related DDL is provided in the additional material. See
Appendix C, “Additional material” on page 251 for details on how to download the files.

Example: B-1 Returning SQLSTATE to a trigger from a SP

 IDENTIFICATION DIVISION.
 PROGRAM-ID. "SD0BMS3".

 * This stored procedure shows how SQLSTATE and *
 * a DIAG string can be returned to a trigger *
 * so it can undo all changes done so far by the *
 * trigger *

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 01 VAR1 PIC X(20).

 01 ERROR-MESSAGE.
 02 ERROR-LEN PIC S9(4) COMP VALUE +960.
 02 ERROR-TEXT PIC X(120) OCCURS 8 TIMES
 INDEXED BY ERROR-INDEX.
 77 ERROR-TEXT-LEN PIC S9(8) COMP VALUE +120.

 77 ERR-CODE PIC 9(8) VALUE 0.
 77 ERR-MINUS PIC X VALUE SPACE.
 77 LINE-EXEC PIC X(20) VALUE SPACE.

 * VARIABLE TO GET FIELDS IN SQLCA FORMATTED PROPERLY
 77 XSQLCABC PIC 9(9).
 77 XSQLCODE PIC S9(9) SIGN IS LEADING , SEPARATE.
 77 XSQLERRML PIC S9(9) SIGN IS LEADING , SEPARATE.
 77 XSQLERRD PIC S9(9) SIGN IS LEADING , SEPARATE.

 LINKAGE SECTION.
 * INPUT PARM PASSED BY STORED PROC
 01 PARM1 PIC X(20).
 01 INDPARM1 PIC S9(4) COMP.
 * DECLARE THE SQLSTATE THAT CAN BE SET BY STORED PROC
 01 P-SQLSTATE PIC X(5).
 * DECLARE THE QUALIFIED PROCEDURE NAME
 01 P-PROC.
 49 P-PROC-LEN PIC 9(4) USAGE BINARY.
 49 P-PROC-TEXT PIC X(27).
 * DECLARE THE SPECIFIC PROCEDURE NAME
 01 P-SPEC.
 49 P-SPEC-LEN PIC 9(4) USAGE BINARY.
 49 P-SPEC-TEXT PIC X(18).
 * DECLARE SQL DIAGNOSTIC MESSAGE TOKEN
 01 P-DIAG.
 49 P-DIAG-LEN PIC 9(4) USAGE BINARY.
 49 P-DIAG-TEXT PIC X(70).

 PROCEDURE DIVISION USING PARM1, INDPARM1, P-SQLSTATE,
244 DB2 for z/OS Application Programming Topics

 P-PROC, P-SPEC, P-DIAG.

 MOVE PARM1 TO VAR1.
 * DISPLAY "VAR1 " VAR1.
 MOVE "UPD ONE" TO LINE-EXEC.
 * This operation will fail because the trigger that invokes
 * the SP is a before trigger. Therefore it CANNOT update.
 EXEC SQL
 UPDATE SC246300.TBEMPLOYEE
 SET PHONENO=:VAR1 WHERE EMPNO ='000006'
 END-EXEC.
 * DISPLAY "AFTER UPDATE ONE" SQLCODE .
 IF SQLCODE NOT EQUAL 0 THEN
 PERFORM DBERROR
 END-IF.

 ERROR-EXIT.
 GOBACK.

 DBERROR.
 DISPLAY "*** SQLERR FROM SD0BMS3 ***".
 MOVE SQLCODE TO ERR-CODE .
 IF SQLCODE < 0 THEN MOVE '-' TO ERR-MINUS.
 DISPLAY "SQLCODE = " ERR-MINUS ERR-CODE "LINE " LINE-EXEC.
 CALL 'DSNTIAR' USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.
 IF RETURN-CODE = ZERO
 PERFORM ERROR-PRINT VARYING ERROR-INDEX
 FROM 1 BY 1 UNTIL ERROR-INDEX GREATER THAN 8
 * TO SHOW WHERE EVERYTHING GOES IN SQLCA
 DISPLAY "*** START OF UNFORMATTED SQLCA ***"
 DISPLAY "SQLCAID X(8) " SQLCAID
 MOVE SQLCABC TO XSQLCABC
 DISPLAY "SQLCABC I " XSQLCABC
 MOVE SQLCODE TO XSQLCODE
 DISPLAY "SQLCODE I " XSQLCODE
 MOVE SQLERRML TO XSQLERRML
 DISPLAY "SQLERRML SI " XSQLERRML
 DISPLAY "SQLERRMC X(70) " SQLERRMC
 DISPLAY "SQLERRP X(8) " SQLERRP
 MOVE SQLERRD(1) TO XSQLERRD
 DISPLAY "SQLERRD1 I " XSQLERRD
 MOVE SQLERRD(2) TO XSQLERRD
 DISPLAY "SQLERRD2 I " XSQLERRD
 MOVE SQLERRD(3) TO XSQLERRD
 DISPLAY "SQLERRD3 I " XSQLERRD
 MOVE SQLERRD(4) TO XSQLERRD
 DISPLAY "SQLERRD4 I " XSQLERRD
 MOVE SQLERRD(5) TO XSQLERRD
 DISPLAY "SQLERRD5 I " XSQLERRD
 MOVE SQLERRD(6) TO XSQLERRD
 DISPLAY "SQLERRD6 I " XSQLERRD
 DISPLAY "SQLWARN0 X(1) " SQLWARN0
 DISPLAY "SQLWARN1 X(1) " SQLWARN1
 DISPLAY "SQLWARN2 X(1) " SQLWARN2
 DISPLAY "SQLWARN3 X(1) " SQLWARN3
 DISPLAY "SQLWARN4 X(1) " SQLWARN4
 DISPLAY "SQLWARN5 X(1) " SQLWARN5
 DISPLAY "SQLWARN6 X(1) " SQLWARN6
 DISPLAY "SQLWARN7 X(1) " SQLWARN7
 DISPLAY "SQLWARN8 X(1) " SQLWARN8
Appendix B. Sample programs 245

 DISPLAY "SQLWARN9 X(1) " SQLWARN9
 DISPLAY "SQLWARNA X(1) " SQLWARNA
 DISPLAY "SQLSTATE X(5) " SQLSTATE
 DISPLAY "*** END OF UNFORMATTED SQLCA ***"
 ELSE
 DISPLAY RETURN-CODE.
 MOVE '38601' TO P-SQLSTATE .
 MOVE 16 TO P-DIAG-LEN.
 MOVE 'SP HAD SQL ERROR' TO P-DIAG-TEXT.
 ERROR-PRINT.
 DISPLAY ERROR-TEXT (ERROR-INDEX).

Passing a transition table from a trigger to a SP
The full program including the JCL and related DDL is provided in the additional material. See
Appendix C, “Additional material” on page 251 for details on how to download the files.

Example: B-2 Passing a transition table from a trigger to a SP

 IDENTIFICATION DIVISION. 00290001
 PROGRAM-ID. "SPTRTT". 00300000
 00310000
 *** 00320000
 * THIS PROGRAM SHOWS HOW A TRANSITION TABLE * 00330000
 * FROM A TRIGGER CAN BE ACCESSED IN A STORED * 00340000
 * PROCEDURE * 00350000
 * (ALSO USING SQLSTATE TO PASS BACK INFO TO * 00360000
 * THE TRIGGER IN CASE OF PROBLEMS) * 00361000
 *** 00370000
 00380000
 DATA DIVISION. 00390000
 WORKING-STORAGE SECTION. 00400000
 EXEC SQL INCLUDE SQLCA END-EXEC. 00410000
 00420000
 * *** 00430000
 * 2. DECLARE TABLE LOCATOR HOST VARIABLE TRIG-TBL-ID 00440000
 * *** 00450000
 01 TRIG-TBL-ID SQL TYPE IS 00460000
 TABLE LIKE SC246300.TBEMPLOYEE AS LOCATOR. 00470000
 00480000
 * PARMS FETCH ROWS INTO FROM TRANSISTION TABLE 00490000
 01 EMPNO PIC X(6). 00500000
 01 FIRSTNME. 00510000
 49 FIRSTNME-LEN PIC S9(4) USAGE COMP. 00520000
 49 FIRSTNME-TEXT PIC X(15). 00530000
 00550000
 01 ERROR-MESSAGE. 00560000
 02 ERROR-LEN PIC S9(4) COMP VALUE +960. 00570000
 02 ERROR-TEXT PIC X(120) OCCURS 8 TIMES 00580000
 INDEXED BY ERROR-INDEX. 00590000
 77 ERROR-TEXT-LEN PIC S9(8) COMP VALUE +120. 00600000
 00610000
 77 ERR-CODE PIC 9(8) VALUE 0. 00620000
 77 ERR-MINUS PIC X VALUE SPACE. 00630000
 77 LINE-EXEC PIC X(20) VALUE SPACE. 00640000
 00650000
 * VARIABLE TO GET FIELDS IN SQLCA FORMATTED PROPERLY 00660000
246 DB2 for z/OS Application Programming Topics

 77 XSQLCABC PIC 9(9). 00670000
 77 XSQLCODE PIC S9(9) SIGN IS LEADING , SEPARATE. 00680000
 77 XSQLERRML PIC S9(9) SIGN IS LEADING , SEPARATE. 00690000
 77 XSQLERRD PIC S9(9) SIGN IS LEADING , SEPARATE. 00700000
 00710000
 77 I PIC 9(5) VALUE 0. 00720000
 00740000
 LINKAGE SECTION. 00750000
 * ** 00760000
 * 1. DECLARE TABLOC AS LARGE INTEGER PARM 00770000
 * ** 00780000
 01 TABLOC PIC S9(9) USAGE BINARY. 00790000
 01 INDTABLOC PIC S9(4) COMP. 00800000
 * DECLARE THE SQLSTATE THAT CAN BE SET BY STORED PROC 00810000
 01 P-SQLSTATE PIC X(5). 00820000
 * DECLARE THE QUALIFIED PROCEDURE NAME 00830000
 01 P-PROC. 00840000
 49 P-PROC-LEN PIC 9(4) USAGE BINARY. 00850000
 49 P-PROC-TEXT PIC X(27). 00860000
 * DECLARE THE SPECIFIC PROCEDURE NAME 00870000
 01 P-SPEC. 00880000
 49 P-SPEC-LEN PIC 9(4) USAGE BINARY. 00890000
 49 P-SPEC-TEXT PIC X(18). 00900000
 * DECLARE SQL DIAGNOSTIC MESSAGE TOKEN 00910000
 01 P-DIAG. 00920000
 49 P-DIAG-LEN PIC 9(4) USAGE BINARY. 00930000
 49 P-DIAG-TEXT PIC X(70). 00940000
 00950000
 00954000
 PROCEDURE DIVISION USING TABLOC , INDTABLOC, P-SQLSTATE, 00960000
 P-PROC, P-SPEC, P-DIAG. 00970000
 00971000
 * THE INDTABLOC INDICATOR VARIABLE IS IMPORTANT 00980000
 * OTHERWISE YOU WON'T BE ABLE TO PASS BACK INFO THROUGH 00990000
 * P-SQLSTATE 01000000
 01020000
 * *** 01030000
 * 4. DECLARE CURSOR USING THE TRANSITION TABLE 01040000
 * *** 01050000
 EXEC SQL 01060000
 DECLARE C1 CURSOR FOR 01070000
 SELECT EMPNO, FIRSTNME 01080000
 FROM TABLE (:TRIG-TBL-ID LIKE SC246300.TBEMPLOYEE) 01090000
 END-EXEC. 01100000
 * *** 01110000
 * 3. COPY TABLE LOCATOR INPUT PARM TO THE TABLE LOCATOR HOST VAR 01120000
 * *** 01130000
 MOVE TABLOC TO TRIG-TBL-ID. 01140000
 01150000
 MOVE "OPEN CUR" TO LINE-EXEC. 01160000
 EXEC SQL OPEN C1 END-EXEC. 01170000
 * MOVE SQLCODE TO XSQLCODE. 01180000
 * DISPLAY " AFTER OPEN SQLCODE " XSQLCODE. 01190000
 IF SQLCODE < 0 THEN 01200000
 PERFORM DBERROR 01210000
 PERFORM ERROR-EXIT. 01220000
 * ** 01230000
 * 5. PROCESS DATA FROM TRANSITION TABLE 01240000
 * 01241000
 * HERE WE ONLY DISPLAY THE INFO IN THE OUTPUT OF THE SP 01242000
Appendix B. Sample programs 247

 * ADDRESS SPACE, BUT HERE IS WHERE YOU WOULD DO THE 01243000
 * REAL WORK ON THE TRANSITION TABLE 01244000
 * 01245000
 * ** 01250000
 DISPLAY " ". 01260000
 DISPLAY " DATA FROM TRANSITION TABLE " 01270000
 DISPLAY " PEOPLE WITH SALARY INCREASE" 01280000
 DISPLAY " ". 01290000
 DISPLAY " ROW EMPNO FIRSTNAME" 01300000
 PERFORM GET-ROWS-E 01310000
 VARYING I FROM 1 BY 1 01320000
 UNTIL 01330000
 SQLCODE = 100. 01340000
 01350000
 MOVE "CLOS CUR" TO LINE-EXEC. 01360000
 EXEC SQL CLOSE C1 END-EXEC. 01370000
 01380000
 ERROR-EXIT. 01420000
 GOBACK. 01430000
 01440000
 GET-ROWS-E. 01450000
 * 01460000
 * FETCH ROWS FROM THE TRANSITION TABLE INTO HOST VARIABLES. 01470000
 * 01480000
 MOVE "FETCH E " TO LINE-EXEC. 01490000
 EXEC SQL FETCH C1 INTO :EMPNO , 01500000
 :FIRSTNME 01510000
 END-EXEC. 01520000
 * DISPLAY INFO TO DEBUG 01530000
 * MOVE SQLCODE TO XSQLCODE. 01540000
 * DISPLAY " AFTER FETCH SQLCODE " XSQLCODE. 01550000
 IF SQLCODE = 0 THEN 01560000
 01611000
 DISPLAY I ' ' EMPNO ' ' FIRSTNME-TEXT 01620000
 ELSE IF SQLCODE < 0 THEN 01630000
 PERFORM DBERROR 01640000
 END-IF. 01650000
 ADD 1 TO J. 01660000
 01670000
 DBERROR. 01680000
 DISPLAY "*** SQLERR FROM SPTRTT ***". 01690000
 MOVE SQLCODE TO ERR-CODE . 01700000
 IF SQLCODE < 0 THEN MOVE '-' TO ERR-MINUS. 01710000
 DISPLAY "SQLCODE = " ERR-MINUS ERR-CODE "LINE " LINE-EXEC. 01720000
 CALL 'DSNTIAR' USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN. 01730000
 IF RETURN-CODE = ZERO 01740000
 PERFORM ERROR-PRINT VARYING ERROR-INDEX 01750000
 FROM 1 BY 1 UNTIL ERROR-INDEX GREATER THAN 8 01760000
 * TO SHOW WHERE EVERYTHING GOES IN SQLCA 01770000
 DISPLAY "*** START OF UNFORMATTED SQLCA ***" 01780000
 DISPLAY "SQLCAID X(8) " SQLCAID 01790000
 MOVE SQLCABC TO XSQLCABC 01800000
 DISPLAY "SQLCABC I " XSQLCABC 01810000
 MOVE SQLCODE TO XSQLCODE 01820000
 DISPLAY "SQLCODE I " XSQLCODE 01830000
 MOVE SQLERRML TO XSQLERRML 01840000
 DISPLAY "SQLERRML SI " XSQLERRML 01850000
 DISPLAY "SQLERRMC X(70) " SQLERRMC 01860000
 DISPLAY "SQLERRP X(8) " SQLERRP 01870000
 MOVE SQLERRD(1) TO XSQLERRD 01880000
248 DB2 for z/OS Application Programming Topics

 DISPLAY "SQLERRD1 I " XSQLERRD 01890000
 MOVE SQLERRD(2) TO XSQLERRD 01900000
 DISPLAY "SQLERRD2 I " XSQLERRD 01910000
 MOVE SQLERRD(3) TO XSQLERRD 01920000
 DISPLAY "SQLERRD3 I " XSQLERRD 01930000
 MOVE SQLERRD(4) TO XSQLERRD 01940000
 DISPLAY "SQLERRD4 I " XSQLERRD 01950000
 MOVE SQLERRD(5) TO XSQLERRD 01960000
 DISPLAY "SQLERRD5 I " XSQLERRD 01970000
 MOVE SQLERRD(6) TO XSQLERRD 01980000
 DISPLAY "SQLERRD6 I " XSQLERRD 01990000
 DISPLAY "SQLWARN0 X(1) " SQLWARN0 02000000
 DISPLAY "SQLWARN1 X(1) " SQLWARN1 02010000
 DISPLAY "SQLWARN2 X(1) " SQLWARN2 02020000
 DISPLAY "SQLWARN3 X(1) " SQLWARN3 02030000
 DISPLAY "SQLWARN4 X(1) " SQLWARN4 02040000
 DISPLAY "SQLWARN5 X(1) " SQLWARN5 02050000
 DISPLAY "SQLWARN6 X(1) " SQLWARN6 02060000
 DISPLAY "SQLWARN7 X(1) " SQLWARN7 02070000
 DISPLAY "SQLWARN8 X(1) " SQLWARN8 02080000
 DISPLAY "SQLWARN9 X(1) " SQLWARN9 02090000
 DISPLAY "SQLWARNA X(1) " SQLWARNA 02100000
 DISPLAY "SQLSTATE X(5) " SQLSTATE 02110000
 DISPLAY "*** END OF UNFORMATTED SQLCA ***" 02120000
 ELSE 02130000
 DISPLAY RETURN-CODE. 02140000
 MOVE '38601' TO P-SQLSTATE . 02150000
 MOVE 16 TO P-DIAG-LEN. 02160000
 MOVE 'SP HAD SQL ERROR' TO P-DIAG-TEXT. 02170000
 ERROR-PRINT. 02180000
 DISPLAY ERROR-TEXT (ERROR-INDEX). 02190000
Appendix B. Sample programs 249

250 DB2 for z/OS Application Programming Topics

Appendix C. Additional material

This redbook refers to additional material that can be downloaded from the Internet as
described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246300

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the redbook
form number, SG246300.

Using the Web material
The additional Web material that accompanies this redbook includes the following files:

File name Description
SG246300.zip Zipped Code Samples, DDL, DML statements

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the Web
material zip file into this folder.

There are two files with the *.bin suffix:

File name after unzipping - Original data set name on OS/390:
sg246300-JCL.BIN - SG246300.JCL
sg246300-SQL.BIN - SG246300.SQL

C

© Copyright IBM Corp. 2001 251

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

These two sequential files were created from partitioned data sets using the TSO TRANSMIT
OUTDA() command. To recreate the partitioned data sets on OS/390 from the downloaded file,
you need to:

1. Transfer the files from PC to MVS as binary, with the following attributes for the output data
set:

DSORG=PS
RECFM=FB
LRECL=80
BLKSIZE=3200

2. Use the TSO RECEIVE INDA() command to create the partitioned data sets (PDSs) from
the sequential data sets you just transferred. You can use the TSO HELP RECEIVE command
to find out about the optional parameters for the RECEIVE command.

Both PDS data sets have an $INDEX member that explain the content of the individual
members and how to use them.
252 DB2 for z/OS Application Programming Topics

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 254.

� DB2 for z/OS and OS/390 Version 7: Using the Utilities Suite, SG24-6289

� DB2 for OS/390 and z/OS Powering the World’s e-business Solutions, SG24-6257

� DB2 for z/OS and OS/390 Version 7 Performance Topics, SG24-6129

� DB2 UDB Server for OS/390 and z/OS Version 7 Presentation Guide, SG24-6121

� DB2 UDB Server for OS/390 Version 6 Technical Update, SG24-6108

� DB2 Java Stored Procedures Learning by Example, SG24-5945

� DB2 UDB for OS/390 Version 6 Performance Topics, SG24-5351

� DB2 for OS/390 Version 5 Performance Topics, SG24-2213

� DB2 for MVS/ESA Version 4 Non-Data-Sharing Performance Topics, SG24-4562

� DB2 UDB for OS/390 Version 6 Management Tools Package, SG24-5759

� DB2 Server for OS/390 Version 5 Recent Enhancements - Reference Guide, SG24-5421

� DB2 for OS/390 Capacity Planning, SG24-2244

� Cross-Platform DB2 Stored Procedures: Building and Debugging, SG24-5485

� DB2 for OS/390 and Continuous Availability, SG24-5486

� Connecting WebSphere to DB2 UDB Server, SG24-6219

� Parallel Sysplex Configuration: Cookbook, SG24-2076

� DB2 for OS/390 Application Design Guidelines for High Performance, SG24-2233

� Using RVA and SnapShot for BI with OS/390 and DB2, SG24-5333

� IBM Enterprise Storage Server Performance Monitoring and Tuning Guide, SG24-5656

� DFSMS Release 10 Technical Update, SG24-6120

� Storage Management with DB2 for OS/390, SG24-5462

� Implementing ESS Copy Services on S/390, SG24-5680

Other resources
These publications are also relevant as further information sources:

� DB2 UDB for OS/390 and z/OS Version 7 What’s New, GC26-9946

� DB2 UDB for OS/390 and z/OS Version 7 Installation Guide, GC26-9936

� DB2 UDB for OS/390 and z/OS Version 7 Command Reference, SC26-9934

� DB2 UDB for OS/390 and z/OS Version 7 Messages and Codes, GC26-9940

� DB2 UDB for OS/390 and z/OS Version 7 Utility Guide and Reference, SC26-9945
© Copyright IBM Corp. 2001 253

� DB2 UDB for OS/390 and z/OS Version 7 Application Programming Guide and Reference
for Java, SC26-9932

� DB2 UDB for OS/390 and z/OS Version 7 Administration Guide, SC26-9931

� DB2 UDB for OS/390 and z/OS Version 7 Application Programming and SQL Guide,
SC26-9933

� DB2 UDB for OS/390 and z/OS Version 7 Release Planning Guide, SC26-9943

� DB2 UDB for OS/390 and z/OS Version 7 SQL Reference, SC26-9944

� DB2 UDB for OS/390 and z/OS Version 7 Text Extender Administration and Programming,
SC26-9948

� DB2 UDB for OS/390 and z/OS Version 7 Data Sharing: Planning and Administration,
SC26-9935

� DB2 UDB for OS/390 and z/OS Version 7 Image, Audio, and Video Extenders
Administration and Programming, SC26-9947

� DB2 UDB for OS/390 and z/OS Version 7 ODBC Guide and Reference, SC26-9941

� DB2 UDB for OS/390 and z/OS Version 7 XML Extender Administration and
Programming, SC26-9949

� OS/390 V2R10.0 DFSMS Using Data Sets, SC26-7339

� DB2 UDB for OS/390 Version 6 SQL Reference, SC26-9014

Referenced Web sites
These Web sites are also relevant as further information sources:

� http://www.ibm.com/software/data/db2/os390/
DB2 for OS/390

� http://www.ibm.com/software/data/db2/os390/estimate/
DB2 Estimator

� http://www.ibm.com/storage/hardsoft/diskdrls/technology.htm
Technology for disk storage systems

� http://www.ibm.com/software/data/db2/os390/support.html
DB2 support and services

� http://www.ibm.com/software/db2/os390/downloads.html
DB2 for OS/390 downloads. See DBRM Colon Finder.

How to get IBM Redbooks
Search for additional Redbooks or Redpieces, view, download, or order hardcopy from the
Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images) from this
Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become Redpieces and sometimes
just a few chapters will be published this way. The intent is to get the information out much
quicker than the formal publishing process allows.
254 DB2 for z/OS Application Programming Topics

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/software/db2/os390/downloads.html
http://www.ibm.com/software/data/db2/os390/
http://www.ibm.com/software/data/db2/os390/
http://www.ibm.com/software/data/db2/os390/estimate/
http://www.ibm.com/storage/hardsoft/diskdrls/technology.htm
http://www.ibm.com/software/data/db2/os390/support.htm

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web
site for information about all the CD-ROMs offered, as well as updates and formats.
 Related publications 255

256 DB2 for z/OS Application Programming Topics

Special notices

References in this publication to IBM products, programs or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM product, program, or service is not intended to state or imply that only IBM's product,
program, or service may be used. Any functionally equivalent program that does not infringe
any of IBM's intellectual property rights may be used instead of the IBM product, program or
service.

Information in this book was developed in conjunction with use of the equipment specified,
and is limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation,
North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged,
should contact IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The information contained in this document has not been submitted to any formal IBM test
and is distributed AS IS. The use of this information or the implementation of any of these
techniques is a customer responsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these techniques to
their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for convenience only and
do not in any manner serve as an endorsement of these Web sites.

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything. Anywhere.,TME,
NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli, and Tivoli Enterprise are
trademarks or registered trademarks of Tivoli Systems Inc., an IBM company, in the United
States, other countries, or both. In Denmark, Tivoli is a trademark licensed from
Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States and/or other
© Copyright IBM Corp. 2001 257

countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively
through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET
Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
258 DB2 for z/OS Application Programming Topics

ronyms
AIX Advanced Interactive eXecutive
from IBM

APAR authorized program analysis report

ARM automatic restart manager

ASCII American National Standard Code
for Information Interchange

BLOB binary large objects

CCSID coded character set identifier

CCA client configuration assistant

CFCC coupling facility control code

CTT created temporary table

CEC central electronics complex

CD compact disk

CF coupling facility

CFRM coupling facility resource
management

CLI call level interface

CLP command line processor

CPU central processing unit

CSA common storage area

DASD direct access storage device

DB2 PM DB2 performance monitor

DBAT database access thread

DBD database descriptor

DBID database identifier

DBRM database request module

DSC dynamic statement cache, local or
global

DCL data control language

DDCS distributed database connection
services

DDF distributed data facility

DDL data definition language

DLL dynamic load library manipulation
language

DML data manipulation language

DNS domain name server

DRDA distributed relational database
architecture

DTT declared temporary tables

EA extended addressability

Abbreviations and ac
© Copyright IBM Corp. 2001
EBCDIC extended binary coded decimal
interchange code

ECS enhanced catalog sharing

ECSA extended common storage area

EDM environment descriptor
management

ERP enterprise resource planning

ESA Enterprise Systems Architecture

ETR external throughput rate, an
elapsed time measure, focuses on
system capacity

FDT functional track directory

FTP File Transfer Program

GB gigabyte (1,073,741,824 bytes)

GBP group buffer pool

GRS global resource serialization

GUI graphical user interface

HPJ high performance Java

IBM International Business Machines
Corporation

ICF integrated catalog facility

ICF integrated coupling facility

ICMF internal coupling migration facility

IFCID instrumentation facility component
identifier

IFI instrumentation facility interface

IPLA IBM Program Licence Agreement

IRLM internal resource lock manager

ISPF interactive system productivity
facility

ISV independent software vendor

I/O input/output

ITR internal throughput rate, a
processor time measure, focuses
on processor capacity

ITSO International Technical Support
Organization

IVP installation verification process

JDBC Java Database Connectivity

JFS journaled file systems

JVM Java Virtual Machine

KB kilobyte (1,024 bytes)

LOB large object
 259

LPL logical page list

LPAR logically partitioned mode

LRECL logical record length

LRSN log record sequence number

LUW logical unit of work

LVM logical volume manager

MB megabyte (1,048,576 bytes)

NPI non-partitioning index

ODB object descriptor in DBD

ODBC Open Data Base Connectivity

OS/390 Operating System/390

PAV parallel access volume

PDS partitioned data set

PIB parallel index build

PSID pageset identifier

PSP preventive service planning

PTF program temporary fix

PUNC possibly uncommitted

QMF Query Management Facility

QA Quality Assurance

RACF Resource Access Control Facility

RBA relative byte address

RECFM record format

RID record identifier

RRS resource recovery services

RRSAF resource recovery services attach
facility

RS read stability

RR repeatable read

SDK software developers kit

SMIT System Management Interface Tool

UOW unit of work
260 DB2 for z/OS Application Programming Topics

Index

Symbols
=ANY 186
=SOME 186

A
ABSOLUTE 164
absolute moves 164
ACCESSTYPE 120
adding an identity column 107
after join step predicates 182
after trigger 18, 35, 36
alias 8, 42
ALL 186
arithmetic operator 49
AS TEMP 89
ASCII 90, 213
authorization 8
automatic rebind 33
auxiliary table 42

B
base table 89, 92
before trigger 35
BIND 200
bind 92
BLOB 45
boolean term 121
buffer pool 86, 90
built-in data type 43, 44, 45, 49
built-in function exploitation 72
built-in functions 25, 49, 57, 58, 59, 60, 64, 65, 72

arithmetic and string operators 72
before version 6 72
column functions 62, 72, 73, 75
in version 6 73
in version 7 75
restrictions 76
scalar functions 72, 73, 75

built-in operator 49

C
CALL 38
CALLTYPE 63
cartesian product 182
cascade path 29
cascaded level 36
CASE 125
CASE expression 125, 143

alternatives 131
characteristics 126
division by zero 129
ELSE 127
© Copyright IBM Corp. 2001
END 127
grouping 132
other uses 131
pivot 132
restrictions 133
trigger 130
UNION 130
WHEN 126
why 127

CAST function 44, 45, 47, 48, 53, 67
casting 49
catalog table 42
CCSID 90
check constraint 38, 39, 47, 121
check pending 38
CICS 95
CLOB 45
COALESCE 131
column function 58, 60, 72, 168
COMMIT 84, 85, 86
comparison operator 49
CONNECT 93
connection 81, 84, 85, 93
constraint 35
cost of trigger 37
COST_CATEGORY 37
CREATE DISTINCT TYPE 44
CREATE FUNCTION 63
CREATE GLOBAL TEMPORARY TABLE 82
CREATE SCHEMA 10, 11
CREATE TABLE 83
created temporary tables 79, 80, 81, 83, 84, 85, 86

characteristics 82
COMMIT 85
considerations 86
creating an instance 84
multiple instances 85
pitfalls 86
RELEASE(COMMIT) 85
RELEASE(DEALLOCATE) 85
restrictions 86
result sets 85
ROLLBACK 85

CREATETAB 82
CREATETMTAB 82
Cross Loader 217
CURRENT 165
CURRENT PATH 8, 9, 44
current server 83, 84
CURRENTDATA 177, 179
cursor movement 164
cursor stability 177
cursor types 151
 261

D
Data Propagator 39
data sharing 89
data sharing group 89
data warehouse 81
DB2 Connect 154
DB2 Extender 60
DB2 family compatibility 194
DB2 Utilities Suite 212
DBADM 82
DBCLOB 45
DBCTRL 82
DBD 37
DBMAINT 82
DBRM 200, 201
DBRM Colon Finder 201
DDF 95
DECLARE CURSOR 150, 155, 156
DECLARE GLOBAL TEMPORARY TABLE 88
declared temporary tables 79, 85, 88, 89, 90, 92, 93

AS TEMP 89
characteristics 88
considerations 94
converting created temporary tables 95
CREATE LIKE 95
index 94
ON COMMIT DELETE ROWS 95
ON COMMIT PRESERVE ROWS 95
PUBLIC 95
remote 93
scrollable cursors 93
three-part name 93
USE 95

DEFAULT 191
default clause 47
default value 83
DELETE

self-referencing 193
DELETE ALL 86
delete hole 162, 170
delete rule 35
delete trigger 22
differences between table types 80
direct row access 119
drain 207
DRDA 85, 93, 197
DROP TABLE 87
DROP TRIGGER 34
DSN1COPY 213
DSNDB07 37
DSNH315I 200
DSNHSP 11, 224
DSNTIAUL 205, 212

comparing 215
During join predicates 182

E
E/R-diagram 224
EBCDIC 90, 213

editproc 87, 121
EDM pool 90
encoding scheme 90
ENDEXEC 217
EPOCH 121
EXEC SQL 217, 219
EXECUTE IMMEDIATE 217
EXPLAIN 142
expression 192
external 58

action 30
function 51, 59
program 57

external resource 62
extract 88

F
falling back 120
fence 64
FETCH 154, 157
FETCH ABSOLUTE 0 165
FETCH AFTER 164
FETCH BEFORE 164, 165
FETCH FIRST n ROWS 197
FETCH FIRST n ROWS ONLY

SELECT INTO 198
FETCH LAST 165
FETCH SENSITIVE 159, 162
fieldproc 87, 121
FINAL CALL 63
FOR FETCH ONLY 199
FOR UPDATE OF 161, 174
foreign key 40
fullselect 136

G
GENERATED ALWAYS 113, 122
GENERATED BY DEFAULT 113, 122
global temporary table 79, 80
GRANT 8, 87
GRANT USAGE 47
GROUP BY 196

H
HAVING 196
HEADER 214
hole 162, 170
host variables 53, 199

preceded by a colon 200, 201

I
identity column 104

add 107
CACHE 105, 110, 111
characteristics 104
comparison 122
creating 105
CYCLE 105
262 DB2 for z/OS Application Programming Topics

data sharing 110
deficiencies 110
design considerations 111
DSN_IDENTITY 107
GENERATED ALWAYS 104, 106, 107
GENERATED BY DEFAULT 107, 111
IDENTITY_VAL_LOCAL 109
IGNOREFIELDS 107
INCLUDING IDENTITY COLUMN ATTRIBUTES 106
LOAD 107
MAXVALUE 105
MINVALUE 105
OVERRIDING USER VALUE 108
populating 106
restrictions 112
START WITH 105
when 104

IDENTITY_VAL_LOCAL 109, 122
IMS 85, 88
IN 187

supports any expression 201
index 8, 86, 88
indexable 81
INNER JOIN 183
INSENSITIVE 152, 155, 156
INSENSITIVE FETCH 159
INSERT 191, 206

DEFAULT keyword 191
self-referencing SELECT 192
UNION 193
using expressions 192

INSERT program 208
insert trigger 22
instance workfile 81
internal 58
isolation level

UR 215

J
Java 154

L
large object 45
LEFT OUTER JOIN 184
LIKE 83
LISTDEF 216
LOAD 16, 42

FORMAT UNLOAD 212
SHRLEVEL CHANGE 206
SHRLEVEL NONE 206

LOAD PART 119
LOAD RESUME 38, 42, 205
LOB 87, 113, 156
lock 81, 82, 83, 86
LOCK TABLE 87
locking 86, 207
log 81, 82, 83, 86
logical work file 85
LONG VARCHAR 44

LONG VARGRAPHIC 44

M
materialize 154
missing colons

sample program 201

N
nested loop join 81
nested table expression 136
nesting level 29, 42
NEXT 165
NO CASCADE BEFORE 17
non-correlated subquery 193
non-DB2 resource 62
non-partitioning index 143
non-relational data 85
NOT IN 187
null value 83
NULLIF 131

O
OBD 37
object-oriented 43
object-relational 59
ODBC 88
ON clause extensions 182
ON COMMIT DELETE ROWS 89
ON COMMIT PRESERVE ROWS 89, 92
ON condition 182
ON DELETE CASCADE 17
ON DELETE SET NULL 16
online LOAD RESUME 16, 206

clustering 207
commit frequency 208
duplicate keys 207
free space 208
logging 207
pitfalls 209
restart 208
restrictions 209
RI 207

OPEN CURSOR 155
Optimistic Locking Concur By Value 174, 175
optimize 37
OPTIMIZE FOR 197
ORDER BY 188

expression 189
select list 188
sort avoidance 190

overload 60

P
package 32, 34, 39, 59, 92
page size 89, 90, 93
parallelism 216
PARAMETER STYLE DB2SQL 27
PARENT_QBLOCKNO 142
 Index 263

partitioning 144
partitioning key update 202
PARTKEYU 202
PATH 9
plan 92
PLAN_TABLE 142
populate 85, 88
positioned DELETE 176
positioned UPDATE 175
powerful SQL 123
PQ16946 202
PQ19897 210, 212
PQ23219 210, 212
PQ34506 38
PQ53030 15
PRIMARY_ACCESSTYPE 119
PRIOR 165
privilege 82, 83
propagation 39

Q
QBLOCK_TYPE 142
QMF 154
QUALIFIER 9, 10
qualifier 8
quantified predicates 185

R
RAISE_ERROR 25, 127
read stability 177
read-only cursor 153
REBIND 37, 200
rebind 33
REBIND TRIGGER PACKAGE 33
recovery 82
Redbooks Web site 254

Contact us xix
referential constraint 35, 38, 87
referential integrity 28
RELATIVE 164
relative moves 165
RELEASE(DEALLOCATE) 37
remote server 84, 93
REORG

DISCARD 205, 210
DISCARD restrictions 211
UNLOAD EXTERNAL 205, 211, 212, 213

comparing 215
UNLOAD ONLY 212

repeatable read 177
restart 216
RESTRICT 47
result set 85, 88
result table 154, 162, 166
REXX 154
REXX procedure 201
RI 39
RID 113
RID list processing 121

ROLLBACK 84, 85
ROLLBACK TO SAVEPOINT 156
row expressions 185

quantified predicates 186
restrictions 188
types 185

row size 89
row trigger 18
ROWID 87, 112, 113

casting 117
comparison 122
DCLGEN 117
direct row access 119
EPOCH 121
GENERATED BY DEFAULT 115
implementation 113
IMS 120
LOB 113
partitioning 118
restrictions 121
storing 120
UPDATE 114
USAGE SQL TYPE IS 117

row-value-expression 185

S
SAR 35, 36
savepoint 98

characteristics 99
CONNECT 101
ON ROLLBACK RETAIN CURSORS 100
ON ROLLBACK RETAIN LOCKS 100
RELEASE SAVEPOINT 99
remote connections 101
restrictions 102
ROLLBACK TO SAVEPOINT 99
UNIQUE 100
why 98

scalar function 58, 60, 61, 72, 168
scalar subquery 195
schema 7, 8, 10, 72

authorization 8
authorization ID 10
characteristics 8
name 16, 32, 44
object 14
processor 10

scratchpad 64
SCROLL 155, 156
scrollable cursor 93, 149

absolute moves 164
allowable combinations 160
characteristics 151
choose the right type 153
CLOSE CURSOR 156
cursor movement 164
declaring 155
delete hole 170
FETCH 154, 157
FETCH ABSOLUTE 159
264 DB2 for z/OS Application Programming Topics

FETCH AFTER 158
FETCH BEFORE 158
FETCH CURRENT 158
FETCH FIRST 158
FETCH LAST 158
FETCH NEXT 158
FETCH PRIOR 158
FETCH RELATIVE 159
fetching 157
in depth 152
INSENSITIVE 154
insensitive 151, 152
LOB 156
locking 177
OPEN CURSOR 155
opening 155
read-only 153
recommendations 179
relative moves 165
SENSITIVE 154
sensitive 152
sensitive dynamic 151
sensitive static 151
stored procedures 178
TEMP database 155
update hole 170
using 154
using functions 168
why 150

searched-when-clause 127
SELECT INTO 198
self-referencing

DELETE 193
INSERT 192
restrictions 194
restrictions on usage 194
UPDATE 193

SENSITIVE STATIC 152, 155, 156, 168
SESSION 88, 92
SET 23, 196
SET CURRENT PATH 9
set of affected rows (SAR) 35
SIGNAL SQLSTATE 25
simple-when-clause 127
source data type 44
sourced 44
sourced function 50, 59
special register 8, 9, 10
splitting a table 143
SPUFI 154
SQL enhancements 181
SQL statement terminator 20
SQL_STATEMNT_TABLE 37
SQLSTATE 64
SQLWARN 157
SQLWARN0 157
SQLWARN1 157
SQLWARN4 157
statement trigger 18
STATIC 155

stored 28
stored procedure 7, 8, 9, 15, 28, 29, 33, 38, 42, 81, 85, 88
string operator 58
strong typing 45
subquery 182
subselect 136, 193
synonym 42
SYSADM 8, 82
SYSCTRL 82
SYSFUN 8, 9
SYSIBM 8, 9, 72
SYSOBJ 35
SYSPACKAGE 35
SYSPROC 8, 9
SYSTABAUTH 35
SYSTRIGGERS 30, 35

T
table 83
table access predicates 182
table function 58, 60
table space 89, 90, 93
TABLE_TYPE 142
TEMP database 90, 93, 155
TEMP table spaces 93
TEMPLATE 216
temporary database 88, 89
temporary table 42, 79, 92
temporary table space 88
thread 81, 85, 89, 90, 92
thread reuse 85
thread termination 85
three-part name 42, 85, 93
three-part table name 85
totally after join predicates 182
transition table 22, 37, 62
transition variable 22, 23, 37
transitional business rules 14, 15
trigger 7, 8, 11, 21, 22, 23, 25, 26, 28, 29, 30, 35, 37, 38,
39, 42, 47, 53, 87, 130

action 19, 21, 30, 33, 36, 37
activation time 17, 22
allowable combinations 22
ATOMIC 19
body 19, 23
cascading 28
definition 14
error handling 26
external actions backout 30
FOR EACH ROW 18
FOR EACH STATEMENT 18
granularity 18, 22
invoking SP and UDF 23
name 16
ordering 29
package 32, 33, 37
passing transition tables 30
processing 37
RAISE_ERROR 24
restrictions 42
 Index 265

SIGNAL SQLSTATE 24
table locator 31
transition tables 21
transition variables 20
useful queries 41
valid statements 22
VALUES 23
WHEN 19

trigger action condition 19
trigger characteristics 16
trigger happy 38
trigger package 33

dependencies 33
TRIGGERAUTH 35
triggered operation 19
triggering event 17
triggering operation 16, 19, 22, 29
triggering table 16
two-part name 8, 44

U
UDF 9, 15, 21, 23, 24, 27, 28, 29, 30, 42, 57, 58, 59, 64

column functions 61
definition 59
design considerations 64
efficiency 64
implementation and maintenance 60
scalar functions 60
sourced 66
sourced function 65
table functions 62

UDT 9, 43, 44, 45, 47, 48, 54
CAST 44
catalog tables 56
COMMENT ON 47
DROP 47
EXECUTE 44
GRANT EXECUTE ON 47
privileges 46
USAGE 44

UNDO record 79
UNICODE 90, 213
UNION 127, 136, 142

UPDATE statement 139
UNION ALL 136
union everywhere 136

basic predicates 137
EXISTS predicates 138
explain 142
IN predicates 139
INSERT statements 139
nested table expressions 136
quantified predicates 137
subqueries 137
UPDATE statements 140
views 140

UNIQUE 83
unit of work 11, 84
UNLOAD 205, 212, 213

comparing 215

LOB table spaces 214
pitfalls 215
restriction 214

unqualified table reference 92
UPDATE 195

scalar subquery 195
self-referencing 193

update hole 162, 170, 172
update trigger 22
update with subselect

conditions 196
self referencing 197

user-defined 58
user-defined column function 62
user-defined distinct type 7, 9, 44, 72
user-defined function 7, 9, 15, 42, 58, 59, 60, 64, 72
user-defined scalar function 61
user-defined table function 62
USING CCSID 90

V
validproc 87
VALUES INTO 199
view 35, 42, 47, 83
views 8

W
WHEN 126
WHERE CURRENT OF 87, 161
WITH CHECK OPTIO 144
WITH CHECK OPTION 35, 36, 87
WITH COMPARISONS 45
WITH HOLD 84, 85, 89
WITH HOLD, 85
workfile 81, 82, 83, 86

Z
ZPARM 202
266 DB2 for z/OS Application Programming Topics

(0.5” spine)
0.475”<->0.873”

250 <-> 459 pages

DB2 for z/OS Application Program
m

ing Topics

®

SG24-6300-00 ISBN 073842353X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

DB2 for z/OS
Application Programming
Topics

How to implement
object-oriented
enhancements

Increased program
design flexibility

Examples of more
powerful SQL

This IBM Redbook describes the major enhancements that affect
application programming when accessing DB2 data on a S/390
or z/Series platform, including the object-oriented extensions
such as triggers, user-defined function and user-defined distinct
types, the usage of temporary tables, savepoints and the
numerous extensions to the SQL language, to help you build
powerful, reliable and scalable applications, whether it be in a
traditional environment or on an e-business platform.

IBM DATABASE 2 Universal Database Server for z/OS and OS/390
Version 7 is currently at its eleventh release. Over the last couple
of versions a large number of enhancements were added to the
product. Many of these affect application programming and the
way you access your DB2 data.

This book will help you to understand how these programming
enhancements work and will provide examples of how to use
them. It provides considerations and recommendations for
implementing these enhancements and for evaluating their
applicability in your DB2 environments.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Examples
	Preface
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Chapter 1. Introduction
	Part 1 Object-oriented enhancements
	Chapter 2. Schemas
	2.1 What is a schema?
	2.2 Schema characteristics
	2.2.1 Authorizations on schemas
	2.2.2 Schema path and special register
	2.2.3 How is a schema name determined?

	2.3 The schema processor

	Chapter 3. Triggers
	3.1 Trigger definition
	3.2 Why use a trigger
	3.3 Trigger characteristics
	3.3.1 Trigger activation time
	3.3.2 How many times is a trigger activated?
	3.3.3 Trigger action condition
	3.3.4 Trigger action
	3.3.5 Transition variables
	3.3.6 Transition tables

	3.4 Allowable combinations
	3.5 Valid triggered SQL statements
	3.6 Invoking stored procedures and UDFs
	3.7 Setting error conditions
	3.8 Error handling
	3.9 Trigger cascading
	3.10 Global trigger ordering
	3.11 When external actions are backed out
	3.12 Passing transition tables to SPs and UDFs
	3.13 Trigger package
	3.14 Rebinding a trigger package
	3.15 Trigger package dependencies
	3.16 DROP, GRANT, and COMMENT ON statements
	3.17 Catalog changes
	3.18 Trigger and constraint execution model
	3.19 Design considerations
	3.20 Some alternatives to a trigger
	3.21 Useful queries
	3.22 Trigger restrictions

	Chapter 4. User-defined distinct types (UDT)
	4.1 Introduction
	4.2 Creating distinct data types
	4.3 CAST functions
	4.4 Privileges required to work with UDTs
	4.5 Using CAST functions
	4.6 Operations allowed on distinct types
	4.6.1 Extending operations allowed in UDTs

	4.7 Usage considerations
	4.7.1 UDTs in host language programs
	4.7.2 Using the LIKE comparison with UDTs
	4.7.3 UDTs and utilities
	4.7.4 Implementing UDTs in an existing environment
	4.7.5 Miscellaneous considerations

	4.8 UDTs in the catalog

	Chapter 5. User-defined functions (UDF)
	5.1 Terminology overview
	5.2 Definition of a UDF
	5.3 The need for user-defined functions
	5.4 Implementation and maintenance of UDFs
	5.4.1 Scalar functions
	5.4.2 Column functions
	5.4.3 Table functions

	5.5 UDF design considerations
	5.5.1 Maximizing UDF efficiency
	5.5.2 Consider sourced functions

	Chapter 6. Built-in functions
	6.1 What is a built-in function?
	6.2 Why use a built-in function
	6.3 Built-in function characteristics
	6.4 List of built-in functions before Version 6
	6.5 New built-in functions in Version 6
	6.6 New functions in Version 7
	6.7 Built-in function restrictions

	Part 2 Enhancements that allow a more flexible design
	Chapter 7. Temporary tables
	7.1 Summary of differences between types of tables
	7.2 Created temporary tables
	7.2.1 What is a created temporary table?
	7.2.2 Why use created temporary tables
	7.2.3 Created temporary tables characteristics
	7.2.4 Created temporary tables pitfalls
	7.2.5 Created temporary tables restrictions

	7.3 Declared temporary tables
	7.3.1 What is a declared temporary table?
	7.3.2 Why use declared temporary tables
	7.3.3 Declared temporary tables characteristics
	7.3.4 Creating a temporary database and table space
	7.3.5 Creating a declared temporary table
	7.3.6 Using declared temporary tables in a program
	7.3.7 Creating declared temporary tables for scrollable cursors
	7.3.8 Remote declared temporary tables
	7.3.9 Creating indexes
	7.3.10 Usage considerations
	7.3.11 Converting from created temporary tables
	7.3.12 Authorization
	7.3.13 Declared temporary table restrictions

	Chapter 8. Savepoints
	8.1 What is a savepoint?
	8.2 Why to use savepoints
	8.3 Savepoint characteristics
	8.4 Remote connections
	8.5 Savepoint restrictions

	Chapter 9. Unique column identification
	9.1 Identity columns
	9.1.1 What is an identity column?
	9.1.2 When to use identity columns
	9.1.3 Identity column characteristics
	9.1.4 Creating a table with an identity column
	9.1.5 How to populate an identity column
	9.1.6 How to retrieve an identity column value
	9.1.7 Identity columns in a data sharing environment
	9.1.8 Trying to overcome the identity column deficiencies
	9.1.9 Application design considerations
	9.1.10 Identity column restrictions

	9.2 ROWID and direct row access
	9.2.1 What is a ROWID?
	9.2.2 ROWID implementation and maintenance
	9.2.3 How ROWIDs are generated
	9.2.4 Casting to a ROWID data type
	9.2.5 ROWIDs and partitioning keys
	9.2.6 ROWID and direct row access
	9.2.7 ROWID and direct row access restrictions

	9.3 Identity column and ROWID usage and comparison

	Part 3 More powerful SQL
	Chapter 10. SQL CASE expressions
	10.1 What is an SQL CASE expression?
	10.2 Why use an SQL CASE expression
	10.3 Alternative solutions
	10.4 Other uses of CASE expressions
	10.5 SQL CASE expression restrictions

	Chapter 11. Union everywhere
	11.1 What is a union everywhere?
	11.2 Why union everywhere
	11.3 Unions in nested table expressions
	11.4 Unions in subqueries
	11.4.1 Unions in basic predicates
	11.4.2 Unions in quantified predicates
	11.4.3 Unions in EXISTS predicates
	11.4.4 Unions in IN predicates
	11.4.5 Unions in selects of INSERT statements
	11.4.6 Unions in UPDATE

	11.5 Unions in views
	11.6 Explain and unions
	11.7 Technical design and new frontiers

	Chapter 12. Scrollable cursors
	12.1 What is a scrollable cursor?
	12.2 Why use a scrollable cursor
	12.3 Scrollable cursors characteristics
	12.3.1 Types of cursors
	12.3.2 Scrollable cursors in depth

	12.4 How to choose the right type of cursor
	12.5 Using a scrollable cursor
	12.5.1 Declaring a scrollable cursor
	12.5.2 Opening a scrollable cursor
	12.5.3 Fetching rows
	12.5.4 Moving the cursor
	12.5.5 Using functions in a scrollable cursor

	12.6 Update and delete holes
	12.6.1 Delete hole
	12.6.2 Update hole

	12.7 Maintaining updates
	12.8 Locking and scrollable cursors
	12.9 Stored procedures and scrollable cursors
	12.10 Scrollable cursors recommendations

	Chapter 13. More SQL enhancements
	13.1 The ON clause extensions
	13.1.1 Classifying predicates
	13.1.2 During join predicates

	13.2 Row expressions
	13.2.1 What is a row expression?
	13.2.2 Types of row expressions
	13.2.3 Row expression restrictions

	13.3 ORDER BY
	13.3.1 ORDER BY columns no longer have to be in select list (V5)
	13.3.2 ORDER BY expression in SELECT (V7)
	13.3.3 ORDER BY sort avoidance (V7)

	13.4 INSERT
	13.4.1 Using the DEFAULT keyword in VALUES clause of an INSERT
	13.4.2 Inserting using expressions
	13.4.3 Inserting with self-referencing SELECT
	13.4.4 Inserting with UNION or UNION ALL

	13.5 Subselect UPDATE/DELETE self-referencing
	13.6 Scalar subquery in the SET clause of an UPDATE
	13.6.1 Conditions for usage
	13.6.2 Self-referencing considerations

	13.7 FETCH FIRST n ROWS ONLY
	13.8 Limiting rows for SELECT INTO
	13.9 Host variables
	13.9.1 VALUES INTO statement
	13.9.2 Host variables must be preceded by a colon

	13.10 The IN predicate supports any expression
	13.11 Partitioning key update

	Part 4 Utilities versus applications
	Chapter 14. Utilities versus application programs
	14.1 Online LOAD RESUME
	14.1.1 What is online LOAD RESUME?
	14.1.2 Why use Online LOAD RESUME
	14.1.3 Online LOAD RESUME versus classic LOAD
	14.1.4 Online LOAD RESUME versus INSERT programs
	14.1.5 Online LOAD RESUME pitfalls
	14.1.6 Online LOAD RESUME restrictions

	14.2 REORG DISCARD
	14.2.1 What is REORG DISCARD?
	14.2.2 When to use a REORG DISCARD
	14.2.3 Implementation and maintenance
	14.2.4 REORG DISCARD restrictions

	14.3 REORG UNLOAD EXTERNAL and UNLOAD
	14.3.1 What are REORG UNLOAD EXTERNAL and UNLOAD?
	14.3.2 REORG UNLOAD EXTERNAL
	14.3.3 UNLOAD
	14.3.4 UNLOAD implementation
	14.3.5 UNLOAD restrictions
	14.3.6 UNLOAD highlights
	14.3.7 UNLOAD pitfalls
	14.3.8 Comparing DSNTIAUL, REORG UNLOAD EXTERNAL and UNLOAD

	14.4 Using SQL statements in the utility input stream
	14.4.1 EXEC SQL utility control statement
	14.4.2 Possible usage of the EXEC SQL utility statement

	Part 5 Appendixes
	Appendix A. DDL of the DB2 objects used in the examples
	E/R-diagram of the tables used by the examples
	JCL for the SC246300 schema definition
	Creation of a database, table spaces, UDTs and UDFs
	Creation of tables used in the examples
	Creation of sample triggers
	Populated tables used in the examples
	DDL to clean up the environment

	Appendix B. Sample programs
	Returning SQLSTATE from a stored procedure to a trigger
	Passing a transition table from a trigger to a SP

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Abbreviations and acronyms
	Index
	Back cover

