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Abstract In this paper two methods are proposed to
measure the u-T-inconditionality character of any fuzzy
relation for any continuous -norm 7, and it is studied
when both methods result to be equivalent.
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Introduction

The fuzzy relations that are used to make fuzzy inference
should generalise the Modus Ponens property. A way to
do this is through the u-T-conditionality property [1-3]
of fuzzy relations, a worldwide known generalised
modus ponens definition.

In some environments it have been used fuzzy rela-
tions that not always verify the u-T-conditionality
property. In this case it looks interesting to study a de-
gree of satisfaction of this property to find measures for
the p-T-conditionality property of fuzzy relations.

The p-T-inconditionality of a fuzzy relation refers to the
subset of the domain of a fuzzy relation in which it is not
a p-T-conditional.

In this paper two ways for measuring the
u-T-inconditionality property of fuzzy relations are
proposed. A first way computes a generalized distance
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between a fuzzy relation R and the greatest u-7T-condi-
tional relation that is contained in R. The other way
measures the difference between T(u(a),R(a,b)) and
w(b) in all points (a, b) in which R is not u-T-conditional.

It is proven that when T is any continuous #-norm,
and when a generalized distance defined from a
residuated operator of the T-norm is used, both methods
give the same measures of p-7-inconditionality of fuzzy
relations.

Preliminaries

1. Let E;, E; be two sets, let E be the set £y U E3, let u:
E —[0,1] be a fuzzy set and let T be a continuous
t-norm. A fuzzy relation R: E; X E; — [0,1] is
u-T-conditional if and only if T(u(a),R(a, b)) < u(b)
for all (a, b) in E; X E,.

2. The p-T-inconditionality region of a fuzzy relation,
INCY (R), is defined as the subset of £ x E; in which
R is not u-T-conditional, that is:

INCL(R) = {(a,b) € Ey x E>|T(u(a), R(a, b)) > u(b)}

3. Let Tj ©be the fuzzy relation defined by
Ty (a,b) = T(u(a),R(a,b)). For example, Min}, is the
relation defined by Mink(a,b) = Min(u(a), R(a,b)).
Then the p-T-inconditionality region of a fuzzy
relation may also be expressed as:

INCL(R) = {(a,b) € Ey x E|Tl(a,b) > u(b)}

4. From the well known operation in [0, 1], J7(x, y) =
Sup z: T(x, z) <y, [5-7], let JT be defined as the
residual  relation J(a,b) :Jl#(,u(a),u(b)). This
allows a third way of expressing the u-T-incon-
ditionality region of a fuzzy relation:

INC7(R) = {(a,b) € E\ x Ea|R(a,b) > J(a,b)}

5. The pu-T-conditionalized relation of R, [8], is defined
as: R (a,b) = Min(R(a, b), Ji(a,b))
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 [R@b) i Tf(a,b) < u(b)
~ /) (a,b) otherwise

6. Given a fuzzy set w: £ — [0, 1] the fuzzy relation u,:
E| x E; — [0,1] is defined as p,(a,b) = u(b).

u-T-inconditionality of fuzzy relations

Theorem 1
Let R be a fuzzy relation, let u be a fuzzy set and let T be
any continuous #-norm, then

J'(R(a,b),J ] (a,b)) = J" (T} (a,b), w(a,b))
for all (a,b) in E| X E,

Proof
The proof is a consequence of Lemmata 1 to 7. (See
Appendix)

Corollary

Given any continuous f-norm 7', for all (a, b) in E| X E»,
the distance 1 —J7 between a fuzzy relation R in the
point (a, b) and its u-T-conditionalized relation in (a, b)
is the same as the distance 1 —J7 between T%(a,b) and
Hy (av b)

u-T-inconditionality measures of finite fuzzy relations

Definition

A T*-distance between two fuzzy relation R and R’ is
defined by
dr(R,R') = Sup {1 —J"(R(a,b),R'(a,b))}.

(a,b)EE] xXE;

The measure of u-T-inconditionality, My, of a fuzzy
relation can be defined as

Mr(R) = dr(R,J))
= Sup {1-J"(R(a,b),J](a,b))}.

(a,b)EE| XE>
In other words:

For any continuous #-norm the distance dr between a
fuzzy relation R and its u-T-conditionalized fuzzy rela-
tion is equal to the distance dr between T(u(a),R(a,b))
and py(a,b) = p(b). o

For any continuous #-norm, a u-7-inconditionality
measure of fuzzy relation could be calculated as

Sup {I—JT(R(a,b),JﬂT(a,b))} or as
(a,b)EElez

Sup {1 _JT(TIg(a7b)7M2(aab))}'
(a,b)GEl xE

Example:

Let u be a fuzzy set on E = {a,b,c} with membership
degrees p1 = {0.2/a,0.5/b,0.8/c}.

Let R: E x E — [0, 1] be a fuzzy relation defined by

a b c

al 1 01 09
R=plo0o6 1 04
¢ \03 0.7 1

Case 1:' T = Min _
When T = Min, the residual relation J}}’h“ is represented
by

1 1 1
02 1 1
02 05 1

The measure of p-Min-inconditionality My, (R) is
computed as follows

Misin(R) = dysin(R, J)™)

= Sup {1—JMi“(R(a,b),in“(a,b))}
(a,b)€E|><E2

= Sup{l —JM"(0.6,0.2), 1 —J™"(0.3,0.2), 1
—JMin.7,0.5)}
=1-JM"(0.6,0.2) = 0.8

So R is not a p-Min-conditional relation and the mea-
sure of u-T-inconditionality is MMin( R ) = 0.8.

Case 2: T = Product t-norm

1 1 1
Ji“’d is represented by | 0.4 1 1
0.25 0.625 1

The measure of u-Prod-inconditionality Mp.q(R) is
computed as follows:

MProd( R ) = dProd(R7Jl1:md)

= Sup {1—JPrOd(R(a,b),Jimd(a,b))}
(a,b)€E|><E2

= Sup{1 —J°4(0.6,0.4),

1 —JP°4(0.3,0.25),1 — J°4(0.7,0.625)}
=1-J40.6,0.4)} =0.333.
So R is not a u-Prod-conditional relation and the mea-

sure of u-T-inconditionality is MProd( R ) = 0.333.

Case 3: T = L ukasiewicz t-norm

1 1 1
J) is represented by | 0.7 1 1 |, which contains R,
04 0.7 1

so the measure of wu-W-inconditionality Mp,oq (R) is
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computed as so it is the residual operator J¥rd of the product t-norm.
W The values of this operator on E; x E; = [0,1] x [0, 1]

My (R) =dw(R,J,) are shown in Fig. 1.
= Sup {1-J"(R(a,b),J f W(a,b))} It is known that this operator is Prod-conditional
(a,b)€E\ X E; and W-conditional, but not Min-conditional. So it
_ _ 1l — is computed the distance 1 —JM"  between
=Sup{l =1, 11} =0 Min(u(x),J%4(x,y)) and pu(y). The graphical re-
so R is a u-W-conditional fuzzy relation. presentation of the expression Min(x, Goguen(x,y)) is

shown in Fig. 2.
The Mj,;, measure of u-Min-inconditionality of the

p-T-inconditionality measures of infinite fuzzy relations =~ Goguen implication operator is computed as:

// 1 — JMi"(Min(x, Goguen(x, y)),) - dx - dy

Definition
(xy)EE1 X E>
p— T W .
// (1 -J"(R(a,b),J, (a,b)))da db _ // (1= (. 1)) - dx - dy
a b EEl xE>
0<x<y<1

This new measure of u-T-inconditionality is monotone. .
It is not based just on a point in which the supremum is + // (1 —JM(x, y))dx - dy
reached, but it is based on the points in which the 0<<y<x<l
u-T-conditional property does not hold. Observe that

the expression in the integral is zero for all points on / / JMm ,¥)) - dx-dy
which the u-T-conditional property holds.

0<y<x?<1

Examples = // (1-Nhddy+ // (I —y)dxdy
Some operators are frequently used to make fuzzy

inference. Fuzzy operators are fuzzy relations on the Oswsysl 0s?sy<xsl
universe E; X E; = [0, 1] x [0, 1].

The following examples show the evaluation of the
measures M} for some implication operators. For all of
them, it is taken the fuzzy set u as the identity (i.e., as a
function w: [0, 1] — [0, 1] such that p(x) = x).

Table 1 shows the M} measures of the most used residual
implication operators, S-implications, QM-implications
and conjunctions for the z-norms minimun, product and
Lukasiewicz:
The calculation of some of these measures is shown in
what follows:

Example 1: Goguen implication D2 04,08 08 1

The Goguen implication is defined by
Fig. 1 The Goguen Implication

1 when x <
Prod _ Sy
S y) = {y/x otherwise,

Table 1 M’y measures of Id-T-inconditionality of some opera-
tors

Operator T = Min T = Prod T=W
JMn 0 0 0

JProd % 0 0
Max(1-x, y) = = 0
1-x+xy 3 2-2In2 0

Min (x, y) 0 0 0

Prod (x, y) = xy i 0 0
(%) =1 3 i 5

Fig. 2 Graphics of Min{‘;’ayuen
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0<y<x2<l1

1 x |
Z//(l—y)dydx=§-

0 0

Example 2: Kleene—Dienes implication

The Kleene—Dienes implication operator is defined as
Max(1 —x,y). The graphical representation of the
expression Min(x, Kleene—Dienes(x,y)) is shown in
Fig. 3. The M;;, measure of u-Min-inconditionality of
the Kleene—Dienes implication is computed as follows

J o

—y)dxdy

— JMin (Min(x, Max(1 — x,y)), y)dxdy

ab EE] xXE,
// — JM(x, y))dx dy
0<x<y<1
// — JM(x, y))dx dy
0<y<x<}
+ // 1 —JMn(] — x,y)dxdy
0<y<i<x<l
_ // (1= 1)dxdy + // (1= y)dxdy
0<x<y<l1 0§y§x§%
+ // (I —y)dxdy

l

2

s

1

5
/1— Ydxdy = TR
y

O\N._ @

The graphical representation of the expression Prod(x,
Max(1 — x,y)) is shown in Fig. 4.

The M}, 4 measure of u-Prod-inconditionality of the
Kleene—Dienes implication is computed as follows

Fig. 3 Min(x, Kleene—Dienes(x, y))

Fig. 4 Graphics of Prod™

J o

(a,b)EE\ XE>

(7)), ¥

Kleene—Dienes

— JPd(Prod(x, Kleene-Dienes

) -dx-dy
(1 —J74(x - Max(1 —x,),y)) - dx - dy

0<y<x—x2<1

_ // (1-1)-dx-dy

0<x—x2<y<1

) -dx-dy

o e

0<y<x—x2<1

1 x—x?

SIEE

Conclusion

1
dy-dy = —.
v 30

This paper proposes two methods to study a degree for
the up-T-conditionality property of a fuzzy relation, in
order to check whether the modus ponens is generalized
when doing fuzzy inference.

The first method is based on computing a generalized
distance between the fuzzy relation and the greatest u-7-
conditional relation contained in it. Another method
consists in computing a generalized distance between
T(u(a),R(a,b)) and w(b) on all the points (a,b) in
Ey x E; where the punctual property of u-T-con-
ditionality does not hold.

It is proven that for any continuous #-norm both
methods give the same values when the generalized
distance 1 — J7 is used.

There are defined two measures of inconditionality
based on fuzzy relations distances, one for finite fuzzy
relations an another one for infinite fuzzy relations.

Several examples are provided, especially for the most
well known implication operators.
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Appendix

Preliminaries

1. A generalized metric space is a triplet (E, p, m) where
Eisaset, p=(4,S,<,e) is a commutative monoide
with neutral element e, and m is an S-distance, which
is a mapping m: E X E — A such that:

1) m(a,a) = e, for all a in E

2) m(a,c) < S(m(a,b),m(b,c)), for all a,b,c in E (S-tri-
angular inequality)

Let T« be the dual t-conorm of a -norm 7, defined by
T (x,y)=1-T(1 =x,1 —y).

Let $*=([0,1],7*,<,0) be a commutative ordered
monoide with neutral element 0.

Given a relational structure (E,J), if J is a T-preorder
then the function d(a,b) = 1 —J7(a,b) is a T*-distance
in the generalized metric space ([0, 1], &%, d) [4].

2. The family of ~-norms of a triangular -norm 7 is the set
of t-norms defined as: T,(x,y) = ¢ (T (¢(x), (),
given any continuous, strictly increasing function
¢: [0, 1] x [0, 1] — [0, 1] such that ¢(0) =0 and
o(l)=1.

Let ou: E — [0,1] be the fuzzy set (¢ o u) defined by

ou(a) = ¢(u(a)).

Let @R: Ey x E; — [0,1] be the fuzzy relation (¢ oR)

defined by @R(a,b) = ¢(R(a,b)).

3. A t-norm T is an ordinal sum if there exist a finite
or numerable collection of archimedean ¢-norms
{T;: i€J} and a collection of disjoint intervals
{(ai,b;): i € J} in [0, 1] such that

T(x,y) = a;+ (b —Gi)ﬂ(,i__i{i,f_‘z) if (xv,) € [ai, ;]
Min(x,y) otherwise

Remarks
Some necessary conditions for the point (@, b) of E| x E
to be in INC/.(R) are the following:

Condition (1): R(a,b) > R " (a,b) = J!(a,b).
Condition (2): T(a,b) = T(u(a),R(a,b) > u(b).
Condition (3): u(a) > u(b).

Conditions (1) and (2) are held if and only if (a,b) is in
INCE(R).

Lemma 1
Given a fuzzy relation R and given a fuzzy set p,
JM(R(a, b), )" (a, b)) = JM*(Ming(a, b), iy (a, b)).
Proof
JMi“(R(a,b),in“(a,b))
{ 1 if R(a,b) < JM"(a,b)

JY"(a,b) otherwise
M ((Min)g(a, b), iy (a, b))
B { 1 if Mink(a,b) < pu(b)
~ L u(b) otherwise
If the point (g, b) is not in INCjy,, (R), then conditions (1)

and (2) do not hold, so both expressions get the value 1.
If the point (a, b) is in INCj, (R), then:

JY™(R(a,b), 3" (a,b)) = J)"(a, b) by condition(1)

1 if u(a) < u(b) ondition

- {u(b) if u(a) > u(b) P eondnont)
— u(b) by condition(2)
= JM"(Mink(a, b), u(b)). "
Lemma 2

Given a fuzzy relation R and a fuzzy set pu,

JP4(R(a, b),Jﬁ“’d(a, b)) = J*°Y(Prodk(a,b), uy(a, b))
Proof

TP (Ra,b), JF(a, )
1 if R(a,b) < Jimd(a, b)

- Prody,(a,b)
R(a.b)

if R(CL, b) > Jir‘)d(a, b)
JP4(Prodg(a, b), uy(a, b))
{ 1 if Prod %(a,b) < u(b)
= u(b)
Prody (a,b)

if Prod %(a,b) > u(b)
If the point (a, b) is not in INC}_,

(R), then conditions (1) and (2) do not hold, and both
expressions are 1. If (a, b) is in INC},_; (R) then
J7%(R(a, b),J ;7 (a, b))

Prod
_ Jy (a,b)

R(a.b) by conditions(1), (3)



~ub) by the definition of J], we have
wu(a)R(a,b) S (¢R(a,b),J" (pu(a), pu(b)))
= D)y condition(2) = J" (Tor(a,b), piir(a,6))

(Prod)(a, b)
= J"d(Prodf(a, b), u(b))
= JPd(Prodh(a, b), uy(a, b)).

by the definition of Ty
J" (¢R(a,b),J" (pu(a), pu(b)))
= JT(T(@ﬂ(a)7 QDR(CZ, b))v q)lu2(a7 b))

Lemma 3 . _1
Let W be the Lukasiewicz t-norm. Given a fuzzy relation adding ¢¢
R and given a fuzzy set s T (R (a,b), 00" (pu(a), ou(b)))
T (R(a,b),J" (a,b)) = J" (Wi(a,b), p(a, b)) =J (9o ' T(pu(a), pR(a,b)), puy(a,b))
if and only if
Proof T T
If the point (a, b) is not in INCY, (R) then conditions (1) S (@R(a,b), qu(p(,u(a), u(b)))
and (2) are not verified, so both expressions are 1. If =J"(oT,(u(a),R(a,b)), pu,(a,b))
(a,6) is in INCyy (R), then: by the definition of (7 )%
®
J"(R(a,b),J (a, b)) JT(@R(a,b), J o ((a), u(b)))
= Min(1,1 — R(a, b) —I—J,fV(a,b)) by condition(1) = JT(<p(T(p)§§(a, b), pps(a, b))
=1—R(a,b) +Min(1,1 — u(a) applying ¢~! to both sides
(b)) by condition(3) 0~ (pR(a,b), 9 (u(a), u(b)))

=1—R(a,b) + 1 — p(a) + u(b)
= 1—(u(a) +R(a,b) — 1) + u(b)
=1 — Max(0, u(a) + R(a,b) — 1) + u(b)
=1 — W(u(a),R(a,b)) + u(b) by condition(2) J o (R(a,b),J o (w(a), u(b)))
=M in(1,1 — W¥(a,b) + u(b)) = J5((T,)k(a;b), 1y(a, b))
=J" (W} (a,b), u(b)) = J" (W} (a,b), 1,(a,b)) B bylemma 5

I (R(a, b),J™ (u(a), u(b)))

Lemma 4 T I
Given a fuzzy relation R, and given a fuzzy set u and =S ((Ty)k(a:b), 1y(a, b))
a t-norm 7, in the family of the product or the Luka- and by the definition of JMT

siewicz f-norm, it is verified that J%(R(a, b),JﬂT'/‘(a, 5)

JTQ) (R(av b)vJyTT(a’ b)) = JTq’((T;ﬂ)%(aa b)a :u2<a7 b)) = ‘]Tw((T(p)%(a’ b)a 4“2(“3 b))

= ¢ U (@(T,)k(a,b), pus(a, b))
by the definition of J]

Proof

Let T be the product or the Lukasiewicz -norm. Ap-
plying Lemmas 2 and 3 to the fuzzy relation @R and to
the fuzzy set @u, it is deduced that

Lemma 5
It is held that Jf; =J%

Proof
JLxy) =0 U (0(x), ()
= ¢ 'Sup{z: T(p(x),2) < p(»)}

JT(QR(av b)"](],;ﬂ((L b)) = JT(TZZﬁ(aa b), pus(a,b)).
It is shown that this condition is held if and only if

J7(R(a,b),J;0 (a,b)) = J"((T,,)z(a, b), u(a,b)).

. thon b reoult . o = ¢ 'Sup{o(z) : T(9(x). 9(2)) < ()}
nd then the result is proven for all #-norms in the fa- -5 T <

mily of the product and in the family of the Lukasiewicz upiz (_(f)(x)’ ¢(2) < o)}
t-norm. This proof is shown by the equivalence of the =Sup{z: ¢" T(ox),¢(z)) <y}
following equivalences = Sup{z: T,(x,2) < y}

I (@R(a,b), 7, (a,0)) = I (Tp(a, b), ops(a, b)) =J"(x,y).



Lemma 6

Let T be an ordinal sum defined through a collection of
archimedean s-norms {7;: i € J} and a collection of
disjoint intervals {(a;,b;) : i € J}. The residuated op-
eration of 7 is JT (x,y) = sup{z/T(x,z) < y}

1 ifx<y
_Jy if x >y and (x,»)
ai+([y—a,~)]f<ﬁ,%> if x>y and (x,)
Proof

1) If x <y, any residuated operation of a t-norm takes
the value 1.

2) If x > y and (x, y) € [a;, b;]>, then JT(x,y) = y. This is
because

2.1) If x4 [a;, by, then J7(x,y) = sup{z: T(x,z) <y}
= supq{z : Min(x,z) <y} = y.

If x € [a;, b;] and y€ [a;, b;], then z = JT(x, y) is

not in [a;, b;], because y < x, so y < «; and if

z=J"(x,y) would be in [a;, b;], then, by Lem-

ma 1, T(x,z) would also be in [a;, b;] which

contradicts T(x,z) < y. As z4 [a;, b;], the t-norm

must be the minimum and

JT(x,y) = sup{z : T(x,2) < }

= sup{z : Min(x,z) <y} =y.

3) Ifx>yand (x,y) € [a, bi]%, then JT(x,y) € [a;, bi].
This holds because if z=J7(x,y) would not be in
[a;,  b], then JT(x,y) =sup{z: T(x,z) <y}
= sup{z : Min(x,z) < y} = y, which contradicts with
y €la;, bi]. So, in this case:

JT(x,y) =sup{z: T(x,z) < y}

= sup{z/a,— + (b — al_)Tl_<x—a,- e a,-) < y}

b,-a[ ’ b,‘a,‘
X—a; z—a; y—a;
- sup{z/T,( bia; ' bia; ) =% —a}

- z—a,-: (X — 4 Y —a
{Z/b—ai d (b,‘a[ ’ b,'a,‘ )}

(X —a; z—a;
=a bi — W -, 4.
¢ +( aj) < bia; bia;
Definition

Let R be a fuzzy relation. The fuzzy relation Rj; restricted
from R to the interval I; = [a;, b;], is defined by:

R(a,b) —a;
b,»—ai

Let u be a fuzzy set. The fuzzy set u;; restricted from u to
the interval [a;, b;], is defined by:

2.2)

RI,»(a, b) =

ua) —a;

tii(a) = T bi—a;

Lemma 7

Let R be a fuzzy relation, u be a fuzzy set and T be an
ordinal sum, then

[a;, b;lfor all i € J
[a;, bi]

J'(R(a,b),J (a,b))
=J'(Th(a,b), y(a, b)) for all (a,b)inE; x E,.

Proof
The proof follows from Sublemmas 1, 2, 3,4, Sand 6. B

Sublemma 1
If R(a, b) < J7 (a, b) and if T} (a, b) < py(a, b), then:
JT(R(a,b),J ] (a,b)) = JT(T(a,b), uy(a, b)).

Proof
By the properties of the residuated operation:
J!(R(a,b),J,(a, b)) = J(Tk(a,b), iy, b)) = 1.

Note that in this case it is always held that u(a) < u(b).
In the other cases, it is verified that R(a, b) > Jg (a, b),
$O

Tr(a,b) > y(a, b)andu(a) > u(b). u
Sublemma 2

If w(b) € [a;, b;], then

J'(R(a,b),J | (a,b)) = J" (Tk(a,b), us(a,b)).

Proof
By Lemma 6, case 2.2 it holds that:

J'(R(a,b),J ] (a,b))

Sublemma 3
If w(a), w(b)€ [a;, bi] and R(a, b)€ [a;, b;] then:

JT(R(avb)vJZ(aab)) = JT(T%(avb)vlb(avb))'
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Proof
T(u(a),R(a,b)) > u(b), so R(a,b)) > u(b), but R(a,b)¢
lai,bi], so a ula) < b; < R(a,b)), and

< u(b) <
= ula

sO
b) <

Min(u(a), R(a, b)) ). By Lemma 6 it holds that:

g7

I

JT(R(a,b),J;(a,b)) = J}(a,b) = J" (u(a), u(b))
= JT(Min(p(a),R(a,b)), (b)) = J" (T (u(a), R(a, b)),
u(b)) = J" (Th(a,b), wy(a,b)). u

Sublemma 4
If R(a, b), u(b) are in [a;, b;] and w(a) ¢ [a;, b;], then

‘]T(R(a7 b)“];];(aa b)) = JT(TI%(a’ b), i(a, b)).
Proof
T(u(a),R(a,b)) > u(b), so R(a,b)) > u(b), and a; <
u((b)b<) R(a,b) < b; < p(a), so Min(u(a), R(a,b))=
J'(R(a,b),J ] (a,b))

=J" R(a, b)7JT(’u(a), (b))

=J"(R(a,b (a,b)), u(b))

Sublemma 5
If u(b) € [as,
JT(R(a,b),J ] (a,b))

b;] and p(a), R(a, b) are not in [a;, b;], then

= JT(T%(avb>7M2(avb))'

Proof
Let T be an ordinal sum. If x, y € [a;, b;], then T(x, y) €
[a;, b;]. This is because T is monotonous, T(a;, a;) = a;,
T(b;, b;) = b; , 50 a; < T(x,y) < b;.
As u(a), R(a, b) are not in [a;, b;], then T(u(a), R(a, b)) is
not in [a;, b;].
J'(R(a,b),J}(a,b))
= JT(R(@, ), (1(a), u(b))
= u(b) = I (T(u(a),R(a, b)),

( u(b))
=J"(Tk(a,b), ty(a,b)).

Sublemma 6
If w(a), u(b), R(a, b)e [a;,

JT(R(avb)vJ;];(aa b)) = JT(Tﬁlz(avb)vﬂz(aab))

b;], then

Proof

Note 1: For archimedean z-norms it holds that J7 (R(a, b),
Jl(a,b)) = J" (T (a,b), 1, (a, b)), so, for any ¢-norm T;,
the fuzzy relation Rj; restricted to interval [a;, b;] and the
fuzzy set p; restricted to [a;, b;] holds that

J" (Rula,b). 73 (a.8) ) = I (L) . b). ().
Note 2: By lemma 5,
T(u(a). R(a.b))

(M@ =4 R(ab) -
=a; + (b; a,)Tl< o —
By lemma 6, case 3, it holds that:

JT(R(a,b),J | (a,b))

—JT (R(a,b),ai +(bi—a)J" (u(ba) - ’#(blj)—ata[) )

i—di

(R(a,b)—a;, (ula)—a; wb)—a;
. N7l ’ i gTi i i
=ait (bi—ai) < bi—a; J ( bi—a; = bi—a;

1

“"> € [ai, bi).

— i+ (bi—a)J" (R,i(a,b) J" (a, b)) See Note 1

i

=a;+ (bi—a))J"((T)f) (@, b), (b))

=a;+ (b —a;)J"(T; ('u(bcj)—;ai ’R(a,b) —‘ai> 7:“(b) _‘ai)

=J"(a;+ (b — a)T; (,u(a) —4; R(a.b) _al) (b))

bl-—a,- ’
See Note 2
R(a,b)),u(b))

—J7(Th(a.b), pa(a,D)).

=JN(T(u(a),



