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Abstract  

Most information discovery processes need to understand the reasons of 
the success of the inference methods or the usability of the new informa-
tion, which can sometimes be somehow explained with a few useful meas-
ures on the premises or on the chosen relations, logics and implications. 
This chapter presents a state of art on the latest concepts of measure, from 
the additive measures, to monotone fuzzy measures and the latest mono-
tone measures in relation to a preorder that gives an ordering for a measur-
able characteristic. A few measures on fuzzy sets and fuzzy relations are 
proposed. Namely, the entropy measures on fuzzy sets, which are a meas-
ure of fuzziness in itself, and the specificity measures on fuzzy sets, which 
cam be understood as measures of utility of the information contained in a 
fuzzy set. Some measures on fuzzy relations to be considered are the con-
ditionality measures, which are degrees of generalization of modus ponens 
when making fuzzy inference. Those measures on fuzzy sets and fuzzy re-
lations provide interesting information on fuzzy inference and approximate 
reasoning processes. 

 
Keywords: fuzzy measure, approximate reasoning, conditionality, speci-
ficity. 

1 Introduction 

The discovery of useful information is the essence of any data mining 
process. Decisions are not usually taken based on complete real world 
data, but most of the times they deal with uncertainty or lack of informa-



  

tion. Therefore the real world reasoning is almost always approximate. 
However it is not only necessary to learn new information in any data min-
ing process, but it is also important to understand why and how the infor-
mation is discovered. Most data mining commercial products are black 
boxes that do not explain the reasons and methods that have been used to 
get new information. However the ‘why and how’ the information is ob-
tained can be as important as the information on its own. When approxi-
mate reasoning is done, measures on fuzzy sets and fuzzy relations can be 
proposed to provide a lot of information that helps to understand the con-
clusions of fuzzy inference processes. Those measures can even help to 
make decisions that allow to use the most proper methods, logics, opera-
tors for connectives and implications, in every approximate reasoning en-
vironment.  
The latest concepts of measures in approximate reasoning is discussed and 
a few measures on fuzzy sets and fuzzy relations are proposed to be used 
to understand why the reasoning is working and to make decisions about 
labels, connectives or implications, and so a few useful measures can help 
to have the best performance in approximate reasoning and decision mak-
ing processes.  
Before some measures on fuzzy sets and fuzzy relations are proposed, this 
chapter collects all the latest new concepts and definitions on measures, 
and shows a few graphics that make a clear picture on how those measures 
can be classified. 
Some important measures on fuzzy sets are the entropy measures and 
specificity measures. The entropy measures give a degree of fuzziness of a 
fuzzy set, which can be computed by the premises or outputs of an infer-
ence to know an amount of uncertainty crispness in the process. Specificity 
measures of fuzzy sets give a degree of the utility of information contained 
in a fuzzy set. 
Other important measures can be computed on fuzzy relations. For exam-
ple, some methods to measure a degree of generalisation of the MODUS 
PONENS property in fuzzy inference processes are proposed.  

2 The Concept of Measure  

The concept of measure is one of the most important concepts in mathe-
matics, as well as the concept of integral respect to a given measure. The 
classical measures are supposed to hold the additive property. Additivity 
can be very effective and convenient in some applications, but can also be 
somewhat inadequate in many reasoning environments of the real world as 



  

in approximate reasoning, fuzzy logic, artificial intelligence, game theory, 
decision making, psychology, economy, data mining, etc., that require the 
definition of non additive measures and a large amount of open problems. 
For example, the efficiency of a set of workers is being measured, the effi-
ciency of the same people doing teamwork is not the addition of the effi-
ciency of each individual working on their own. 
The concept of fuzzy measure does not require additivity, but it requires 
monotonicity related to the inclusion of sets. The concept of fuzzy measure 
can also be generalised by new concepts of measure that pretend to meas-
ure a characteristic not really related with the inclusion of sets. However 
those new measures can show that “x has a higher degree of a particular 
quality than y” when x and y are ordered by a preorder (not necessarily the 
set inclusion preorder).  
The term fuzzy integral uses the concept of fuzzy measure. There are some 
important fuzzy integrals, as Choquet integral in 1974, which does not re-
quire an additive measure (as Lebesgue integral does). Michio Sugeno 
gives other new integral in 1974 for fuzzy sets, and so does David 
Schmeidler in 1982 for decision theory.  

2.1 Preliminaries 

A measurable space is a couple (X, ℘) where X is a set and ℘ is a σ-
algebra or set of subsets of X such that: 
1. X∈℘. 
2. Let A be a subset of X. If A∈℘ then A’∈℘. 

3. If An∈℘ then n
n=1

A
∞

U ∈℘. 

For example, when X is the set of real numbers and ℘ is the σ-algebra that 
contains the open subsets of X, then ℘ is the well-known Borel σ-algebra.  

 

Note: 

The classical concept of measure considers that ℘⊆{0, 1}X, but this con-
sideration can be extended to a set of fuzzy subsets ℑ of X, ℑ⊆[0, 1]X, sat-
isfying the properties of measurable space ([0, 1]X, ℑ).  



  

2.2 Definition of Additive Measure: 

Let (X, ℘) be a measurable space. A function m: ℘→ [0, ∝) is an σ-
additive measure when the following properties are satisfied: 
1. m(∅) = 0. 
2. If An, n = 1, 2, ... is a set of disjoint subsets of ℘ then  

3. m( n
n=1

A
∞

U ) = n
n=1

m(A )
∞

∑  

The second property is called σ-additivity, and the additive property of a 
measurable space requires the σ-additivity in a finite set of subsets An.  
A well-known example of σ-additive is the probabilistic space (X, ℘, p) 
where the probability p is an additive measure such that p(X)=1 and 
p(A)=1–p(A’) for all subsets A∈℘.  
Other known examples of σ-additive measure are the Lebesgue measures 
defined in 1900 that are an important base of the XX century mathematics. 
The Lebesgue measures generalise the concept of length of a segment, and 

verify that if [c, d] ⊂ U
n

i 1=
[ai, bi) then d − c ≤ 

1
( )

n

i i
i

b a
=

−∑ . Other measures 

given by Lebesgue are the exterior Lebesgue measures and interior Lebes-
gue measures. A set A is Lebesgue measurable when both interior and ex-
terior Lebesgue measures are the same. Some examples of Lebesgue 
measurable sets are the compact sets, the empty set and the real numbers 
set ℜ.  

2.3 Definition of Normal Measure 

Let (X, ℘) be a measurable space. A measure m: ℘→ [0, 1] is a normal 
measure if there exists a minimal set A0 and a maximal set Am in ℘ such 
that: 
1. m(A0) = 0. 
2. m(Am) = 1. 
For example, the measures of probability on a space (X, ℘) are normal 
measures with A0=∅ and Am=X. The Lebesgue measures are not necessar-
ily normal.  



  

2.4 Definition of Sugeno Fuzzy Measure [Murofushi and Sugeno; 
1989]  

Let ℘ be an σ-algebra on a universe X. A Sugeno fuzzy measure is g: 
℘→ [0, 1] verifying: 
1. g(∅) = 0, g(X) = 1. 
2. If A, B∈℘ and A⊆B then g(A)≤g(B). 
3. If An∈℘ and A1⊆A2⊆... then 

n
lim
→∞

g(An) = nn
g( lim A  )

→∞
 

Property 2 is called monotony and property 3 is called Sugeno´s conver-
gence.  
The Sugeno measures are monotone but its main characteristic is that addi-
tivity is not needed. 
Banon [1981] shows that several measures on finite algebras, as probabil-
ity, credibility measures and plausibility measures are Sugeno measures. 
The possibility measures on possibility distributions introduced by Zadeh 
[1978] gives Sugeno measures.  

2.5 Theory of Evidence 

The theory of evidence is based on two dual non-additive measures: belief 
measures and plausibility measures.  
Given a measurable space (X, ℘), a belief measure is a function Bel: 
℘→[0, 1] verifying the following properties: 
1. Bel(∅) = 0. 
2. Bel(X) = 1. 
3. Bel(A∪B) ≥ Bel(A) + Bel(B). 
Property 3 is called superadditivity. When X is infinite, the superior con-
tinuity of the function Bel is required. For every A∈℘, Bel(A) is inter-
preted as a belief degree for some element to be in the set A.  
From the definition of belief measure, it can be proved that Bel(A) + 
Bel(A’) ≤ 1. 
Given a belief measure, its dual plausibility measure can be defined as 
Pl(A) = 1 – Cred(A’). 
Given a measurable space (X, ℘) a measure of plausibility is a function 
Pl: ℘→[0, 1] such that 
1. Pl(∅) = 0. 
2. Pl(X) = 1. 
3. Pl(A∪B) ≤ Pl(A) + Pl(B). 
Property 3 is called subadditivity. 
When X is infinite, the inferior continuity of the function Pl is required.  



  

It can be proved that Pl(A) + Pl(A’) ≥ 1. 
The measures of credibility and plausibility are defined by a function m: 
℘→[0, 1] such that m(∅) = 0 and

A
m(A)

∈℘
∑ = 1 where m represents a 

proportion of the shown evidence that an element of X is in a subset A. 

2.6 Theory of Possibility 

The theory of possibility is a branch of theory of evidence where the plau-
sibility measures verify that Pl(A∪B) = max{Pl(A), Pl(B)}. Such plausi-
bility measures are called possibility measures. In the theory of possibil-
ity, the belief measures satisfy that Bel(A∩B) = min{Bel(A), Bel(B)} and 
are called necessity measures. 

 
Definition 1 [Zadeh; 1978, Higashi & Klir; 1983] 
Let (X, ℘) be a measurable space. A possibility measure is a function Π: 
℘→[0, 1] that verifies the following properties: 
1. Π(∅) = 0, Π(X) = 1. 
2. A⊆B ⇒ Π(A)≤ Π(B) 
3. Π i

i I

( A  )
∈
U  = 

i I
sup
∈

{Π(Ai)} for a set of indexes I. 

The possibility measures are sub additive normal measures.  
 
Definition 2 [Zadeh; 1978, Higashi & Klir; 1983] 
Let (X, ℘) be a measurable space. A necessity measure is a function Nec: 
℘→[0, 1] ] that verifies the following properties: 
1. Nec(∅) = 0, Nec(X) = 1. 
2. A⊆B ⇒ Nec(A)≤ Nec(B) 
3. Nec i

i I

( A )
∈
I  = 

i I
inf
∈

{Nec(Ai)} for any set I. 

Possibility measures are plausibility measures and necessity measures are 
belief measures, so: 
1. Π(A) + Π(A’) ≥ 1. 
2. Nec(A) + Nec(A’) ≤ 1. 
3. Nec(A) = 1 - Π(A’). 
4. max{Π(A), Π(A’)} = 1. 
5. min{Nec(A), Nec(A’)} = 0. 
6. Nec(A) > 0 ⇒ Π(A) = 1. 
7. Π(A) < 1 ⇒ Nec(A) = 0. 



  

The Shafer [1976] theory of evidence stands that the probability of an ele-
ment or a set is related to its complementary one. It includes concepts of 
‘low probability’ and ‘high probability’, that are related to the measures of 
possibility and necessity in the sense that for any subset A, Nec(A) ≤ P(A) 
≤ Π(A). 
The theory of possibility also stands on fuzzy sets, where ℘ is a family of 
fuzzy subsets in X.  
A measure of possibility is not always a Sugeno fuzzy measure [Puri & 
Ralescu 1982]. However a normal possibility distribution on a finite uni-
verse X is a Sugeno measure. 

2.7 Definition of Fuzzy Measure [Nguyen & Walker, 1996, 183] 

Let (X, ℘) be a measurable space. A function m: ℘→ [0, ∝) is a fuzzy 
measure (or monotone measure) if it verifies the following properties:  
1. m(∅) = 0. 
2. If A, B∈℘ and A⊆B then m(A) ≤ m(B).  
Property 2 is called monotony.  
For example, all σ-additive measures (as probability) are fuzzy measures. 
Some other fuzzy measures are the necessity measures, the possibility 
measures and the Sugeno measures. 
The figure 1 represents a typology of the most important monotone and 
normal measures. 



  

 
Figure 1: Monotone and normal measures 

2.8 Definition of Fuzzy Sugeno λ-Measure 

Sugeno [1974] introduces the concept of fuzzy λ-measure as a normal 
measure that is λ-additive. So the fuzzy λ-measures are fuzzy (monotone) 
measures.  
Let λ∈ (-1, ∝) and let (X, ℘) be a measurable space. A function gλ: ℘→ 
[0, 1] is a fuzzy λ-measure if for all disjoint subsets A , B in ℘, gλ(A∪B) 
= gλ(A) + gλ(B) + λgλ(A) gλ(B). 
For example, if λ = 0 then the fuzzy λ-measure is an additive measure. 
 



  

2.9 S-Decomposable Measures  

Weber [1984] defined the S-decomposable measures providing a general 
concept of the fuzzy λ-measures and the possibility measures.  
Let S be a t-conorm, and let (X, ℘) be a measurable space. A S-
decomposable measure is a function m: ℘→[0, 1] that verifies the follow-
ing conditions.  
1. m(∅) = 0. 
2. m(X) = 1. 
3. For all disjoint subsets A and B in ℘, m(A∪B) = S(m(A), m(B)). 
The property 3 is called S-additivity.  
For example, the probability measures are W*-decomposable measures, 
where W* is the Łukasiewicz t-conorm. The W*λ-decomposable measures, 
where W*λ is the t-conorm W*λ(x, y) = x + y + λxy are fuzzy λ-measures.  
Let m be a S-decomposable measure on (X, ℘). If X is finite then given a 
subset A in ℘, m(A) = 

x A
S
∈

{m({x})}. 

The figure 2 shows the relation between Sugeno fuzzy measures and S-
decomposable measures. 

 
Figure 2: Relation between S-decomposable measures and Sugeno measures 

 



  

2.10 Fuzzy p -Measure ( Fuzzy Preorder-Monotone Measure)  

Trillas and Alsina [Trillas & Alsina; 1999] give a general definition of fuzzy 
measure. When a characteristic, namely –volume, weight, etc.– needs to be 
measured on the elements of a set X, a preorder relation that allows to 
stand that “x shows the characteristic less than y shows it” for all x and y 
in X is necessary to be set. That reflexive and transitive relation is denoted 
xp y.  
A fuzzy p -measure is defined as follows: 
Let p  be a preorder, for which 0 is a minimal element in X and 1 is a 
maximal element in X. Then a fuzzy p-measure is a function m: ℘(X) → 
[0, 1] that verifies the following conditions: 
1. m(0)=0  
2. m(1)=1 
3. If xp y then m(x) ≤ m(y). 
A good example of fuzzy p -measure on the set of natural numbers N is 
the Sarkovskii measure, which is defined as a measure of approximately 
even numbers, given by the following function m: 
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Then m is a fuzzy p-measures, not for the normal natural numbers order, 
but for the Sarkovskii order, for which the lowest number is 3, and the 
greatest number is 1. It is a well-known order used in dynamic systems and 
given defined as follows:  

3 p 5 p 7 p ... p 2.3 p 2.5 p ... p 22.3 p 22.5 p ... p 23.3 p 23.5 p ... 23.3 
p 23 p 22 p 2 p 1 
Other fuzzy p-measure are all previous defined fuzzy measures, which 
are monotone measures with respect to the set inclusion preorder, that is 
now generalised in both classic set inclusion and fuzzy set inclusion cases. 
The Sugeno [Sugeno; 1974] fuzzy measure concept is also generalised: if ℘ 
is a partial order lattice, then xp y if and only if x∧y=x, and the three 
Sugeno properties are satisfied. If the lattice is ortocomplemented then 
there exists a dual function m*(x)=1−m(x’) that at the same time is a fuzzy 
p -measure.  
Then, the probability measure on a Boole algebra of probabilistic suc-
cesses is also a fuzzy p -measure. 



  

Let ℘ be the set of fuzzy subsets on a given set, the entropy measure in-
troduced by De Luca and Termini [1972], and the possibility or necessity 
measures [Higashi & Klir; 1983] are also a fuzzy p -measures.  
The figure 3 shows graphically the relation between different 
measures and a classification of many of the given examples 
  

 
Figure 3: relation between different measures and a classification of some examples 

 



  

3 Some Measures On Fuzzy Sets and Fuzzy Relations  

3.1 Entropy or Measures of Fuzziness 

Let X be a set and let ℘(X) be the set of fuzzy sets on X. The measures of 
fuzziness or entropies give a degree of fuzziness for every fuzzy set in ℘.  
Some entropy measures have influence from the Shannon probabilistic en-
tropy, which is commonly used as measures of information.  
De Luca and Termini [1972] consider the entropy E of a fuzzy set of ℘(X) 
as a measure that gives a value in [0, ∝] and satisfies the following proper-
ties: 
1. E(A) = 0 if A is a crisp set. 

2. E(A) is maximal if A is the constant fuzzy set A(x) = 
1
2

 for all x∈X. 

3. E(A) ≥ E(B) if A is ‘more fuzzy’ than B by the ‘sharpen’ order. 
4. E(A) = E(A’). 
 
Note that the defined entropy measure of a fuzzy set is a fuzzy p -measure 
where the p  preorder is the ≤S sharpen order, in which B≤SA if for any 

element x in the universe of discourse when A(x) ≤ 
1
2

 then B(x) ≤ A(x) 

and when A(x) ≥ 
1
2

 then B(x) ≥ A(x)  

Kaufmann [1975] proposes a fuzziness index as a normal distance. Other 
authors as Yager [1979] and Higashi and Klir [1983] understand the entropy 
measures as the difference between a fuzzy set and its complementary 
fuzzy set. 
A new proposal for entropy measure given by a t-norm, a t-conorm and a 
negation is as follows: 
Let H: ℘ → [0, 1], H(µ) = k Sx∈U{T(µ(x), N(µ(x))}, where µ is a fuzzy set 
on U, k is a constant that is used to normalise the measure and depends on 
the chosen continuous t-conorm S, the continuous t-norm T and the strong 
negation N.  
It is easy to prove that if µ is crisp then H(µ) = 0. If the t-norm T is the 
minimum or is in the family of the product t-norm, then H(µ) = 0 if and 
only if µ is a crisp set. It is proved that H(µ) = H(µc) by the symmetry 
property of the t-norms. When the t-norm T is the minimum or in the fam-
ily of the product, then if B≤SA then H(B)≤H(A). 



  

So the new proposed entropy verifies the properties given by De Luca and 
Termini [1972] when T is the minimum or in the family of the product t-
norm. 
If the fuzzy set is on an infinite domain, the same result can be extended to 
the new expression  

H(µ) = k ∫
∈Ex

{T(µ(x), N(µ(x))}.dx. 

3.2 Measures of Specificity 

The specificity measures introduced by Yager [1990] are useful as meas-
ures of tranquillity when making a decision. Yager introduces the specific-
ity-correctness trade-off principle. The output information of expert sys-
tems and other knowledge-based systems should be both specific and 
correct to be useful. Yager suggests the use of specificity in default reason-
ing, in possibility-qualified statements and data mining processes, giving 
several possible manifestations of this measure. Kacprzyk [1990] describes 
its use in a system for inductive learning. Dubois and Prade [1999] intro-
duce the minimal specificity principle and show the role of specificity in 
the theory of approximate reasoning. Higashi and Klir [1983] introduce a 
closely related idea called non-specificity. The concept of granularity in-
troduced by Zadeh [1978] is correlated with the concept of specificity.  
Let X be a set with elements {xi} and let [0, 1]X be the class of fuzzy sets 
of X. A measure of specificity Sp is a function Sp: [0, 1]X →[0, 1] such 
that: 
1. Sp(µ) = 1 if and only if µ is a singleton (µ = {x1}). 
2. Sp(∅) = 0  
3. If µ and η are normal fuzzy sets in X and µ⊂η, then Sp(µ)≥Sp(η). 
A general expression [L. Garmendia; R. R. Yager; E. Trillas y A. Salvador, 
2003] that can be used to build measures of specificity from three t-norms 
and negations is an application SpT: [0, 1]X→[0, 1] defined by SpT(µ) = 
T1(a1, N(T2*j=2,..,n{T3(aj, wj)}) where µ is a fuzzy set in a finite set X, and 
ai is the membership degree of the element xi (µ(xi)=ai), the membership 
degrees ai∈[0, 1] are totally ordered with a1 ≥ a2 ≥ ... ≥ an, N is a negation, 
let T1 and T3 be any t-norms, T2* a n-argument t-conorm and {wj} is a 
weighting vector.  
For example, when N is the negation N(x) = 1-x, T1 and T2 are the Łu-
kasiewicz t-norm defined by T1(a, b) = max{0, a+b−1}, so T2*(a1, ..., an) = 
min{1, a1+ ..+an}, and T3 is the product, then the previous expression gives 
Yager´s [1990] linear measure of specificity, defined as 



  

Sp(µ) = a1 − ∑
=

n

2j

wj aj. 

The measures of specificity are not monotone measures, because the 
measure of specificity of a fuzzy set is lower when some membership de-
grees that are not the highest degree are increased. However the measures 
of specificity of fuzzy sets are fuzzy p -measures, where p is a preorder 
that classifies the fuzzy sets by the utility of the contained information, or 
by a given distance to a singleton.  
Let A be a fuzzy set on an infinite universe X and let Aα be its α-cut.  
R. R. Yager [1998] defines a measure of specificity on a continuous do-

main Sp as Sp(A) = ∫
αmax

0

F(M(Aα)) dα, where αmax is the maximum mem-

bership degree of A and F is a function F: [0, 1] → [0, 1] verifying that 
F(0)=1, F(1)=0, and F(x) ≤ F(y) ≤ 0 when x>y. 

For example, the expression ∫
αmax

0

Length(Aαi)dα can be interpreted as the 

area under the fuzzy set A. So, the measure of specificity under a fuzzy set 
under an interval [a, b] can be interpreted as  

αmax – 
area under A

b-a
. 

The measures of specificity of fuzzy sets on infinite universes can be given 
by an expression  

MS(A) = T1(αmax, N( ∫
αmax

0

T2(M(Aα), dα))) 

where ∫
αmax

0

 is a Choquet integral, T1 and T2 are t-norms and N is a nega-

tion. 
Yager [1991] introduced the concept of specificity of a fuzzy set under 
similarities using the Zadeh [1971] concept of similarity or Min-
indistinguishability. 
The α-cut of a similarity S is a classical equivalence relation denoted Sα. 
Let πα be the set of equivalence classes of S for a given value α. Let µα/S 



  

be the set of equivalence classes of πα defined in the following way: class 
πα(i) belongs to µα/S if there exists an element x contained in πα(i) and in 
the µ´s α-cut (µα).  
Yager [1991] definition of measure of specificity of a fuzzy set µ under a 
similarity is the following: 

Sp(µ/S) = ∫
α

αµ

max

)S/(Card
0

1
dα. 

3.3 Measures of µ-T-Unconditionality 

The µ-T-conditionality property of fuzzy relations generalises the modus 
ponens property when making fuzzy inference. A fuzzy relation R: 
E1×E2→ [0,1] is µ-T-conditional if and only if T(µ (a), R(a, b)) ≤ µ(b) for 
all (a, b) in E1×E2. 
Some ways to measure a degree of verification of this property are dis-
cussed, which are monotonous measures on the measurable space (ℜ, ℑ, 
M), where ℜ is the set of fuzzy relations R: E1×E2→[0, 1], ℑ the set of 
measurable subsets of ℜ and M is a measure of µ-T- unconditionality. 
There are two ways to define those measures [L. Garmendia; E. Trillas; A. 
Salvador; C. Moraga, 2005]. A first way computes a generalised distance be-
tween a fuzzy relation R and the greatest µ-T-conditional relation that is 
contained in R. The other way measures the difference between T(µ(a), 
R(a, b)) and µ(b) in all points (a, b) in which R is not µ-T-conditional. 
Let JT(x, y) = Sup {z: T(x, z) ≤ y} be the residual operator of a t-norm T, 
let TJ µ (a, b) = JT (µ(a), µ(b)), and let µ

RT (a, b) = T(µ(a), R(a, b)). In Gar-

mendia [2003] it is proved that JT(R(a, b), TJµ (a, b)) = JT( µ
RT (a, b), µ2(a, b)) 

for all continuous t-norms, which shows that when a generalised distance 
defined from a residuated operator of the T-norm is used, both methods set 
the same measures of µ-T-unconditionality of fuzzy relations. 
So, given any continuous t-norm T, for all (a, b) in E1×E2, the distance 1-JT 
between a fuzzy relation R in the point (a, b) and its µ-T-conditionalized 
relation TJ µ (a, b), is the same than the distance 1-JT between µ

RT (a, b) and 

µ(b).  
Some operators are frequently used to make fuzzy inference. The fuzzy 
operators are fuzzy relations on the universe E1×E2 = [0, 1]×[0, 1].  



  

The following examples show the evaluation of the measures for some im-
plication operators. For all of them, the fuzzy set µ is taken as the identity 
(that is, as a function µ:[0, 1]→[0, 1] such that µ(x)=x). 
The chart bellow gives the measures of the most used residual implication 
operators, S-implications, QM-implications and conjunctions for the t-
norms minimum, product and Łukasiewicz: 
 

Table 1: measures of Id-T-unconditionality of some operators 

Operator T = Min T=Prod T = W 

JMin 
0 0 0 

JProd 
1
3

 0 0 

Max(1-x, y) 
5
24

 1
30

 0 

1-x+xy 
1
3

 
3 2ln 2
2
−

 

0 

Min(x, y) 
0 0 0 

Prod(x, y) =xy 
1
3

 0 0 

1(x, y) = 1 
1
3

 1
4

 1
6

 

 
The measures of µ-T- unconditionality of fuzzy relations are monotone 
measures on the measurable space (ℜ, ℑ, M) where ℜ is the set of fuzzy 
relations R: E1×E2→[0, 1], ℑ is the set of measurable subsets of ℜ and M 
is a measure of µ-T- unconditionality.  



  

4 Conclusions 

This paper presents an overview of the evolution of the concept of fuzzy 
measure. Some of these are relevant to understand the process of inference, 
even when these are neither additive nor monotone. Proposals for non-
monotone measures on fuzzy sets (entropy and specificity) are presented. 
They can be considered to be measures of information on the premises or 
conclusions in approximate reasoning. Finally some results are discussed 
on a monotone measure on fuzzy relations to understand whether or with 
which logics is the modus ponens generalised when making fuzzy infer-
ence.  
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