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Abstract. This paper presents a state of art on the latest concepts of measure, 
from the additive measures, to monotone fuzzy measures and the latest mono-
tone measures in relation to a preorder that gives an ordering for a measurable 
characteristic.  

1 Introduction 

The discovery of useful information is the essence of any data mining process. Deci-
sions are not usually taken based on complete real world data, but most of the times 
they deal with uncertainty or lack of information. Therefore the real world reasoning 
is almost always approximate. However it is not only necessary to learn new informa-
tion in any data mining process, but it is also important to understand why and how 
the information is discovered. Most data mining commercial products are black boxes 
that do not explain the reasons and methods that have been used to get new informa-
tion.        However the ‘why and how’ the information is obtained can be as important 
as the information on its own. When approximate reasoning is done, measures on 
fuzzy sets and fuzzy relations can be proposed to provide a lot of information that 
helps to understand the conclusions of fuzzy inference processes. Those measures can 
even help to make decisions that allow to use the most proper methods, logics, opera-
tors for connectives and implications, in every approximate reasoning environment.  

The latest concepts of measures in approximate reasoning is discussed and a few 
measures on fuzzy sets and fuzzy relations are proposed to be used to understand why 
the reasoning is working and to make decisions about labels, connectives or implica-
tions, and so a few useful measures can help to have the best performance in ap-
proximate reasoning and decision making processes.  
Before some measures on fuzzy sets and fuzzy relations are proposed, this chapter 
collects all the latest new concepts and definitions on measures, and shows a few 
graphics that make a clear picture on how those measures can be classified. 



Some important measures on fuzzy sets are the entropy measures and specificity 
measures. The entropy measures give a degree of fuzziness of a fuzzy set, which can 
be computed by the premises or outputs of an inference to know an amount of uncer-
tainty crispness in the process. Specificity measures of fuzzy sets give a degree of the 
utility of information contained in a fuzzy set. 
Other important measures can be computed on fuzzy relations. For example, some 
methods to measure a degree of generalisation of the MODUS PONENS property in 
fuzzy inference processes are proposed.  

2 The Concept of Measure  

The concept of measure is one of the most important concepts in mathematics, as well 
as the concept of integral respect to a given measure. The classical measures are sup-
posed to hold the additive property. Additivity can be very effective and convenient 
in some applications, but can also be somewhat inadequate in many reasoning envi-
ron ments of the real world as in approximate reasoning, fuzzy logic, artificial intelli-
gence, game theory, decision making, psychology, economy, data mining, etc., that 
require the definition of non additive measures and a large amount of open problems. 
For example, the efficiency of a set of workers is being measured, the efficiency of 
the same people doing teamwork is not the addition of the efficiency of each individ-
ual working on their own. 

The concept of fuzzy measure does not require additivity, but it requires 
monotonicity related to the inclusion of sets. The concept of fuzzy measure can also 
be generalised by new concepts of measure that pretend to measure a characteristic 
not really related with the inclusion of sets. However those new measures can show 
that “x has a higher degree of a particular quality than y” when x and y are ordered by 
a preorder (not necessarily the set inclusion preorder).  

The term fuzzy integral uses the concept of fuzzy measure. There are some impor-
tant fuzzy integrals, as Choquet integral in 1974, which does not require an additive 
measure (as Lebesgue integral does). Michio Sugeno gives other new integral in 1974 
for fuzzy sets, and so does David Schmeidler in 1982 for decision theory.  

2.1 Preliminaries 

A measurable space is a couple (X, ℘) where X is a set and ℘ is a σ-algebra or set 
of subsets of X such that: 
1. X∈℘. 
2. Let A be a subset of X. If A∈℘ then A’∈℘. 

3. If An∈℘ then n
n=1

A
∞

U ∈℘. 

For example, when X is the set of real numbers and ℘ is the σ-algebra that con-
tains the open subsets of X, then ℘ is the well-known Borel σ-algebra.  

 



Note: 
The classical concept of measure considers that ℘⊆{0, 1}X, but this consideration 

can be extended to a set of fuzzy subsets ℑ of X, ℑ⊆[0, 1]X, satisfying the properties 
of measurable space ([0, 1]X, ℑ).  

2.2 Definition of Additive Measure: 

Let (X, ℘) be a measurable space. A function m: ℘→ [0, ∝) is an σ-additive meas-
ure when the following properties are satisfied: 

1. m(∅) = 0 
2. If An, n = 1, 2, ... is a set of disjoint subsets of ℘ then  

  m( n
n=1

A
∞

U ) = n
n=1

m(A )
∞

∑  

The second property is called σ-additivity, and the additive property of a measur-
able space requires the σ-additivity in a finite set of subsets An.  

A well-known example of σ-additive is the probabilistic space (X, ℘, p) where 
the probability p is an additive measure such that p(X)=1 and p(A)=1–p(A’) for all 
subsets A∈℘.  

Other known examples of σ-additive measure are the Lebesgue measures defined 
in 1900 that are an important base of the XX century mathematics.  

2.3 Definition of Normal Measure 

Let (X, ℘) be a measurable space. A measure m: ℘→ [0, 1] is a normal measure if 
there exists a minimal set A0 and a maximal set Am in ℘ such that: 

1. m(A0) = 0 
2. m(Am) = 1 
For example, the measures of probability on a space (X, ℘) are normal measures 

with A0=∅ and Am=X. The Lebesgue measures are not necessarily normal.  

2.4 Definition of Sugeno Fuzzy Measure [17]  

Let ℘ be an σ-algebra on a universe X. A Sugeno fuzzy measure is g: ℘→ [0, 1] 
verifying: 
1. g(∅) = 0, g(X) = 1 
2. If A, B∈℘ and A⊆B then g(A)≤g(B) 
3. If An∈℘ and A1⊆A2⊆... then 

n
lim
→∞

g(An) = nn
g( lim A  )

→∞
 

Property 2 is called monotony and property 3 is called Sugeno´s convergence.  
The Sugeno measures are monotone but its main characteristic is that additivity is 

not needed. 



Probability, credibility and plausibility measures are Sugeno measures. The possibil-
ity measures on possibility distributions are Sugeno measures.  

2.5 Theory of Evidence 

The theory of evidence is based on two dual non-additive measures: belief measures 
and plausibility measures.  

Given a measurable space (X, ℘), a belief measure is a function Bel: ℘→[0, 1] 
verifying the following properties: 
1. Bel(∅) = 0 
2. Bel(X) = 1 
3. Bel(A∪B) ≥ Bel(A) + Bel(B) 

Property 3 is called superadditivity. When X is infinite, the superior continuity of 
the function Bel is required. For every A∈℘, Bel(A) is interpreted as a belief degree 
for some element to be in the set A.  

From the definition of belief measure, it can be proved that Bel(A) + Bel(A’) ≤ 1. 
Given a belief measure, its dual plausibility measure can be defined as Pl(A) = 1 – 

Cred(A’). 
Given a measurable space (X, ℘) a measure of plausibility is a function Pl: 

℘→[0, 1] such that 
1. Pl(∅) = 0. 
2. Pl(X) = 1. 
3. Pl(A∪B) ≤ Pl(A) + Pl(B). 

Property 3 is called subadditivity. 
When X is infinite, the inferior continuity of the function Pl is required.  
It can be proved that Pl(A) + Pl(A’) ≥ 1. 
The measures of credibility and plausibility are defined by a function m: ℘→[0, 1] 

such that m(∅) = 0 and
A

m(A)
∈℘
∑ = 1 where m represents a proportion of the shown 

evidence that an element of X is in a subset A. 

2.6 Theory of Possibility 

The theory of possibility is a branch of theory of evidence where the plausibility 
measures verify that Pl(A∪B) = max{Pl(A), Pl(B)}. Such plausibility measures are 
called possibility measures. In the theory of possibility, the belief measures satisfy 
that Bel(A∩B) = min{Bel(A), Bel(B)} and are called necessity measures. 

 
Definition 1 [14] 
Let (X, ℘) be a measurable space. A possibility measure is a function Π: ℘→[0, 1] 
that verifies the following properties: 
1. Π(∅) = 0, Π(X) = 1. 
2. A⊆B ⇒ Π(A)≤ Π(B) 



3. Π i
i I

( A  )
∈
U  = 

i I
sup
∈

{Π(Ai)} for a set of indexes I. 

The possibility measures are sub additive normal measures.  
 
Definition 2 [14] 
Let (X, ℘) be a measurable space. A necessity measure is a function Nec: ℘→[0, 1] 
] that verifies the following properties: 
1. Nec(∅) = 0, Nec(X) = 1. 
2. A⊆B ⇒ Nec(A)≤ Nec(B) 
3. Nec i

i I

( A )
∈
I  = 

i I
inf
∈

{Nec(Ai)} for any set I. 

Possibility measures are plausibility measures and necessity measures are belief 
measures, so: 
1. Π(A) + Π(A’) ≥ 1. 
2. Nec(A) + Nec(A’) ≤ 1. 
3. Nec(A) = 1 - Π(A’). 
4. max{Π(A), Π(A’)} = 1. 
5. min{Nec(A), Nec(A’)} = 0. 
6. Nec(A) > 0 ⇒ Π(A) = 1. 
7. Π(A) < 1 ⇒ Nec(A) = 0. 

The Shafer [26] theory of evidence stands that the probability of an element or a 
set is related to its complementary one. It includes concepts of ‘low probability’ and 
‘high probability’, that are related to the measures of possibility and necessity in the 
sense that for any subset A, Nec(A) ≤ P(A) ≤ Π(A). 

The theory of possibility also stands on fuzzy sets, where ℘ is a family of fuzzy 
subsets in X.  

A measure of possibility is not always a Sugeno fuzzy measure [22]. However a 
normal possibility distribution on a finite universe X is a Sugeno measure. 

2.7 Definition of Fuzzy Measure 

Let (X, ℘) be a measurable space. A function m: ℘→ [0, ∝) is a fuzzy measure (or 
monotone measure) if it verifies the following properties:  
1. m(∅) = 0. 
2. If A, B∈℘ and A⊆B then m(A) ≤ m(B).  

Property 2 is called monotony.  
For example, all σ-additive measures (as probability) are fuzzy measures. Some 

other fuzzy measures are the necessity measures, the possibility measures and the 
Sugeno measures. 



2.8 Definition of Fuzzy Sugeno λ-Measure 

Sugeno [27] introduces the concept of fuzzy λ-measure as a normal measure that is λ-
additive. So the fuzzy λ-measures are fuzzy (monotone) measures.  

Let λ∈ (-1, ∝) and let (X, ℘) be a measurable space. A function gλ: ℘→ [0, 1] is 
a fuzzy λ-measure if for all disjoint subsets A , B in ℘, gλ(A∪B) = gλ(A) + gλ(B) + 
λgλ(A) gλ(B). 
For example, if λ = 0 then the fuzzy λ-measure is an additive measure. 

2.9 S-Decomposable Measures  

The  S-decomposable measures provide a general concept of the fuzzy λ-measures 
and the possibility measures.  

Let S be a t-conorm, and let (X, ℘) be a measurable space. A S-decomposable 
measure is a function m: ℘→[0, 1] that verifies the following conditions.  
1. m(∅) = 0. 
2. m(X) = 1. 
3. For all disjoint subsets A and B in ℘, m(A∪B) = S(m(A), m(B)). 

The property 3 is called S-additivity.  
For example, the probability measures are W*-decomposable measures, where 

W* is the Łukasiewicz t-conorm. The W*λ-decomposable measures, where W*λ is 
the t-conorm W*λ(x, y) = x + y + λxy are fuzzy λ-measures.  
Let m be a S-decomposable measure on (X, ℘). If X is finite then given a subset A in 
℘, m(A) = 

x A
S
∈

{m({x})}. 

2.10 Fuzzy p -Measure (Fuzzy Preorder-Monotone Measure)  

Trillas and Alsina [33] give a general definition of fuzzy measure. When a character-
istic, namely –volume, weight, etc.– needs to be measured on the elements of a set X, 
a preorder relation that allows to stand that “x shows the characteristic less than y 
shows it” for all x and y in X is necessary to be set. That reflexive and transitive rela-
tion is denoted xp y.  

A fuzzy p -measure is defined as follows: 
Let p  be a preorder, for which 0 is a minimal element in X and 1 is a maximal 

element in X. Then a fuzzy p-measure is a function m: ℘(X) → [0, 1] that verifies 
the following conditions: 
1. m(0)=0  
2. m(1)=1 
3. If xp y then m(x) ≤ m(y). 

A good example of fuzzy p -measure on the set of natural numbers N is the Sark-
ovskii measure, which is defined as a measure of approximately even numbers, given 
by the following function m: 
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Then m is a fuzzy p-measures, not for the normal natural numbers order, but for 
the Sarkovskii order, for which the lowest number is 3, and the greatest number is 1. 
It is a well-known order used in dynamic systems and given defined as follows:  

3 p 5 p 7 p ... p 2.3 p 2.5 p ... p 22.3 p 22.5 p ... p 23.3 p 23.5 p ... 23.3 p 23 p 22 p 
2 p 1 

Other fuzzy p-measure are all previous defined fuzzy measures, which are mono-
tone measures with respect to the set inclusion preorder, that is now generalised in 
both classic set inclusion and fuzzy set inclusion cases. 

The Sugeno [27] fuzzy measure concept is also generalised: if ℘ is a partial order 
lattice, then xp y if and only if x∧y=x, and the three Sugeno properties are satisfied. 
If the lattice is ortocomplemented then there exists a dual function m*(x)=1−m(x’) 
that also is a fuzzy p -measure.  
Then, the probability measure on a Boole algebra of probabilistic successes is also a 
fuzzy p -measure. 

Let ℘ be the set of fuzzy subsets on a given set, the entropy measure introduced 
by De Luca and Termini, and the possibility or necessity measures [14] are also a 
fuzzy p -measures.  

3 Some Measures On Fuzzy Sets and Fuzzy Relations  

3.1 Entropy or Measures of Fuzziness 

Let X be a set and let ℘(X) be the set of fuzzy sets on X. The measures of fuzziness 
or entropies give a degree of fuzziness for every fuzzy set in ℘.  
Some entropy measures have influence from the Shannon probabilistic entropy, 
which is commonly used as measures of information.  

De Luca and Termini  consider the entropy E of a fuzzy set of ℘(X) as a measure 
that gives a value in [0, ∝] and satisfies the following properties: 
1. E(A) = 0 if A is a crisp set. 

2. E(A) is maximal if A is the constant fuzzy set A(x) = 
1
2

 for all x∈X. 

3. E(A) ≥ E(B) if A is ‘more fuzzy’ than B by the ‘sharpen’ order. 
4. E(A) = E(A’). 
 



Note that the defined entropy measure of a fuzzy set is a fuzzy p -measure where the 
p  preorder is the ≤S sharpen order, in which B≤SA if for any element x in the uni-

verse of discourse when A(x) ≤ 
1
2

 then B(x) ≤ A(x) and when A(x) ≥ 
1
2

 then B(x) ≥ 

A(x)  
Kaufmann  proposes a fuzziness index as a normal distance. Other authors as Yager 
[41] and Higashi and Klir [14] understand the entropy measures as the difference 
between a fuzzy set and its complementary fuzzy set. 

3.2 Measures of Specificity 

The specificity measures introduced by Yager [47] are useful as measures of tranquil-
lity when making a decision. Yager introduces the specificity-correctness trade-off 
principle. The output information of expert systems and other knowledge-based sys-
tems should be both specific and correct to be useful. Yager suggests the use of speci-
ficity in default reasoning, in possibility-qualified statements and data mining proc-
esses, giving several possible manifestations of this measure. Kacprzyk  describes its 
use in a system for inductive learning. Dubois and Prade [5] introduce the minimal 
specificity principle and show the role of specificity in the theory of approximate 
reasoning. Higashi and Klir [14] introduce a closely related idea called non-
specificity. The concept of granularity introduced by Zadeh [53] is correlated with the 
concept of specificity.  

Let X be a set with elements {xi} and let [0, 1]X be the class of fuzzy sets of X. A 
measure of specificity Sp is a function Sp: [0, 1]X →[0, 1] such that: 
1. Sp(µ) = 1 if and only if µ is a singleton (µ = {x1}). 
2. Sp(∅) = 0  
3. If µ and η are normal fuzzy sets in X and µ⊂η, then Sp(µ)≥Sp(η). 

A general expression [8] that can be used to build measures of specificity from 
three t-norms and negations is an application SpT: [0, 1]X→[0, 1] defined by SpT(µ) = 
T1(a1, N(T2*j=2,..,n{T3(aj, wj)}) where µ is a fuzzy set in a finite set X, and ai is the 
membership degree of the element xi (µ(xi)=ai), the membership degrees ai∈[0, 1] are 
totally ordered with a1 ≥ a2 ≥ ... ≥ an, N is a negation, let T1 and T3 be any t-norms, 
T2* a n-argument t-conorm and {wj} is a weighting vector.  

For example, when N is the negation N(x) = 1-x, T1 and T2 are the Łukasiewicz t-
norm defined by T1(a, b) = max{0, a+b−1}, so T2*(a1, ..., an) = min{1, a1+ ..+an}, and 
T3 is the product, then the previous expression gives Yager´s [47] linear measure of 
specificity, defined as 

Sp(µ) = a1 − ∑
=

n

2j

wj aj. 

The measures of specificity are not monotone measures, because the measure of 
specificity of a fuzzy set is lower when some membership degrees that are not the 
highest degree are increased. However the measures of specificity of fuzzy sets are 



fuzzy p -measures, where p is a preorder that classifies the fuzzy sets by the utility 
of the contained information, or by a given distance to a singleton.  

3.3 Measures of µ-T-Unconditionality 

The µ-T-conditionality property of fuzzy relations generalises the modus ponens 
property when making fuzzy inference. A fuzzy relation R: E1×E2→ [0,1] is µ-T-
conditional if and only if T(µ (a), R(a, b)) ≤ µ(b) for all (a, b) in E1×E2. 
Some ways to measure a degree of verification of this property are discussed, which 
are monotonous measures on the measurable space (ℜ, ℑ, M), where ℜ is the set of 
fuzzy relations R: E1×E2→[0, 1], ℑ the set of measurable subsets of ℜ and M is a 
measure of µ-T- unconditionality. There are two ways to define those measures [9]. A 
first way computes a generalised distance between a fuzzy relation R and the greatest 
µ-T-conditional relation that is contained in R. The other way measures the difference 
between T(µ(a), R(a, b)) and µ(b) in all points (a, b) in which R is not µ-T-
conditional. 
 
The measures of µ-T- unconditionality of fuzzy relations are monotone measures 
on the measurable space (ℜ, ℑ, M) where ℜ is the set of fuzzy relations R: 
E1×E2→[0, 1], ℑ is the set of measurable subsets of ℜ and M is a measure of µ-T- 
unconditionality.  

4 Conclusions 

The latest concepts of fuzzy measure are presented.  
Some measures are relevant to understand the process of inference, even when these 
are neither additive nor monotone. Proposals for non-monotone measures on fuzzy 
sets (entropy and specificity) are mentioned and  are classified.  
Some of the main measures to understand the information on the premises or conclu-
sions in approximate reasoning are presented and classified in the context of the last 
concepts of fuzzy measures. 
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