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An expression for measuring the specificity of fuzzy sets on continuous domains is introduced. This
expression is based on t-norms, negations and the Choquet integral. It is also proved that the new
expression satisfies the given axioms for measure of specificity. New examples are provided.

Keywords: Fuzzy measure; Specificity; Measure of specificity; Weak measure of specificity

1. Introduction

The concept of specificity introduces a measure of the amount of information contained in a
fuzzy set by giving a degree of “containing just one element”. This is strongly related with
the inverse of the cardinality of a set.

If we would have to choose one element of a set of elements, and we have a fuzzy set with
adegree of satisfaction of each element, it is desirable to have a singleton or a high specificity
fuzzy set to make an election with tranquillity.

Some previous works study the measures of specificity of fuzzy sets on discrete
domains (Yager 1990), but the measures of specificity on continuous domains deserves a
deeper study.

Garmendia et al. (2003) uses a general expression for measures of specificity of fuzzy
sets on finite domains using t-norms, t-conorms and negations. The general expression
also allows to generate many measures of specificity using different fuzzy connectives,
so it is possible to find the best measure of specificity of fuzzy sets in every environment
or logic.

This paper gives a general expression to measure the specificity of fuzzy sets on
continnous domains. The expression uses t-norms, negations, fuzzy measures and the
Choquet integral. Some properties and also that other known formulas are particular cases of
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this general expression are shown. It is proved that this general expression verifies the axioms
of measures of specificity (Yager 1998). The new measures of specificity are potentially
useful in many applications.

Yager (1998) proposes a first expression for measuring the specificity of fuzzy sets on
continuous domains that a particular case of the general expression given in this paper.
Yager's first example uses a normalized Lebesgue measure and can be written using the new
expression. Several examples of measures of specificity of fuzzy sets on the interval [0, 1] are
given using several t-norms.

The new expression of measures of specificity of fuzzy sets on continuous domains can be
used to generate different formulas of measure of specificity of fuzzy sets for each
environment and for each application.

2. Preliminaries

DEFINITION 2.1. A binary operation 7: [0, 1] X [0, 1] — [0, 1] is a t-norm (Schweizer and
Sklar 1983), if it satisfies the following axioms:

1. T(1, x) = x;

2. Tx, vy = T(y, x);

3. T(x, T(y, 7)) = T(T(x, ¥), 2); and

4. ifx<x"and y <y’ then T(x, y) = T(x’, y").

A binary operation S: [0, 1] X [0, 1] is a t-conorm if it satisfies 2—4 and S(0, x) = x.

DEFINITION 2.2. A map N: [0, 1] — [0, 1] is a negation if it satisfies the following conditions:

1. NO)=1,N(1)=0
2. N is non-increasing

A negation N is strong if N(N(x)) = x.

DErFINITION 2.3. A fuzzy set w1 on X is normal if there exist an element x; € X such that
w(xy) = 1.

DEFINITION 2.4. Measure of specificity
Let X be a set and let [0, 1]% be the class of fuzzy sets on X. A measure of specificity (Yager
1990) is a function Sp: [0, 11X — [0, 1] such that:

1. Sp(Z) = 0.
2. Sp(p) = 1 if and only if u is a singleton.
3. If p and ) are normal fuzzy sets in X and p C 7, then Sp(w) = Sp(7).

The first condition assumes that the empty set have minimum specificity. However other
not empty fuzzy sets could also have specificity zero.
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The second condition imposes that only crisp sets with just one element (singletons) can
have specificity one (the maximum specificity).

The third condition requires that the specificity measure of a normal fuzzy set decreases
when the membership degrees of its elements are increased.

DEFINITION 2.5. Regular measure of specificity: A measure of specificity Sp is regular (Yager
1991) if Sp(X) = 0.

DEFINITION 2.6. Weak measures of specificity: Let X be a set with elements {x;} and let
[0, 17* be the class of fuzzy sets of X. A weak measure of specificity Sp (Garmendia e al.
2003) is a function Sp: [0, 11¥— [0, 1] such that:

1. Sp(&) =0,
2. Sp(p) = 1 if p is a singleton (u = {x,}), and
3. if w and 7 are normal fuzzy sets in X and u C n, then Sp(p) = Sp(m).

The difference between a measure of specificity and a weak measure of specificity lies on
axiom 2. Non-singletons fuzzy sets can have maximum weak specificity.

DEFINITION 2.7. Fuzzy measure (Grabisch er al. 2000):
Let p be a family of subsets of a set X, with J, X € p. A mapping M: p — [0, 1]iscalled a
fuzzy measure if:

) MJ)=0,
(2) MX) =1, and
(3) ifA, B € pand A C B then M(A) =< M(B).
The triple (X, g and M) is a fuzzy measure space.
In Yager (1998) only fuzzy measures that satisfy the following condition are considered:
(4) M(B) =0 if and only if B is the empty set or B is a singleton.

Note that condition 4 is needed in some proofs, but it is a technical condition and it is very
difficult to translate into natural language.

The measures of specificity are not fuzzy measures because they are not monotone with
respect to the inclusion of fuzzy sets. The following definition of fuzzy = ;-measure allow us
to use the word “measure” to compute the specificity of fuzzy sets, because the measures of
specificity are fuzzy = ,-measures.

DErINITION 2.8. = ;-measure (Trillas and Alsina 1999):
A measure of a characteristic £ shown by the elements of a set E is done through a
comparative relation like “x shows the characteristic & <y shows it” for any x, y in E.
Let’s write “x = ;y” to denote that relation and suppose that =, is a preorder on E.
A function m: E — [0, 1] is a fuzzy <,-measure for E if it satisfy the following conditions:

1. m{xp) = 0 if xo € E is minimal for <.
2. m(xy) = 1 if x; € E is maximal for <.
3. If x =<y then m(x) = m(y).
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Remarks.

1. Fuzzy measures are C -measures (monotone measures with the inclusion preorder).

2. The entropy measures (De Luca and Termini 1972) for fuzzy sets are < s-measures, where
=g is the sharpened ordering.

3. The measure of specificity (Yager 1990) represents the idea of measuring how far is a
fuzzy set from a singleton. So, a measure of specificity Sp is a fuzzy = ,-measure where
the set E is [0, 11%; the characteristic k is the specificity of a fuzzy set; x, is the empty set
(the only minimal set); x; is a singleton (the maximal sets are all singleton) and the

preorder =g, is defined as g = 5,0 < Sp(u) = Sp(o).

DErFINITION 2.9. Choquet integral (Choquet 1953):
Let (X, p and M) be a fuzzy measure space. Let f: X — [0, oo} be a measurable function.
The fuzzy integral of f with respect to a fuzzy measure M by the Choquet integral is:

00

©) Lf-dM = © Lf(w}dM(w) = JO ME® > ayda.

The Choquet integral (Nguyen and Walker 1996) is an extension of the classical Lebesgue
integral for nonclassical measures, such as fuzzy measures, which are not necessarily
additive measures.

3. An expression for measuring the specificity of fuzzy sets under continnous domains

The axioms of measure of specificity (definition 2.4) and weak measure of specificity
(definition 2.6) of fuzzy sets are given. This paper’s goal is to provide expressions and
formulas that satisfy the previous axiomatic definitions and that be used when it is useful to
measure the amount of information contained in a fuzzy set on an continuous domain in order
to make a decision.

A general expression for measures of specificity of fuzzy sets on continuous domains using
a t-norm, a strong negation and a fuzzy measure is given and it is proved that the new
expression satisfies the weak measures of specificity axioms. When the fuzzy measure
verifies the condition 4, which is a technical, then the expression satisfies the axioms for
measures of specificity.

Let A be a fuzzy set on an continuous universe X and let a,, be the supremum of the
membership degrees of A. Let (X, p and M) be a fuzzy measure space (definition 2.7), such
that the fuzzy measure M verifies that:

(4) M(B) = 0 if and only if B is the empty set or B is a singleton.

Let A, € p be the a-cut level set of A. Let T be a t-norm (definition 2.1) and let N be a
strong negation (definition 2.2).

An expression for measuring the specificity of a fuzzy set A on an continuous domain is

given as follows:
MS(A) = T(asup,N<J " M(Aa)-da>)
0

where [*" is a Choquet integral (definition 2.9).
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LEMMA 3.1. If A is a normal fuzzy set then:

1
MS(A) = N(J M(Aa)-da).
0

Proof

Cequp 1
MS(A) = T{ agwp, N M(Ay)-da =T{1,N M(Ay)-da
P 0 Q

1
- N(J M(Aa)~da). &
0

Note that if A is a classical non empty set then MS(4) = N (f(l) M(Aa)-da)

LemMA 3.2, If A and B are non empty classical sets and M(A) = M(B) then MS(A) = MS(B).
The proof is trivial from the previous lemma.

THEOREM 3.3. The measure of specificity expression under continuous domains MS verifies
the axioms of measures of specificity (definition 2.4).

Proof.
Axiom 1: 0
MS(D) = T(O,N(J O-da)) =T70,1)=0
0
Axiom 2:
1 1
MS({x}) = T(I,N(J M(Aa)-da)) = N(J O-da) =N0) =1,
0 0
and

1 1
MSA) =1= agy = landN(J M(Aa)-da) =1= g = landJ M(Aa)-da=0
0 0

= agp = 1and M(A,) = 0,

so by applying the condition 4 it is deduced that A is a singleton.

Axiom 3. If A and B are normal fuzzy sets and A C B then M(A,) = M(B,) for any «, so:
1 1
MS() = N(J M(Aa)-da) = N(J M(Ba)-da) = MS(B). O
0

0

Note. If the condition 4 is not imposed to the fuzzy measure M, then MS is a weak measure of
specificity (definition 2.6).
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Lemma 3.4. MS is a regular measure of specificity.

Proof

1 1
MS(X) = T(l,N(J M(Xa)~da>> =N<J 1~da> =N(1)=0. 0
0 ]

4. Measure of specificity for fuzzy sets on continuous domains (Yager 1998)

Yager (1998) gives a first example of measure of specificity for a fuzzy set on an continuous
domain. This paper shows that the same example can be written using the new proposed
expression, the usual negation and the Lukasiewicz t-norm.

Let X be an continuous set (for example, a real interval). Let A be a fuzzy set on X and let
A, be its a~cut.

Yager (1998) proposes a measure of specificity on an continuous domain given as follows:

Sp(d) = | P
0
where o, is the maximum membership degree of A, M is a measure on X and F is a function
F: 10, 1] — [0, 1] verifying:

() FO)=1,
(2) F(1)=0, and
3) ifx>ythen0 = F(x) < F(y) =< 1.

Example 4.1. Let X be the real interval [0, 1] and let M be the Lebesgue-Stieltjes measure
defined as M([a, b]) = b — a. Let F be the function F(z) =1 — z. Let A be the fuzzy set
defined by:

2x 0=x=05
AR = —2x+2 05=x=1
0 otherwise

The graphical representation of A is given in figure 1:
For any @, Ay=1[a/2, 2~ a)2] and M(A,) = (2~ &)2) —(af2)=1 — a. As
Omax = 1 then:

1 1
Sp4) = J F(M(Ay))da = J (1—-(1~a)yda=05
0 0
Yager gives another new concept for measuring the specificity of fuzzy sets on continuous
domains when X is the real interval @, b] and F(z) =1 — z

Cmax

(1~ M(A))det = G — J M(AJ)da.
0

Omax O max

Sp(A) = J F(M(A)da = J

G o]
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1
o8
06
P
0.4
02 a
0
0 D2 04 OS5 0.51 1
X
o2 Q-2
2x 0=x=05
Figure 1. Fuzzy setA(x) =< —2x+2 05=x=1,
0 otherwise

If M is the normalized Lebesgue measure M(B) = Length(B)/(b — a) then

*Omax 1 *max
Sp(A) = amax — J MA)da = anax — —J Length(A,)da.
0 b—aly
So, the expression J'g'“‘“Length(Aa)da can be interpreted as the area under the fuzzy

set A, and the measure of specificity of a fuzzy set A on an interval [a, »] can be given
as

area under A
b—a

Qmax —

5. The new expression generalises Yeager’s measure of specificity of fuzzy sets on
continuous domains (Yager 1998)

It is shown that the previous example 4.1 is a weak measure of specificity (definition 2.6)
under an continuous domain when N is the negation N(x) = 1 — x, T is the Lukasiewicz t-

norm defined by T(x, y) = max(0, x +y — 1), and M is the Lebesgue measure given by the
length of an interval. Then

* Xmax

MS(A) = max(0, amax + N(J M(Aa)-da> -1

0

*Umax

= max <O, Qmax +1 — J M(A,)da — 1)

0

= max <O, Omax — J M(Aa)~da> (M(A,)is always less or equal than one)
0

*Omax

e Ja M(A,)da = J (1 — M(A)da = J'am F(M(A))da = Sp(A).
0 0 0
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Note. When the measure M is the length of an interval, it does not verify condition 4, hence
the new given expression is a weak measure of specificity. For example, if

I if x=0, x=025 x=05 x=1
Alx) =

0 otherwise
1 1
M(Ay) = 0and M(Ay) = 1, then J M(Ay)da =0 and Sp(A) =1 — J M(Ay)-da =1,
0 0
but A is not a singleton.

6. Examples

Example 6.1. To compute a weak measure of specificity of the fuzzy set

0 0=x=025
4x — 1 025=x=05
—4x+3 05=x=0.75
0 075=x=1

B(x) =

on the real interval [0, 1], it is necessary to compute its a-cut. which is graphically shown in
the following figure 2:

For any «, B, = [{(a + 1)/4, 3 — a)/4].

If T is the Lukasiewicz t-norm, N(x) = 1 — x and M is the Lebesgue measure then:

~a_a+1*l—a

3
MBa) =—7 4 2

AS Qpax = 1, it follows that

1 1
- 1
MS(B)zl—jM(Ba)da-——l—-[ Yda=1—~=
. 2 2

08
06
0.4

0.2

0 ‘
0 02(04 06 (08

(a+1)d  (3-0)/4

Figure 2. a-Cut of B(x).
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Example 6.2. To compute a weak measure of specificity of the fuzzy set

x 0=x=05
CO=31_1 o5=x=1

on the real interval [0, 1], it is necessary to compute its a-cut. For any «, C, = [, 1 — a] and
MC)=1—a—a=1— 2« and so ap,, = 1/2.
If N(x) =1 — x and T is the Lukasiewicz t-norm then

1 (2 1 (V2 1 [t 1] 1
0 0

If T = Prod, then

12 1 11 1/3) 3
MS(C) = Prod (amax,N(JO M(Ca)da>) = 5 <1 - l:i - Z:|) = 5 (Z) = g = 0.375.

If T = Min, then

12 13y 3
MS(C) = Min| amax, N J M(Cp)de | | = Min (- ,—) =2=075.
0 2°4) 4

Example 6.3. The following table 1 summarises several measures of specificity of five fuzzy
sets defined on the unit interval when T is the minimum, Product or Lukasiewicz t-norm,
N(x) =1 — x and M is the Lebesgue measure.

Note. When the fuzzy set is normal, the t-norm 7' is irrelevant. This is held because a; = 1
and so by lemma 3.1 it is held that

1
MS(4) = NJ M(Ag)-da
0

Note that BC A C E, so MS(B) = MS(A) = MS(E), and as D C C then MS(D) =
MS(C).

Example 6.4. Many other examples can be generated using different t-norms and negations.
Some examples are given using the strong negation N=1 — x 2
If the t-norm T is the Lukasiewicz t-norm, then

12 1 1/2 1 3\ 2
MS(C) = W(amax,N<J M(Ca)da>> = —+N<J M(Ca)da> —1l==+ <—> -1
0 2 0 2 4

= 0.0625.
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Table 1. Examples of weak measures of specificity when M(x) = 1 — x, T = Min, Prod, W and M is the Lebesgue

measure.
X=/0, 1] T= Lukasiewicz Product Minimum
B ! 0 0=x=025 0.75 0.75 0.75
ue 4x~1 025=x=05
08 B(x) =
" oa —4x4+3 05=x=075
02 0 075=x=<1
o
g 02 04 ‘UE 98 1
A 1 2x 0=x=05 0.5 0.5 0.5
o AW =<{ —2x+2 05=x=1
0&
> 0 otherwise
0.4
0.2
a
0 D2 04 08 38 1
X
E 4x 0=x=} 0.25 0.25 0.25
cB
o E(x) = 1 % <=x= %
- 4 — 4x % =x=]
0.4
0.2
a)
80 02 D4 DB DB
D 1 0 0=x=025 0.375 0.437 0.5
ve -1 025=x=05
Dx)= 1 , n
- -2 05=x=075
0 075=x=1
X
c 1 x 0=x=<05 0.25 0.375 0.5
Clx) =
o8 ) l—x 05=x=1
DB
- 0.4
02

0
0 02 04 G 0B 1
X

If T is the product t-norm, then

1/2 1 /32
MS(C) = Prod| apax, N } M(Cypda :§*<A—l> = 0.28125.
0
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If T is the t-norm minimum, then

(/2 2
MS(C) = Min| amax, N J M(Cy)da ) | = Min{ - <~> = Min(0.5,0.5625) = 0.5.
0
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