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Abstract

Models of neurons based on iterative maps allows the simulation of big networks of coupled neurons without loss of biophysical

properties such as spiking, bursting or tonic bursting and with an affordable computational effort. These models are built over a

phenomenological basis and are mainly implemented by the use of iterative two-dimensional maps that can present neuro-computational

properties similar to the usual differential models. A piecewise linear two-dimensional map with one fast and one slow coupled variables

is used to model spiking–bursting neural behavior. This map shows oscillations similar to other phenomenological models based on maps

that require a higher computational effort. The dynamics of coupled neurons is studied for different coupling strengths and the formation

of spatio-temporal patterns of neuronal activity is also explored.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Numerical studies of the collective behavior of ensembles
of neurons rely on models of neurons that describe the
neuron behavior on the basis of differential equations.
Conductance models based on differential equations as the
Hodking–Huxley (HH) or Hindmarsh–Rose (HR) models
require a high computational effort to reproduce neuronal
behavior such as spiking or bursting. Such models contain
variables of multiple time scales ranging from one
millisecond to hundreds of milliseconds to describe slow
intrinsic process and require a number of floating point
operations that range from 1200 operations in the case of
the HH model to 70 operations in the HR model to
simulate a single neuron in the network for 1ms. Recently,
some models have been proposed to solve the drawbacks of
the differential models [5,7]. These new models are built
over a phenomenological basis and are implemented by the
use of iterative two-dimensional maps that can present
neuro-computational properties similar to the differential
models. These models present a low computational effort
that makes possible the simulation of big ensembles of
e front matter r 2006 Elsevier B.V. All rights reserved.
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coupled neurons during relatively long periods of time. For
example, the sleep and activated states of the thalamocor-
tical system in anesthetized cats have been modeled using a
two-dimensional iterative map [8]. The authors demon-
strated responses very similar to these found with HH
models and experiments.
In the present work a two-dimensional continuous

piecewise linear map that models spiking–bursting neural
behavior is presented. The map is constructed under
phenomenological assumptions and mimics the dynamics
of oscillations observed in real neurons. The behavior of
coupled neurons is also investigated, in particular the
degree of synchronization of a pair of coupled maps is
studied for different coupling strengths. The formation of
spatio-temporal patterns of neuronal activity in a network
is also explored.
2. The neuron model and synchronization effects in coupled

maps

The modeling of neuronal behavior by means of two-
dimensional maps has been object of great interest in the
last few years [5,4,7]. These models consider a two-
dimensional system that has both a slow and a fast
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Fig. 1. Graph of the piecewise linear function y.
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dynamics. However, the behavior of fast and slow
dynamics are clearly correlated. It can be observed that
high values of the slow variable correspond with spikes of
the fast variable and low values of the slow variable
correspond with resting periods of the fast variable.

The previous observation leads us to consider a
simplified model implemented as a coupled two-dimen-
sional map ðy; sÞ where the value of function y represents
the membrane potential. The function s is a bi-valued
function taking the discrete values ð0; 1Þ and indicates if the
value of the membrane potential y is de-polarizing ðs ¼ 1Þ
or re-polarizing ðs ¼ 0Þ by changing the shape of the
function y. The following equations will be considered for
the map

ynþ1 ¼

V ðsnÞ

B
� yn if 0pynoB;

ðyn � BÞ �
KðsnÞ � V ðsnÞ

C � B
þ V ðsnÞ if BpynoC;

ðyn � CÞ �
TðsnÞ � KðsnÞ

D� C
þ KðsnÞ otherwise;

8>>>>><
>>>>>:

(1)

snþ1 ¼

0 if sn ¼ 1 and yn4D;

1 if sn ¼ 0 and ynoL

or ðyn4C � E and ynoC þ EÞ;

sn otherwise;

8>>><
>>>:

(2)

where V ðsÞ ¼ V 0 þ s � ðV 1 þ sÞ, KðsÞ ¼ K0 þ s � ðK1 þ sÞ
and TðsÞ ¼ T0 þ s � ðT1 þ sÞ and B;C;D;E;L;V 1;V0;K1;
K0;T1;T0 are non-negative parameters verifying the
following conditions: LoBoCoD, V 0pB, V 1 þ V 0X

B, K0pC, K1 þ K0XC, T0pD and T1 þ T0XD. The
external total input to the neuron is represented by s.

The parameter C is the spike threshold. The parameters
L, E and D are thresholds that force the change of value of
the slow variable s as the fast variable y crosses one of these
thresholds, where L is the hyperpolarization value and D is
the depolarization value. The other parameters control the
dynamics of the membrane potential and they are set to
reproduce the behavior of a particular type of neuron. As
other map-based model [7], our approach always generates
a point on the top of each spike and never misses a spike. A
plot of the map is depicted in Fig. 1.

Note that the values of V ðsÞ, KðsÞ and TðsÞ can be
computed in advance for both values of the variable s, and
therefore they need not to be computed for each step. This
means that for a constant value of the external input s this
map requires at most two floating point operations plus
four comparisons per iteration. The descending part of the
map ðy; sÞ ðs ¼ 0Þ does not depend on the external input s
presenting so refractory properties of the neuron after
spiking.

The temporal behavior of the map (1) for different
values of the external input s is presented in Fig. 2. As can
be observed, the map is capable of generating both spiking
or bursting series behavior. The parameters for both series
are: L ¼ 0:01, B ¼ 0:15, C ¼ 0:3, D ¼ 0:9, V 0 ¼ 0:14,
K0 ¼ 0:29, T0 ¼ 0:75, V1 ¼ 0:01, K1 ¼ 0:02, T1 ¼ 0:4
and S ¼ 0. In order to obtain bursting behavior we
establish E ¼ 0:0055. Spiking behavior is obtained by
simply establishing E ¼ 0. Note that the spiking/bursting
rate increases with the value of the external input. This
behavior is consistent with the results obtained with other
phenomenological or differential models (e.g. integrators
or class 1 models [4]).
The previous map can be generalized in order to receive

synaptic inputs from other neurons in the network. In the
generalized mode, a chemical synaptic transmission can be
modeled by substituting a constant input s to neuron i by
the total input at time n

sn;i ¼ se
i þ

1

Gi

XN

j¼1

gijsn�1;jHðyn�1;j �YÞ, (3)

where se
i represents both the external input to neuron i and

the action of any current not explicitly captured by the
model. Gi is the number of neighbors of neuron i, N is the
number of neurons in the network, yn;j and sn;i represent
respectively the value of y and s for the neuron j at time n.
The parameter gij is the synaptic coupling coefficient
between neuron i and neuron j and HðxÞ is the usual
Heaviside function. The threshold Y has been chosen such
that every spike in the single neuron can reach the
threshold ðY ¼ CÞ.
Synchronized neuronal firing has been suggested as

particularly relevant for neuronal transmission and coding.
The presence of synchronization has been demonstrated in
special areas such as the olfactory system [1] or the visual
cortex region [3]. Real neurophysiology experiments [2,8]
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Fig. 2. Spiking (left) and bursting (right) behavior generated by map 1 for (a) s ¼ 0:01 and (b) s ¼ 0:001. Parameters are described in the text.

5000 10000
0

0.5

1

1.5

2

Y
n.

2

5000 10000
0

0.5

1

1.5

2

Y
n.

1

5000 10000
n

0

0.5

1

1.5

2

|Y
n.

1-
Y

n.
2|

(a)

5000 10000
0

0.5

1

1.5

2
Y

n.
2

5000 10000
0

0.5

1

1.5

2

Y
n.

1

5000 10000
n

0

0.5

1

1.5

2

|Y
n.

1-
Y

n.
2|

(b)

Fig. 3. Synchronization in coupled maps. Parameters are described in the text. (a) Synchronization regime g1;2 ¼ g2;1 ¼ 0:05 and se
1 ¼ se

2 ¼ 0:001. (b) No

synchronization g1;2 ¼ g2;1 ¼ 0:005 and se
1 ¼ se

2 ¼ 0:001.

Fig. 4. Sequence of spatio-temporal patterns displayed by the network of 50� 50 neurons. Neurons with the same color are synchronized. The sequence in

the top panel corresponds to a uniform injection of external current se ¼ 0:005. In the bottom panel a set of neurons are stimulated with a higher value of

external current se ¼ 0:01.
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show that ensembles of coupled neurons can present
different regimes of synchronization. These regimes are
reproduced both by differential or iterative models [4]. The
synchronization phenomena in map (1) can be observed in
Fig. 3 (a) for identical interacting bursting neurons with a
symmetric coupling value of g1;2 ¼ g2;1 ¼ 0:05. As can be
observed in the lower panel of Fig. 3(a) the synchronization
of the individual spikes is achieved after a initial transient
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period. Note that with a low value of the coupling
coefficient g1;2 ¼ g2;1 ¼ 0:005 the synchronization effect is
not clearly obtained as can be seen in Fig. 3(b).

The formation of spatio-temporal patterns of neuron
activity in networks such as the inferior olive (IO) has been
studied in [9] by means of intensive simulation of a realistic
HH model or in vitro by [6]. The role of subcellular and
network processes in the genesis of such spatio-temporal
patterns in a neural network is not completely understood.
Simulations of networks of connected neurons can help
to test hypotheses related to the role of these processes.
Here we consider a network of identical neurons with a
dynamics governed by map 1 and with a synaptic coupling
defined by Eq. (1). We built a two-dimensional network of
50� 50 neurons where each neuron is connected to its 8
closest neighbors. The patterns of network activity
generated both under a uniform injection of external
current and considering a set of stimulated neurons can be
observed in Fig. 4. These patterns of neuronal activity
obtained in both cases are very similar to the ones observed
both in vivo or [6] with realistic models [9].
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